SAMPLE OF SCRIPTED LESSONS

MATHEMATICS

LOWER SECONDARY

(S1-S3)
© 2022 Rwanda Basic Education Board
All rights reserved.
This book is the property for the Government of Rwanda.
Credit must be given to REB when the content is quoted.

FOREWORD

Dear teacher,

Rwanda Basic Education Board (REB) is honoured to present the book of Mathematics lessons sampled from scripted lessons of Lower Secondary. This book serves as a reference to competence-based teaching and learning that infuses the 5E Instructional Model to ensure consistency and coherence in the learning of the Mathematics and Science content.

In line with efforts to improve the quality of education, the Government of Rwanda emphasizes the importance of aligning teaching and learning materials with the syllabus to facilitate the learning process. Many factors influence what pupils learn, how well they learn and the competences they acquire. Those factors include the relevance of the specific content, the quality of teachers' pedagogical approaches, the assessment strategies, and the instructional materials.

In this regards, Rwanda Basic Education Board (REB) is implementing the "Rwanda Quality Basic Education for Human Capital Development" Project. Some of the Project's objectives are:
(a) increase teacher content knowledge; (b) improve classroom teaching practices; (c) ensure availability of critical teaching materials and ICT tools in the classroom; and (d) provide continuous support to teachers in their work. The Sub-component 1.2 of the project has the aim of enhancing teacher effectiveness for improved student learning through different ways of supporting professional development of Mathematics and Science teachers.

Firstly, the project is helping teachers to use technology to improve their way of teaching through a complete yet simple package to be used in the classroom. This package includes the scripted lessons developed in One Note.

Secondarily, the project helped teachers from schools without electricity by developing the sample scripted lessons as presented in this book. They are developed to serve you as reference of lessons that respect the 5E Instructional Model. This model consists of cognitive stages of learning that comprise 5 phases: Engage, Explore, Explain, Elaborate, and Evaluate.

Through this approach, learners redefine, reorganize, elaborate, and change their initial concepts through self-reflection and interaction with their peers and their environment. As a result, learners interpret objects and phenomena observed in their real-life experience and internalize those interpretations in terms of their current conceptual understanding.

Even though this book contains the guidance on the main steps of the lesson, you are requested to regularly plan your lessons as usual depending on the current situation of your class environment: level of tudents, teaching materials, and motivating situation available at your school.

I wish to sincerely express my appreciation to the people who contributed towards the development of this book, particularly, REB staff, UR-CE Lecturers, Teachers, and experts from Local and international Organizations for their technical support.

Dr. MBARUSHIMANA Nelson

Director General, REB

ACKNOWLEDGEMENT

I wish to express my appreciation to the people who played a major role in the development of this book for Mathematics lessons sampled from scripted lessons of Lower Secondary (S1-S3). It would not have been successful without active participation of different education stakeholders.

I owe gratitude to University of Rwanda College of Education and other schools in Rwanda that allowed their staff to work with REB in the in-house textbook production initiative.

In addition, gratitude is extended to Rwanda Basic Education Board staff, lecturers and teachers who dedicated their time and supported the writing and proofreading of this document. Their commitment and invaluable inputs were very critical to finalizing this document.

Finally, I would also like to extend my gratitude to REB-SPIU and UR-SPIU, under quality Basic Education Project for providing all the facilities that were required.

Joan MURUNGI

Head of CTLR Department

Table of Contents

FOREWORD iii
ACKNOWLEDGEMENT v
Table of Contents vi
INTRODUCTION 1
SCRIPTED LESSONS FOR SENIOR 1. 7
1.1 First Lesson from unit 1 7
1.2 Second Lesson from unit 1 15
1.3 First Lesson from unit 2 21
1.4 Lesson from unit 3 31
1.5 Lesson from unit 4 40
1.6 Lesson from unit 5 48
1.7 Lesson from unit 6 56
1.8 Lesson from unit 7 69
1.9. Lesson from unit 8 75
1.10 Lesson from unit 9 86
SCRIPTED LESSONS FOR SENIOR 2 91
2.1. Lesson from unit 1 91
2.2 Lesson from unit 2 106
2.3 Lesson from unit 3 112
2.4 Lesson from unit 4 129
2.5 Lesson from unit 5 135
2.6 Lesson from unit 6 143
2.7 Lesson from unit 7 153
2.8 Lesson from unit 8 163
2.9 Lesson from unit 9 172
2.10 Lesson from unit 10 181
2.11 Lesson from unit 11. 191
SCRIPTED LESSONS FOR SENIOR 3 203
3.1. LESSON FROM UNIT 1 203
3.2 Lesson from unit 2 216
3.3 Lesson from unit 3 224
3.4 Lesson from unit 4 231
3.5 Lesson from unit 5 239
3.6 Lesson from unit 6 247
3.7 Lesson from unit 7 254
3.8 Lesson from unit 8 261
3.9 Lesson from unit 9 270
3.10 Lesson from unit 10 279
3.11 Lesson from unit 11 288
3.12 Lesson from unit 12 295
3.13 Lesson from unit 13 301
REFERENCE 311

INTRODUCTION

Rwanda Basic Education Board (REB) is implementing the "Rwanda Quality Basic Education for Human Capital Development" Project.

The subcomponent 1.2 of this project is being implemented by REB in collaboration with University of Rwanda College of Education (UR-CE). The subcomponent aims at enhancing teacher effectiveness for improved student learning through support of professional development of Mathematics and Science teachers.

Firstly, the project is helping teachers to use technology to improve their way of teaching through a complete yet simple package that includes the scripted lessons developed in One Note to be used in the classroom. These scripted lessons in One Note incorporate the 5E instructional Model.

Secondarily, the project helps teachers from schools without electricity by developing, in Microsoft word, the sample scripted lessons. This booklet contains such lessons and serves as a reference to competence-based teaching and learning that infuses the 5Es Instructional Model to ensure consistency and coherence in the learning of the Mathematics and Science content.

The detailed explanation of this model is given in the following paragraphs.

The 5Es instructional model

"The 5E Model of Instruction is a teaching and learning model that promotes active learning. It states that teaching and learning progresses through five phases: Engage, Explore, Explain, Elaborate and Evaluate.

In this model, students are involved in more than listening and reading. They learn to ask questions, observe, model, analyse, explain, draw conclusions, argue from evidence, and talk about their own understanding. With the 5 Es instructional model, students work collaboratively with peers to construct explanations, solve problems, and plan and carry out investigations."

Phase 1: Engage

The first phase of the 5E Model engages students by having them mentally focus on a phenomenon, object, problem, situation, or event. The activities in the Engage phase are designed to help students make connections between past and present learning experiences, expose prior conceptions, and organize thinking toward the essential questions and learning outcomes of the learning sequence.

The role of the teacher in the Engage phase is to present a situation, identify the instructional task, and set the rules and procedures for the activities. The teacher also structures initial discussions to reveal the range of ideas, experiences, and language that students use which become resources for upcoming lessons.

Teaching Strategies

- Raises questions or poses problems
- Elicits responses that uncover students' current knowledge
- Helps students make connections to previous work
- Posts learning outcomes and explicitly references them in the lesson
- Invites students to express what they think
- Invites students to raise their own questions

Phase 2: Explore

Once students have engaged in activities, they need time to explore ideas. Explore activities are designed so all students have common, concrete experiences which can be used later when formally introducing and discussing scientific and technological concepts and explanations. Students have time to investigate objects, events, or situations. As a result of their mental and physical involvement in these activities, students question events, observe patterns, identify and test variables, and establish causal relationships.

The teacher's role in the Explore phase is to facilitate learning. They initiate activities and allow time and opportunity for students to investigate objects, materials, and situations. The teacher coaches and guides students as they record and analyse observations or data and begin constructing models or initial explanations.

Teaching Strategies

- Provides or clarifies questions or problems
- Provides common experiences
- Observes and listens to students as they interact
- Acts as a consultant for students
- Encourages student-to-student interaction
- Asks probing questions to help students make sense of their experiences and redirect them when necessary
- Provides time for students to puzzle through problems

Phase 3: Explain

The Explain phase consists of two parts. First, the teacher asks students to share their initial models and explanations from experiences in the Engage and Explore phases. Second, the teacher provides resources and information to support student learning and introduces scientific or technological concepts. Students use these resources and information, as well as ideas of other students, to construct or revise their evidence-based models and explanations. In engineering, students design solutions to problems based on established criteria.

Teaching Strategies

- Encourages students to explain concepts and definitions in their own words
- Asks for justification (evidence) and clarification from students
- Formally provides definitions, explanations, and information through mini-lecture, text, internet, or other resources
- Builds on student explanations
- Provides time for students to compare their ideas with others and if desired revise their ideas

Phase 4: Elaborate

Once students have constructed explanations of a phenomenon or design solutions for a problem, it is important to involve them in further experiences that apply, extend, or elaborate the concepts, processes, or skills they are learning. Some students may still have misconceptions, or they may only understand a concept in terms of the exploratory experience. Elaborate activities provide time for students to apply their understanding of concepts and skills. They might apply their understanding to similar phenomena or problems.

Teaching Strategies

- Expects students to use vocabulary, definitions, and explanations provided previously in new contexts
- Encourages students to apply the concepts and skills in new situations
- Provides additional evidence, explanations, or reasoning
- Reinforces students' use of scientific terms and descriptions previously introduced
- Asks questions that help students draw reasonable conclusions from evidence and data

Phase 5: Evaluate

It is important that students receive feedback on the quality of their explanations. Informally, this may happen throughout the learning sequence. Formally, the teacher can also administer a summative evaluation at the end of the learning sequence. The Evaluate phase encourages students to assess their understanding and abilities and allows teachers to evaluate individual student progress toward achieving learning goals and outcomes.

Teaching Strategies

- Asks open-ended questions such as, "Why do you think...?" "What evidence do you have?" "How would you answer the question?"
- Observes and records notes as students demonstrate individual understanding of concepts learned and performance of skills
- Uses a variety of assessments to gather evidence of student understanding
- Provides opportunities for students to assess their own progress

When this model is used in the lessons, learners interpret objects and phenomena they observe in their real-life experience and internalize those interpretations in terms of their current conceptual understanding.

Scripted lesson is a structured lesson which is presented in a way that explains each step of the lesson in a direct instruction. It shows what the teacher says, what he/she does and indicates expected answers/findings of students in the whole process of a lesson from the beginning to the end.

The following part contains examples of lessons selected from scripted lessons prepared in One Note. They will serve as reference of lessons with the structure of 5Es instructional model.

SCRIPTED LESSONS FOR SENIOR 1

1.1 First Lesson from unit 1

SUBJECT: Mathematics
 GRADE: S1
 UNIT: 1

LESSON TITLE: Introduction to set concept.

Duration: 2 periods or 80 Minutes.
Teaching material: chalks, pens, models or pictures.
Learning materials: notebooks, pens, Mathematics student's book -S1.

Section	Step -by- step instructions and content	Teachers' notice
Introduction	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson.	Begin by gaining students' attention.

\(\left.\begin{array}{|l|l|l|}\hline Teacher: Observe the image and group shapes basing on the

number of sides

the picture and asks them

to sort out / group them

basing on shape and size.

You may use real shapes

drawn on cards.\end{array}\right]\)| Students: Shapes are grouped into quadrilaterals (4 sides), triangles |
| :--- |
| (3 sides), pentagon (5 sides), hexagon (6 sides), |
| heptagon (7 sides). |

Move around to verify if all students are actively participating and provide guidance for students in needs.

Communicate the lesson title and related instructional objective to students. Use learning objectives to set instructional objective with all 5 components (whoconditions - action verbcontent - performance criteria) students.

Example of instructional

 objective: Instructional objective: Using/ given collection of objects, learners will be able to correctly classify them according to the common features, define a set, give example of sets and appreciate the presence of sets in real life context.| | Teacher: let us do activity 2 in pairs
 Activity 2:
 1. Identify and list any ten items at your home that can be grouped together.
 2. Explain why an item is in one group but not in the other.
 3. What is a set?
 Students:
 - Ten items at your home that can be grouped together: types of fruits, kitchen materials, children' toys, types of shoes, clothes' size,
 - Items may be in one group but not in another because of the common characteristics based on to form group.
 - A group of objects with common and well defined feature / characteristic is called a set.
 - An object in a set is called an element. | In pairs , ask students to do the engaging activity 2 and use different probing questions to students to lead them to understand and clarify the concepts
 Invite students to present or give their expected answers: |
| :---: | :---: | :---: |
| Lesson development $(45 \mathrm{~min})$ | Teacher: students let us do the activity 3 in pairs
 Activity 3: 10min
 1. For each of the following sets list at least 4 elements. Kitchen utensils, Our school Garden flowers, Mathematical tools set, students of our class, Teachers of our school. | In pairs, ask students to do the exploration activity and use different probing questions to students to lead them to define a set |

	2. By using capital letters for sets and small letters for elements, Use mathematical representation to express the membership. Students: 1. - Some kitchen utensils are: knife, spoons, salad spinner, sauté pan, saucepan... - Some elements of school garden are : fruit trees, cabbages, flowers... - Do the same for the other sets 2. Let K be the set of kitchen utensils, k, s, w, p and r be knife, spoon, whisk, saucepan and ruler. Then $k \in K, \quad r \notin K, s \in K, \ldots$. Teacher: Well done students. From the above activity, we notice that: - A group of items with a common well defied feature is called a set. - An object or item in a set is called a member or an element of the set. - In general sets are represented by capital letters (Eg: A, C,V,W...) and elements by small letters. - If a is an element of the set W , we denote $a \in W$ and we read a belongs to W. - If b is an element that does not belong to W, we denote $b \notin W$	Invite students to present their expected answers to the whole class Use probing questions to help learners come up with a good and complete summary

Activity 4:

1. List at least 4 elements of the following set: Set of available fruits at home.
2. Choose the correct answer from the following:
A. An object in a set is called :

A : Element
B: Set
C: List
D: None of them
B. A group or collection of objects is called:

A : Element
B: Set
C: List
D: Group

Students:...

Lesson summary

- A set is a collection or group of well-defined objects also called element /members.
- Well defined means the feature must be clear to enable everyone to decide which object belongs to the set and which object does not.
- In general sets are represented by capital letters (Eg: A,C,V,W...) and elements by small letters
If a is an element of the set W , we denote $a \in W$ and we read a belongs to W
If b is an element that does not belong to W, we denote $b \notin W$

Ask students to work in pairs the application (elaboration) activities and provide time for students to think, elaborate and share their ideas on set concepts like element, belonging and not belonging to a set

Use different questions to help students recall key concepts of the lesson and ensure that the summary is written down by all students.

During harmonization/ making a general summary, provide time for students to ask questions on what they do not understand well.

Assessment (8 min)	1. List at least 4 elements of the following set: Set of available vegetables at home. 2. Read each of the following statements and decide if it is a set or not. Explain your answer. - A collection of all the days in a week beginning with the letter T - The group of girls in your class. - A collection of beautiful flowers in a garden. Students:...	Individually, ask students to do the activity of formative assessment (evaluation) Provide opportunities to students for asking questions, and corrective feedback or positive feedback are given as well.
Conclusion $(2 \mathrm{~min})$	Teacher: We are coming to the end of our lesson. As we conclude, let's review some of the key points that we learned. We all remember that: - A Set is a group of items with a common feature. - An object or item in a set is called a member or an element of the set. - In general sets are represented by capital letters and elements by small letters. Teacher: Thank you, As a home work, you are requested to do activities below and others found on page 9-10 of S1 Mathematics book for Rwandan schools. 1. List at least 4 elements of the following set: wild animals 2. Let $2,3,4,5,6,7$ be elements of set A; $2,4,7,8$ be elements of set B; 2,4 be elements of set C. Fill in the blanks by using \notin or \in :	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

| a) $2 \ldots \ldots \ldots . \mathrm{A}$ | |
| :--- | :--- | :--- |
| b) $9 \ldots \ldots . \mathrm{A}$ | |
| c) $3 \ldots \ldots . . \mathrm{C}$ | |
| d) $8 \ldots \ldots \ldots .$. B | |
| e) $10 \ldots \ldots . . \mathrm{C}$ | |
| Thank you for your participation in this lesson. | |

1.2 Second Lesson from unit 1

SUBJECT: Mathematics

GRADE: S1
UNIT: 1

LESSON TITLE: Description of set

Duration: 2 periods or 80minutes.
Teaching material: Chalks, Books
Learning materials: Note books, pens, calculators, S1 Mathematics book.

Section	Step -by- step instructions and content	Teachers' notice
Introduction (10 Min)	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time? And who can give examples of sets by listing at least 3 objects to make a set. Students: We have studied Introduction to set concept. 3 objects to make a set are: notebook, pen, and pencil can form a set of school materials.	Begin by gaining students' attention. Identify students with special educational needs and plan how to help them accordingly.
	Teacher: Dear students, let us do the following activity in pairs. Activity 1: 1. Give example of a set.	Help students to do the engaging activity in pairs.

2. Write symbolically the following.
i) a is an element of $\operatorname{set} \mathrm{A}$,
ii) b is not a member of the set A.

Students:

1. a set of even numbers.
2. i) a is an element of is symbolized by $a \in A$.
ii) a is not an element of A: $a \in A$.

	Teacher: Good! In today's lesson, we are going to continue with Description of set. And by the use of geometric materials, you will be able to: differentiate finite from infinite set.	Communicate the lesson title and related instructional objective to students.
Lesson development (50 Minutes)	Teacher: Let us do the following activity in the groups. Activity 2: 1. List any 5 elements of Kitchen utensils 2. Which description can be given to the set of the following letters a, b, c, d and e. 3. List all elements of integers greater than 10 . What do you observe? 4. Let $V=\{x / x$ is a student of our class $\}$ i) Give two examples of members of V. ii) How many students are in our class? 5. In terms of number of members, compare sets given in 3 and 4 Students' answers: 1. kitchen utensils: spoon, fork, plate, cup, knife, 2. a,b,c,d and e can be described as the first five letters of the English alphabet. 3. integers greater than $10 \quad \mathrm{Z}=\{11,12,13,14,15,16, \ldots\}$, I observed that they make an infinity of numbers. 4. Answers depend on students who are in the class.	Students must be given time to think and note down their ideas. Invite them to work on the exploration activity in groups. Ask students to present their findings in plenary session and guide them to harmonize their findings.

	Teacher: well done students. From the above activity, we notice that: - The set V of students of our class is finite since its members can be counted and the list has an end. - The set of integers greater than ten is infinite because not all members of it can be listed down. - The number of elements of a finite set, A say, is called its cardinal and is denoted by \#A or n(A). - The cardinal of infinite set is undefined. Teacher: Dear students, in your group, do the following activities: Activity 3 Write each of the following sets in roster form and also in set-builder form. Specify if the set is finite or infinite. Determine its cardinal. i) Set of all natural numbers which divide 24 . ii) Set of add numbers. iii) Set of even numbers less than 25 . iv) Set of letters used in the word "MASSACHUSETTS". v) Set of names of the first five months of a year. vi) Set of all two digits numbers which are perfect squares. vii) Set of letters used in the word "EDUCATION". Students' answers: (i) Roster Form: $\{1,2,3,4,6,8,12,24\}$; Set-Builder Form: \{x: x is a natural number which divides 24 completely\}, Finite, cardinal=8	Guide them to explain clearly the concepts of the day. Provide elaboration activity to be done in groups and choose one group member to present.

(ii) Roster Form: $\{1,3,5,7, \ldots\}$; Infinite, no Cardinal Set-Builder Form: $\{\mathrm{x}: \mathrm{x}$ is an odd natural number\}.
(iii) Roster Form: $\{2,4,6,8,10,12,12,14,16,18,20,22,24\}$;

Set-Builder Form: $\{\mathrm{x}: \mathrm{x}$ is an even natural number less than 25$\}$.
(iv) Roster Form: $\{\mathrm{m}, \mathrm{a}, \mathrm{s}, \mathrm{c}, \mathrm{h}, \mathrm{u}, \mathrm{e}, \mathrm{t}\}$;

Set-Builder Form: \{x: x is a letter used in the word 'MASSACHUSETTS'\}.
(v) Roster Form: \{January, February, March, April, May\};

Set-Builder Form: \{x: x is name of the first five months of a year\}
(vi) Roster Form: $\{16,25,36,49,64,81\}$;

Set-Builder Form: $\{\mathrm{x}$: x is a perfect square two-digit number $\}$
(vii) Roster Form: $\{\mathrm{e}, \mathrm{d}, \mathrm{u}, \mathrm{c}, \mathrm{a}, \mathrm{t}, \mathrm{i}, \mathrm{o}, \mathrm{n}\}$;

Set-Builder Form: $\{\mathrm{x}: \mathrm{x}$ is a letter used in the word 'EDUCATION' $\}$.

Summary:

Finite set: We cancount its elements
Infinite set: It has many elements we cannot count thel
There are three methods commonly used to describe or represent a set: Statement form, Roster/Listing form and Set builder form.
E.g:
i) Statement form

The set A of the first five letters of the English alphabet.
ii) Roster form: $\{a, b, c, d, e\}=A$
iii) Set Builder form: $\mathrm{A}=\{x / x$ is if one of 5 letters of english alphabets $\}$

Note: In Roster form or tabular form, elements of the set are listed, separated by commas and enclosed in curly brackets $\}$.

Assessment

(15min)

Teacher: Thank you very much. Now, let us do an individual activity for assessment

1. Specify the form in which each of the following sets is represented, then write it in other two forms. For each set, determine its cardinal.
(a) The set of colors of a rainbow.
(b) The set of colors of the Rwandan flag.
(c) $M=\{11,12,13,14,15,16,17,18,19\}$.
(d) $R=\{x / x$ is a country neighbouring Rwanda $\}$.
2. Give one example of infinite set and describe it using the three forms of set representation.

Students' answers:

1. a) i) It is described in statement form. $A(c)=7$
ii) in roster form; $\mathrm{C}=\{$ red, blue, yellow, green, indigo, violate, orange $\}$
iii) in set builder form; $C=\{x / x$ is such that x is colour of rainbow $\}$
b) i) It is described in statement form. $n(F)=3$
ii) in roster form: $\mathrm{F}=\{$ red, green, yellow\}
iii) in set builder form; $F=\{x / x$ is the colour of Rwandan flag $\}$
c) i) It is described in roster form. $n(m)=$
ii) in statement form M is set of natural number between 10 and 20
iii) in set builder form $M=\{x / x$ is $10<x<20\}$
d) i) It is described in Set builder form.
ii) in roster form R= \{Burundi, Uganda, tanzanie, DRC $\}$

Provide activity to be done as assessment or evaluation.

	2. Example of infinite: set of prime numbers. a) in statement form: set of prime numbers. b) in roster form: $S=\{2,3,5,7,11 \ldots\}$ c) in set builder form: $S=\{x / x$ is prime number $\}$.	
Conclusion (5min)	Teacher: As, we are coming to the end of our lesson, we have seen that: A set can be represented using three forms: - Roster form, Set builder form and statement form. - There exist finite sets or infinite sets. - The number of elements in a finite set A is called its cardinal denoted by $\mathrm{n}(\mathrm{A})$. The cardinal of infinite set is undefined, We cannot count the number of elements for an infinite set. Teacher: Thank you for your participation in this lesson	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

1.3 First Lesson from unit 2

SUBJECT: Mathematics

GRADE:S1
UNIT: 2

LESSON TITLE: Operations on natural numbers

Duration: 2 periods
Teaching material: Two flip charts.
Learning materials: notebooks, pens, calculator, S1 Mathematics book (from page 41 to page 43).
$\left.\begin{array}{|l|l|l}\begin{array}{c}\text { Section } \\ \text { Introduction } \\ \text { (15 min) }\end{array} & \begin{array}{l}\text { Teacher: Welcome again to Mathematics lesson. I am sure you } \\ \text { are going to enjoy today's lesson. }\end{array} & \begin{array}{l}\text { Begin by gaining students' } \\ \text { attention. }\end{array} \\ \text { Students observe the photo and answer to the questions }\end{array} \quad \begin{array}{l}\text { Identify students with } \\ \text { special educational needs } \\ \text { and plan how to help } \\ \text { them accordingly. }\end{array}\right]$

Lesson development $(50 \mathrm{~min})$	Teacher: Let us do the activity in pairs Activity 2: 1. Work out the following and give your comment on the answer. - $1740+2009$ - 1220-1059 - 567 X 19 - 2700:3 - 35-67 - 12:8 2. Perform and compare the results - $255+478$ and $478+255$ - 12 X 4 and 4 X 12 - $(12+4)+15$ and $4+(12+15)$ - (78 X 13) X 7 and 78 X (13 X 7) - $5(586+798)$ and (5 X 586) +(5 X 798) - $12+0$ - 12×1 Students' answers 1. - $1740+2009=3749$, addition of 2 natural numbers is a natural number - 1220-1059=161, subtraction of 2 natural numbers is a natural number	Asks students to work in pairs the exploration activity and provide time for students to think, write and share their ideas to the whole class.

- 567 X $19=10773$, multiplication of 2 natural numbers is a natural number.
- $2700: 3=900$, division of 2 natural numbers is a natural number.
- 35-67= -32 , subtraction of 2 natural numbers cannot be a natural number.
- $12: 8=1.5$, division of 2 natural numbers cannot be a natural number

2.

- $255+478=733$ and $478+255=733$
$\mathbf{2 5 5 + 4 7 8}=\mathbf{4 7 8}+\mathbf{2 5 5}$, changing the place of terms in addition does not change the answer.
- (78 X 13) X 7=7098 and 78 X (13 X 7) =7098
(78X13) X 7=78 X (13 X 7), changing the place of parenthesis in multiplication does not change the answer.
- $12 \times 4=48$ and $4 \times 12=48$, changing the place of terms in multiplication does not change the answer.
- $(12+4)+15=31$ and $4+(12+15)=31$, changing the place of parenthesis in addition does not change the answer.
- $5(586+798)=6920$ and $(5 X 586)+(5 X 798)=6920 \quad 5(586$ $+798)=(5 \times 586)+(5 \times 798)$, multiplication is distributed to addition.
- $12+0=12$, adding zero to a number does not change anything
- 12 X 1=1, multiplying one to a number does not change anything

	Teacher: Well done students . From the above activity, we notice that: - Addition and multiplication of two natural numbers is always a natural number. - Subtraction of two natural numbers is not always a natural number $(a-b) \in \mathbb{N}$ if only $a>b$ - Division of two natural numbers is not always a natural number. $(a \div b) \in \mathbb{N}$ if only $a=n b$ where $n \in \mathbb{N}$ Teacher: Dear students, again from the above activity, we can deduce the following properties: Addition and multiplication of natural numbers satisfy the following properties: Closure property: if $a, b \in \mathbb{N}, a+b \in \mathbb{N}$ and $a b \in \mathbb{N}$ Commutative property: if $a, b \in \mathbb{N}, a+b=b+a$ and $a b=b a$ Associative property: if $a, b, c \in \mathbb{N},(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$ Identity element If a is a natural number: $a+0=a$ and $a x 1=a, 0$ is an identity element for addition and 1 is an identity element for multiplication.	Use probing questions to lead students to discover different properties related to the operations on natural numbers and help them to clearly understand properties through explanations. Helps students to generalize the properties of operations on natural numbers.

Students 'answers 1. (a) $45 \mathrm{X}(50+30)=3600$ (b) $(181+94) \times 26=7150$ 2. (a) $4 \times(45-22)=92$ it is possible. (b) $(10-39) \times 5$: it is impossible because $10-39$ is not defined in the set of natural numbers. (c) $(48 \div 12)+30=34$ it is possible. (d) $(64 \div 7) \mathrm{X} 13$: it is impossible because $64 \div 7$ is not defined in the set of natural numbers 3. Required time $=\frac{4500}{15}=300$ minutes 4. Number of planes $=\frac{24 \times 60}{10}=144$	Remember to address common misconceptions.

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Lesson summary: } \\ \text { Addition and multiplication of natural numbers satisfy the } \\ \text { following properties: } \\ \text { Closure property: if } a, b \in \mathbb{N}, a+b \in \mathbb{N} \text { and } a b \in \mathbb{N} \\ \text { Commutative property: if } a, b \in \mathbb{N}, a+b=b+a \text { and } a b=b a\end{array} & \begin{array}{l}\text { Use different questions to } \\ \text { help Students recall key } \\ \text { concepts of the lesson and } \\ \text { ensure that the summary } \\ \text { is written down by all } \\ \text { students. }\end{array} \\ \text { Associative property: if } a, b \in \mathbb{N},(a+b)+c=a+(b+c) \text { and } \quad(a b) c=a(b c) & \begin{array}{l}\text { Identity element } \quad \begin{array}{l}\text { If a is a natural number: } a+0=a \text { and } a x 1=a, 0 \text { is an } \\ \text { identity element for addition and } 1 \text { is an identity element for } \\ \text { multiplication. } \\ \text { Distributive property :if } a, b, c \in \mathbb{N}, a(b+c)=a b+a c\end{array} \\ \hline \text { Assessment } \quad(a+b) c=a c+b c\end{array} & \begin{array}{l}\text { During harmonization/ } \\ \text { making a general }\end{array} \\ \text { summary, provide time } \\ \text { for students to ask } \\ \text { questions on what they do } \\ \text { not understand well. }\end{array}\right]$

	Students 'answers 1. Money that he needs $=27 X 324=8,748$ Frw He has enough money because money that he has, is more than that he wants: 9400 Frw > 8748 Frw. 2. Total harvest: $34,500 \mathrm{~kg}+24,750 \mathrm{~kg}=59,250 \mathrm{~kg}$ 3. Number of students $45,600+39,540=85,140$ students.	Provide opportunities to students for corrective feedback or positive feedback on formative assessment.
Conclusion (5min)	Teacher: We are coming to the end of our lesson. As we conclude, let's review some of the key points that we learned. We all remember that - Addition/multiplication of two natural numbers is always a natural number. The two operations satisfy closure property` - subtraction / division of two natural numbers is not always a natural number. The two operations do not satisfy closure property - Addition and multiplication of two natural numbers satisfy the commutative property, but subtraction and division do not - Addition and multiplication of two natural numbers satisfy the associative property, but subtraction and division do not - 0 is an identity element for addition and 1 is an identity element for multiplication. - Multiplication is distributive with addition Teacher: Thank you; As a home work, you are requested to do more activities found in the exercise 2.2 on page 43 of S1 Mathematics student book We shall meet in the next lesson where you will present answers for the home work.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

1.4 Lesson from unit 3

SUBJECT: Mathematics

GRADE: S1

LESSON TITLE: Intercepts and steepness: the y-axis and x-axis intercepts.
Duration: 1 period or 40 minutes.
Teaching material: A squared chalkboard, coloured chalk, Graph or squared /graph book.
Learning materials: Note books, pens, calculators, geometric materials, S2 Mathematics book.

Section

Introduction
(5 Min)

Step -by- step instructions and content

Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time?

Students: We studied the Graphs of a straight-line

Teacher: Given the function $f(x)=-\frac{2}{3} x+5$, can you complete the table of values below:

\boldsymbol{x}	0	3	6
$\boldsymbol{f}(\boldsymbol{x})$			

Observe the following graph.

Teachers' notice

Begin by gaining students' attention.

Identify students with special educational needs and plan how to help them accordingly.

	 Referring to the above table of values, what do you notice? Is it the graph for $f(x)=-\frac{2}{3} x+5$? Students:...	
	Teacher: Dear students, observe the graph and answer the questions:	Helps students to work in pairs the engaging activity. Give time to students to think and note down their ideas and then present their working steps to the whole class.

Lesson development

(25 Minutes)

Teacher: Let us do the activity in pairs.

Activity 1

a) Define a linear function.
b) Write down the general form of a linear function.
c) Plot the graph of the linear function

Students'Answers:

a) Linear functions are the equations whose graph is a straight line in an XY plane.
b) The general form of a linear function is $y=m x+c$. Where m and c are real numbers $m \neq 0$. For example, see the graph of $y=x+1$ and $\mathrm{c}=1$

Teacher: Well done students, do the following activity Activity 2:
Consider the linear functions: $\mathrm{x}=3 ; y=-2$ and $3 x+2 y=4$
a) In the same graph plot each line.
b) From your graph say whether or not the line crosses the axes.

Give an activity to recall the previous lesson and ask learners to do the exploration activities in pairs

Students must be given time to think and note down their ideas.
c) State the coordinates of the point of intersection for each line if any. If your lines intersect, state the coordinates of the common point.
Teacher: Let us brainstorm and find out the answers for the key Question:
Key question: How do we call the point where a line crosses the axes?

Students' answers:

Asks students to present their findings in plenary session and help them to harmonize their findings (explanation phase).

Clarify x- intercept, and yintercept using examples.

- The line a crosses x -axis intercept and y -axis intercept.
- The line b does not cross x -axis, it crosses y -axis only, line c does not cross x -axis.
- The point at which a linear function cuts the x-axis is called x-axis intercept. In this case, $y=0$ and $P=(x, 0)$
- The point at which a linear function cuts the y-axis is called y-axis intercept. In this case, $x=0$,
- To find y-axis intercept we let $x=0$ and then we find the value of y. In this case, $\mathrm{x}=0$ and $\mathrm{P}=(0, y)$
- The line which is parallel to x-axis does not have x-axis intercept.
- The line which is parallel to x-axis does not have x-axis intercept
- We can join the intercepts and we get the graph of a linear function.
Teacher: Well done students. Do the given activity

Activity 3

For each of the following lines, find the x -axis and y -axis intercept.

Students' answers

Teacher: Thank you. Work in groups and do this activity for application

1. look at the following equations
(i) $5 x+2 y=0$
(ii) $y-3 x-1=0$
(iii) $2 x+y=3$
a) write each equation in the form $y=m x+c$.

Provide exploration activity to be done in groups.

Provide elaboration activities to be done in pairs.

In each group with different working steps, choose one group member to present.

	b) Using a table of values represent each equation graphically. c) Use your graph to find the value of x and y intercept in each case. 2. Find the y-intercept of the following without drawing the graphs. (a) $y=3 x+7$ (b) $7-2 x=4 y$ (c) $4 y+x-8=0$ Students' answer:	
\qquad1. a) (i) $y=\frac{-5}{2} x$ (ii) $y=3 x+1$ (iii) $y=-2 x+3$ 2. a) y-intercept is 7 b) y-intercept is $\frac{-7}{4}$	Summarize the concept and guide students to write down the content.	
	Summary: - General form of linear function: $y=m x+c$ - y-intercept is c while x-intercept is from this equation: $x=m y+d$, write d as x-intercept.	

	- The point at which a linear function cuts the x-axis is called x-axis intercept. In this case, $\mathrm{y}=0$ and $\mathrm{P}=(\mathrm{x}, 0)$ - The point at which a linear function cuts the y-axis is called y-axis intercept. In this case, $x=0$, - To find y-axis intercept we let $x=0$ and then we find the value of y. In this case, $\mathrm{x}=0$ and $\mathrm{P}=(0, \mathrm{y})$.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment $(8 \mathrm{~min})$	Teacher: Thank you very much. Now, You are going to do an individual activity for assessment (evaluation): Find the y-intercept of the following without drawing the graphs. (a) $y=3 x+7$ (b) $7-2 x=4 y$ (c) $4 y+x-8=0$ Students' answers: a) y-intercept is 7 b) y-intercept is $\frac{7}{4}$ c) y-intercept is $\frac{8}{4}=2$	Give students an activity for evaluation. Provide opportunities for corrective feedback or positive feedback to students.

Conclusion (2min)	Teacher: As, we are coming to the end of our lesson, we have seen that: - The point at which a linear function cuts the x-axis is called x-axis intercept. In this case, $\mathrm{y}=0$ and $\mathrm{P}=(\mathrm{x}, 0)$ - The point at which a linear function cuts the y-axis is called y-axis intercept. In this case, $x=0$, - To find y-axis intercept we let $x=0$ and then we find the value of y. In this case, $x=0$ and $P=(0, y)$ - The line which is parallel to x-axis does not have x-axis intercept. - The line which is parallel to x-axis does not have x-axis intercept - We can join the intercepts and we get the graph of a linear function. Teacher: Thank you for your participation. As homework, do activities found in the S1 Mathematics students' book on page 76.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

1.5 Lesson from unit 4

SUBJECT: Mathematics

GRADE: S 1
UNIT 4

LESSON TITLE: Commission

Duration: 40minutes
Teaching material: Charts, Textbooks and others
Learning materials: Notebooks, pens, calculators, S1 Mathematics book.

Section	Step -by- step instructions and content Introduction Thin)	Notice to the teacher Students: We studied how to calculate percentage. we studied last time?
Teacher: Observe the picture below and answer questions that follow:	Leads learners to observe the picture and ask them questions leading to the topic of the day (engaging).	

	a) What do you observe on the picture? b) What reward can you give to the person who has done something for you? Students' answers: a) We see the percentage b) We may give him/her some money. Teacher: Good! In today's lesson, we are going to continue with commission.	Students must be given time to think and note down their ideas.
	And by the use of percentage, you will be able to: - Define commission. - Calculate commission. - Solve problems involving commission. Teacher: Let us do the following activities in pairs. Activity 1 Suppose you are the manager in charge of sales in a company. a) Discuss in your group, ways you would use to reward your sales people who sell more than the target given to them, without necessary increasing their monthly basic salary or retainer.	Share learning objectives
b) How would you ensure that they get the extra reward for the		
extra sales they bring?		
c) What is the name of that extra-reward?		

	Students' answers: a) I can give them a motivation such as (certificate or add a small amount to his/her salary). b) I can add that increment to his/her existing salary. c) That form of payment is called "commission"	
Lesson Development $(25 \mathrm{~min})$	Teacher: In your respective small groups, do the following activities: Activity 2 An insurance lady sales sold insurance policies worth $440,000 \mathrm{FRW}$. If she gets 9% for the total sales made, a) How much money did she get? b) How can we call the money she gets? Students' answers: a) Commission $=\frac{9 X 440,000}{100}=3960 \mathrm{Frw}$ b) The money is called commission Teacher: well done students. From the above activity, we notice that: - A commission is the money paid to sales or agent's representative for the sales made. - The calculation of commission is as follows: Total sales multiply by commission percentage	Give them an exploration activity. Use different questions to probe students to understand the content (exploration).

$\left.\begin{array}{|l|l|l|}\hline \text { Activity 4: } & \begin{array}{l}\text { A sales lady receives a commission of 5\% for the first sale of } \\ 80 \text { 000rwf and 6\% for sales above80 000 Frw. In one month } \\ \text { she made sales amounting to 168 000 Frw. Find the total } \\ \text { commission that month. } \\ \text { Students" expected answers: } \\ \text { Commission for the first 80 000 Frw }\end{array} & \begin{array}{l}\text { While students are } \\ \text { working, move around to } \\ \text { each group and ask some } \\ \text { probing questions leading } \\ \text { them to correct results. }\end{array} \\ =\frac{5 X 80,000}{100} \\ =4000 \text { Frw } \\ \text { Commission for excess of 80 000Frw } \\ =\frac{6 X(168,000-80,000}{100}=5,280 \text { Frw } \\ \text { The total commission earned that month } \\ =(4000+5280) \\ =9280 \text { Frw } \\ \text { Teacher: Thank you, take you notebooks, and do the following } \\ \text { application activity. }\end{array} \quad \begin{array}{l}\text { In each group with } \\ \text { different working steps, } \\ \text { choose one group member } \\ \text { to present their findings. }\end{array}\right\}$

	The formula for calculating commission is: Total sales x commission percentage.	Provide an opportunity where students can ask questions, where the teacher can help every learner depending on his/ her special educational needs Explain well how to calculate commission when you are given the percentage commission and the total amount.
Assessment (5 min)	Teacher: Students let individually do the activity of formative assessment Activity: Provide more questions to allow students apply skills and knowledge. Questions individually. 1. Sharon makes money by commission rates. She gets 17% of everything she sells. If Sharon sold 37000 frw worth of items this month, what is her salary for the month? 2. An employee of a jewelry store sold a piece of jewelry for $\$ 2,500$. She received 6.75% commission for the sales. How much commission did she earn?	Give students an activity for evaluation Provide opportunities for corrective feedback or positive feedback to students.

	Students" expected answer: 1. Amount of money made $=($ Amount sold \times Commission percentage)	
Conclusion (3 min)	Summary Teacher: We are coming to the end of our lesson. As conclusion, let's see some of the key points that we learned. - A commission is the money paid to sales or agents representative for the sales made. - A commission is calculated as follows: Total sales x commission percentage Teacher: Thank you; As a home work, you are requested to do activities below 1. Peter receives a monthly salary of 120000 FRW plus a commission of 12% on all sales. Last month he made sales worth 1200000 FRW. How much did he earn that month? 2. Mrs. Uwamahoro sells charity tickets. She gets 160 FRW for every 8 tickets she sells. How much will she get for selling 480 tickets?	Summarise the lesson and give students a homework.

1.6 Lesson from unit 5

Lesson title: Sharing quantities using ratios

Duration: 40 minutes.
Teaching material: flip chart, figures showing sharing.
Learning materials: Note books, pens, calculators, S1 Mathematics book.

Section	Step -by- step instructions and content	Teachers' notice
Introduction (10 Min)	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time? Students: We studied the simplification of ratios. Teacher: who can give an example of ratios and simplify Students: 30:50=3:5,	Begin by gaining students' attention. Identify students with special educational needs and plan how to help them accordingly.
	Teacher: Do the following activity. Activity: 1 1) Observe the figure below answer the questions a) Ratio of girls to boys. b) Ratio of girls to boys. c) Ratio of girls to all people. d) Ratio of boys to all people.	Tell students the materials needed and give them a small time to take them. Give them engaging activity Teacher can use a concrete activity (practical work).

\(\left.$$
\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Teacher: You are good learners. } \\
\text { Let us brainstorm on key question? How can we share quantities? }\end{array} & \begin{array}{l}\text { Using questions, learners } \\
\text { arrive to notice the word } \\
\text { sharing. }\end{array} \\
\text { Teacher: Good! In today's lesson, we are going to continue with a } \\
\text { new lesson on ratios. } \\
\text { By the end of this lesson, you will be able to: } \\
\text { - Use ratio to solve problems involving proportional relationships. } \\
\text { Share quantities using ratios where the total shares are a factor of } \\
\text { the amount. }\end{array}
$$ \quad \begin{array}{l}Guide learners to

discover the objectives

of the lesson and key

words.\end{array}\right]\)| Teacher: There are many cases in real life where people or |
| :--- |
| organisation group need to share items or resources in a |
| given ratio (example of local associations of people and |
| students). Follow the lesson and you are going to be expert |
| in sharing. |
| development |\quad| Teacher must use the |
| :--- |
| local examples. |

Answer

i) The ratio in which money is shared is 2:3
ii) Sum of ratio $=2+3=5$

The first man gets $\frac{7000 \times 2}{5}=2800$ FRW
The second man gets $\frac{700 \times 3}{5}=4200$ FRW
Teacher: Let us do the activity in pairs

Activity 3

A father may want to share 24 acres of land among his two sons. One of them who is disabled gets double of what the other son gets.
a) Write the ratio in which the father will share the plot of land.
b) What area will each get?
c) Explain how you have got your answer.

Students' answer

The father would share the land in the ratio of $2: 1$. Assume the whole land is first subdivided into equal parts whose number is equal to the sum of the two values in the ratio i.e. $2+1=3$ parts.

The disabled son gets 2 parts out of 3 parts of the whole. i.e. 23 of 24 acres $=23 \times 24$ acres $=16$ acres The other son gets 1 part of 3 parts of the whole. i.e. 13 of 24 acres $=13 \times 24$ acres $=8$ acres.

Invite them to work on the exploration activity in pairs.

Ask students to present their findings in plenary session and guide them to harmonize their findings.

Provide elaboration activities

In each group with different working steps, choose one group member to present.

	Activity 5 Ingabire, Mugenzi and Shamarima have jointly invested in buying and selling of shares in the Rwanda stock exchange market. In one sale, they realized a gain of 1080000 FRW and intend to share it in the ratio 2:3:4 respectively. How much did Mugenzi get? Expected answer for students: $\begin{aligned} \text { Mugenzi's share } & =\frac{3 \times 1,080,000}{2+3+4} \text { Frw } \\ & =360,000 \mathrm{Frw} \end{aligned}$	Invite students to work in groups and do the activity for elaborating. Ensure the participation of each learner
	Summary: To share a quantity into two parts in the ratio $a: b$, the quantity is split into $a+b$ equal parts. The required parts became $\frac{a}{a+b}$ and $\frac{b}{a+b}$ To share a quantity into three parts in the ratio $a: b: c$, the quantity is split into $a+b+c$ equal parts. The required parts became $\frac{a}{a+b+c}$, $\frac{b}{a+b+c}$ and $\frac{c}{a+b+c}$	Use different questions to help students recall key concepts of the lesson to be written down as a summary.

Assessment	Teacher: Thank you very much. Now, You are going to do an individual activity for assessment	
Assessment activities Katerina, Nina and Paul contributed to buy a lottery ticket. They contributed $10 \$, 6 \$$ and $4 \$$ respectively. They agreed to share any winnings in the ratio as dollars they contributed. these friends get Lucky and their ticket won $120000 \$$. a) Write the ratio in which that money will be shared. b) How much dollars will each obtain? Answer As agreed by the three friends, the winnings of $\$ 120$ 000 need to be shared amongst them in the same ratio as the money they each contributed towards the ticket. Katerina: Nina:Paul the ratio is $10: 6: 4$ Total amount to be shared is $120000 \$$ among 20 total equal parts.	Provide opportunities for corrective feedback or positive feedback to students.	
	Katerine will obtain $\frac{120000 \$ \times 10}{20}=60000 \$$ Nina will obtain $\frac{120000 \$ \times 6}{20}=36000 \$$	Paul will obtain $\frac{120000 \$ \times 4}{20}=24000 \$$

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Conclusion } & \begin{array}{l}\text { Teacher: As, we are coming to the end of our lesson, we have seen } \\
\text { how sharing quantities using ratios. }\end{array} & \begin{array}{l}\text { Summarize the main } \\
\text { points verbally, conclude } \\
\text { as homework, go and do activities found in the S1 Mathematics } \\
\text { students' book on page 127. }\end{array}
$$

homework that may

include remedial,\end{array}\right]\)| consolidation or |
| :--- |
| extended activities |
| depending on the |
| feedback from |
| assessment. |

1.7 Lesson from unit 6

SUBJECT: Mathematics

GRADE: S1
UNIT 6:
LESSON TITLE: Parallel and transversal lines and their properties.
Duration: 2 periods or 80 minutes.
Teaching material: Flip charts.
Learning materials: Internet, geometrical materials, reference books, writing materials, chalks and chalkboard.

Section	Step-by-step instructions and content Introduction Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time?	Students: We studied angles on a straight line and angles on a point. Teacher: very good! Observe the following pictures and tell us the sum of angles on straight line and at a point?	Identify students with special educational needs students' attention. and plan how to help
them accordingly.			

| Teacher: Let us individually do the following activity about angles
 on parallel lines.
 Activity: | Guide learners to
 perform this engaging
 activity individually
 and guide them to
 ase necessary and
 appropriately the
 materials for drawing. |
| :--- | :--- | :--- | :--- |
| medges of a ruler, draw a pair of parallel lines as shown in | |

	5. Observe on the figures, angles $\mathrm{a}, \mathrm{c}, \mathrm{e}$ and g . What do you notice? 6. Using the same figure, observe angles b, d, f and h. What do you notice? Students: ... (They will give different answers) Teacher: Good! In today's lesson, we are going to continue with parallel and transversal lines and their properties. And by the end of this lesson, you will be able to construct the argument of angles on parallel and transversal lines and solve related problems.	Communicate the lesson title and related instructional objective to students.
Lesson development (50min)	Teacher: asks students to do activity in groups Activity: 1. Using the edges of a ruler, draw a pair of parallel lines as shown in the figure bellow. Put arrow heads at the centre of the line to show that the two lines are parallel. 2. Draw a straight line to cut lines $A B$ and $C D$ at points E and F respectively. Prolong this line (ST) on either side of the parallel lines and using a paper, trace angles a and b as shown in the figure below;	In groups, ask students to do the exploration activity and use different probing questions to students to lead them to find out different properties related to angles on parallel and transversal lines

3. Cut out the traced angles a and b.
4. Use the cut out angle to measure other angles on the diagram e.g. angles c, d, e, f, g and h.
5. Compare the size of angle pairs a and e, b and f. What do you notice? What is the name of the angle pairs?
6. Compare the size of the angle pairs d and f, e and c. What do you notice? What is the name of the angle pairs?
7. Compare the size of the angle pairs a and c, e and g. What do you notice? What is the name of the angle pair?

Students: ...

Teacher: well done students. From the above activity, we notice that:

1. The line ST which cuts parallel lines AB and CD is called a transversal line. Transversal line is a straight line which cuts through two lines on the same plane at distinct points.
2. Angles that are on the same relative position when a transversal cuts through two points are called corresponding angles.

Students must be given time to think and note down their ideas and provide time to them to present their findings to the whole class

Use probing questions to help learners come up with a good and complete summary.

	When the two lines are parallel, the corresponding angles are equal. Examples of corresponding angles are : $\mathrm{a}=\mathrm{b} \quad \mathrm{c}=\mathrm{d}$ $\mathrm{e}=\mathrm{f} \quad \mathrm{g}=\mathrm{h}$ Angles a and b, c and d, e and f, g and h are corresponding angles. 3. Pairs of interior angles on the opposite side of a transversal (One on each intersection) are called alternate angles. Examples of alternate angles are as shown in Figure below.	
	ander alternate angles angles a and b, c and d are alternate angles. Alternate angles are equal Angles which are opposite each other where two straight lines Examples of vertically opposite angles are as shown in Fig. 6.43 below.	

	A Alternate Interior Angles B Alternate Exterior Angles C Corresponding Angles D Vertical Angles E Same Side Interior	
	Lesson summary - A transversal line is a straight line which cuts through two lines in the same plane at two distinct points. - Corresponding angles are angles that occupy the same relative position when a transversal cuts through two straight lines. - Alternate angles are pairs of interior angles on the opposite side of a transversal (one on each intersection point). - Supplementary angles a pair of angles on a straight line that add up to 180°. - Co-interior angles are pairs of angles on the same side of a transversal. Such angles are supplementary - Angles which are opposite each other where two straight lines intersect or cuts each other are called opposite angles	Use different questions to help students recall key concepts of the lesson and ensure that the summary is written down by all students.
Assessment (8min)	Teacher: Let individually do the following activities: 1. Given the measure of one angle, find the measures of as many angles as possible. What are the measures of the remaining angles?	Individually, ask learners to do the activity of formative assessment (evaluation).

\(\left.$$
\begin{array}{|c|l|l|}\hline \text { Conclusion } & \begin{array}{l}\text { Teacher: We are coming to the end of our lesson. As we conclude, } \\
\text { let's review some of the key points that we learned. We all } \\
\text { remember that: }\end{array} & \begin{array}{l}\text { Summarize the main } \\
\text { points verbally, conclude } \\
\text { and give students a } \\
\text { homework that may } \\
\text { include remedial, } \\
\text { consolidation or } \\
\text { extended activities } \\
\text { depending on the } \\
\text { feedback from }\end{array}
$$

assessment.\end{array}\right\}\)| A transversal line is a straight line which cuts through two lines in
 the same plane at two distinct points.
 corresponding angles are angles that occupy the same relative when a transversal cuts through two straight lines.
 Alternate angles are pairs of interior angles on the opposite side of a
 transversal (one on each intersection point).
 Supplementary angles are pair of angles on a straight line that add
 up to 180°. |
| :--- |
| Co-interior angles are pairs of angles on the same side of a
 transversal.
 Such angles are supplementary angles which are opposite each
 other where two straight lines intersect or cuts each other are called
 opposite angles. |
| Teacher: Thank you; As a home work, you are requested do activities
 found in the on page 151 of s1 Mathematics book. |

1.8 Lesson from unit 7

SUBJECT: Mathematics

LESSON TITLE: Surface area of a cuboid

Duration: 40 minutes
Teaching: Solids with different shapes
Learning materials: Note books, pens, calculators, geometric materials, S1 Mathematics book

Section	Step-by- step instructions and content	Teachers' notice
Introduction (5 min)	Teacher: Hello students, how are you? Students: Fine Teacher: Welcome to this mathematics lesson. Take your exercise book, a pen, a ruler and a pencil and then enjoy the lesson.	Great learners and energize them to attract their attention. Identify students with special educational needs and plan how to help them accordingly.
	Teacher (cont): here we have solids with different shapes. Look at them and tell us which one is a cuboid and explain the reason.	Show learners the exciting figures that motivate them to participate fully in the lesson.

	Students show a cuboid: Teacher: Who can show us the surface of cuboid? Students: the all visible outside parts of a cuboid. Teacher: Anyone to remind us how to find a surface area of a rectangle?	Engage learners to discover the new lesson and probe student's predictions.		
Students: A= L W				
Teacher: Anyone to remind us how to determine a surface area of				
cuboid?				
Students: A=2 Base area + lateral area.				
Teacher: well done, what do you think that today's lesson will be				
about?			\quad	Students: Today's lesson is "surface area of a cuboid",
:---				
Teacher: Good, I wish that each of you at the end of the lesson,				
you will be able to calculate the surface area of the cuboid				
correctly.				

Assessment (8 min)	Teacher: Thank you very much. For making sure that you have understood, take your exercise notebook and do this activity: Activity for assessment: Find the surface area of this cuboid Students answer the activity for assessment as follow Given that area of cuboid is given by $A=2 l w+2 l h+2 w h$ with $L=6 \mathrm{~cm}$, $\mathrm{w}=3 \mathrm{~cm}$ and $\mathrm{h}=2 \mathrm{~cm}$ Then,$A=(2 \times 6 \times 3) \mathrm{cm}^{2}$ $\begin{aligned} & =36 \mathrm{~cm}^{2}+24 \mathrm{~cm}^{2}+12 \mathrm{~cm}^{2} \\ & =72 \mathrm{~cm}^{2} \end{aligned}$	Give learners an individual assessment to determine the level at which the lesson objectives have been achieved (evaluation) Provide opportunities for corrective feedback or positive feedback to students.
Conclusion (2min)	Teacher: Dear students, well done. As, we are coming to the end of our lesson, let us conclude that: The surface area of a cuboid is calculated from its net and it is given by $2 l w+2 l h+2 w h$ where l is the length, w is the width and h is height As homework, go and find the area of this cuboid.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

1.9. Lesson from unit 8

SUBJECT: Mathematics
 GRADE:S1
 UNIT: 8
 \section*{LESSON TITLE: Pie chart}

Duration: 40 minutes
Teaching material: chalks, pens, pictures, Manila papers
Learning materials: notebooks, pens, student's book -S1
Section
Step -by- step instructions and content
Teachers' notice

Introduction	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson.	Wegin by gaining Who can tell us what he/she knows about data presentation in statistics? Students: Data in statistics can be presented in tables, bar charts, histograms, Pie Chart, etc. students' attention.
Teacher: Good. Observe and name each of the following representations.	Identify students with special educational needs and plan how to help them accordingly.	

Item	Printing	Transporta- tion	Paper cost	Binding	Royalty	Promo- tion
\% Expendi- ture	20%	10%	25%	20%	15%	10%

Students: It is a table of data

Students: This is a histogram

Students: This is a bar chart

Lesson development

(25 Minutes)

Teacher: let us discuss and do the following activity in groups:

Activity 1

Below is a table of confirmed cases about Covid-19 pandemic in certain period.

Country	A	B	C	D
Confirmed cases	453	90	1453	6917

a) What is the country with large number of cases about covid-19?
b) State any two ways of spreading Covid-19
c) Does covid-19 has medicine?
d) What are 3 measures of preventing Covid-19?
e) Can you try to present the number of cases above on a pie chart? explain how you did it?

Students' answers:

a) It is C.
b) i) Sharing the same materials
ii) kissing and greetings with hands
c) Measure of preventing Covid-19 are:
i) Well wear the face masks.
ii) Wash your hand many time with clean water and soap.
iii) Avoid unnecessary trips and stay at home.
d) Yes, the pie chart can be represented on a circle and by presenting data in sectors.

Invite students to work on the exploration activity in groups and choose one group member to present.

Let students work in groups and Remember to address common misconceptions.

Invite students to work in groups and do the activity for constructing a pie chart.

Students' expected answers

a) The degrees are found by value of component x 360

Total value
The total value $=2+5+4+1+3=15$
Then the degree of $\mathrm{A}=\frac{2 \times 360}{15}=48^{\circ}$

$$
\begin{aligned}
& \mathrm{B}=\frac{5 \times 360}{15}=120^{\circ} \\
& \mathrm{C}=\frac{4 \times 360}{15}=96^{\circ} \\
& \mathrm{D}=\frac{1 \times 360}{15}=24^{\circ} \\
& \mathrm{E}=\frac{3 \times 360}{15}=72^{\circ}
\end{aligned}
$$

| | |
| :--- | :--- | :--- |
| | Teacher: In pairs, let us do the following Activity. |
| Activity 4 | |
| In 2016, some people were asked to predict the national team which | |
| would win the World Cup. Their predictions were as follow: | |
| | National team Number of prediction
 Brazil 13
 German 9
 France 8
 Argentina 12
 Portugal 10
 Spain 8 |

Represent the above information in a pie graph

Students' expected answers:

Pie Chart

Lesson summary:

- A pie chart is a circular graph which is used to represent data.
- Various observations of the data are represented by the sectors of the circle.
- The total angle formed at the Centre is 360°.
- The whole circle represents the sum of the values of all the components.

Use different questions to help students recall key concepts of the lesson and ensure that the summary is written down by all students.

| Assessment | |
| :--- | :--- | :--- | :--- |
| (8 min) | Sizes may be numbers, fractions or percentages.
 - The angle at the Centre corresponding to the particular observation
 component is given by |
| Teacher: Thank you very much. Now, You are going to do an individual
 activity for assessment:
 The pie-chart below represents the monthly expenditure of Amina's
 salary. Study it and answer the questions that follow. If 240,000 Frw is
 spent on transport,
 a) How much does she earn?
 b) How much more money is spent on rent than on savings? | Individually, ask
 learners to do the
 activity of formative
 assessment (evaluation) |

	Students' answers: a) on transport $30^{\circ}=\frac{240000 \times 360}{\text { earned money }}$ Earned money $=\frac{240000 \times 360}{30}=2880000$ Frw b) Rent: $\frac{2880000 \times 100}{360}=800000 \mathrm{Frw}$ Savings $\frac{2880000 \times 40}{360}=320000$ Frw Money spent on rent more than savings = 800 000Frw- 320000 Frw $=480000$ Frw	Provide opportunities to students for asking questions. Give them corrective feedback or positive feedback.
Conclusion $(2 \mathrm{~min})$	Teacher: As, we are coming to the end of our lesson, we have seen that: A pie chart is a circular graph which is used to represent data. The angle at the Centre corresponding to the particular observation component while drawing a pie chart is given by: $\frac{\text { Value of the component }}{\text { Total value }} \times 360^{\circ}$ Teacher: Thank you for your participation.	Summarize verbally main points, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

1.10 Lesson from unit 9

SUBJECT: Mathematics

GRADE: S1
UNIT 9:
LESSON TITLE: Definition of key terms used to describe probability.
Duration: 2 periods or 80 minutes.
Teaching material: books, chalk, coins, playing card, die and classroom chalkboard
Learning materials: notebooks, pens, calculators, S1 Mathematics book (from page 231 to page 232)

Section	Step -by- step instructions and content Introduction $(15 \mathrm{~min})$	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson.	Teachers' notice Begin by gaining students' attention. Let us observe the picture and discuss the following:
	How does the referee do with a coin to start a football match? Why does he/she do so?	Providing to the learners into their group these materials: coins, playing cards and die.	
		Identify students with special educational needs and plan how to help them accordingly.	

$\left.\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Teacher: Dear students, let us do the following activity in groups: } \\ \text { Activity: } \\ \text { Carry out the following } \\ \text { a) Toss a coin once and record what you obtain. } \\ \text { b) Roll a die once and record what do you obtain. } \\ \text { c) Shuffle the cards, pick one card from the deck and compare it with the } \\ \text { card picked by your neighbour. } \\ \text { Students' expected answers: } \\ \text { a) Head or tail(H,T) } \\ \text { b) 1,2,3,4,5 or 6 } \\ \text { c) Each type of card can be picked. } \\ \text { Teacher: Thank you for your wonderful work! In today's lesson we are } \\ \text { going to study probability, especially the definition of key } \\ \text { terms used to describe probability and by the end of this } \\ \text { lesson, you will be able to define key terms used to describe } \\ \text { the probability. }\end{array} & \begin{array}{l}\text { Invite learners to do the } \\ \text { Engaging activity into } \\ \text { their groups }\end{array} \\ \text { Communicate the }\end{array}\right\} \begin{array}{l}\text { lesson title and related } \\ \text { instructional objective } \\ \text { to students. }\end{array}\right\}$

Students' expected answers:

a) $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
b) $\mathrm{A}=\{\mathrm{TH}, \mathrm{HT}\}$
c) $\}$

Teacher: Dear students! Basing on your result we are going to define the key terms used to describe probability.

Probability is simply how likely something is to happen and the following terms are used to describe it.
(a) An experiment is any activity or process through which data is obtained and analyzed.
(b) Possible outcomes are defined as the All likely results of an experiment.
(c) A sample space is the set of all possible outcomes that may occur in a particular experiment, usually denoted by S.
(d) An event is a set consisting of possible outcomes of an experiment with the desired qualities. It is a subset of a sample space.
Teacher: Dear students, I think you have understood these terms used to describe probability.

Now, do the following application activity in groups.
Toss a coin three times
a) Write down the sample space.
b) List outcomes of the following events:
i) Exactly three heads are obtained
ii) At last one head is obtained
iii) At most two tails are obtained

Ask students to present their findings in plenary session and guide them to harmonize their findings.

Clarify the concept and guide students to write down the content.

Remember to address common misconceptions.

Let students work in groups, and do the application
(elaboration) activity. this will promote:
(i) Critical thinking skills
(ii) Problem solving
(iii) Cooperation and interrelation among learners

	Students' expected answers: a) $S=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{TH}, \mathrm{TTH}, \mathrm{THT}, \mathrm{HTT}, \mathrm{TTT}\}$ b) i) HHH , ii) HHT, HTH, THH,TTH, THT, HTT iii) HHH, HHT, HTH, THH,TTH, THT, HTT.	
	Lesson summary: Random Experiment: A random experiment is one in which all the possible results are known in advance but none of them can be predicted with certainty. Outcome: The result of a random experiment is called an outcome. Sample Space: The set of all the possible outcomes of a random experiment is called Sample Space, and it is denoted by ' S '. Event: A subset of the sample space.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment (10 min)	Teacher: Thank you very much. Now, You are going to do an individual activity for assessment: 1. Define the following terms: a)Random experiment b) Event c) Possible outcomes d) Sample space 2. An experiment consists of rolling two dies. Construct a sample space.	Give students an activity for evaluation. Provide opportunities for corrective feedback or positive feedback to students.

	Students' expected answers: 1. See in slide 9(concept clarification) $2 . S=\{(1,1),(1,2), \ldots,(6,6)\}$ $\mathrm{n}(\mathrm{S})=36$.	
Conclusion $(5 \mathrm{~min})$	We are coming to the end of our lesson. As we conclude, let's remember the key points that we learned. We have seen the definition of these terms: Experiment, possible outcomes, sample space, and event. Teacher: Thank you for your participation in this lesson.	Summarize the main points verbally.

SCRIPTED LESSONS FOR SENIOR 2

2.1. Lesson from unit 1

SUBJECT: Mathematics

GRADE: S2
UNIT: 1
Lesson title: Operation on indices and their properties
Duration: 2 periods or 80 minutes. It is a lesson with many steps.
Teaching material: Yellow oranges arranged in a square, rectangle and in a cube.
Learning materials: notebooks, pens, calculators, geometric materials, S2 mathematics book.

Section	Step -by- step instructions and content	Teachers' notice
Introduction (15 min)	Teacher: Hello students, how are you? Students: Fine, Thank you sir/madam. Teacher: It is time for mathematics' lesson, Take your exercise book, a pen, a ruler and a pencil. Do we have students who are absent today? Students: Peter and Tom are absent Sir/ Madam (example). Teacher: Before going to the new lesson, let us make correction of the homework that I gave you last time. Submit the work and make correction.	Great learners and attract their attention. Identify students with special educational needs and plan how to help them accordingly.

	Teacher: Dear students, is there any other ways of writing these products? Students: Yes Sir/Madam, for example 16 oranges $=4^{2}$ oranges 27 oranges $=3^{3}$ oranges 25 oranges $=5^{2}$ oranges Teacher: Dear students, is there any name given to those numbers on top of 4,3 and 5 ? Answer: Yes, they are known as indices, exponents, or powers. Teacher: Well done, today's lesson is "operation on indices and their properties. I wish that at the end of this lesson, working in group, each learner will be able to state and apply the properties of indices to solve mathematical problems correctly.	Engage learners to discover the new lesson and probe student's prediction.
Lesson development (45 minutes)	Teacher: Dear students, the first case we are going to look at, is the multiplication law. Therefore, in your respective groups, do the following activity. Activity 1: Write the following numbers as products of two numbers where the two numbers are not equal and different from 1. 1. For example: $16=2 \times 8=2^{1} \times 2^{3}$ (a) 8 (b) 243 2. Write the short form of the prime products of the numbers you wrote (for example $2^{1} \times 2^{3}=2^{4}$) in 1 (a) and 1 (b)	Invite them to work on the exploration activity on multiplication law in groups. Ask students to present their findings in plenary session and guide them to harmonize their findings

3. Find the relationship between the index of the products and the indices of the numbers.

Expected answer for Students:

1. (a) $8=2 \times 4 \quad$ (b) $243=9 \times 27$
2. (a) $8=2 \times 4$, in index notation, $2^{3}=2^{1} \times 2^{2}$ and from this $3=1+2$
(b) $243=9 \times 27$, in index notation $3^{5}=3^{2} \times 3^{3}$ and from this $5=2+3$
3. From (2) it is clear that $2^{1} \times 2^{2}=2^{1+2}$ and $3^{2} \times 3^{3}=3^{2+3}$

Teacher: Dear students, from this activity we come up that multiplying two numbers written in index form with the same base leads to writing the base and adding the powers. This means that for all $a \in \mathbb{R}$ and $a \neq 0$, and for all $x, y \in \mathbb{Z}$;

$$
a^{x} \times a^{x}=a^{x+y}
$$

Teacher: Dear students, try also with the following activity:
Activity2: Simplify each of the following expressions by giving your answer in index form.
(a) $10^{2} \times 10^{5}$
(b) $\mathrm{z} \times \mathrm{z} \times \mathrm{z}$

Expected answer for Students:
a) $10^{2} \times 10^{5}=10^{7}$
(b) $\mathrm{z} \times \mathrm{z} \times \mathrm{z}=$

Teacher: Dear students, being in your groups, try with the following activity

Simplify: $4 x^{3} y^{3} \times 5 x^{4} y^{5}$

Help students to choose the groups to present and ask members from other groups to supplement the presented content.

Clarify and reinforce the new concept.

Remember to address common misconceptions if they appear.

Provide an activity
for reinforcing your explanation and

Invite them to present their findings

Clarify the concept of multiplication law

	(b) $\frac{2^{4+1}}{2^{4}}=\frac{2^{5} \times 2^{1}}{2^{4}}=2^{1}$: Prime factoring the denominator and numerator and writing them in index form then using multiplication law of indices, the numerator changed into a product of two indices including one similar to the numerator, then simplify by 2^{4}. (c) Subtracting the index of denominator from index of numerator, we have 5-4 $=1$, which means that $\frac{2^{5}}{2^{4}}=2^{5-4}$ Teacher: Dear students, from this activity, we observe that - For any real numbers a, x and y , the following identity holds: if we can write: $\frac{a^{x}}{a^{y}}=a^{x-y}$ and if $x \leq y$ we can write: $\frac{a^{x}}{a^{y}}=\frac{1}{a^{y-x}}$. - When two numbers of the same bases are divided, the base is re-written, but the power of denominator is subtracted from the power of numerator. Teacher: Dear students, from this formula, let us analyze the different cases that can arise for the different values of x and y. Case 1: For any value of $\mathrm{a} \neq 0$ and $\mathrm{b} \neq 0$, we have $\frac{a^{x}}{b^{y}}$	Clarify and reinforce the new concept. Remember to address common misconceptions if they appear.

Case 2: However, if $\mathrm{a}=\mathrm{b}$ and $x=y$. we have, hence

$$
\left\{\begin{array}{c}
\frac{a^{x}}{a^{x}}=a^{x-x}=a^{0} \\
\text { and } \quad, \text { hence } \boldsymbol{a}^{\mathbf{0}}=\mathbf{1} \\
\frac{a^{x}}{a^{x}}=1
\end{array}\right.
$$

Case 3. if $\mathrm{a}=\mathrm{b}$, then we have the same base and $\frac{a^{x}}{a^{y}}=a^{x-y}$ (if $x>y$) and $\frac{a^{x}}{a^{y}}=\frac{1}{a^{y-x}}($ if $x<y)$

Case 4. Considering the case $x>y, a^{x-y}=\frac{a^{x}}{a^{y}}$ and if

$$
x=0, \text { then } a^{-y}=\frac{1}{a^{y}}
$$

Case 5. Considering the case $x<y, \frac{1}{a^{y-x}}=\frac{a^{x}}{a^{y}}$ and $\mathrm{y}=0$, then

$$
\frac{1}{a^{-x}}=\frac{a^{x}}{1}=1
$$

Invite them to work on the exploration activity on power of powers in groups.

Ask students to present their findings in plenary session and guide them to harmonize their findings.

Provide an activity for reinforcing your explanation.

Teacher: Dear students, the last case we are going to deal with, is the case where we have the fractional indices. Now, try with the following activity

Activity 5

Given that $9=3^{2}$
a) Find the exponent of nine
b) Find the square root for the number of each side. What do you get?
c) What can you conclude?

Students (' answers):
(a) $9^{1}=3^{2}$
(b) $9^{\frac{1}{2}}=3^{\frac{1}{2}}=3$
(c) Relationship: $9^{\frac{1}{2}}$ means the square root of 9

Teacher: Dear students, from this activity, we identify that

$$
a^{\frac{n}{m}}=\sqrt[m]{a^{n}}
$$

- If $n=1$, we have $a^{\frac{1}{m}}=\sqrt[m]{a}$, example: $64^{\frac{1}{3}}=\sqrt[3]{64^{1}}=\sqrt[3]{4^{3}}=4$
- If $m=2$, this means the square root of that number power n. It is simply written without mentioning the root number as follows:
$a^{\frac{n}{2}}=\sqrt{a^{n}}$

Invite them to work on the exploration activity on fractional indices in groups.

Ask students to present their findings in plenary session and guide them to harmonize their finding

From $m=3$, the root number is mentioned and we have the cube root, the fourth root, fifth root, sixth root,...
i.e $a^{\frac{n}{2}}=\sqrt[3]{a^{n}}$

Teacher: Dear students, try with the following activities:

1) Simplify : (a) $10^{2} \times 10^{5}$
(b) $\mathrm{z} \times \mathrm{z} \times \mathrm{z}$
(c) $4 x^{3} y^{3} \times 5 x^{4} y^{5}$
2) Without using a calculator, simplify: (a) $\frac{125}{625}$
(b) $\frac{12 x^{4} y^{3}}{3 x^{3} y^{2}}$
(c) $14 p^{9} q^{6} r^{2} \div 2 p q$

Answers from Students

1. (a) $10^{2} \times 10^{5}=10^{2+5}=10^{7}$
(b) $\mathrm{z} \times \mathrm{z} \times \mathrm{z}=\mathrm{z}^{1+1+1}=\mathrm{z}^{1}$
(c) $4 x^{3} y^{3} \times 5 x^{3+4} y^{3+5}=4 x^{7} y^{8}$
2) (a) $\frac{125}{625}=\frac{5^{3}}{5^{4}}=\frac{1}{5^{4-3}}=\frac{1}{5^{1}}=\frac{1}{5}($ as $3<4)$
(b) $\frac{12 x^{4} y^{3}}{3 x^{3} y^{2}}=4 x^{4-3} y^{3-2}=4 x y($ as $3<4$ and $2<3)$
(c) $14 p^{9} q^{6} r^{2} \div 2 p q$
$=\frac{14 p^{9} q^{6} r^{2}}{2 p q}=7 p^{9-1} q^{6-1} r^{2}=7 p^{8} q^{5} r^{2}$
Invite them to work on the elaboration activity in groups.

Ask students to present their findings in plenary session and guide them to harmonize their finding

	Teacher: Dear students, from what we come to see, let us summarize our lesson as follow : For any real number $\mathrm{a} \neq 0$, the properties of indices include: (a) Multiplication law: $a^{x} \times a^{y}=a^{(x+y)}$ (b) Division law : $a^{x} \div a^{y}=\frac{a^{x}}{a^{y}}=a^{x-y}$ (c) Power law : $\left(a^{x}\right)^{y}=a^{x \times y}=a^{x y}$ and $(a \times b)^{n}=a^{n} \times b^{n}$ (d) Zero index: $a^{0}=1$ for all values of a (e) Negative indices: $a^{-x}=\frac{1}{a^{x}}$ for $a \neq 0$ (f) Fractional indices: $a^{\frac{n}{m}}=\sqrt[m]{a^{n}}$ and $a^{\frac{1}{m}}=\sqrt[m]{a^{1}}=\sqrt[m]{a}$	Using different questions, motivate learners to summarize the lesson
Assessment (15min)	Teacher: Dear students, individually, do the following questions to make sure that you have understood 1. (a) $2^{-3} \times 4^{5}+3^{2} \times 3^{-4}$ (b) $\left(32^{-1} \times 64\right) \div\left(16^{2} \times \frac{1}{4^{-2}}\right)$ (c) $\frac{8^{-4} \times 8^{4}}{4^{-2} \times 4^{2}}$	Give learners an individual assessment (evaluation) to determine the level at which your objective have been achieved.

\(\left.\left.$$
\begin{array}{|l|l|l|}\hline \text { 2. (a) } \frac{3 x^{0}-4 x^{0} \times(6 x y)^{0}}{4 x y^{0}} \\
\text { (b) }(243)^{\frac{1}{5}}+\left(\frac{1}{512}\right)^{\frac{-1}{9}} \\
\text { Expected answers from Students: } \\
\begin{array}{l}\text { 1. (a) } 2^{7}+3^{-2} \\
\text { (b) } 2 \div 2^{12}=2^{-11} \\
\text { (c) } 1\end{array} & \begin{array}{l}\text { Let them do the following } \\
\text { assessment in their } \\
\text { exercises notebook and } \\
\text { present the work to the }\end{array} \\
\text { teacher. }\end{array}
$$\right] \begin{array}{l}2. (a) \frac{3-4 \times 1}{4 x}=-\frac{1}{4 x}

(b) 3+2=5

Teacher: well done students, go and do the following as a

homework:

for corrective feedback

or positive feedback to

students.\end{array}\right]\)| 1. Find the value of the following |
| :--- |
| a) $256^{0.5}+27^{\frac{-1}{3}}$ |
| b) $64^{\frac{-1}{3}}-13$ |

$$
\text { c) } \sqrt{36 x^{8} m^{-12} Z^{6}} \text { if } x=2, m=1 \text { and } z=2
$$

2. Simplify:
a) $p^{2} \times p^{3} \times p^{4}$,
b) $3 \times 7^{2} \times 3^{2}$,
c) $6 \times y^{2} \times 3 \times y$,
d) $2 a^{2} b \times 4 a$ b
3. Find the value of x for $\frac{2^{x}}{32}=8$
4. Simply:
(a) $\left(\frac{128}{512}\right)^{3}$
(b) $\left(x^{3} y^{-5}\right)^{4}$
(c) $\left(x^{-3} 3 y^{2} 3 z^{2 n}\right)^{2}$

Thank you for your participation.

2.2 Lesson from unit 2

SUBJECT: Mathematics

GRADE: S2
UNIT: 2

Lesson title: Numerical value of a polynomial

Duration: 40 minutes.
Teaching and learning materials: A yellow orange, a car toy or any other moving toys, notebooks, pens, Mathematics books for S2.
$\begin{array}{|l|l|l|}\hline \text { Section } & \text { Step -by- step instructions and content } & \text { Teachers' notice } \\ \text { (10 Minutes) } & \begin{array}{l}\text { Teacher: Hello students, how are you? } \\ \text { Welcome to Mathematics lesson. Look at here; we have a yellow } \\ \text { orange and a car toy to be used in this lesson. } \\ \text { Take your exercise book, a pen, a ruler and a pencil and I think that } \\ \text { you will enjoy this lesson. }\end{array} & \begin{array}{l}\text { Begin by gaining students' } \\ \text { attention. }\end{array} \\ & \begin{array}{r}\text { Plan how you will help } \\ \text { learners with special } \\ \text { educational needs. }\end{array} \\$\cline { 2 - 4 } \& $\left.\begin{array}{l}\text { Teacher: Dear students last time we learned types of polynomials. } \\ \text { What is the difference between a polynomial from a } \\ \text { monomial? Give examples. } \\ \text { for taking the learning } \\ \text { materials. }\end{array} \\ \text { Students: A monomial is an algebraic expression formed by one } \\ \text { term, while a polynomial is the one that is formed by many } \\ \text { terms. An example of binomial is 3x - 6 }\end{array} \quad \begin{array}{l}\text { Give students the engaging } \\ \text { activity to be done in pairs } \\ \text { or in groups. }\end{array}\right\}$

Teacher: Today we are going to continue with polynomials. By the end of this lesson, through working in groups, every student will be able to evaluate algebraic expressions for some specific value(s) of the variable(s) and to appreciate the role of numerical values of polynomials in simplifying mathematical expressions correctly.

Teacher: Let us start now; look at this falling orange. Who can give us the formula for calculating its speed as you leant in primary?

Students: $\mathrm{V}(\mathrm{t})=u+a t$ where u is the initial velocity, a the acceleration and t the time.

Teacher: Who can give us the formula for calculating the distance covered by an orange while falling?
Students: $\mathrm{d}(\mathrm{t})=u t+\frac{1}{2} a t^{2}$
Teacher: You see that this formula looks like a polynomial. Let us take an example that the distance covered by a car is given by $\mathrm{d}(\mathrm{t})=2 t+5 t^{2}$ What is the distance covered by this car after $t=20$ seconds? Deduce the value of $2 x+5 x^{2}$ for $\mathrm{x}=20$.

Students: When $\mathrm{t}=20$ seconds, $d=2.20+5(20)^{2} \mathrm{~m}=2040 \mathrm{~m}$.
In the same way, for $x=20$,
$2 x+5 x^{2}=2 \cdot(20)+5(20)^{2}=2040$.
Teachers: Dear students, today, we are going to determine numerical values of polynomials.

When you ask a question, give a pause for students to think and say or write their ideas.

Communicate the lesson title and related instructional objective to students.

Lesson Development (20 Min)	Dear students, in your respective groups, do the following activity Activity 2.2.2: Consider the polynomial expressions below. If $x=2$ and $y=3$, Substitute x and y by their respective values. After, discuss the results with your classmate. (a) $x^{2}+y+1$ (b) $3 x^{2}+2 y-3$ Expected answers for students: (a) $x^{2}+y+1=(2)^{2}+(3)+1=8$ (b) $3 x^{2}+2 y-3=3(2)^{2}+2(3)-3=15$ Teacher: Thank you. The value obtained when substituting values of unknowns in a polynomial is called a numerical value of that polynomial. It is a single value of the polynomial found after replacing variable(s) by specific numerical value(s). Teacher: Dear learners, try again with this activity: Activity 2.2.3: If $\mathrm{x}=3, \mathrm{y}=-2$ and $\mathrm{z}=5$, find the value of : (a) $x y+z^{2}$ (b) $(x+y)(3 x-4 z)$	Exploration activity: Let students do this activity in groups. Invite groups to present answers When presenting, remind the students that it is good to put unknown into brackets before substituting them with values to avoid confusions. Guide students to explain the concepts. Provide more related activities for elaboration stage.

	Summary: Teacher: Dear students, let us summarize what we learn to day. What do you mean by: a) Evaluating a polynomial? b) To find the numerical value of a polynomial? Students' answer: a) Evaluating a polynomial means finding a single numerical value for the expression or polynomial. Example: $\mathrm{a}^{2} \mathrm{~b}+\mathrm{ab}^{2}$ for $\mathrm{a}=-2, \mathrm{~b}=3$ becomes: $(-2)^{2} \times 3+(-2)(3)^{2}=-6$ b) To find the numerical value of a polynomial, variables are substituted by specific numerical values.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment (7 Minutes)	Teacher: Thank you very much. Now, You are going to do an individual activity for assessment: 1) If $E=\frac{1}{2} m v^{2}$, find E when $m 27$ and $V=\frac{1}{3}$ 2) If $x y=5$ and $y=2$, find: (a) x (b) $2(x+y)$	Give students an activity for evaluation and explain related instructions.

	Student's answer: 1) $\mathrm{E}=\frac{1}{2}(27)\left(\frac{1}{3}\right)^{2}=\frac{1}{2} \times(27) \times \frac{1}{9}=\frac{3}{2}$ 2) (a) By put the value of y in, we obtain $x(2)=5$ then $x=\frac{5}{2}=2.5$ (b) $2(2.5+2)=4.5$ Teacher: Thank you for your correct answers.	Mark the work of learners and give students the feedback.
Conclusion (2Minutes)	Teacher: As, we are coming to the end of our lesson, we have seen that: 1. Evaluating a polynomial means finding a single numerical value for the expression or polynomial. 2. To find the numerical value of a polynomial, variables are substituted by specific numerical values. 3. Finding the value of a polynomial helps in determining the value of any physical quantity while having a formula. Thank you for your participation. As homework, go and find the distance \mathbf{d} and a velocity \mathbf{v} of a car at the time $t=30^{\text {th }}$ second given that: $\begin{aligned} & d(t)=2+3 t-4 t^{2} \\ & \mathrm{v}(t)=3-8 t \end{aligned}$ See you in the next lessons.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

2.3 Lesson from unit 3

SUBJECT: Mathematics

Grade : S2
UNIT 3:

Lesson title: Solving simultaneous linear equations.

Duration: 2 periods or 80 minutes.
Teaching material: Flipped charts or slides with activities and others with graphs.
Learning materials: Internet or reference books, writing materials, chalks and chalkboard.
$\left.\begin{array}{|l|l|l|}\hline \text { SECTION } & \text { Step-by-step instructions and content } & \text { Notice to the teacher } \\ \text { (15 min) } & \begin{array}{l}\text { Teacher: Good morning/afternoon class, welcome again in the lesson } \\ \text { of mathematics. Can one tell us what we learnt last time? } \\ \text { Students: We studied the definition and examples of simultaneous } \\ \text { linear equations. } \\ \text { Teacher: Can one of you give us the example of simultaneous linear } \\ \text { equations? } \\ \text { Students: Yes, it is made of two linear equations that must satisfy the } \\ \text { same thing. For example } \\ \left\{\begin{array}{l}3 x-y=8 \\ x-2 y=1\end{array}\right.\end{array} \begin{array}{l}\text { Begin by gaining students' } \\ \text { attention. }\end{array} \\ & \begin{array}{l}\text { Teacher: Thank you, as you learnt the meaning of simultaneous linear } \\ \text { equations, let us start our lesson by doing a short review on how to } \\ \text { draw the graph of a linear equation in a Cartesian plane. } \\ \text { Work in group the following activity: }\end{array} & \begin{array}{l}\text { Idents with } \\ \text { special educational needs } \\ \text { and plan how to help them } \\ \text { accordingly. }\end{array} \\ \text { arivity to be done in }\end{array}\right\}$

Activity 3.2.1

a) Draw on the same Cartesian plane the lines representing the following equations:
$x+y=4$
$2 x+y=5$
b) Find on the graph the point of intersection of the two lines.
c) What can you say on the coordinate of the point of intersection in b)?

Questions that can be asked to different groups:
Teacher: How do you draw your graph? Did you respect scales or graduation?
Wait for 10 minutes.

Expected answer for students:

Teacher: Thank you, how many points are necessary to draw a line?
Students: Two points that satisfy a linear equation are sufficient to draw its line.

While students are
working, move around to each group and ask some probing questions leading them think about the correct answer.

Invite groups to present their findings.

Guide students to harmonize answers.

Highlight how to graph a linear equation on a Cartesian plan.

Remind students to use a correct graduation.

$\left.\begin{array}{l|l|l|}\hline\end{array} \begin{array}{l}\text { At the point they cross, both equations must be true, since that point is } \\ \text { on both lines. } \\ \text { They appear to cross at }(3,2) . \\ \text { Let's check that in both equations. } \\ \text { Substitute } x=3 \text { and } y=2 \text { into both equations and see if both equations to present } \\ \text { are true. } \\ y=2 x-4 \\ \text { their findings in a whole } \\ \text { class discussion. }\end{array}\right]$

Student: The solution set of our simultaneous equation has one solution. $S=\{(3,2)\}$

Teacher: Very good, we are now going to work together. I will show you the graph and you will tell me the number of solutions for the simultaneous equations for such lines.

Note: The Number of Solutions

Type 1: One Solution

Students: The two lines intersect in exactly one point.
The solution is the point at which they intersect.

For each type, show them the graph and ask a question.

The examples of such system is to be provided after.

Type 2: No Solution

Students: Lines are parallel, they never meet.
There is no solution to their simultaneous linear equations.
$S=\varnothing$ or $\mathrm{S}=\{ \}$.
Type 3: Infinite Solutions

Students: The lines overlap at all points. Their equations give the same line. They meet in all real values of x . This means that the solution set is the set of all real numbers $S=\mathbb{R}$.
Teacher: Can you summarize the number of cases we found?
Students: Simultaneous linear equations can have either:
One solution, if the lines meet at one point.
No solution, if they never meet as they are parallel.
Infinite solutions, if they all lay on the same line.
Teacher: Take your notebooks and geometric materials and do the following activities in groups:

Activity 3.

1) How many solutions does this system have?

$$
\begin{aligned}
& y=2 x-7 \\
& y=3 x+8
\end{aligned}
$$

Chose one: A) 1 Solution
B) No solution
C) Infinite solutions

Students: After solving, we found that the answer is (A), The system has 1 solution which is
2) How many solutions does this system have?

$$
\begin{aligned}
& 3 x-y=-2 \\
& y=3 x+2
\end{aligned}
$$

Chose one: A) 1 Solution
B) No solution
C) Infinite solutions

Students: After solving, we found that the answer is (C), The system has infinite solutions. The solution set is $S=\mathbb{R}$
3) How many solutions does this system have?

$$
\begin{aligned}
& y=4 x \\
& 2 x-0.5 y=0
\end{aligned}
$$

Chose one: A) 1 Solution
B) No solution
C) Infinite solutions

Students: After solving, we found that the answer is (C), The system has infinite solutions. The solution set is $S=\mathbb{R}$.
Teacher: Thank you. Now do this activity individually.

Question:

Solve graphically the following simultaneous equations
$3 x+y=5$
$6 x+2 y=1$
How many solutions does this system have?
Chose one: A) 1 Solution
B) No solution
C) Infinite solutions

Students: After solving, we found that the answer is (B), The system has no solutions. The solution set is $S=\varnothing$.

Teacher: Thank you for your answers. In the next period we will continue with another method for solving simultaneous linear equations.

Teacher invites students to work in groups the activity 3.2.3.

Invite them to present answers and guide the whole class to harmonize the results.

Provide an evaluation activity for this step. It can be done individually.

Step 2: 30 minutes	Solving by Substitution: Teacher: In the previous period we saw how to solve the simultaneous linear equations graphically. Now let us study another method. Proceed by doing this activity in groups. Activity 4 Consider the equations: $\begin{align*} & 2 x+y=7 \ldots \\ & 3 x-2 y=0 \tag{ii} \end{align*}$ a) Using equation (i), express \mathbf{y} in terms of \boldsymbol{x} in equation form and label this equation (iii) b) Substitute the value of y (in terms of x) from equation (iii) into equation (ii) to have equation (iv) in terms of x only. c) Solve equation (iv) d) Find the value of x c) Solve equation (iv) to get the exact value of x. d) Substitute the exact value of x in equation (i) or (iii) to get the value of y. e) Confirm whether the values of x and y satisfy both equations (i) and (ii) f) Guess the name that can be given to this method of solving Simultaneous equations?	Provide an engaging activity to study the second methods. Invite students to work in groups the activity 4. Invite them to present answers and guide the whole class to harmonize the results.

Students' answer:

Consider the equations $2 \mathrm{x}+\mathrm{y}=7$.........(i) and
$3 x-2 y=0$
$2 x+y=7$
a) $y=7-2 x$
b) Substitution $3 x-2 y=0 \Rightarrow 3 x-2(7-2 x)$..... (iv)
c) $3 x-14+4 x=0$
$7 x=14$
$x=2$
d) Using equation (i) $2 x+y=7 \Rightarrow 2(2)+y=7$
$4+y=7$
$y=3$
e) Verify answers using equations (i) and (ii) when $x=2$ and $y=3$
$2 \mathrm{x}+\mathrm{y}=7 \Rightarrow 2(2)+3=4+3=7 \ldots \ldots . . .$. True And \therefore RHS $=$ LHS $=7$
$3 x-2 y=0 \Rightarrow 3(2)-2(3)=6-6=0 \ldots \ldots .$. True
f) This is called a substitution method.
Steps to be followed in substitution method:
Step 1: Using one equation for your choice, express one variable in terms of the other.

Step 2: Substitute the expression into the other equation and solve for the variable.

Step 3: Substitute the numerical value you found into EITHER equation and solve for the other variable.

Step 4: Write the solution as $S=\{(x, y)\}$
Teacher: Thank you; Now, do the following application activities in pairs.

Activity 5

1) Solve the system using substitution method.
$2 x-3 y=-1$
$y=x-1$
2) The solution to the system of linear equations below

Is the point (x, y).
$y=8 x+18$
$3 x+3 y=0$
What is the value of $x+y$? Chose the correct answer.
A) -4
B) 0
C) 2
D) 4
3) Solve the following system by substitution.
$-3 x-3 y=12$
$-4 x-7 y=7$
4) The solution to the system of linear equation below is the point (x, y). What is the value of $x-y$?
$y+2 x=-14$
$y=2 x+18$

Chose the correct value:

A	19
B	17
C	10
D	10

Expected answer for students:

1) Step 1: Substitute one equation into the other equation.

Since one equation is already solved for y, I'll substitute that into the other equation.
$2 x-3(x-1)=-1$
Step 2: Solve the new equation.

$$
\begin{aligned}
& 2 x-3(x-1)=-1 \\
& 2 x-3 x+3=-1 \\
& x=4
\end{aligned}
$$

Step 3: Substitute the solution into either equation and solve
$2 x-3 y=-1$
$2(4)-3 y=-1$
$8-3 y=-1$
$-3 y=-9$
$y=3$
$y=x-1$
$y=(4)-1$
$\mathbf{y}=3$
We have now $x=4$ and $y=3$

	Solution, continued:	
Check:		
See if $(4,3)$ satisfies both equations :		
$2 x-3 y=-1$		
$2(4)-3(3)=-1$		
$8-9=-1$		
$-1=-1$		
$y=x-1$		
$(3)=(4)-1$		
$3=3$		
The ordered pair satisfies both equations, The solution set is		
S= $\{\mathbf{(4 , 3)}\}$.		
2) The Correct answer is on B		
3) Answer: S= $\{(-7,3)\}$		
4) The point of intersection is P(-8;2).	Summary See the main step seen above for solving simultaneous linear equations: a) Graphically b) By substitution.	Use different questions to help students recall key concepts of the lesson to be written down as a
summary.		

$\left.\begin{array}{|l|l|l|}\hline \text { Assessment } & \begin{array}{l}\text { Teacher: Thank you; Now work individually the following: } \\ \text { (8 Minutes) } \\ \text { the solution graphically. } \\ \text { Question1 } \\ 3 x-y=2 \\ x+y=4\end{array} & \begin{array}{l}\text { Provide activities to be } \\ \text { done individually as } \\ \text { assessment (evaluation), } \\ \text { mark students and give }\end{array} \\ \text { them the feedback. }\end{array}\right\}$

	$S=\{(4 ; 2)\} .$	
Conclusion (2 Minutes).	Teacher: We are coming to the end of our lesson. As we conclude, remember that we learnt how to solve simultaneous linear equations graphically and by substitution. As a home work, you are requested do more activities found in the $\mathbf{S} 2$ Mathematics book on page 73. Thank you for your participation.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

2.4 Lesson from unit 4

SUBJECT: MATHEMATICS
 GRADE: S2
 UNIT4:

Lesson title: Proportional changes
Duration: 40 minutes
Teaching and learning materials: notebooks, pens, calculators, geometric materials, S2 mathematics book (from page 88 to page 94)

Section

Step -by- step instructions and content

Introduction
Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. I think that you are ready to study. Can you tell me the lesson you studied last time?

(10 min)

Students: Yes Sir/ Madam; We learned to express ratios in their simplest form.
Teacher: Good! Remember that it had been also studied in S1. You are therefore expected to be well versed with how the operations are carried out. Now, do the following activity.

Activity 4.1

a) Express the following as fraction
i) 9 to 27
ii) 6 to 18
b) Write the ratios found in (a) in their simplest form.

Teachers' notice

Begin by gaining students' attention.

Identify students with special educational needs and plan how to help them accordingly.

Invite the students to work in groups on the engaging activity 4.1 to assess the prerequisites of students before starting the new lesson.

	Expected answer from students: a) i) $\frac{9}{27}=\frac{1}{3}$ ii) $\frac{6}{18}=\frac{1}{3}$ b) $\frac{1}{3}$	
	Teacher: Good! In today's lesson, we are going to study proportional changes. And by the end of this lesson, you will be able to: - Compare quantities using proportions. - Define proportions and give some of its properties. In this lesson you only need notebooks, pens, calculators, geometric materials, and the S2 Mathematics books. Teacher: Let $\frac{3}{5}$ and $\frac{9}{15}$ be two ratios. How do we call this expression? expression? $\frac{3}{5}=\frac{9}{15}$ Students: when two ratios are written in this form $\frac{3}{5}=\frac{9}{15}$ it is called a proportion. Simply, a proportion is a statement that two ratios are equal.	Communicate the lesson title and related instructional objective to students. Allow students to get their materials before moving on.

Lesson development

(20 min)

Teacher: Continue to work in your groups the following activity:
Activity 4.2
a) Find x if $\frac{12}{x}=\frac{36}{9}$

Expected answer from the students:

$$
\begin{gathered}
36 x=108 \\
x=3
\end{gathered}
$$

Teacher: Very good! Now, you know that when you have the proportion $\frac{a}{b}=\frac{c}{d}$, this means that $a \times d=b \times c$.

Let us see the third property called Inverse (reciprocal) property. Do the following activity:

Activity 4.3

if $7 a=3 b$ and $b \neq 0$, find the ratio $a: b$

Expected answer from the students: If $7 a=3 b$ then $\frac{a}{b}=\frac{3}{7}$
Teacher: Thank you very much! From the result of this activity, you see that
If $\frac{a}{b}=\frac{c}{d}$ then $\frac{b}{a}=\frac{d}{c}$
Now, try to do the following activities:

Provide the exploration activity.

Clarify the concept and guide students to write down the content.

Invite students to work in groups on the other exploration activity

Clarify the concept and guide students to write down the content.

	Activity 4.4 (a) If $\frac{x}{y}=\frac{5}{3} \quad$ find the ratio $\frac{y}{x}$ (b) $\frac{m}{n}=\frac{5+x}{-2+x} \quad$ Find the ratio $\frac{n}{m}$ Expected answer from students: a) $\frac{\boldsymbol{y}}{\boldsymbol{x}}=\frac{3}{5}$ b) $\frac{n}{m}=\frac{-2+x}{5+x}$ Activity 4.5 If $\frac{x}{y}=\frac{3}{4}$ find the ratio of $\frac{4}{3}$ Expected answer from students: $\frac{4}{3}=\frac{y}{x}$	Guide the students to work in groups on the elaboration activity by applying the property of cross multiplication and solving for unknown. Invite the students to work in groups on the other elaboration activity.
	Teacher: In this lesson, let us summarize what we have learnt in this lesson Summary - A proportion is a mathematical statement that expresses the equality of two ratios. - Properties of proportions:	Guide the learners to summarize the lesson by focusing on how to state proportions and properties of proportions.

	Mean-extreme or cross multiplication: If $\frac{a}{b}=\frac{c}{d}$, then $a d=b c$. Mean-extreme switching property: If $\frac{x}{2}=\frac{y}{3}, \frac{x}{y}=\frac{2}{3}$ Inverse property: If $\frac{a}{b}=\frac{c}{d}$ then $\frac{b}{a}=\frac{d}{c}$.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment (8 min)	Teacher: Thank you very much! Now, you are going to do an individual activity for assessment: Use cross products to solve the proportion a) $\frac{2}{6}=\frac{5}{x}$ b) $\frac{6}{4}=\frac{x}{9}$ c) $\frac{5}{25}=\frac{x}{20}$ Expected answers from students: a) $x=15$ b) $x=\frac{54}{4}=\frac{27}{2}$ c) $x=4$	Give students an activity to be done individually for evaluation, mark the work for each one and Provide opportunities for corrective feedback or positive feedback to students.

Conclusion	$\mathrm{min})$	Teacher: We are coming to the end of our lesson. As we conclude, let us review some of the key points that we learned about proportion change.
In this lesson, we talked about the following concepts: 1. The meaning of a proportion; 2. properties of proportions that are: mean-extreme or cross multiplication, mean-extreme switching property and inverse main property. and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.		
We will see the last property next time.		
As homework, try to make a research on the equivalence of		
proportions.		
Thank you for your participation.		

2.5 Lesson from unit 5

SUBJECT: MATHEMATICS
 GRADE: 2
 UNIT 5:

Lesson title: Midpoint of a line segment
Duration: 40 minutes.
Teaching and learning materials: A ruler, a protractor, set square, a tape measure

Section	Step -by- step instructions and content	Teacher's notice
Introduction (7 min)	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied in geometry senior one? Students: We studied the definition of a point; a line, angles, triangles etc. Teacher: Who can tell us the difference between a line and a point? Students: In geometry, a point marks one position while a line is a set of points which are joined together.	Begin by gaining students' attention. Identify students with special educational needs and plan how to help them accordingly.
	Teacher: Let us start it by doing this activity Please, take a piece of gridded paper. a) Draw vertical lines with 4 cm b) Mark point A and C on extremities of the lines c) Mark point B in the middle of this line segment. c) What can you say about the measures $A B$ and $B C$?	

	Expected answers from students: For example length $\mathrm{AB}=2 \mathrm{~cm}$ and length $\mathrm{BC}=2 \mathrm{~cm}$ $A B$ and $B C$ have equal length when you measure them from the middle point B . $A B$ and $B C$ are called line segments of the same length and B is the mid-point of the line segment AC. Teacher: Good! In today's lesson, we are going to continue with the meaning of a mid-point of a line segment. By the end of this lesson, you will be able to use geometric materials to: - Define a line segment and midpoint correctly. - Recite the midpoint formula accurately. - Apply the midpoint to solve related problems without any difficult.	Tell students the materials needed and give them a small time to take them. Explain instructions and provide an engaging activity. Communicate the lesson title and related instructional objective to students.
Lesson Development (25min)	Teacher: Workout the following activity Activity 5.1 a) Using a ruler, draw a line segment AB of length 10 cm . b) Mark Point M , 5 cm from A towards B. Measure and compare the lengths AM and MB. What can you say about these two-line segments AM and MB? Expected answer from the students: a) b) The segment $\mathrm{AM}=\mathrm{MB}=5 \mathrm{~cm}$	Give learners the exploration activity. Students must be given time to think and note down their ideas. Emphasize new concepts.

Teacher: Well done students. Midpoint "is defined as the point halfway between the endpoints of a line segment". A midpoint divides a line segment into two equal segments.

M is a midpoint of the line segment $A B$
Because $|A M|=|M B|$

Teacher: Please work in pairs this activity.
Activity 5.2
Consider the points P and Q in the Cartesian Plane.

When harmonizing
students' findings, guide them to deduce clear meaning of a midpoint of a line segment
(Explanation phase).

Invite them to work on the elaboration activity in pairs.

Expected answer from the students:

i) The coordinates of point P and Q are $P(3.3)$ and $Q(7,11)$
ii) The length of segment PQ is 8.9 L. U
iii) The half of the segment PQ is a point at $(5,7)$ coordinate.
iv) The midpoint of segment $P Q$ has a coordinates of $(5,7)$
v) using Cartesian plane, I count the squares from P to Q on x and y axis, and I find that the middle point M has $(5,7)$ coordinates

Teacher: Well done students. Midpoint coordinates "can also be found by using the following formula:
$\mathbf{M}=\left(\frac{X 1+X 2}{2}, \frac{Y 1+Y 2}{2}\right)$ Where $\mathrm{P}(\mathrm{x} 1, \mathrm{y} 1)$ and $\mathrm{Q}(\mathrm{x} 2, \mathrm{y} 2)$ respectively.
Teacher: Let us now do the following activity to apply what you have just learnt.

Activity 5.3.

If the points K and P are in a Cartesian plane such that $K(3,9)$ and $P($ 1,3).

Find the coordinates of the midpoint T of the line segment $\overline{P Q}$. Show all your working steps.
Answer's students : the coordinates of midpoint T are found by using $\mathrm{T}=\left(\frac{X 1+X 2}{2}, \frac{Y 1+Y 2}{2}\right)$
We find that T has coordinates $\left(\frac{3+1}{2}, \frac{9+3}{2}\right)$,
Therefore, $\mathrm{T}(2,6)$.

	Summary: Midpoint "is defined as the point halfway between the endpoints of a line segment". A midpoint divides a line segment into two equal segments. To find the midpoint coordinates of a line segment AB, you use the formula $M=\left(\frac{X 1+1}{2}, \frac{Y 1+Y 2}{2}\right)$ Where A (x1, y1) and B (x2, y2). The midpoint of a line segment is the point half away from two given points a midpoint divides a line segment into two equal segments. Then M is the midpoint of line AB.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment	Teacher: Thank you very much. Now, you are going to do an individual activity for assessment:	Provide questions to be done individually for evaluation; Correct them and plan how to support students with difficulties (who failed).
(5 Min)	Answer to the following questions: 1. Choose the correct coordinates of the midpoint between the indicated P and Q?	M

	ANSWER: $(3,3)$ 3. Choose the correct answer of the midpoint between $(k, 6 k)$ and ($5 k$, $-4 k$)? A $(3 k, k)$ B $(3 k, 5 k)$ C $(6 k, k)$ D $(6 k, 5 k)$ E I need help ANSWER: A	
Conclusion $(3 \mathrm{~min})$	Teacher: We are coming to the end of our lesson. As we conclude, let us s review some of the key points that we learned about the Midpoint. If $A(x 1, y 1)$ and $B(x 2, y 2)$ are points of a Cartesian plane, the midpoint M of the line segment AB has the following coordinates: $\mathbf{M}=\left(\frac{X 1+1}{2}, \frac{Y 1+Y 2}{2}\right) .$ As homework, you will do activity 5.2 which is on page 95 in S2 Mathematics- students' book. Thank you for your participation in this lesson.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

2.6 Lesson from unit 6

SUBJECT: MATHEMATICS

GRADE: S2
UNIT 6:

Lesson TITLE: Proof of Pythagoras' theorem

Duration: 80 minutes.
Teaching and learning materials: Apparatus for Pythagoras theorem, cut-outs for right angled triangles, and squares.

Section	Step -by- step instructions and content	Notice for the teacher
Introduction	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time?	Begin by gaining students' attention.
Students: Last time we studied the introduction to Pythagoras theorem.	Identify students with special educational needs Teacher: Thank you, observe this hen and the tree; There is a relation how to help them between distance from the hen to the foot of the tree, its height and the distance from the hen to the top of the tree. What is your observation?	accordingly.

\(\left.\left.$$
\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Expected answer from the students: } \\
\text { a) Pythagoras theorem states that "in a right triangle, the square of } \\
\text { the hypotenuse is equal to the sum of the squares of the other two } \\
\text { sides". } \\
\text { b) } 4^{2}+7^{2}=x^{2} \\
16+49=x^{2} \\
\text { Teacher: Thank you very much! Now, in today's lesson, we are going } \\
\text { to study how to prove Pythagoras' theorem. }\end{array} & \begin{array}{l}\text { Communicate the } \\
\text { lesson title and related }\end{array}
$$

instructional objective to\end{array}\right\} $$
\begin{array}{l}\text { students. }\end{array}
$$\right\}\)| Tey question: What is the relationship between hypotenuse andother two sides of a right angled triangle? |
| :--- |
| |

Activity 6.2.3

1. Draw the right-angled triangle $A B C$ such that $A B=4 \mathrm{~cm}$,
$\mathrm{BC}=3 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=90$ degrees
2. Draw a square on each side of triangle ABC
3. Find the area of each square drawn on each side of triangle ABC
4. Compare the area of square on the hypotenuse to the area of square on other two sides.

Students:...

Teacher: Thank you for your answers. Pythagoras' theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

b

$$
c^{2}=a^{2}+b^{2}
$$

Activity 6.2.4

Use Figure below to copy and complete the following, given that A, B,C represent areas of the three squares.

Activity 6.2.5
What is the value of x ?

Answer: $152+412=x^{2}$
$225+1681=x^{2}$
$1906=x^{2}$
$X \approx 43.66$
Activity 6.2.6
What is the length of the third side?

	Expected answer from the students: $\begin{array}{r} x^{2}+42=72 \\ x^{2}+16=49 \\ x^{2}=33 \\ x \approx 5.74 \end{array}$ Teacher: As we have seen, Pythagoras' theorem concerns areas of the square on the sides of a right angled triangle. Its main use, however, is in calculating lengths. It also provides us with a test for a right-angled triangle. A triangle is right-angled, whenever the square of the length of the longest side equals the sum of the squares of the lengths of the other two sides.	
Assessment (15 Minutes)	Teacher: Right! Now, you are going to do an individual activity for assessment: Activity for Assessment 1. Lengths of the sides of four triangles are shown. Identify which of the triangles are right angled, and explain your method. (a) $\mathrm{AB}=24 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}, \mathrm{AC}=26 \mathrm{~cm}$ (b) $\mathrm{DE}=7 \mathrm{~cm}, \mathrm{EF}=8 \mathrm{~cm}, \mathrm{FD}=13 \mathrm{~cm}$ (c) $\mathrm{GH}=10.6 \mathrm{~cm}, \mathrm{HF}=5.6 \mathrm{~cm}, \mathrm{IG}=9.0 \mathrm{~cm}$ (d) $\mathrm{JK}=16 \mathrm{~mm}, \mathrm{KL}=34 \mathrm{~mm}, \mathrm{LJ}=30 \mathrm{~mm}$ Expected answer from the students: (a),(c),(d) 2. Figure below is a right-angled triangle with squares A, B and C on its sides.	Give them the activities to be done individually as an assessment (evaluation). Provide opportunities for corrective feedback or positive feedback to students.

1. The sides of a rectangle are 7.8 cm and 6.4 cm long. Find the length of the diagonal of the rectangle.
2. The length of the diagonal of a rectangle is 23.7 cm and the length of one side is 18.8 cm . Find its perimeter.

Thank you for your participation in this lesson.

2.7 Lesson from unit 7

SUBJECT: MATHEMATICS

GRADE: 2

UNIT 7:

Lesson title: Equality of vectors.

Duration: 80 minutes.
Teaching and learning materials: Chalk, mathematical sets, exercise books, pens.

Section

Step -by- step instructions and content
Introduction
(10min)
Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time?

Students: We studied the concept of a vector, Definition and properties of a vector.

Teacher: Previously as you say, we have learnt the meaning of a vector and its properties.
Now, let us begin by reviewing the previous lesson with a short revision using an activity related to vectors.
Teacher: Work in pairs the following:

Activity 7.3.1:

a) What is a vector?
b) How can you present a vector geometrically?

Notice for the teacher

Begin by gaining students' attention.

Identify students with special educational needs and plan how to help them accordingly.
Provide the engaging activity and give them related instructions.

\(\left.$$
\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Teacher: Good! In today's lesson, we are going to study Equality of } \\
\text { vectors. } \\
\text { By the use of geometric materials, you will be able to identify equal } \\
\text { vectors and Solve problems related to equality of vectors accurately. }\end{array} & \begin{array}{l}\text { Communicate the lesson } \\
\text { title and the objectives of } \\
\text { the lesson. }\end{array} \\
\begin{array}{l}\text { Lesson } \\
\text { development } \\
\text { (50 Min) }\end{array} & \begin{array}{l}\text { Teacher: Dear students, I want two volunteer students to come in } \\
\text { front of the other. } \\
\text { Now, try to push one another in the opposite direction. }\end{array} & \begin{array}{l}\text { In a whole class } \\
\text { discussion, choose two } \\
\text { students of approximately } \\
\text { equal size and tell them to } \\
\text { come in front of and push } \\
\text { one another but before, } \\
\text { tell them to wash their } \\
\text { hands. }\end{array} \\
& \begin{array}{l}\text { Teacher: Why no student displaces the other? } \\
\text { Why one student displaces the other? } \\
\text { Students: None displaces the other because they have equal forces. } \\
\text { One student displaces the other because they have different forces. } \\
\text { Teacher: Thank you very much students! } \\
\text { When two forces F1 and F2 with the same direction but with different } \\
\text { orientation are acting on the same point, you can have: } \\
\text { F1+F2 =0 when they are of the same magnitude } \\
\text { F1-F2 or F2-F1 when they do not have the same magnitude. }\end{array} & \begin{array}{l}\text { Students must be given } \\
\text { time to think and note } \\
\text { down their ideas. }\end{array}
$$

If none displaces the other,

ask why?\end{array}\right\}\)| If one displaces the other, |
| :--- |

Remember that a vector joining two points A and B is noted by $\overrightarrow{A B}$, but we are going to use bold letters to represent vector without using an arrow.
Now, in groups of four students, do the following activity:

Activity 7.3.2

Observe the figure below that is in a shape of a parallelogram and discuss the questions that follow:

a) Compare the magnitudes and directions of vector $\mathbf{A B}$ and $\mathbf{D C}$. What do you notice? What is the name given to such vectors?
b) Compare the magnitudes and directions of vectors DA and BC. What do you notice?
Expected answer from the students:
a) $\mathbf{A B}$ and $\mathbf{D C}$ have the same magnitude and direction. $\mathbf{A B}=\mathbf{D C}$, meaning $\mathbf{A B}$ and $\mathbf{D C}$ are parallel vectors.
b) $\mathbf{D A}$ and $\mathbf{B C}$ have the same magnitude but different directions. $\mathbf{B C}=-\mathbf{D A}$, they are parallel vectors.

Emphasize new concepts

Guide students to form groups and do this exploration activity in groups.

During group activity,
Move to each group to verify their progress and guide them where necessary.

For each group working activity, let students Present their findings, and harmonize their answers.

Concept clarification

Teacher: basing on the results of this activity, what are the conditions required for vectors to be equal or equivalent?
Students: Equal vectors must be equal in magnitude and have the same direction.

Teacher: Yes, remember that Vectors that are parallel and equal in magnitude but opposite in direction are called opposite vectors.

Teacher: Dear students, thank you very much.
Now, continue to work in your respective groups on the following activity:

Activity 7.3.3:

What name can you give two vectors which have the same magnitude and direction? You are going to choose a card that indicates the proper name for these two vectors among the following cards.

i) A
iii) B
v) A \& B
vii) B \& C
ii) B
iv) C
vi) A \& C
,
A \& C

When harmonizing students' findings, guide them to deduce clear meaning of equal or equivalent vectors (explanation stage).

Still in groups, ask the students to work on the application or elaboration activities. Help them to form groups and instructs how the activity is going to be performed.

Expected answer from the students:

True answer is (vii) because two vectors of the same magnitude and direction, you can call them Equal or Equivalent vectors.

Activity 7.3.4:

Draw and name:
(i) Two equal vectors
(ii) Two opposite vectors

Expected answer from the students:

Vector u and v are equal.
Teacher: Nore that if $\vec{U}=\binom{x_{1}}{y_{1}}$ and $\vec{V}=\binom{x_{2}}{y_{2}}$

$$
\vec{U}=\vec{V} \text { means } x_{1}=x_{2} \text { and } y_{1}=y_{2}
$$

Teacher: Still in groups, work on these application activities.

Activity 7.3.5:

Given that $\vec{U}=\binom{20 x}{-4}$ and $\vec{V}=\binom{10}{5+y}$
a) Find the values of x and y if $\vec{U}=\vec{V}$
b) Find the values of x and y if \vec{U} and \vec{V} are opposite.

Expected answer from the students:
a) $\vec{U}=\binom{20 x}{-4}$ and $\vec{V}=\binom{10}{5+y}$

Use different questions to help students recall key concepts of the lesson and be written down as a summary.

$$
\text { if } \begin{array}{r}
\vec{U}=\binom{20 x}{-4} \text { and } \vec{V}=\binom{10}{5+y} \\
20 x=10 \text { and }-4=5+y \\
x=\frac{10}{20} \text { and }-4-5=y \\
x=\frac{1}{2} \text { and } y=-9
\end{array}
$$

b) if $\vec{U}=-\vec{V}$ then $\binom{20 x}{-4}=-\binom{10}{5+y}$

$$
\begin{aligned}
& 20 x=-10 \text { and }-4=-5-y \\
& x=\frac{-10}{20} \text { and }-4+5=-y \\
& x=\frac{-1}{2} \text { and } y=-1
\end{aligned}
$$

Activity 7.3.6:

Given that $\vec{a}=\binom{k}{-1}$ and $\vec{b}=\binom{5 k-32}{3 x-16}$
find the values of k such that $\vec{a}=\vec{b}$

Expected answer from the students:

$$
\begin{array}{lll}
\mathrm{K}=5 \mathrm{k}-32 & \text { and } & -1=3 \mathrm{x}-16 \\
\mathrm{~K}-5 \mathrm{k}=-32 & \text { and } & -1+16=3 \mathrm{x} \\
-4 \mathrm{k}=-32 & \text { and } & 15=3 \mathrm{x} \\
\mathrm{~K}=8 & \text { and } & \mathrm{x}=5
\end{array}
$$

Assessment

(10 Min)

Teacher: Very good! Now, you are going to do an individual activity for Let the students do these assessment: Activity:

1. Figure below shows vectors on a Cartesian plane.

activities individually and submit their answer sheet for evaluation.

Provide opportunities for corrective feedback or positive feedback to students.

	(a) List all the vectors that are equivalent to: (i) $\mathbf{A C}$ (ii) $\mathbf{G H}$ (b) Is vector $\mathbf{A B}$ equivalent to vector IJ? Give a reason. Expected answer from the students: a) (i) DE (ii) $\mathbf{E F}$ b) The vector $A B$ is not equivalent to IJ, they are opposite vectors because they have opposite direction.	
Conclusion (10 min)	We are coming to the end of our lesson. Now, I want to give you homework so that you try to apply what we have learned today. Homework 1. Given that $\mathbf{r}=\binom{-6 a}{-3} \quad$ and $\mathbf{s}=\binom{a-14}{2 y-27}$ If $\mathbf{r}=\mathbf{s}$, find the values \mathbf{a} and y 2. Given that, $\mathrm{a}=\binom{-11 x}{y-1}$ and $\mathbf{b}=\binom{3-7 x}{8 y-23}$ If $\mathbf{a}=\mathbf{b}$, find the value of x and y Thank you for your participation in this lesson.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

2.8 Lesson from unit 8

SUBJECT: Mathematics

GRADE:S2
UNIT: 8
LESSON TITLE: Parallel projection of a point on a line.
Duration: One period of 40 minutes.
Teaching material: A torch, rulers and set squares.

\(\left.$$
\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { If you join each part and its image by a line: head, arms, legs, etc. } \\
\text { Can you guess how these images are formed? Where are images } \\
\text { formed? } \\
\text { Students: Lines joining each object (part) and its image are parallel. } \\
\text { We see that images are formed on the ground. }\end{array} & \begin{array}{l}\text { You can also ask students } \\
\text { to discuss the next position } \\
\text { of a set square put on a } \\
\text { wall and fall vertically } \\
\text { feacher: In this lesson, we are going to study how image of a point } \\
\text { (object) is formed on a line under the parallel projection in the surface of a } \\
\text { the direction of a given line. }\end{array}
$$

wall.\end{array}\right\}\)| Teacher: Today's lesson is entitled "Parallel projection of a point on a |
| :--- |
| line". |

2) Draw another line \mathbf{k} passing through point \mathbf{A} intersecting \mathbf{l} at \mathbf{A}^{\prime}.
3) Mark point B anywhere not on line \mathbf{l} and \mathbf{k}.
4)Through \mathbf{B}, draw a dashed line parallel to \mathbf{k} to meet \mathbf{l} at \mathbf{B}^{\prime}

Students' answers:

Teacher: Dear students, How are lines k and BB'? Where are points A' and B'?

Student's answer:
We notice that lines k and BB^{\prime} are parallel. The point \mathbf{A}^{\prime} and \mathbf{B}^{\prime} are formed on the same line I.

Teacher: With such a result, B^{\prime} is the image of B under the parallel projection on the line l. We say also that B^{\prime} is the projection or the image of B on the line I. i.e $A^{\prime}=\operatorname{Im}(B)$.
In such a mapping A^{\prime} is also the projection of A on the line l.
This transformation is called parallel projection because the line joining the point \mathbf{B} (object) and its image \mathbf{B}^{\prime} is parallel to the line \mathbf{k} ($\mathrm{BB}^{\prime} / / \mathrm{k}$).
The line \mathbf{k} is called the direction line.

Move to every group and ask probing questions.

Ask students to present their findings in plenary session

During harmonization guide students to build their knowledge on a parallel projection

Use different questions to probe students to be able to explain the concept.

Clarify the concept (explanation stage).

Assessment (8
min)

Expected answers for students:
$\operatorname{Im}(\mathrm{F})=\mathrm{F}^{\prime}(-3 ; 0) ; \operatorname{Im}(\mathrm{E})=\mathrm{E}^{\prime}(-4 ; 0) ; \operatorname{Im}(\mathrm{A})=\mathrm{A}^{\prime}(0 ; 0) ; \operatorname{Im}(\mathrm{B})=\mathrm{B}^{\prime}(0 ; 0) ; \ldots$
Thank you for your participation in this lesson.

2.9 Lesson from unit 9

SUBJECT: Mathematics

GRADE: S2
UNIT: 9

LESSON TITLE: Central symmetry and its Properties

Duration: 40 minutes

Teaching material: Geometrical instruments

Learning materials: Notebooks, pens, calculators, geometric materials, S2 Mathematics book

Section	Step -by- step instructions and content	Teachers' notice
Introduction (5 Minutes)	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time? Students: We studied the introduction to isometries.	Begin by gaining students' attention. Identify students with special educational needs and plan how to help them accordingly.
	Teacher: Take a squared paper, try to show its diagonals and find the center of the square. Measure and compare lengths from the center to extremities of each diagonal. How are they? Students: The two points are at the same distance from the center and they are on the same line. Teacher: We are going to study the transformation called Central symmetry under which the object and image are on the same line and they are at the same distance from the center.	Provide the engaging activity. Show students symmetric objects. You can use a chart or a video showing two symmetric points or objects.

	Teacher: Good! In today's lesson, we are going to continue with central symmetry as one type of isometries. And by the use of geometric materials, you will be able to: - Explain central symmetry; - Explore properties of central symmetry.	Tell students the materials needed and give them a small time to take them. Communicate the lesson title and related instructional objective to students.
Lesson development (25 Minutes)	Teacher: observe the figure below:	Students must be given time to think and note down their ideas.
	If we consider the center of a square, One extremity A of a diagonal is an object, its image is C. Compare the distance OA and OC, how are they? Students: OA = OC. This means that the object and the image are equidistant from the centre 0 and they are opposite one another.	Invite them to work on the exploration activities in pairs. Ask students to present their findings in plenary session and guide them to harmonize their findings.

	The line segment $A^{\prime} B^{\prime}$ is the image of the line segment AB i)AH $=H A^{\prime}$ ii) $\mathrm{BH}=\mathrm{HB}$ ii) $\mathrm{AB}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ Teacher: Basing on the results of this activity what are Properties of Central Symmetry? Students' answers: 1) An object and its image have same shape and size. 2) A point on the object and its image are equidistant from the centre. 3) The image of the object is inverted. 4) Central symmetry is fully defined if the object and the centre are known. Teacher: Thank you. Work in groups and do this activity Activity 9.1.4: Triangle $A B C$ has vertices at $A(2,1), B(2,-4)$ and $C(5,-4)$. Find the image of $\triangle A B C$ under the central symmetry with centre $O(0,0)$. State the coordinates of the image.	

Students' answer:

Let the image be $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ be the image of ABC .

The coordinates of the triangle image are:
$A^{\prime}(-2,-1), B^{\prime}(-2,4), C^{\prime}(-5,4)$.

Summary:

The central symmetry is a transformation under which the image is inverted upside down (opposite) about a point called the centre.

The object and the image are equidistant from the centre and the corresponding points lie on opposite sides of the centre.

Use different questions to help students recall key concepts of the lesson to be written down as a summary.

	If A^{\prime} is the image of a point A under the central symmetry with center 0 , we write $A^{\prime}=\operatorname{Im}(A)$. To find the image of a point P under the central symmetry of center 0 , draw a dashed line passing PO ; the image P^{\prime} of P is such that the distance $0 \mathrm{OP}=\mathrm{OP}^{\prime}$ The following are properties of the central symmetry: 1) An object and its image have same shape and size. 2) A point on the object and its image are equidistant from the centre. 3) The image of the object is inverted.	
Assessment (7 minutes)	Teacher: Thank you very much. Now, You are going to do an individual activity for assessment: 1) Define the following term: a) Isometry. b) Central symmetry. 2. State the properties of centre symmetry. 3) Copy the point A in your note book and label the figure clearly as shown below:	Give them an activity for assessment (evaluation). Provide opportunities for corrective feedback or positive feedback to students.

${ }^{A+}$

1) Find the image $A^{\prime} B^{\prime}$ of the line segment $A B$ under the central symmetry with center 0 .
2) Describe the image $A^{\prime} B^{\prime}$ formed in relation to the line segment $A B$.
3) How do the sizes of line segment $A B$ and the image $A^{\prime} B^{\prime \prime}$ are related?

Students' answers:

1)

2) The image $A^{\prime} B^{\prime}$ of the $A B$ is inverted.
3) The line segment $A B$ and the line segment $A^{\prime} B^{\prime}$ have the same length.

Conclusion

(3 Minutes)

Teacher: As, we are coming to the end of our lesson, we have seen that:

1) An isometry is a transformation that does not change the size of shape and image, the central symmetry is an isometry because the size of image is equal to the size of the object.
2) Image of an object under the central symmetry is inverted upside down vis- a- vis the center.

Thank you for your participation.
As homework, go and do activities found in the S2 Mathematics students' book on page 153.

Thank you for your participation in this lesson.

Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

2.10 Lesson from unit 10

SUBJECT: Mathematics

GRADE: S2
UNIT 10:
LESSON TITLE: Class size in grouped data
Duration: 40 minutes
Teaching material: Books, chalk, and classroom chalkboard.
Learning materials: Notebooks, pens, calculators, geometric materials, S2 Mathematics book

Section	Step -by- step instructions and content	Teachers' notice
(5 Mintroduction	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time?	Begin by gaining students' attention.
	Students: We studied the Frequency distribution table for grouped data.	Identify students with special educational needs and plan how to help them accordingly.
Teacher: Take a picture that I put on your desks and geometric materials.	Tell students the materials needed and give them a small time to take them.	

	And by the use of notebooks, pens, calculators, you will be able to: - Make a frequency distribution table of a grouped data - Determine class size.	Communicate the lesson title and related instructional objective to students.
Lesson development (25 Minutes)	Teacher: Now, get your hand out (reed on the flip chart), read the next activity and try to work on it. Activity 10.2.1 The following data represent marks scored by a group of 40 students in math sets. $78,46,55,47,77,63,52,52,62,46,77,47,40,35,67,61,58$ $52,42,40,48,57,66,54,75,78,75,59,75,47,59,35,62 \text {, }$ $53,72,57,51,69,55,57$ Find: a) The numbers of students who scored between 30 and 39 . b) The numbers of students who scored between 40 and 49 . c) The numbers of students who scored between 60 and 79. d) Represent the above information in table of 5 groups of marks and indicate for each group the number of students belonging to that group Expected answer for students: a) Students who scored between 30 and 39 are 2 students. b) The number of students who scored between 40 and 49 is 9 . c) The number of students who scored by 60 and 79 is 15 .	Invite students to work on the exploration activity in pairs. Ask students to present their findings in plenary session and guide them to harmonize their findings (Explanation).

Teacher: Dear students, is it clear? Basing on your results, we are going to see what the class boundary and class limits are and how there are used to construct the histogram.

Frequency distribution table for Grouped Data is a table consisting of columns of class/groups and the number of observations in each class or the class frequency, denoted by \mathbf{f}.

For example, for the class 30-39, the number 30 is called the Lower Class Limit and 39 is called the Upper Class Limit. If the frequency for the class $30-39$ is $2(\mathbf{f}=2)$ this means that there are two students whose marks are between 30 and 39 .

The class limits can be extended to the nearest value of the accuracy chosen for effective recording and the construction of histogram.

For example, $40-49$ can be extended to $39.5-49.5$ by subtracting 0.5 from the lower and adding it to the upper class limit.

Hence 39.5 and 49.5 become class boundaries.

- Lower class boundary is the average of lower limit of the class and the upper limit of the previous class
- The upper class is the average of the upper limit of the class and the lower limit of the next class

The difference between the upper class boundary and the lower class boundary is called the class interval, class width, or class size,
i.e. class interval = upper class boundary- lower class boundary

Teacher: Dear students, I think you have understood what the class boundary and the class interval are.

Harmonize answers and address misconceptions.

Invite students to work in groups and do another elaboration activity.

Work in group the following activity:
Activity 10.2.3
Consider the following data on the diameters of 40 ball bearings that were recorded in mm.
$51,43,42,53,38,52,51,42,45,53,50,40,53,41,42,53,61,33,65$, $47,35,44,67,53,54,48,47,27,36,48,27,53,66,44,52,60,37,47$, 49, 43
Make a grouped frequency table using classes,
26-30, 31-35 , 36-40, 41-45 \qquad
and determine class boundaries.
Expected answer for students: ...

Summary:

- A histogram is a bar diagram that represents the frequency distribution of a continuous data.
- The class boundary between the first and the second class is given by the mean of upper limit of the first class and lower limit of the second class.
- Between one class and the next, the class limits have a gap between them. There is a disconnection between any two consecutive classes.
- The class boundaries mark the boundaries of the rectangular bars in the histogram.
- The height of the bars is also proportional to the respective frequencies.

	Students' answers: 1)		
	Mass in grams	Tally	frequency
	60-69	////	4
	70-79	///// /	6
	80-89	//////	5
	90-99	//////////	10
	100-109	//////////////	14
	110-119	//////////	11
			21
	2)		
	Hand span	Tally	frequency
	14.0-15.9	///	3
	16.0-17.9	///// /	6
	18.0-19.9	////////	8
	20.0-21.9	///	4
			21
	Correct them and	give them constru	uctive feedback.

Conclusion	Teacher: As, we are coming to the end of our lesson, we have seen that:
A histogram is a bar diagram that represents the frequency distribution of a continuous data.	
The class boundaries mark the boundaries of the rectangular bars in the histogram. The height of the bars is also proportional to the respective frequencies. As homework, go and do activities found in the S2 Mathematics students' book on page 188. Exercise 10.2 question 1. Thank you for your participation in this lesson.	

Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

2.11 Lesson from unit 11

SUBJECT: Mathematics

GRADE: S2
UNIT 11:
Lesson title: Use of tree diagram to determine probability
Duration: 80 minutes
Teaching material: Chalk board, balls, coins, cards, and a die
Learning materials: notebooks, pens, calculators, balls, coins, die and senior two mathematics book

Introduction Teacher: Welcome again to Mathematics lesson. I am sure you are (15 Min) going to enjoy today's lesson. Who can tell us what we studied last time?
Students: Yesterday, we studied tree diagrams and total number of outcomes.
Teacher: Today we are going to start by making a short review on previous lesson with an activity.
Teacher: Work in group the following activity:

Activity:

1) What is a tree diagram?
2) What is the total number of outcomes?
3) What is the total number of outcomes when a coin is tossed?
4) Determine the total number of outcomes when a die is rolled?

	Activity: Teacher: What are the names of those objects? Students: They are cards and dice Teacher: Referring to the previous lesson, for which purpose do we use die, coin, and cads? Students: we use these objects to play games in which the winning is based on the probability where the total number of outcomes depends on an event to happen.	Teacher: Good! Class In today's lesson, we are going to continue with the use of tree diagrams to determine probability.
	And by the use of balls, coins, cards and a die, you will be able to accurately determine the probability by using tree diagram in a provided time.	Communicate the lesson title and related instructional objective to students.
Teacher: Let us start today's lesson by doing the following activity: development Activities 11.2.0 (45 Minutes) A bag contains 2 yellow balls and 2 pink balls. Uwase picked two balls one after the other. With the aid of a tree diagram, show all the possible outcomes. How many outcomes are there?	Display and ask students to perform the exploration activities in groups.	
Collect answers and		
guide the whole class to		
harmonize them.		

Teacher: Thank you. From your answers, we have seen that:

- Tossing one-coin n times is the same as tossing n coins at once. For example, the number of outcomes for tossing 3 coins at once is the same as the number of outcomes for tossing one coin three times. The way we used to represent the outcomes is called tree diagram.
- We use numerical values to express the probability of an event (A) of the sample space S.
Probability of $\mathbf{A}=\mathbf{P}(\mathbf{A})=\frac{\text { Favorable outcomes }}{\text { Possible outcomes }}=\frac{n(A)}{n(s)}$
Teacher: Dear students, now do this activity:

Activity 11.2.2

A coin is tossed twice.
Determine the probability of obtaining two heads.

Expected answer for students:

We have four outcomes: HH, HT, TH and TT. Therefore, the probability of obtaining 2 heads (HH) is $1 / 4$.

We see that there are 8 outcomes.
b) i) Outcomes of having two heads are HHT, HTH, THH.
ii) Outcome of having 3 tails is one: TTT.
iii) Outcomes of having two tails or two heads are HHT, HTH, HTT, THH, THT, and TTH.
c) The probability of each case in (b).
$P($ having two heads $)=\frac{3}{8}$
$P($ having 3 tails $)=\frac{1}{8}$
$\mathrm{P}\left(\right.$ having two tails or two heads) $=\frac{6}{8}$
Teacher: Again, work out the following:
Activity 11.2.4:
A coin is tossed twice.
(a) Represent the outcomes on a tree diagram.
(b) Determine the following probabilities.
(i) Getting H followed by T
(ii) Getting two heads
(iii) Getting head and tail irrespective of order.

	2) When a die is tossed once: Probability of a side $\begin{aligned} P(1) & =1 / 6 \\ P(2) & =1 / 6 \\ P(3) & =1 / 6 \\ P(4) & =1 / 6 \\ P(5) & =1 / 6 \\ P(6) & =1 / 6 \end{aligned}$ Probability of finding an even number $=P(2)+P(4)+P(6)=3 / 6=1 / 2 .$	
Conclusion (5min)	Teacher: We are coming to the end of our lesson. As we conclude, we saw that Tree diagrams are particularly useful in probability since they record all possible outcomes in a clear and uncomplicated manner. $\text { Probability of A }=\mathrm{P}(\mathrm{~A})=\frac{\text { Favorable outcomes }}{\text { Possible outcomes }}=\frac{N(A)}{N(S)}$ Now I want to give you a homework, you are requested to do all questions: Homework: 1. In a bag containing 3 oranges, 2 mangoes and 4 apples, two of the fruits are picked at random one after the other with replacement.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

	Determine the probability of getting: (a) An orange followed by a mango (b) Two oranges (c) A mango and an apple irrespective of the order 2. A coin is tossed. Use a tree diagram to show all the possible outcomes of the experiment. 3. Using a tree diagram, determine all the possible outcomes that can be obtained when a coin is tossed three times and determine the probability of obtaining 3 heads.	
	Thank you for your participation in this lesson.	

SCRIPTED LESSONS FOR SENIOR 3

3.1. LESSON FROM UNIT 1

SUBJECT: Mathematics
 GRADE: S3
 UNIT 1:

LESSON TITLE: Solve a mathematical problem using Venn diagram involving 2 sets.

Duration: 40 minutes.
Teaching material: Charts with Venn diagrams.
Learning materials: Notebooks, pens, calculators, Charts, S3 Mathematics book.

Section	Step -by- step instructions and content	Teachers' notice (5 Min)
Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time?	Begin by gaining students' attention.	
Students: We studied the Intersection, Union ad Complement of sets. Teacher: Good! then write mathematically a) Intersection of sets A and B b) Union of sets A and B	Identify students with special educational needs and plan how to help them accordingly.	

Students' Answer:			
Intersection of sets A and B is $\mathbf{A} \cap \mathbf{B}$			
b) Union of sets A and B is $\mathbf{A} \cup \mathbf{B}$		\quad	Teacher: Good! In today's lesson, we are going to continue with a
:---			
new lesson on Venn diagrams.			
Do the following activity.			
Activity:			
Observe the figure below and answer to the questions			
engaging activity that			
links to the new lesson.			

	Teacher: Well done. By the end of this lesson, you should be able to: - Express and represent a mathematical problem related to 2 sets using a Venn diagram. - Solve a mathematical problem involving 2 sets using Venn diagram. - Appreciate the importance of sets in solving a mathematical problem.	Communicate the lesson title and learning objectives to students.
Lesson development (20 Minutes)	Teacher: Thank you. We see that Intersection of sets A and B is $A \cap B$ and represents elements which are common to both sets \mathbf{A} and \mathbf{B}. Union of sets A and B is $A \cup B$ and represents all combined elements of A and B where each one is written once. Now, join your groups and do the activity below. Activity 1.2.1 A survey was carried out in a shop to find the number of customers who bought bread or milk or both or neither. Out of a total of 79 customers for the day, 52 bought milk32 bought bread and 15 bought neither milk nor bread. (a) Represent the situation above using Venn diagram. (b) How many customers bought both milk and bread. (c) How many customers bought only one item?	Harmonize students' answers and give them exploration activities. Students must be given time to think and note down their ideas.

| Students' answer | |
| :--- | :--- | :--- |
| Let M the set of customers who bought milk, | |
| B the set of customers who bought breads, we have: | Ask students to present
 their findings in plenary
 session and guide them to
 harmonize their findings. |
| (b) 20 | |
| (c) $32+12=44$ | |
| Teacher: Thanks. Now do the following activity in pairs. | |
| Activity 1.2 .2 | |
| In a cleanup exercise carried out in Nyagatare town, a group of | |
| students were assigned duties as follows; all of them were to collect | |
| waste papers. 15 were to sweep the streets but not plant trees along | |
| the streets; 12 were to plant trees along the streets, 5 of them were | |
| to plant the trees and sweep the streets. | |

| - Clarify the elements of B not element of A, | Clarify the concept
 (explanation) and guide
 students to write down
 the content. |
| :--- | :--- | :--- |
| - Clarify the elements of not A and not B, | |
| Represent the problem using Venn diagram. | |

Students' answer:

Summary:

During the representation and solving problems involving two sets A and B, follow the following diagrams:

where ε is the set of all items surveyed in that problem.

Use different questions to help students recall key concepts of the lesson to be written down as a summary.

Assessment $(10 \mathrm{~min})$	Teacher: Thank you very much. Now, you are going to do an individual activity for assessment: choose 1 problem and solve it	Guide learners to do individually the activity for evaluation.
	Activity	
	1. In a class of 30 students, students are required to take part in at least one sport chosen from football and volleyball 18 play volleyball, 22 play football. Some play the two sports.	
	(b) Use your diagram to help determine the number of students who play the two sports.	Provide opportunities for corrective feedback
	2. Five members of Mathematics club conducted a survey among 150 students of Senior 6 about which careers they wish to join among Engineering and Medical related courses. 83 want to join Engineering, 58 want to join medical related courses. 36 do not want to join any of the careers.	or positive feedback to students.
	Represent the data on the Venn diagram. Find the number of students who wish to join both careers.	
	3. In a school of 232 students, 70 are members of Anti-AIDS club, 30 are members of debating club and 142 do not belong to any of the mentioned clubs.	
	(a) Represent the information on the Venn diagram.	
	(b) Use the Venn diagram to calculate the number of students who belong to one club only.	

Students' Answer:

1. a)

b) Number of students who play the sports=10 students
2. a)

b) Number of students who wish to join both careers=27students

Conclusion	Teacher: As we are coming to the end of our lesson, we have seen that: Some mathematics problems can be solved by Venn diagram.	Summarize the main points verbally, conclude and give students a homework that may		
include remedial,				
As homework, go and do activities found in the S3 Mathematics				
students' book on page 5 and 6.			\quad	activities depending
:---				
on the feedback from				
assessment.				

3.2 Lesson from unit 2

SUBJECT: Mathematics

GRADE: S3
UNIT 2:
LESSON TITLE: Converting a number from base 10 to any other base and vice versa.
Duration: 40 minutes
Teaching material: Notebooks, pens, calculators, chalk.
Learning materials: Notebooks, pens, calculators, S3 Mathematics book.

Section

Introduction

(5 Min)

Step -by- step instructions and content
Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time?

Students: We studied the examples for different number bases. For example, when you have the number 258 , you can need to write it in the number base 2.

Teacher: Thank you. But before continuing, try to discuss the meaning of the following concept:
(i) A digit
(ii) A numeral
(iii) A place value
(iv) Abacus
(v) Number base

Teachers' notice
Begin by gaining students' attention.

Identify students with special educational needs and plan how to help them accordingly.

Give students an engaging activity.

	Students' answers: A number is an idea expressing a concept of what we count; A numeral is a way to express a number in writing or the symbol that represents the number. The number system that we use today is a place value system. Teacher: Good! In today's lesson, we are going to continue with Converting a number from base 10 to any other base and vice versa. By the use of pens and notebooks, you will be able to: - Convert numbers from base ten to any other base and vice versa.	Communicate the lesson title and related instructional objective to students.
Lesson development (25 Minutes)	Teacher: This lesson will help you to answer to this equation. Now try to work in groups the following activity: (i) Divide 425 by 6 and write down the remainder. (ii) Divide the quotient obtained in (1) above and write down the remainder. (iii) Repeat this process of division by 6 until the quotient is less than 6 which you should treat as a remainder and write it down. (iv) Write down the number made by the successive remainders beginning with the first one on the right going to the left. (v). Give the relationship between the considered number (425) and the number obtained in (iv) above.	Invite students to work on the exploration activity in groups. Students must be given time to think and note down their ideas.

	Expected answers for students: We use place values to change from base six to base 10 . $\begin{aligned} & 415_{\text {eight }}=\left(4 \times 8^{2}\right)+\left(1 \times 8^{1}\right)+\left(5 \times 6^{0}\right) \\ & =(4 \times 64)+(1 \times 8)+(5 \times 1) \\ & =256+8+5 \\ & =269 \\ & \therefore 415_{\text {eight }}=269_{\text {ten }} \end{aligned}$	
	Summary: To convert from base ten to another base: 1. Do successive division by the required base noting the remainders at every step. 2. Write down the remainders from the last to the first one. 3. These remainders make up the required number. To convert from any other base to base 10 : 1. Multiply every digit in the number by its place value. 2. Add the results. Thank you for your participation in this lesson.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment (7min)	Teacher: Thank you very much. Now, You are going to do an individual activity for assessment: 1. Convert the following numbers from base 10 to base 5 . (a) 50 b) 36 2. Convert the following numbers in base 10 to base 9 . (a) 82 (b) 190	Give students an activity to be done for evaluation Provide opportunities for corrective feedback or positive feedback to students.

	Students'answers: 1. a) 200_{5} b) 121_{5} 2. a) 101_{9} b) 231 , 3. a) 10010001_{2} b) 40032_{6} c) 110100000_{2} d) 1672_{8}	
Conclusion $(3 \mathrm{~min})$	Teacher: As, we are coming to the end of our lesson, we have seen that: To convert from base ten to another base: 1. Do successive division by the required base noting the remainders at every step. 2. Write down the remainders from the last to the first one. 3. These remainders make up the required number. To convert from any other base to base 10: 1. Multiply every digit in the number by its place value. 2. Add the results. Thank you for your participation. As homework, go and do Activity 2.2.7: Given that $85_{10}=221_{x}$. Find the value of x. In addition, you will do more activities found in the S3 Mathematics students' book on page 19. Thank you for your participation in this lesson.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

3.3 Lesson from unit 3

SUBJECT: Mathematics
 GRADE: S3
 UNIT 3

Lesson title: Simplification of algebraic fractions
Duration: 80 minutes
Teaching materials: Ruler, flip chart, chalk board
Learning materials: notebooks, pens, calculators and Senior three Mathematics book

Section
Introduction
(8 min)

Step -by- step instructions and content

Teacher: Welcome to Mathematics lesson. I think that you are ready for today's lesson. Who can tell us what we studied last time?

Students: In the last session, we studied the meaning and examples of algebraic fractions.
Teacher: Now, give us an example of an algebraic fraction?
Students: For example, $\frac{2 a b+2}{4} ; \frac{x+1}{x^{2}}$ are algebraic fractions.
Teacher: Hence, Work in group the following activity:

Activity 3.1

1. What is an algebraic fraction?
2. Given the following mathematical expressions, which ones are algebraic fractions?
a) $2 x$
b) $\frac{1}{2 x+1}$
c) $\frac{5}{y}$
d) $x^{2}+4$
e) $\frac{2 x+5}{x^{2}-2}$

Notice to the teacher

Begin by gaining students' attention.

Identify students with special educational needs and plan how to help them accordingly.

Engaging activity 3.1

Ask students to work in groups.
3. State the condition of existence of an algebraic fraction in the set of real number.

Expected answers from students:

1. An algebraic fraction is a fraction of two different algebraic expressions:
2. The algebraic fractions are:
b) $\frac{1}{2 x+1}$
c) $\frac{5}{y}$ and
e) $\frac{2 x+5}{x^{2}-2}$
3. In the set of real numbers, an algebraic fraction exists only if the denominator is not equal to zero. The values of the variable that make the denominator zero are called a restriction on the variable(s).

Teacher: Thank you. Note that an algebraic fraction can have more than one restriction depending on the mathematics expression taken as denominator. We have just finished to make a review on previous lesson.
Today we are going to continue with the simplification of algebraic expressions.
Teacher: In today's lesson, we are going to continue with simplification of an algebraic fraction. By the end of this lesson, you will be able to:

- Simplify an algebraic fraction.
- Recognize the rules to be applied in the simplification of algebraic fractions.

Communicate the lesson title and related instructional objective to students.

Lesson development

(40 Minutes)

Teacher: Workout the following activity

Activity 3.2
Given the following algebraic fractions:
i) $\frac{3 a b}{4 a^{2} b}$
ii) $\frac{15 x^{3} y}{3 x y^{5}}$
a) After mentioning the restriction on the existence, find the common factor of the denominator and the numerator?
b) Divide the numerator and the denominator by the common factor found in (i) above
c) Compare the results obtained with the initial algebraic expression.

Expected answer for students:

i) $\frac{3 a b}{4 a^{2} b}=\frac{3}{4 a}$
ii) $\frac{15 x^{3} y}{3 x y^{5}}=\frac{5 x^{2}}{y^{4}}$

Teacher: Thank you, then what is the name of the process of writing an algebraic fraction into its simplest form?

Students: The process of writing an algebraic fraction into its simplest form is called "Simplification of an algebraic fraction"

Lead them to do the activity in groups,

Invite some groups to present answers in a whole class discussion and then guide them to harmonize their answers.

Students must be given time to think and note down their ideas.

Teacher: That is exact. Now, do the following activity:

Activity 3.3:

Simplify the following fractions and note the restrictions
a) $\frac{2 x-2}{(x-2)(x-1)}$
b) $\frac{x^{2}-2 x-15}{4 x-20}$

Expected answers for students:
$\frac{2 x-2}{(x-2)(x-1)}=\frac{2(x-1)}{(x-2)(x-1)}=\frac{2}{x-2} ; \boldsymbol{x} \neq 2 ; \boldsymbol{x} \neq \mathbf{1}$
$\frac{x^{2}-2 x-15}{4 x-20}=\frac{(x-5)(x+3)}{4(x-5)}=\frac{x+3}{4}: x \neq 5$
Teacher: Good, then do the following activities
Activity 3.4
For each of the following fractions:
Write the restrictions on the variables.
Simplify the algebraic fractions.
i) $\frac{8 x^{2} y^{3}}{2 x^{3} y}$
ii) $\frac{2 y-14}{y^{2}-2 y+1}$
iii) $\frac{x^{2}-y^{2}}{3 x^{2}-3 x y-9 x y^{2}}$

Expected answer for students:

$$
\begin{aligned}
& \frac{8 x^{2} y^{3}}{2 x^{3} v} \text { its restriction: } x \neq 0 ; y \neq 0 \\
& =\frac{4 y^{2}}{x}
\end{aligned}
$$

Emphasize new concepts.

Invite them to work on the exploration activity in pairs.

Ask students to present their findings in plenary session and guide them to harmonize their findings.

Let students work in groups, this will promote among other competencies:
(i) Critical thinking skills
(ii) Problem solving

	ii) $\frac{2 y-14}{y^{2}-2 y+1}$; its restriction: $y^{2}-2 y+1 \neq 0$ $\frac{7 y-7}{y^{2}-2 y+1}=\frac{7(y-1)}{(y-1)(y-1)}=\frac{y-1}{y-1}=1$ iii) $\frac{x^{2}-y^{2}}{3 x^{2}-6 x y-9 x y^{2}}$ its restriction: $x \neq 0$, $3 x^{2}-6 x y-9 x y^{2} \neq 0$ Then, $\frac{x^{2}-y^{2}}{3 x^{2}-6 x y-9 x y^{2}}=\frac{x^{2}-y^{2}}{3 x\left(x-2 y-3 y^{2}\right)}$	(iii) Cooperation and interrelation among students. Guide students to clarify the concept of simplification of algebraic fractions.
	Teacher: Summary: A fraction is in its simplest form if its numerator and denominator do not have common factors. To simplify means to divide both numerator and denominator by the common factor or factors. If both the numerator and denominator of a fraction have more than one term, we simplify the fraction by: (i) Factorizing both numerator and denominator where necessary. (ii) Cancelling by the common factor.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.

Assessment

(15 min)

Teacher: Thank you very much. Now, you are going to do an individual activity for assessment:

Simplify the following algebraic fratcions:
a) $\frac{2 x-2}{x^{2}-2 x+1}$
b) $\frac{x^{2}-9}{6 x-18}$
c) $\frac{4 y-2}{2 y^{2}-4 y-1}$
d) $\frac{2 x^{2}+5 x^{3}}{2 x^{2}+4 x^{3}}$
2) Simplify and note restrictions $\frac{2 x^{2}+6 x^{3}}{2 x^{2}+4 x^{8}}$

Expected answer from students:

a) $\frac{2 x-2}{x^{2}-2 x+1}=\frac{2(x-1)}{(x-1)(x-1)}=\frac{2}{x-1}$
b) $\frac{x^{2}-9}{6 x-18}=\frac{x^{2}-9}{6 x-18}=\frac{(x-3)(x+3)}{6(x-3)}=\frac{(x+3)}{6}$
c) $\frac{4 y-2}{2 y^{2}-4 y+1}=\frac{2(2 y-1)}{(2 y-1)(2 y-1)}=\frac{2}{2 y-1}$
2) $\frac{2 x^{2}+6 x^{3}}{2 x^{2}+4 x^{3}}=\frac{2 x^{2}(1+3 x)}{2 x^{2}(1+2 x)}$
$\frac{2 x^{2}(1+3 x)}{2 x^{2}(1+2 x)}=\frac{1+3 x}{1+2 x}$
The restriction of $\frac{1+3 x}{1+2 x}$ is $x \neq-\frac{1}{2}$.

Invite learners to perform assessment individually.

Mark the work for each student,

Make the correction on the chalk board in a plenary session.

Then provide opportunities for corrective feedback or positive feedback to students.
$\left.\begin{array}{|l|l|l|}\hline \text { Conclusion } & \begin{array}{l}\text { Teacher: As we are coming to the end of our lesson, we have seen } \\ \text { that: }\end{array} & \begin{array}{l}\text { Summarize the main } \\ \text { points verbally, conclude } \\ \text { and give students a }\end{array} \\ \text { To simplify algebraic fractions, start by factorizing out as many } \\ \text { numbers as you can for the numerator, next find a common factor } \\ \text { in the denominator and divide both numerator and denominator by byat may } \\ \text { this common factor. } \\ \text { include remedial, } \\ \text { consolidation or extended } \\ \text { activities depending on the } \\ \text { feedback from assessment. }\end{array}\right\}$

3.4 Lesson from unit 4

SUBJECT: Mathematics

GRADE:S3

UNIT 4

LESSON TITLE: Graphical solution of simultaneous linear equations in two unknowns

Duration: 80 minutes
Teaching material: Geometrical instruments, flipped charts
Learning materials: Notebooks, pens, calculators, geometric materials, S3 Mathematics book

| Section | Step -by- step instructions and content | Teachers' notice |
| :--- | :--- | :--- | :--- |
| Introduction | Teacher: Welcome again to Mathematics lesson. I am sure you are
 going to enjoy today's lesson. Remember we learnt how
 to solve simultaneous linear equations in S2 by using
 different methods. Who can remind us those different
 methods we studied of solving simultaneous linear
 equations in S2? | Begin by gaining students'
 attention. |
| | Students: The different methods that we learnt of solving
 simultaneous equations in S2 are: solving by the
 graphical method, by substitution, by elimination, by
 comparison and by rule. | Identify students with
 special educational needs
 and plan how to help them
 accordingly. |
| | Teacher: Let us start our lesson by doing a short review about how
 to draw a linear equation in a Cartesian plane.
 Work in group the following activity: | Provide an engaging
 activity. |

	$\begin{aligned} & x+y=5 \\ & -1+6=5 \end{aligned}$ $5=5$ correct. This point verifies the two equations. iv) I notice that graph can help us to solve simultaneous linear equations by writing the coordinates of point of intersection as solution set. Teacher: Good! In today's lesson, we are going to continue with Graphical solution of simultaneous linear equations in two unknowns. And by the use of geometric materials, you will be able to: - Solve graphically simultaneous linear equations in the Cartesian plane; - Interpret graphical solutions of simultaneous linear equations.	Communicate the lesson title and related instructional objective to students.
Lesson development (40 Minutes)	Teacher: Now, the key question becomes the following: How do we call the coordinates of the point of intersection of the lines representing the equation of the system? Students: The coordinates of the point of intersection make a solution set of the simultaneous linear equations. Teacher: Thanks a lot, then go back to your groups and do this activity: Activity4.2.2 By plotting the graphs of system of equations given below, find their solutions. i) $\left\{\begin{array}{c}x+y=2 \\ 2 x+3 y=5\end{array}\right.$	Invite them to work on the exploration activity in groups. Students must be given time to think and note down their ideas.

Teacher: Thank you very much. Can you help me to summarize how you proceed to solve graphically the simultaneous linear equations?

Students: To solve a system of linear equations, we proceed as follows
(i) Draw the line representing the equation of the system
(ii) Find the coordinates of intersection point.
(iii) Write down the solution set.

Teacher: Now, work in pairs on the following activity Plotting the graph of system of equations given below and find the solution.

$$
\left\{\begin{array}{c}
2 x-y+2=0 \\
4 x-2 y+4=0
\end{array}\right.
$$

Students' answer:

$\{2 x-y+2=0$
$\{4 x-2 y+4=0$

If the lines coincide, there is infinite number of solutions.

Remember to address common misconceptions.

Refer to the result and ask some questions leading students to highlight the concept (explanation stage)

Provide an elaboration activity to be done in pairs.

	Summary: Steps to follow when solving graphically simultaneous linear equations. (i) Draw the line representing the equation of the system (ii) Find the coordinates of intersection point. (iii) Use these coordinates to write down the solution set.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment (15 minutes)	Teacher: Thank you very much. Now, You are going to do an individual activity for assessment: Solve the following simultaneous linear equations using the graphical method: a) $\left\{\begin{array}{c}y+2 x=5 \\ x-20 y=20\end{array}\right.$ b) $\left\{\begin{array}{c}y-2 x=2 \\ 2 y=4 x-3\end{array}\right.$ c) $\left\{\begin{array}{c}y=2 x+2 \\ 2 y=4 x+4\end{array}\right.$ Students answer: b) $\left\{\begin{array}{c}y-2 x=2 \\ 2 y=4 x-3\end{array}\right.$	Provide an activity to be done individually for evaluation. Collective feedback or positive feedback to all students is necessary.

Conclusion

(10 Minutes)

Teacher: As we are coming to the end of our lesson, we have seen that:
While solving a system of two linear equations, three cases are possible:

- Unique solution, if the lines meet at one point.
- No solutions, if the lines are parallel.
- Infinite solutions, if the lines coincide.

Teacher: thank you; as a home work, work out the following:

1) A learning institution employs men and women during the school vacation. A day's wage for 3 men and 2 women is 4000 FRW. For 1 man and 5 women the wage is 3500 FRW.
i) If a man earns x FRW and a woman y FRW per day, write two equations in terms of x and y for the given situation.
ii) Combine two equations and explain what you obtain.
iii) What will be the solution of two equations taken together.

Expected answer for Students:

i) Let x be the wage of a man per day and y be the wage of a woman per day. Then, the first equation is $3 x+2 y=400$ and the second equation is $x+5 y=3500$.
ii) If we take the two equations together, we get simultaneous equations to be solved.
iii) The value of x and the value of y are obtained by solving the simultaneous equations. The solution is the set made by the ordered pair (x, y).
2) You are requested do more activities found in the on page 47 of S3 Mathematics book.

Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

3.5 Lesson from unit 5

SUBJECT: Mathematics

GRADE: S3
UNIT 5
LESSON TITLE: Solving quadratic equations by factorization.
Duration: 40 minutes
Teaching material: Pens, Chalks.
Learning materials: Notebooks, pens, calculators, S3 Mathematics student's book.
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Section } & \text { Step -by- step instructions and content } & \text { Teachers' notice } \\
\text { (5 Min) } & \begin{array}{l}\text { Teacher: Welcome again to Mathematics lesson. I am sure you are } \\
\text { going to enjoy today's lesson. Who can tell us what we } \\
\text { studied last time? }\end{array} & \begin{array}{l}\text { Begin by gaining students' } \\
\text { attention. }\end{array} \\
& \begin{array}{l}\text { Students: Last time we studied how to solve quadratic equations } \\
\text { using the graphical method. } \\
\text { Students: yes we are ready. } \\
\text { Teacher: Thank you. Work in groups and do the following activity: } \\
\text { Activity 5.3.1: } \\
\text { Factorize the expression of the left side of following quadratic } \\
\text { equation: } \\
\text { i) } x^{2}-7 x+12=0 \quad \text { ii) }-3 x^{2}+16 x-5=0 \quad \text { iii) } x^{2}-4=0\end{array} & \begin{array}{l}\text { Identify students with } \\
\text { special educational needs } \\
\text { and plan how to help them } \\
\text { accordingly. }\end{array}
$$

activity.\end{array}\right]\)| Give students an engaging |
| :--- |

Students answer:

i) $x(x-3)-4(x-3)=0$ $(x-3)(x-4)=0$
ii) $(x-5)(3 x-1)=0$
iii) $(x-2)(x-2)=0$

Teacher: Now the key question of the day becomes how to solve quadratic equations by factorization method? Basing on your answers, we have $(x-3)(x-4)=0$

When is this equality possible?
Students: $(x-3)(x-4)=0$ is possible if $x-3=0$ or if $x-4=0$
Teacher: You are right, $x-3=0$ when $x=3$ and $x-4=0$ when $x=4$. We now find the value of x for the quadratic equation $x^{2}-7 x+12=0$.

Teacher: Good! In today's lesson, we are going to continue with solving quadratic equations using the factorization method.

And by the end of this lesson, you will be able to:

- Solve quadratic equations using factorization method.
- Write the solution of the equation.
- Write a quadratic equation with given roots.

Communicate the lesson title and related instructional objective to students.

Lesson development (25 Minutes)	Teacher: Work again in group this activity Activity 5.3.2 Factorize and then solve each of the following quadratic equation i) $x^{2}+6 x+8=0$ ii) $2 x^{2}+4 x=0$ Students' answers i) $(x+2)(x+4)=0$ $\begin{array}{ll} (x+2)=0, & x=-2 \\ (x+4)=0 & x=-4 \\ S=\{-4,-2\} & \end{array}$ ii) $\begin{aligned} & 2 x(x+2)=0 \\ & x=0 \\ & x=-1 \end{aligned}$ Teacher: Thank you. When you find $x=-2$ and $x=-4$, you have to write the set of solution $S=\{-4,-2\}$ What is now the set of solution for the second equation $2 \mathrm{x}(\mathrm{x}+2)=0$? Students: The solution set is $S=\{-1,0\}$	Invite them to work on the exploration activity into groups. Students must be given time to think and note down their ideas. Ask students to present their findings in plenary session and guide them to harmonize their findings.

$$
\begin{array}{cc}
(x-6)=0 & x=6 \\
(x-4)=0 & x=4
\end{array}
$$

$S=\{4,6\}$
Teacher: Very good. Work in your group the following activity:

Activity 5.3.4

1. Solve the following quadratic equations by using factorization $x^{2}+3 x+2=0$
2. Can the following equations be solved by factorization? Write True/ False and write down the solution set of equation.
a) $x^{2}+10 x=24$
b) $x^{2}=4 x-3$
c) $6 x^{2}-29 x+35=0$
d) $6 x^{2}-x+1=0$

Students answer:

1) We need to find two numbers a and b whose sum is 3 and their product is 2 .
$\mathrm{a}=1 \quad \mathrm{~b}=2$
$x^{2}+3 x+2=0$
$(x-a)(x-b)=0$
$(x-1)(x-2)=0$
$(x-1)=0 \quad x=1$

$$
\begin{aligned}
& (x-2)=0 \quad x=2 \\
& \text { S= }\{1,2\} \\
& \text { their product is }-24 \\
& \mathrm{a}=12 \\
& \mathrm{~b}=-2 \\
& (x-a)(x-b)=0 \\
& (x-12)(x+2)=0 \\
& (x-12)=0 \quad x=12 \\
& (x+2)=0 \quad x=-2 \\
& \mathrm{~S}=\{-2,12\} \\
& \text { b) } \boldsymbol{x}(x-1)-3(x-1)=0 \\
& (x-3)(x-1)=0 \\
& (x-3)=0 \quad x=3 \\
& (x-1)=0 \quad x=1 \\
& \mathrm{~S}=\{1,3\} \\
& \text { c) }(2 x-5)(3 x-7)=0 \\
& (2 x-5)=0 \quad x=\frac{5}{2} \\
& (3 x-7)=x=\frac{7}{3} \\
& S=\left\{\frac{5}{2}, \frac{7}{3}\right\} \\
& \text { d) No solution. }
\end{aligned}
$$

2) a) We need to find two number a and b whose sum is 10 and

	Summary: When solving quadratic equations by factorization method, follow the procedures below. i) Factorize the given quadratic equation and get the linear factors. ii) Equate each linear factor to zero. iii) Solve the linear factors and write the solution set. Note: For all real numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{k}$ and t ; if $a x^{2}+b x+c=a(x-k)(x-t)=0$ We have $(x-k)=0$ or $(x-t)=0$ And then the set of solution is $\mathrm{S}=\{\mathrm{k}, \mathrm{t}\}$	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment (7min)	Teacher: Then as an assessment, solve the following quadratic equation by factorization. Activity 5.3.5 a) $x^{2}+9 x+14=0$ b) $x^{2}-11 x-12=0$ c) $a^{2}-2 a+1=0$ Expected answers from students: a) $\begin{array}{ll} x(x+7)+2(x+7)=0 \\ (x+7)(x+2)=0 & \\ (x+7)=0 & x=-7 \\ (x+2)=0 & x=-2 \\ S=\{-7,-2\} & \end{array}$	Give them an assessment to be done individually for evaluation. Provide opportunities for collective feedback or positive feedback to students.

	b) $\begin{aligned} & (x+8)(x-9)=0 \\ & (x+8)=0 \\ & S=\{-8,9\} \end{aligned}$ c) $\begin{array}{ll} (a-1)(a-1)=0 & \\ (x-1)=0 & x=-1 \\ (x-1)=0 & x=-1 \\ S=\{1\} . & \end{array}$	
Conclusion (3 min)	Teacher: Thank you. As, we are coming to the end of our lesson, we have seen that: When $a x^{2}+b x+c=a(x-k)(x-t)=0$ $\begin{aligned} & (x-k)=0 \text { or }(x-t)=0 \\ & S=\{k, t\} \end{aligned}$ Teacher: Thanks, write this activity in your notebooks as homework. Activity 5.3.6 1. factorize the following: a) $x^{2}+4 x+3$ b) $x^{2}-2 x-8$ c) $v^{2}-36$ 2. Solve the following quadratic equations. $\begin{aligned} & 2 x^{2}-5 x+3=0 \\ & 4 x^{2}-2 x=0 \end{aligned}$ Thank you for your participation in this lesson.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

3.6 Lesson from unit 6

SUBJECT: Mathematics

UNIT 5

Lesson title: Linear functions

Duration: 40 minutes
Teaching material: books, rulers, graph papers, chalk, and classroom chalkboard
Learning materials: notebooks, pens, pencils, geometric materials, S3 Mathematics book (from page 85 to page 87).

Section	Step-by-step instructions and content	Teachers' notice
Introduction (5 Min)	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Are you ready to study? Students: Yeas Sir, we are ready.	Begin by gaining students' attention. Identify students with special educational needs and plan how to help them accordingly.
	Observe the flowing graph and discuss in pairs:	Tell students the materials needed and give them a small time to take them. Give the engaging activity to students.

i) Use the coordinates of table to plot the graphs.
ii) what is your conclusion about the graph obtained?

Teacher: I think you have finished, let groups present their findings.
Expected answer for students:

Solution

1. i) The point plotted in Cartesian plane

ii)The shape obtained is a straight line.
iii) the relationship between x and y is: $y=x$.
2)

x	-3	-2	-1	0	1	2	3
$y=2 x-1$	-7	-5	-3	-1	1	3	5

i) graph of $y=2 x-1$

	Application activity Which of the following functions is linear function? i) $y=x 1$ ii) $y=2$ iii) $2 x+y=1$ iv) $y=x^{2}+1$ v) $y=x(x 1)$ vi) $x y=1$ Expected answer for students: i) $y=x 1 \quad$ is a linear function ii) $y=2 \quad$ is a linear function iii) $2 x+y=1$ is a linear function iv) $y=x^{2}+1$ is not a linear function v) $y=x(x 1)$ is not a linear function vi) $x y=1 \quad$ is not a linear function	Invite students to work in groups and do the application (elaboration) activity
	Summary Teacher: you have done a wonderful work, a) Now what is the general form of linear function? b) What might you have in order to draw a line representing linear function in Cartesian plane? Expected answer for students: a) The general form of linear function is $y=m x+b$ b) In drawing a line representing linear function we need to have x and y coordinates representing that function.	help students recall key concepts of the lesson to be written down as a summary.

Assessment (7 min)

Teacher: Thank you very much. Now, You are going to do an individual activity for assessment.
Activity:
a) Copy and complete the table below.

x	-3	-2	-1	0	1	2	3
$y=-x+3$							

b) Plot the graph of the function $y=-x+3$

Expected answer for learners

a)

x	-3	-2	-1	0	1	2	3
$y=-x+3$	6	5	4	3	2	1	0

b)

Give students an activity to be done individually for evaluation.

Provide opportunities for collective feedback or positive feedback to students.

Conclusion

(3 min)

Teacher: We are coming to the end of our lesson. As we conclude, we saw that the function of the form
$\mathbf{y}=\mathbf{m x} \mathbf{+ c}$, where \mathbf{m} and c are real numbers is called a linear function.

Teacher: Thank you; We shall meet in the next lesson.

Summarize verbally main points of the lesson.

3.7 Lesson from unit 7

SUBJECT: Mathematics

UNIT 7

LESSON TITLE: Compound interest (step by step method)
Duration: 40 minutes
Teaching material: flipchart, chalkboard, drawings
Learning materials: Notebooks, pens, calculators, S3 Mathematics book

Section	Step -by- step instructions and content Introduction $(10 \mathrm{Min})$	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time?
Students: We studied the simple interest. Teacher: Given that : Principal, : Time and : rate. Can you recall the formulation of the simple interest i?	Begin by gaining students' attention by using oral questions to gain the time.	
Students: The simple interest is $i=\frac{P \times r \times t}{100}$ where i: simple interest P: Principal t: Time $r:$ rate	Identify students with special educational needs and plan how to help them accordingly.	

Teacher: Good! You remember what we studied. Take your notebooks and do the following activity.

Activity 7.3.1

Mugisha borrows 8000 Frw from a bank at an interest rate of 10%.
i) Calculate the interest after one year
ii) Add the interest after one year to the principal and calculate the interest of sum after another year
iii) Calculate the simple interest of the principal after two years
iv) Compare the interest in ii) and iii). What do you notice?

Student's Answer:

i) Interest after one year $=\frac{\text { Pxrxt }}{100}=\frac{8000 \times 1 \times 9}{100}=800$ Frw
ii) New principal $=8000+800=8800$ Frw
interest for the second year $=\frac{\mathrm{pXrxT}}{100}=\frac{8800 \mathrm{x} 1 \mathrm{x} 10}{100}=880 \mathrm{Frw}$ Total interest $=800+880=1680$ Frw
iii) Simple interest of the principal after two years

$$
=\frac{\mathrm{P}_{\mathrm{xrxx}}}{100}=\frac{8000 \times 2 \times 9}{100}=1600 \mathrm{FrW}
$$

iv) The interest calculated in ii) is greater than the interest calculated in iii).
Teacher: Thank you, now the key question is related to how to calculate the compound interest.
By the end of this lesson, you will be able to:

- Define compound interest,
- Calculate compound interest using step by step method,

Give students an engaging activity.

If possible show to learners the different figures of banks and money and other companies.

Guide learners to discover the terms like compound interest and formulate the key question.

Discuss learning objectives with learners.

	- Solve problems involving compound interest, - Appreciate role of compound interest in banking. Therefore, as future entrepreneurs, you are asked to participate actively in this lesson.	
Lesson development (20 Minutes)	Teacher: I would like to ask you to be careful in this new lesson. Do the following activity. Activity 7.3.2 10000 FRW is invested at 10% per year. i) Find the interest after 1 year ii) Find the amount of accumulated money after 1 year iii) If the accumulated money is the new principal at the beginning of the second year, find the interest iv) What is the accumulated amount after the second year v) If the accumulated amount after the second year is the principal at the beginning of the third year, find the accumulated amount after 3 years. vi) find the interest after three years Student's Answer: Principal: $\mathrm{P}=10000$ Frw Rate: $\mathrm{r}=10 \%$ i) interest after 1 year $=\frac{\text { pXrxt }}{100}=\frac{10000 \times 10 \times 1}{100}=1000 \mathrm{Frw}$	Invite them to work on the exploration activity in pairs. Students must be given time to think and note down their ideas. Ask students to present their findings in plenary session and guide them to harmonize their findings.

ii) Amount of accumulated money after 1 year $=10000+1000=11000$ Frw
iii) Interest of accumulated money for the second year

$$
=\frac{\text { PXrxt }}{100}=\frac{11000 \times 10 \times 1}{100}=1100 \mathrm{Frw}
$$

iv) Accumulated amount after the second year

$$
=11000+1100=12100 \text { Frw }
$$

v) interest of accumulated money for the third year
$=\frac{\text { PXrxt }}{100}=\frac{12100 \times 10 \times 1}{100}=1210 \mathrm{Frw}$.
Accumulated amount after the third year
$=12100+1210=13310$ Frw
vi) Interest after three years

$$
=13310-10000=3310 \text { Frw }
$$

Teacher: That is good! You see that
Interest: $i=\frac{P X r x t}{100}$
Accumulated amount = principal + interest
Compound interest = accumulated amount - principal
Now do this activity in groups.

Activity 7.3.3

Jane borrows a sum of 8000 FRW at 10\% p.a. simple interest and lends that to Neza at the same rate compound interest.

How much will Jane gain from this transaction after 3 years?

Guide learners to explain more how to find the compound interest step by step.

Provide elaboration activities.

In each group with different working steps, choose one group member to present.

	Student's Answer: Interest paid by Jane (simple interest) $=\frac{p x r x t}{100}=\frac{8000 \times 10 \times 3}{100}=2400$ Frw Interest paid by Neza to Jane: Interest after one year $=\frac{p x r x t}{100}=\frac{8000 \times 10 \times 1}{100}=800$ Frw Accumulated amount $=8000+800=8800$ Frw New interest $=\frac{p x r x t}{100}=\frac{8800 \times 10 \times 1}{100}=880$ Frw New accumulated amount $=8800+880=9680$ Frw New interest $=\frac{p x r x t}{100}=\frac{9680 \times 10 \times 1}{100}=968$ Frw New accumulated amount $($ after 3 year) $=9680+968=10648$ Frw Interest after three years $=10648-8000=2648$ Frw Neza pays to Jane 2648 Frw of interest Jane will gain $=2648-2400=248$ Frw.	Harmonize the work of
	Summary: Compound interest is the interest calculated on the initial principal and also on the accumulated interest of the previous periods of a deposit or loan. Compound interest=Accumulated amount-principal I=A-P Compound interest can be calculated step by step through compound interest generated with the principal.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.

Conclusion	Teacher: As, we are coming to the end of our lesson, we have studied the Compound interest and how to calculate it.	Summarize the main points verbally,		
The Compound interest is the interest calculated on the initial				
principal and on the accumulated interest of the previous periods				
of a deposit or loan.				
As homework, go and do activities found in the S3 Mathematics				
students' book on page 109\& 110.				
Thank you for your participation in this lesson.				conclude and give
:---				
students a homework that				
may include remedial,				
consolidation or extended				
activities depending				
on the feedback from				
assessment.				

3.8 Lesson from unit 8

SUBJECT: Mathematics

GRADE: S3

UNIT 8

LESSON TITLE: Median theorem of right-angled triangle

Duration: 80 minutes
Teaching material: flip chart, chalk board and Geometrical instruments.
Learning materials: Notebooks, pens, calculators, pencil, geometric materials and S2 Mathematics book.

Section	Step -by- step instructions and content	Teachers' notice
Introduction (20 Min)	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Who can tell us what we studied last time? Students: We studied the Pythagoras theorem. Teacher: Today we are going to start by making a short review on Pythagoras theorem. Students: Yes Teacher. Teacher: Now work in pairs the following activity: Activity: 1) State the Pythagoras theorem. 2) Write down the formula of Pythagoras theorem. 3) In Figure below, work out the missing measurements on the right angled triangles	Begin by gaining students' attention by giving different questions for revision. Identify students with special educational needs and plan how to help them accordingly. Then, provide an engaging activity.

	b) Triangle (b) Use Pythagoras theorem $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$, $\mathrm{a}=5 \mathrm{~cm}, \mathrm{~b}=\mathrm{y}$ cm and $\mathrm{c}=13 \mathrm{~cm}$ $\begin{aligned} & \mathrm{b}^{2}+\mathrm{y}^{2}=132 \\ & 25+\mathrm{y}^{2}=169 \\ & \mathrm{y}^{2}=169-25 \\ & \mathrm{y}^{2}=144 \end{aligned}$ Finding the square root of $144, y=12 \mathrm{~cm}$.	
	Teacher: Good! In today's lesson, we are going to continue with Median theorem of a right- angled triangle. By the use of geometric materials, you will be able to: - State the median theorem - Apply the median theorem - Appreciate the use of median theorem in solving problems. And you will do them accurately and in the provided time.	Communicate the lesson title and related instructional objective to students. Tell students the materials needed and give them a small time to take them. You can use a chart showing median theorem.
Lesson development (35 Minutes)	Teacher: Draw a right-angled triangle, with a line from a right angle of the triangle to the midpoint of an opposite side (hypotenuse) of a right angle. The length of that line is a half-length of hypotenuse.	Invite them to work on the exploration activity in pairs. Ask students to present their findings in plenary session and guide them to harmonize their findings. Provide more explanation on the median theorem.

	Summary: The median theorem of a right-angled triangle states that: the length of median from the right-angled vertex to the hypotenuse is half the length of the hypotenuse Median = $1 / 2$ Hypotenuse $\mathrm{XW}=1 / 2(\mathrm{YZ})=\mathrm{WZ}=\mathrm{WY}$.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment (20 min)	Teacher: Thank you very much. Now, You are going to do an individual activity for assessment. Activity: 1) The figure below shows right-angled triangle $P Q R$. $Q T$ is the median to the hypotenuse and $\angle \mathrm{QRP}=50^{\circ}$. Find $\angle \mathrm{PTQ}$.	Give students an activity to be done individually for evaluation. Mark students and provide opportunities for corrective feedback or positive feedback to students.

	Expected answer for students $<Q R P=50^{\circ}$, Triangle TQR is isosceles means angles $<T Q R=<T R Q$ Then $<\mathrm{TRQ}=50^{\circ}$ Means $<\mathrm{TRQ}=50^{\circ}$ $\begin{aligned} & <\text { QTR }=180-(50+50) \\ & \quad=180^{\circ}-100^{\circ}=80^{\circ} \\ & <\mathrm{PTQ}=180^{\circ}-80^{\circ}=100^{\circ} \end{aligned}$ 2) In a right-angled triangle, the median to the hypotenuse is 4.5 cm . What is the length of the hypotenuse? Expected answer for students Median = $1 / 2$ hypotenuse $4.5 \mathrm{~cm}=1 / 2$ Hypothenuse, hypotenuse $=4.5 \mathrm{~cm} \times 2=9 \mathrm{~cm}$	
Conclusion (5 min)	Teacher: As, we are coming to the end of our lesson, we have seen that: The median theorem of a right-angled triangle states that the median from the right-angled vertex to the hypotenuse is half the length of the hypotenuse Thank you for your participation. As homework, go and find answers for the following questions 1) One side of a right triangle is 12 cm . The median to the hypotenuse is 7.5 cm . Find the: (a) length of the hypotenuse. (b) length of the third side. 2) The two legs of a right-angled triangle are 4.5 cm and 6 cm long. Find the length of the median from the right-angled vertex to the hypotenuse.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

3) Triangle KLM is right-angled at vertex L and $\angle \mathrm{LKM}=24^{\circ} . \mathrm{N}$ is the midpoint of the hypotenuse KM. Find the value of angle:
(a) KLN
(b) LNM
4) In a right-angled triangle EFG, the hypotenuse is $(3 x+8) \mathrm{cm}$ long. The median to the hypotenuse is $(5 x-10) \mathrm{cm}$ long. Find the value of x hence find the length of the median.

Note that you can also do activities found in the S3 Mathematics students' book on page 120 .

Thank you for your participation in this lesson.

3.9 Lesson from unit 9

SUBJECT: Mathematics

GRADE: S3

UNIT 9

Lesson title: Angles in a cyclic quadrilateral.

Duration: 80 minutes
Teaching material: Two flip charts, pair of compasses, ruler, chalks, and classroom chalkboard.
Learning materials: notebooks, pens, pencil, calculators, geometric materials, S3 Mathematics book (from page 154 to page 158).

Section	Step -by- step instructions and content	Teachers' notice
Introduction	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Observe the figure on flip chat and discuss what you see on it.	Begin by gaining students' attention. Tell students the materials needed and give them a small time to take them. Identify students with special educational needs and plan how to help them accordingly.
	Teacher: After observing the picture, what do you think is today's lesson? Expected answer for learners: today's lesson is angle in cyclic quadrilateral.	Give them an engaging activity.

	Teacher: very good! In today's lesson, we are going to study the angle in cyclic quadrilateral and by the end of this lesson, you will be able to: - Define a cyclic quadrilateral - Classify the opposite angles of cyclic quadrilateral - Identify the interior angles and exterior angles - State the properties of angles in a cyclic quadrilateral.	Communicate the lesson title and related instructional objective to students.
Lesson development (40 minutes)	Teacher: Now take your note book and geometric material and do the flowing activity. Activity 9.5.1 1. Draw a circle centre 0 using any convenient radius. 2. On the circumference, mark points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in that order and join them to form a quadrilateral. 3. Measure angles ABC and ADC. Find their sum. 4. Measure angles BAD and BCD. Find their sum. 5. What do you notice about the two sums in 3 and 4 ? 6. Are the pairs of angles in 3 and 4 adjacent or opposite? 7. Do the other members of your class have the same observations as you do? 8. Produce side $A B$ of the quadrilateral, and measure the exterior angle so formed. What is the size of this angle? compare with that of interior $\angle \mathrm{ADC}$? While students are working, move around to each group and ask some probing questions leading them to correct results: Which instrument can be used to measure angle, what is the difference between adjacent and opposite angle?	Invite them to work on the exploration activity in groups. Ask students to present their findings in plenary session and guide them to harmonize their findings. In each group with different working steps, choose one group member to present.

	Expected answer for students: $\mathrm{a}=120^{\circ}$ (Exterior angle of a cyclic quadrilateral is equal to opposite interior angle.) $b+3 b=180^{\circ}$, opp. angles of a cyclic quadrilateral. $\begin{aligned} 4 \mathrm{~b} & =180^{\circ}, \mathrm{b}=45^{\circ} \\ & <\mathrm{CDB}=180^{\circ}-\left(70^{0}+55^{\circ}\right)=180^{\circ}-125^{\circ}=55^{\circ} \\ & <\mathrm{CDA}=<\mathrm{CDB}+\angle \mathrm{BDA}=55^{\circ}+40^{\circ}=95^{\circ} \end{aligned}$	
	Summary 1) what is a cyclic quadrilateral? 2) what do you know about: a) The opposite interior angles of cyclic quadrilateral. b) The exterior angle of cyclic quadrilateral and its opposite interior angle expected answers for learners: 1) Cyclic quadrilateral is a quadrilateral whose vertices all lie on a circle. 2) a) the sum of opposite interior angles is equal to 180° b) The exterior angle of cyclic quadrilateral is equal to its opposite interior angle of that cyclic quadrilateral.	Use different questions to help students recall key concepts of the lesson to be written down as a summary.
Assessment (10 min)	Formative Assessment 1. A, B, C, D and E are five points, in that order, on the circumference of a circle	Invite learners to do the questions of formative assessment (evaluation)

$\left.\begin{array}{|l|l|l|}\hline\end{array} \quad \begin{array}{l}\text { Provide opportunities } \\ \text { for corrective feedback } \\ \text { or positive feedback to } \\ \text { students. }\end{array}\right]$

	Teacher: Thank you; As a homework do questions 4 and 5 of exercises 9.4 in the student book page158.	
We shall meet in the next lesson where you will submit answers for the homework.		

3.10 Lesson from unit 10

SUBJECT: Mathematics

UNIT10

Lesson title: Collinear points

Duration: 40 minutes
Teaching material: Ruler, flip chart, board and Geometric materials
Learning materials: Notebooks, pens, calculators, geometric materials, S2 Mathematics book.

Section	Step -by- step instructions and content	Teachers' notice
Introduction (5 Min)	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson. Teacher: Observe carefully the figure and try to answer the related questions; What do you observe from the figure? How trees are located? How can we call objects which lie on the same line? Expected answers from students. a) From the figure we see trees planted on a line. b) Trees are located on a single straight line. c) The objects lie the same line are called "collinear objects"	Begin by gaining students' attention. Identify students with special educational needs and plan how to help them accordingly. Give students an engaging activity.

	Teacher: Well done students, In today's lesson, we are going to continue with collinear points and by the use of geometric materials, you will be able to accurately and in the provided time: - State the conditions and properties of co linearity. - Verify co linearity of points using vector laws. - Make applications of collinearlity in proportion division of line.	Communicate the lesson title and related instructional objective to students.
Lesson development (25 Minutes)	Teacher: Dear students, in small groups, do the following activity: Activity 1: 1. Draw a line and put the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ so that they will be on the same straight line or collinear points. 2. Draw a line and put the points $\mathrm{E}, \mathrm{F}, \mathrm{G}$, so that they will not be on the same line or not be collinear points. 3. Try to define what are collinear points. Expected answers from students: 1) For example the points A, B and C in Figure below are collinear because they lie on a single straight line. 2) Points E, F and G in Figure below are not collinear because they don't lie on the same straight line.	Provide an activity for exploration to reinforce the concept of collinear points. Invite them to present their answers in a plenary session. Refer to the result and ask some questions leading students to give properties of collinear points (explanation phase).

i) $2=-3 \mathrm{k} \Rightarrow \mathrm{k}=-2 / 3$
ii) $6=-9 k \Rightarrow k=-6 / 9=-2 / 3$ Since the value of k is the same for the two cases (i) and (ii) i.e. $\mathbf{A B}=-2 / 3 \mathbf{B C}$, and B is a common point of two vectors $A B$ and $B C$, then points A, B and C are collinear.

Activity 4:

For what value of k are the following points collinear? $\mathrm{A}(1,5), \mathrm{B}(\mathrm{k}$, 1) and $C(11,7)$.

Expected Solution from students:

Let the points be A, B and C. For the points to be collinear, B can be a common point and therefore we get $A B=a B C$ where a is a scalar $\mathbf{A B}=\mathbf{O B}-\mathbf{O A} \Rightarrow(k, 1)-(1,5)=(k-1,-4)$
$\mathbf{B C}=\mathbf{O C}-\mathbf{O B} \Rightarrow(11,7)-(k, 1)=(11-k, 6)$
Hence $(k-1,-4)=a(11-k, 6)$
We get $-4=6 \mathrm{a} \Rightarrow \mathrm{a}=-4 / 6=-2 / 3$ and $\mathrm{k}-1=\mathrm{a}(11-\mathrm{k})$
Substituting the value of $\mathrm{a}, \mathrm{k}-1=-2 / 3(11-k) \Rightarrow 3(k-1)=-2(11$ $-\mathrm{k}) \Rightarrow 3 \mathrm{k}-3=-22+2 \mathrm{k} \Rightarrow 3 \mathrm{k}-2 \mathrm{k}=-22+3$ Hence $\mathrm{k}=-19$

Teacher: Well done students, let us now do in small groups the following application activity
a) Show that the points P, Q and R are collinear, if P, Q and R are $(0,3),(1,2)$ and $(-1,4)$ respectively.
b) Plot these points on a Cartesian plane

Expected solution from students:

$P(0,3), Q(1,2)$ and $R(-1,4)$
a) Vector $\mathbf{P Q}=\mathbf{Q}-\mathbf{P}=\binom{\mathbf{1}}{\mathbf{2}}-\binom{\mathbf{0}}{\mathbf{3}}=\binom{\mathbf{1}}{\mathbf{- 1}}$

Vector $\mathbf{Q R}=\mathbf{R}-\mathbf{Q}=\binom{-\mathbf{1}}{4}-\binom{\mathbf{1}}{2}=\binom{-\mathbf{2}}{2}$
Points P, Q and R are collinear points if: $P Q=K Q R$, where k is a scalar

$$
\begin{aligned}
& \binom{1}{-1}=k\binom{-2}{2} \\
& \binom{1}{-1}=\binom{-2 k}{2 k} \\
& \left\{\begin{array} { l }
{ \mathbf { 1 } = - \mathbf { 2 k } } \\
{ \mathbf { - 1 } = \mathbf { 2 k } }
\end{array} \quad \left\{\begin{array}{l}
\boldsymbol{k}=\frac{\mathbf{- 1}}{2} \\
\boldsymbol{k}=\frac{-1}{2}
\end{array}\right.\right.
\end{aligned}
$$

Since the values of K is the same , points P, Q and R are collinear.
b)

	Lesson summary. Teacher: Dear students, From the above activities, we notice that: - Three or more points are said to be collinear if they lie on the same straight line. If A, B and C are three points on the same straight line ABC, then vector $\mathbf{A B}=\mathbf{k} \mathbf{B C}$, k is the coefficient of proportionality and $\mathrm{k}=\mathrm{AB}: \mathrm{BC}$. It can take positive or negative real values.	Through different questions, help learners to recall what collinear points mean. Tell learners also to write the summary in their notebooks.
Assessment (8 min)	Teacher: Dear students, by working individually, answer the following questions to check if you have understood 1. Define the co linearity of points? 2. State the condition for points A, B and C to be collinear points? 3. Verify whether the following points are collinear or not a) $P(-1,1), Q(5,1)$ and $T(-2,4)$ b) $R(2,0)$ (b) $X(-2,3), Y(7,0)$ c) $Z(1,2)$ (c) $R(1,2), S(4,0) T(-2,4)$ 4. Given three points $A(2,2), B(3,3)$ and $C(6,6)$. a) Plot all points on the Cartesian plane b) Join the points A, B and C . C) What can you conclude about the points A, B and C? Expected answers from students: 1. Collinear points are those three or more points, which lie on a single straight line. 2. The conditions for points A, B, and C to be collinear points are: a) Make vector $\mathbf{A B}$ and $\mathbf{B C}$. b) Express $\mathbf{A B}$ in terms of $\mathbf{B C}$ as $\mathbf{A B}=\mathbf{k} \mathbf{B C}$ where k is a scalar (a number).	Give to students an individual assessment to determine the level of which the objectives have been achieved (evaluation). Provide opportunities for collective feedback or positive feedback to students.

Conclusion $(2 \min)$	Teacher: Dear learners, as we are coming to the end of our lesson, let us conclude by reviewing some of the key points that we learned. We all remember that: - Three or more points are said to be collinear if they lie on a single straight line. If A, B and C are three points on the same straight line ABC , then vector $\overrightarrow{A B}=k \overrightarrow{B C}$ - k is the coefficient of proportionality, $k=\frac{A B}{B C}$ It can take positive or negative real values. Teacher: Dear students, as homework, go and do activities found in the S3 Mathematics students' book on page 177.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment

3.11 Lesson from unit 11

SUBJECT: Mathematics

GRADE: S3
UNIT 11:

LESSON TITLE: Introduction, definition and properties of enlargement.

Duration: 40 minutes
Teaching material: Charts, Textbooks and others.
Learning materials: Notebooks, pens, calculators, S3 Mathematics book.

Section	Step -by- step instructions and content	Teachers' notice
Introduction (5 Min)	Teacher: Welcome again to Mathematics lesson. I am sure you are going to enjoy today's lesson.	Begin by gaining students' attention.
	5	Identify students with special educational needs and plan how to help them accordingly.
	(a) (b)	
	1. Compare the shapes of the two pictures. What do you notice? 2. How many times picture (b) is bigger than picture (a)	

3. What is the name of the transformation that transforms picture

(a) to picture (b)?

Answer from students:

1. They have the same shape, but different size.
2. The picture (b)is twice the picture (a).
3. The name of transformation is Enlargement.

Teacher: Dear students, let us work in group and do the following Through an engaging activity:

Activity:

a) Observe the two figures. What do you notice?

fall 11
b) By measuring sizes and angles of the two figures, determine how many times figure (R^{\prime}) is bigger than figure (R).
c) What is the name of the transformation that transforms (R) to (R^{\prime})?

Students' answers:

a) The shapes are different in size but they are similar.
b) R^{\prime} is two times R
c) The transformation is enlargement

	Teacher: Key question: What is the name of action of increasing or decreasing the size of a 2D shape without changing its angles. Teacher: Good! In today's lesson, we are going to Definition and properties of enlargement. And by the end of this lesson. you will be able to: - Define enlargement. - State properties of enlargement	
Lesson development (25 Minutes)	Teacher: Dear students, let us work in groups and do the following activity: Activity 1: Observe the figure a) Measure and compare triangles ABC to $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ in terms of corresponding sides. What do you notice? b) Measure and compare triangles ABC to $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ in terms of corresponding angles. What do you notice? c) How the lines $\mathrm{AA}^{\prime}, \mathrm{BB}$ ' and CC^{\prime} are they related?	Invite students to work on the exploration activity in groups and ask them to present their findings in plenary session. In each group with different working steps, choose one group member to present. Remember to address common misconceptions.

d) Compare the ratios: $\frac{O A^{\prime}}{O A} ; \frac{O B^{\prime}}{O B}$ and $\frac{O C^{\prime}}{O C} \quad$ What do you notice?

Expected answers:

a) Triangle $A B C$ is smaller than triangle $A^{\prime} B^{\prime} C^{\prime}$
b) They have the same corresponding angles
c) They meet at the same point o.
d) They are equal, the ration distance from the centre to the image by the distance from centre to the object is constant
Teacher: Let us observe the figure below and answer the given
question.
Activity 2: Is the transformation of R to R^{\prime} an enlargement or not? Why?

Activity 3: Is the transformation of A to A' an enlargement or not? Explain your answer.

Refer to the result and ask some questions leading students to give properties of enlargement

Invite students to work in pairs and do the activity for elaborating properties of enlargement.

	Lesson Summary: Teacher: Dear students, from the above activities, we notice that: - Enlargement is the transformation that changes the size of an object but preserves its shape i.e angles are preserved. - Lines joining the points and their corresponding images by enlargement meet at a common point called center of enlargement. It is denoted by the letter 0 . - The ratio $\frac{O A^{\prime}}{O A}$ where A^{\prime} is the image of A is called the scale factor of enlargement. It is denotedby k $k=\frac{O A^{\prime}}{O A}=\frac{O B^{\prime}}{O B}=\text { scale factor }$ - A scale factor k is equal to the ratio of corresponding sides. - For an enlargement to be performed, the center and scale factor of enlargement must be known.	Use different questions to help students recall key concepts of the lesson and then asks them to write the summary in their notebooks
Assessment (7min)	Teacher: Dear students, by working individually, answer the following questions to check if you have understood 1. Define the following terms: a) Enlargement b) Scale factor 2. Find the image of triangle $A B C$ below under an enlargement of scale factor 2 and center 0 .	Give to students an individual assessment to determine the level of which the objectives have been achieved (evaluation)

	0.	Provide opportunities for corrective feedback or positive feedback to students.
Conclusion (3min)	Teacher: As, we are coming to the end of our lesson, we have seen that: - Enlargement is the transformation that changes the size of an object but preserves its shape i.e angles are preserved. - Lines joining the points and their corresponding images by enlargement meet at a common point called center of enlargement. It is denoted by the letter 0 . - A scale factor k is equal to the ratio of corresponding sides. - For an enlargement to be performed, the center and scale factor of enlargement must be known. Teacher: Dear students, as homework,, you are requested to do the following activity; In triangles ABC below, identify two similar triangles in the figure and use them to find the values of a and b	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

3.12 Lesson from unit 12

SUBJECT: Mathematics

GRADE: S3
UNIT 12
Lesson title: Introduction to composite transformations in 2D.
Duration: 80 minutes
Teaching material: Geometrical instruments, flipped charts.
Learning materials: Notebooks, pens, calculators, geometric materials, S2 Mathematics book.
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Section } & \text { Step -by- step instructions and content } \\
\text { (15 Minutes) } & \begin{array}{l}\text { Teacher: Welcome again to Mathematics lesson. I am sure } \\
\text { you are going to enjoy today's lesson. Remember we } \\
\text { learnt single transformation in S2. Who can remind us } \\
\text { different types of single transformation (isometrics) } \\
\text { that we learnt in S2? }\end{array} & \begin{array}{l}\text { Students: The different types of single transformations that we } \\
\text { learnt in S2 are: }\end{array} & \begin{array}{l}\text { Begin by gaining students' } \\
\text { attention by asking a } \\
\text { simple question for } \\
\text { revision. }\end{array} \\
\hline & \begin{array}{l}\text { - translation, } \\
\text { - reflection, } \\
\text { - rotation } \\
\text { - central symmetry. }\end{array} & \begin{array}{l}\text { Identify students with } \\
\text { special educational needs } \\
\text { and plan how to help them } \\
\text { accordingly. }\end{array} \\
\text { queacher: observe the picture on flipped chart and answer the }\end{array}
$$ \quad \begin{array}{l}Through an engaging

activity leads students to

be able to think about\end{array}\right\}\)| the composition of |
| :--- |
| transformations. |

	1. What do you think about the figure on the above slide page? 2. Why the same figure is drawn three time with different position? Students:.... Teacher: Good! In today's lesson, we are going to continue with Introduction to composite transformations in 2D. And by the use of geometric materials, you will be able to: - Define the composite transformation. - Construct an image of object under composite transformation.	Communicate the lesson title and related instructional objective to students.
Lesson development (40 Minutes)	Teacher: Dear students, Let us do the following activity in groups to make a review on transformations in 2D. Activity 1: Draw triangle XYZ with vertices at $(-2,4), \mathrm{Y}(-2,1), \mathrm{Z}(-4,1)$. Find the images $X^{\prime} Y^{\prime} Z^{\prime}$ and $X^{\prime \prime} Y^{\prime \prime} Z$ '' of $X Y Z$ under the following combinations of transformations. (a) A reflection in the line $x=0$. (b) A rotation through an angle of 180° about $(0,0)$.	Ask students to work in pairs or in small groups the exploration activities.

Students' answers:

(a) $\mathrm{x}^{\prime}(2,4), \mathrm{y}^{\prime}(2,1)$ and $z^{\prime}(4,1)$
(b) $\mathrm{x}^{\prime \prime}(4,-2), \mathrm{y}^{\prime \prime}(1,-2)$ and $z^{\prime \prime}(1,-4)$

Teacher: Dear students, work in pairs the following activity: Activity 2:
Plot triangle $P Q R$ at $P(2,2), Q(6,2), R(6,4)$. Find the image of PQR under the following combinations of transformations; a translation, under vector (24) followed by a reflection in the line $x=3$. Write down the co-ordinates of the final image of point P.

Provide time for them to think, practice and through presentations share their ideas on transformations in 2D in order to enhance their understanding on composite transformation .

After students'
presentations, harmonize their findings, clarify the new concept through real life example if possible (explanation phase).

Give students the elaboration activity.

	Lesson summary Teacher: Dear students, From the above activities, we notice that: 1. Composite transformation takes place when two or more transformations combine one after another to form a new transformation. 2. One transformation produces an image upon which the other transformation is performed.	Use different questions to help students recall key concepts of the lesson and then asks them to write the summary in their notebooks
Assessment (15min)	Teacher: Dear students, by working individually, answer the following questions to check if you have understood 1. Draw triangle $X Y Z$ with vertices at $X(-2,4), Y(-2,1), Z(-4,1)$. Find the image of XYZ under the following combinations of transformations: (a) A reflection in the line $x=0$. (b) A rotation Through an angle of 180° about $(0,0)$. 2. (a) Plot the triangle $A B C$ at $A(4,6), B(1,6), C(1,4)$. Draw the line $y=2$ and $y=x$. (b) Plot the image of triangle ABC after reflection in; (i) The y-axis. Label it triangle 1 (ii) The line $\mathrm{y}=2$. Label it triangle 2. (iii) The line $\mathrm{y}=\mathrm{x}$. Label it triangle 3. (c) Write down the co-ordinates of triangles 1,2 and 3.	Give to students an individual assessment (evaluation) to determine the level at which the objectives have been achieved Provide opportunities for collective feedback or positive feedback to students.

Conclusion	Teacher: As, we are coming to the end of our lesson, we have seen that: Two consecutive transformations or a transformation followed by another one or repeated twice give the new transformation called composite transformation. Teacher: Dear students, as homework,, you are requested to do more activities found in the on page 228 of S3 Mathematics book.	Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

3.13 Lesson from unit 13

SUBJECT: Mathematics

GRADE: S3
UNIT 13
LESSON TITLE: Scatter diagram
Duration: 80 minutes
Teaching material: Yellow bananas, Sweets, Pens and books
Learning materials: Notebooks, pens, calculators, geometric materials, S3 Mathematics book

Students 'answers

Teacher: Dear students, let us work is mall groups,study the data in table below and answer to questions that follow:

Age (x)	18	19	20	21	22	23	24	25
Fatal accident (y)	8	7	10	5	6	4	2	3

Using a suitable scale (2 cm), mark age (x) years on the horizontal axis and fatal accidents(y) on the vertical axis
a. Plot all the points in the Cartesian plane
b. How these points are displayed? do they follow a certain direction
c. How do we call the diagram representing these points?

Students: present or give their expected answers:
(a) Fatal accident

(b) The points are scattered
(c) Scatter diagram

Engage learners to discover the new lesson and probe student's prediction

Communicate the lesson title and related instructional objective to students. Use learning objectives to set instructional objective with all 5 components (who- conditions action verb- content performance criteria) students.

	Teacher: well done students, today's lesson is entitled " Scatter diagram" and at the end of this lesson, working in group, as students of S_{3} you will be able to: - Define correctly a scatter diagram - Draw appropriately a scatter diagram and the line of best fit - Analyze and interpret correctly bivariate data using scatter diagram. - Appreciate the use of scatter diagram to represent information.	
Lesson development (40 Min)	Teacher: Dear students, in small groups, draw a scatter diagram for the data given in form of ordered pairs in the following activity: Activity1: Plot the following points (x, y) $(0.0,10.1),(1.0,11.2),(2.0,12.3),(3.0,13.4),(4.0,14.6),(5.0,15.9)$ Students do the activity and present their working steps	Provide an activity for exploration and reinforce the skills of plotting the graph. Invite students to present their findings in plenary session and guide them to harmonize their findings.

Conclusion

(10min)

Teacher: Dear students, as we are coming to the end of our lesson, let us conclude by reviewing some of the key points that we learned. We all remember that:

- A scatter diagram (plot) is a type of a diagram using Cartesian coordinates in a plane to display values of two variables for a bivariate data.
- Scatter diagram is used to find the relationship between variables.
- The line of best fit or trend line is a straight line that best represent the data on a scatter diagram (plot). This line may pass through some of the points, none of the points or all of the points.
Teacher: Dear students, as homework, go and plot the data in table below and tell the type of relationship between two variables

1. The table below shows the average masses of a group of boys in the age group 5 to 14 years.
(a) Plot the points to obtain a scatter diagram.
(b) Use the scatter diagram obtained above to draw the line of best fit and describe its gradient or slope. Find its equation.
2. The table below shows the heights (cm) and the corresponding shoes sizes for a group of people.

Age (years) (x)	5	6	7	8	9	10	11	12	13	14
Mass $(K g)$ (y)	24	25	27	28	31	31	28	41	47	55

Summarize the main points verbally, conclude and give students a homework that may include remedial, consolidation or extended activities depending on the feedback from assessment.

Height (x) Shoe size (y) 155 8 158 7 160 7 163 8 165 8 168 9 170 9 173 8 175 9 178 10 180 10	Use the data to draw a scattered diagram. Use the scatter diagram obtained to draw the line of best fit. Use your graph to estimate the shoe size you expect someone 171 cm tall to wear. Thank you for your participation in this lesson.	

REFERENCE

1. REB. (2015). Mathematics Syllabus for Ordinary Level S1-S3, MINEDUC, Kigali, Rwanda.
2. REB. (2020). Mathematics Senior 1, Student's book, MINEDUC, Kigali, Rwanda.
3. REB. (2020). Mathematics Senior 2, Student's book, MINEDUC, Kigali, Rwanda.
4. REB. (2020). Mathematics Senior 3, Student's book, MINEDUC, Kigali, Rwanda.
5. REB and URCE, (2020). Scripted lessons for S3 Mathematics, MINEDUC, Kigali, Rwanda.
