Mathematics

For Associate Nursing Program

Student's Book 4
© 2021 Rwanda Basic Education Board All rights reserved
This book is property of the Government of Rwanda. Credit must be given to REB when the content is quoted.

FOREWORD

Dear Student,
Rwanda Basic Education Board (REB) is honoured to present Subsidiary Mathematics book for Senior Four students of Associate Nursing program.. This book will serve as a guide to competence-based teaching and learning to ensure consistency and coherence in the learning of the Mathematics.

In this book, special attention was paid to the activities that facilitate the learning process in which you can develop your ideas and make new discoveries during concrete activities carried out individually or in pairs/ small groups.

In competence-based curriculum, learning is considered as a process of active building and developing knowledge, meanings and skills by the learner where concepts are mainly introduced by an activity, situation or scenario that helps the learner to construct knowledge, develop skills and acquire positive attitudes and values.

For efficiency use of this textbook, your role as a learner is to:

- Work on given activities which lead to the development of skills;
- Share relevant information with other learners through presentations, discussions, group work and other active learning techniques such as role play, case studies, investigation and research in the library, on internet or outside the classroom;
- Participate and take responsibility for your own learning;
- Draw conclusions based on the findings from the learning activities. To facilitate you in doing activities, the content of this book is selfexplanatory so that you can easily use it yourself, acquire and assess your competences. Even though the book has some worked examples, you will succeed on the application activities depending on your ways of reading, questioning, thinking and grappling ideas of calculus not by searching for similar-looking worked out examples but also by working out related problems found in other reference books.

I wish to sincerely express my appreciation to the people who contributed towards the editing of this book, particularly, REB staffs and teachers for their technical support.

Any comment or contribution would be welcome to the improvement of this text book for the next edition.

Dr. MBARUSHIMANA Nelson

Director General, REB

ACKNOWLEDGEMENT

I wish to express my appreciation to the people who played a major role in the development and the editing of Subsidiary Mathematics book for Senior Four students of Associate Nursing program.. It would not have been successful without active participation of different education stakeholders. I owe gratitude to Curriculum Officers and teachers whose efforts during the editing exercise of this book were very much valuable.

Finally, my word of gratitude goes to the Rwanda Basic Education Board staffs who were involved in the whole process of in-house textbook production.

Joan MURUNGI

Head of CTLR Department

Table of content

FOREWORD iii
ACKNOWLEDGEMENT v
Unit 1. Set IR of real numbers 9
1.1. Subsets and properties of operations in the set \mathbb{R} of real numbers. 10
1.2. Positive and negative numbers 15
1.3. Rounding and estimating decimal numbers. 18
1.4. Fractions and equivalent fractions 21
1.5. Ratios, proportions and rates. 23
1.6. Absolute value and its properties 31
1.7. Powers and radicals 35
1.8. Decimal logarithms and properties 43
Unit summary 46
End Unit Assesment 46
Unit 2. Fundamentals of Trigonometry 49
2.1. Trigonometric concepts 50
2. Triangle and applications 68
Unit summary 78
End Unit assesment 80
Unit 3. Linear, quadratic equations and inequalities 83
3.1. Equations and inequalities in one unknown 84
3.2. Simultaneous equations in two unknowns 97
3.3 Quadratic equations and inequalities 111
3.4. Applications 128
Unit summary 134
End Unit Assesment 137
Unit 4. Polynomial, Rational and irrational functions 141
4.1. Generalities on numerical functions 142
4.2. Classification of functions 147
4.3. Finding domain of definition 149
4.4. Operations on functions. 153
4.5 Parity of function 157
4.6. Factorization of polynomials 160
4.7. Expansion of polynomials 161
4.8. Graphs of linear and quadratic functions 166
4.9. Applications 172
Unit summary 175
End Unit Assesment 177
Unit 5. Limits of polynomial, rational and irrational functions 181
5.1. Concepts of limits 182
5.2. One sided limits 187
5.3 Infinite limits and limits at infinity 189
5.5. Indeterminate cases 203
5.6. Applications of limit in Mathematics 209
5.4. Application of limits in other subjects 236
Unit summary 239
End unit assessment 241
Unit 6. Differentiation of polynomial, rational and irrational functions 243
6.1. Concepts of derivative of a function 244
6.2. Rules of differentiation 250
6.3. Applications of differentiation 263
Unit summary 290
End Unit Assesment 293
Unit 7. Vector space of real numbers 295
7.1. Euclidian vector space IR^{2} 295
7.2 Angle between two vectors 304
Unit summary 310
End Unit assesment. 311
Unit 8. Matrices and determinants of order 2 313
8.1. Square Matrices of order two 314
8.2. Operations on matrices 316
8.3. Determinants and inverse of matrices 323
8.4. Matrix inverse 326
8.5. Application of matrices 328
Unit summary 331
End unit assesment 332
Unit 9. Measures of dispersion 333
9.1. Variance 335
9.2. Standard deviation 338
9.3. Coefficient of variation 342
9.4. Applications 343
Unit summary 344
End Unit Assesment 345
Unit 10. Elementary probability 349
10.1.Permutations and arrangements 350
10.2. Combinations 367
10.3 Concepts of probability 377
10.4.Properties and formulas 383
Unit summary 393
End unit assesment 395

Unit

 1
Set IR of real numbers

1.0 Introductory activity

From the following diagram, discuss and work out the given tasks:

1. How many sets of numbers do you know? List them down and give reasons for your answer.
2. Using a mathematical dictionary or the internet, define the sets of numbers you listed in (1).
3. Give an example of element for each set of numbers you listed.
4. Establish the relationship between the set of numbers that you listed.

Objectives

After completing this unit, I will be able to:
(1) Define absolute value of a real number and solve simple equations involving absolute value.
(1) Define powers and their properties.
(1) Define radicals and their properties.
(1) Define decimal logarithms of a real numbers and solve simple logarithmic equations.

1.1. Subsets and properties of operations in the set \mathbb{R} of real numbers

Activity 1.1

a. Carry out a research on sets of numbers to determine the meaning of natural numbers, integers, rational numbers and irrational numbers. Use knowledge from your findings to classify numbers in the given list into natural numbers, integers, rational numbers and irrational numbers:

$$
0 ; 1 ; 5 ; 6 ; 3 / 4 ; 3.146 ; 1.3333 \ldots ; \pi ; \sqrt{8}
$$

b. From (a) deduce the definition of the set \mathbb{R} of real numbers.
c. Given any 3 real numbers a, b and c, discuss the following:

1) $a+b=b+a$, is $a+b$ always a real number? Use example to justify your answer
2) Are $a \times b$ and $b \times a$ always giving the same answer? Use example to justify your answer. 4
3) $a+(b+c)=(a+b)+\mathrm{c}$, is $a+(b+c)$ and $(a+b)+c$ always giving the same answer? Justify your answer by example.
d. Is $-b$ a real number for every value of b ?

1. Subsets of the set \mathbb{R} of real numbers

The sets ; $\mathbb{N}=\{0,1,2,3,4,5, \ldots\}$ of natural numbers
, $\mathbb{Z}=\{\ldots,-5,-4,-3,-2,-1,1,0,1,2,3,4 \ldots\}$ of
integers, $D=\{\ldots,-5.0,-4.4,1.2,5.7, \ldots\}$ of decimals and
$\mathbb{Q}=\left\{\ldots,-\frac{3}{2},-1,-\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right\}$ of rational numbers are subsets of set \mathbb{R} of real numbers. Therefore, $\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{Q} \subset \mathbb{R}$. All subsets of \mathbb{R} are illustrated in the Venn diagram below.

Note that:

1. There are some numbers such us $1.34782 \ldots, \sqrt{2}, \sqrt{3}, \sqrt{7}, \pi, \ldots$. called irrational numbers which are elements of \mathbb{R} but not elements of \mathbb{Q}; they cannot be written in the form of a fraction. The set of such number is sometimes denoted by I with $I \subset \mathbb{R}$.
2. The real numbers can be illustrated on the number line as follow.

3. All rational numbers can be expressed as either finite decimal like $\frac{1}{2}=0.5$ or recurring decimals such as $\frac{1}{3}=0.333 \ldots$ or $0 . \overline{3}$ or $0 . \dot{3}$.

2. Operations in the set \mathbb{R} of real numbers

The following table shows the addition, subtraction, multiplication and division of real numbers and the related properties.

Operation	Calculations	Properties
Addition of real Numbers	For any two real numbers a and $b, \quad a+b$ is also a real number.	Closure property under addition
	For any two real numbers a and b, $a+b=b+a$. Two real numbers can be added in any order and the result remain the same	Commutative property under addition
	For any three real numbers a, b and c. $(a+b)+c=a+(b+c)$ Real numbers can be added regardless of how they are grouped and the result remain the same.	Addition is associative for real numbers.

Subtraction of Real Numbers	For any two real numbers a and $b, a-b$ is also a real number.	Closure property under subtraction of real numbers
	For any two real numbers a and b, $a-b \neq b-a$.	Subtraction is not commutative for real numbers.
	For any three real numbers a, b and c. $(a-b)-\mathrm{c} \neq a-(b-c)$	Subtraction is not associative for real numbers
Multiplication of real Numbers	For any two real numbers a and $b, a \times b$ is also a real number.	Closure Property under multiplication
	For any two real numbers a and b, $a \times b=b \times a$ Two real numbers can be multiplied in any order and the result remains the same	Multiplication is commutative for real numbers.
	For any three real numbers a, b and c. $(a \times b) \times c=a \times(b \times c$ Real numbers can be multiplied regardless of how they are grouped and the result remain the same.	Multiplication is associative for real numbers.
	For any three numbers a, b and c. $\begin{aligned} & a \times(b+c)=(a \times b)+(\\ & a \times c) \end{aligned}$	Distributive property states that for any three numbers a, b and c we have $a \times(b+c)=$ $(a \times b)+(a \times c)$

Division of Real Numbers	For any two real numbers a and b with b different from zero, $a \div b \neq b \div a$ is also a real number. But we know that any real number a, $a \div 0$ is not defined.	Closure Property under division for real numbers different from zero.
	For any two real numbers a and b, $a \div b \neq b \div a$. The expressions on both sides are not equal	Division is not commutative for real numbers.
	For any three real numbers a, b and c, $a \div(b \div c) \neq(a \div b) \div c$. The expressions on both the sides are not equal	Division is not associative for real numbers

Application Activity 1.1

1. Plot a number line and locate elements of the following subsets of real numbers.
a) $\{-3,0,3\}$
b) $\{-2,2,4,6,8,10\}$
c) $\{-2.5,-1.5$, $0,1,2.5\}$
d) $\{0,0.3,0.6,0.9,1.2\}$
e) $\{-10,30,50\}$
f) $\{-6,0,3,9,12\}$
2. Work out the following operations. What do you notice for each case?
a) $3+5$ and $5+3$
b) 13-4 and 4-13
c) $12+(33+25)$ and $(12+33)+25$
d) $0+5$ and $5+0$
e) $18+-18$ and $-18+18$
f) $\frac{1}{5} \times 5$ and $5 \times \frac{1}{5}$
g) $13 \times(3+7)$ and $(3+7) \times 13$

1.2. Positive and negative numbers

Activity 1.2

1. By means of thermometer, a Doctor recorded the temperature of a patient at different times of the same day.

Time	6.00	$9: 00$	$12: 00$	$15: 00$	$18: 00$	$21: 00$
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	37.5	37	37.25	37.1	37.4	37.2

a) When the lowest temperature of a patient was recorded?
b) What was the difference in temperature between 6:00 and 21:00?
c) What was the difference in temperature between 9:00 and 12:00?
d) At midnight the temperature was 0.25 degrees above 21:00. What was the temperature at midnight?

Extreme high and low temperatures contribute directly to deaths from cardiovascular and respiratory disease, particularly among elderly people. In Quebec, Canada, it was observed that on July $6^{\text {th }} 1921$ the highest temperature recorded in Ville-Marie was $40^{\circ} \mathrm{C}$ and on February $5^{\text {th }} 1923$ the lowest temperature recorded in Doucet was $-54.4^{\circ} \mathrm{C}$. Do you think this records can happen or was happened in Africa? Consult the link (https://en.wikipedia.org/wiki/List of countries_and territories by extreme temperatures) and find out the lowest temperature $\left({ }^{\circ} \mathrm{C}\right)$ recorded on January $28^{\text {th }} 2005$ in Mecheria, Algeria and the lowest temperature $\left({ }^{\circ} \mathrm{C}\right)$ recorded on February $11^{\text {th }} 1935$ in Ifrane, Morocco.

The most commonly used numbers in arithmetic are integers, which are positive and negative whole numbers including zero. Positive integers are $1,2,3,4,5$ and so on. The negative integers are $-1,-2,-3,-4,-5$ and so on.

Integers (positive and negative numbers) can be represented on a number line and the number line can be used to perform addition and subtraction.

Example 1.1:

1) Use a number line, locate -2 and -5 . Then perform the following operation using a number line:

$$
(-2)-(-5)=
$$

Solution

"negative 2 minus negative 5 " meaning that $(-2)+5$ (adding the opposite).

2) In a certain city, the temperature at midday was $3^{\circ} \mathrm{C}$. By midnight it has fallen by 10 degrees. What is the temperature at midnight?

Solution

$\mathbf{3 + - 1 0}=-\mathbf{7}$, the temperature at midnight will be $-7^{\circ} \mathrm{C}$
Integers (positive and negative numbers) have the real-life applications and situations where one can find the use of plus and minus-valued integers.

- When scientists measure the temperature of the water and some chemical compound, then the mixture is said to be cold, if the thermometer (or any other measuring device) gives a negative value.
- $-67.8^{\circ} \mathrm{C}\left(-90.0^{\circ} \mathrm{F}\right)$ is the record temperature of Verkhoyansk and Oymyako of the country Russia. Here, even countries and many cities of the world are represented using negative numbers for freezing climates and positive numbers for hot summer weather.
- During banking or when involved in any other financial procedures, minus sign denotes debit value and the positive sign represents a credit value. So, if the balance check sheet for your debit card states - 14 500, then you have a loan amount of 14500 Frw to be debated in the bank.

Application Activity 1.2

1. Water freezes at $0^{\circ} \mathrm{C}$. Is the temperature in a freezer,
a) Equal to $0^{\circ} \mathrm{C}$?
b) Lower than $0^{\circ} \mathrm{C}$?
c) Greater than $0^{\circ} \mathrm{C}$?
2. Here are six temperatures, in Celsius degrees.
$\begin{array}{llllll}6 & -10 & 5 & -4 & 0 & 2\end{array}$
Write them in order, starting with the lowest.
3. Here are the midday temperatures, in degrees Celsius, of five cities on the same day.

Mosco	Tokyo	Boston	Berlin	Kigali
-8	-4	19	-2	24

a) Which city was the warmest?
b) Which city was the coldest?
c) What is the difference between the temperatures of Berlin and Boston?
4. Some frozen food is stored at $-8^{\circ} \mathrm{C}$. During a power cut the temperature increases by $1^{\circ} \mathrm{C}$ every minute. Copy and complete this table to show the temperature of the food.

Minutes passed	0	1	2	3	4	5
Temperature in ${ }^{\circ} \mathrm{C}$						

5. In a certain city, the temperature was $-7^{\circ} \mathrm{C}$ in the morning and dropped by $10^{\circ} \mathrm{C}$ in the afternoon. What is the new temperature?

1.3. Rounding and estimating decimal numbers.

Activity 1.3

As a pharmacy technician, you will encounter decimals nearly every day. Medications are frequently prescribed in decimals, and you will find that many dosage calculations will be worked out using the decimal format.

1. Use calculator to work out; $2 \div 3 ; 7 \div 11 ; 1 \div 5 ; \sqrt{11}$ and $\sqrt{16}$. What do you notice?
2. How can you write the answer for instance when dividing 22 by 7 , calculating square root of 3 ? Explain?

The word "Decimal" means "based on 10" and comes from the Latin word: decima which means «a tenth part". Decimal numbers are used in situations which call for more precision than whole numbers provide. As with whole numbers, a digit in a decimal number has a value which depends on the place of the digit. The places to the left of the decimal point are ones, tens, hundreds, and so on, just as with whole numbers.

The following illustration shows the decimal place value for various positions:

Each digit in a number has a 'place value' (related to one). The value depends on the position of the digit in that number. Each position can be thought of as columns. Each column is a power of ten.

For example, let's look at 56.39

A recurring decimal is a decimal fraction where a digit repeats itself indefinitely.

Example $\frac{2}{3}=0.666 \ldots$
A terminating decimal is a number that terminates after a finite (not infinite) number of places

Example 1.2

$$
\frac{3}{4}=0.75
$$

Rounding numbers is a method of summarizing a number to make calculations easier to solve. Rounding decreases the accuracy of a
number. Rounding to a specified integer or decimal is important when answers need to be given to a particular degree of accuracy.

The Rules for Rounding:

1. Choose the last digit to keep.
2. If the digit to the right of the chosen digit is 5 or greater, increase the chosen digit by 1 .
3. If the digit to the right of the chosen digit is less than 5 , the chosen digit stays the same.
4. All digits to the right are now removed.

Example 1.3

What is 7 divided by 9 rounded to 3 decimal places?

Solution

$7 \div 9=0.7777777 \ldots$

So, by respecting rule 2 , then $7 \div 9=0.778$

Estimating decimal numbers.

Estimating is a very important skill in solving Mathematics problems. It helps to be able to estimate the answer to check if your calculations are correct.

Some simple methods of estimation:

- Rounding

Example 1: $273.34+314.37=$?
If we round to the tens we get $270+310$ which is much easier and quicker. We know that $273.34+314.37$ should equal approximately 580 .

- Compatible Numbers

Example 2: $527 \times 12=$?

If we increase 527 to 530 and decrease 12 to 10 , we have $530 \times 10=5300$. A much easier calculation.

- Cluster estimation

Example3: $357+342+370+327=$?
All four numbers are clustered around 350, some larger, some smaller.
So we can estimate using $350 \times 4=1400$

Application Activity 1.3

1) Round the following to 2 decimal places:
a) 22.6783
b) 34.6332
c) 34.57894
d) 56.6734
e) 29.9999
2) Estimate the following:
a) $34 \times 62 \approx$
b) $357 \div 19 \approx$
c) $27+36+22+31 \approx$
d) $35.9987-12.76 \approx$
e) $22.5684+57.355 \approx$

1.4. Fractions and equivalent fractions

Activity 1.4

Refer to the figures and answer the related questions

a) What fraction of the large square is black?
b) What fraction of the large square has vertical lines?
c) What fraction of the large square has diagonal lines?
d) What fraction of the large square has wavy lines?
e) What fraction of the large square has dots?
f) What fraction of the large square is unshaded?
g) What fraction of the large square has the horizontal line?
h) What is the relationship between $\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \frac{5}{10}$ and $\frac{6}{12}$

- Fractions are representations of "parts of a whole". A fraction is a part of a whole: the denominator (bottom number) represents how many equal parts the whole is split into; the numerator (top number) represents the amount of those parts
- Equivalent fractions are two or more fractions that are all equal.

The second figure in activity above shows that each row has been split into different fractions: top row into 2 halves, bottom row 12 twelfths. An equivalent fraction splits the row at the same place.

Therefore: $\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \frac{5}{10}$ and $\frac{6}{12}$ are all equal and equivalent fractions. Doctors often use fractions to figure out what the right dose is. There is a medicine that can treat patients who are having a stroke (a blood clot that stops blood flow going to part of the brain). The dose of the medication is $(9 / 10)$ times the body weight in kilograms. So if a patient weighs 70 kg , doctors have to multiply $99 / 100 \mathrm{x}(70)=63$ mg of medication. Then ($1 / 10$) of that is given right away (6.3 mg), followed by the rest $(63-6.3=56.7 \mathrm{mg})$ over an hour. The nurses who give the medication have to do more to figure out how much medication has to be given every minute on a pump. If there is a math mistake, then the patient might get too little medication-then it probably won't work. If they get too much medication, they might have bleeding in the brain. So doctors have to be sure they do it right. Calculators and several people do the math to make sure everyone agrees.

Application Activity 1.4

1. Given $\frac{3}{4}$. Find the equivalent fraction by multiplying 4.
2. The order reads $1 / 400 \mathrm{gr}$. The vial is labelled $1 / 300 \mathrm{~g}=20$ drops. How many drops are to be given?

1.5. Ratios, proportions and rałes.

I'/ Activity 1.5

1. you survey your friends about their favourite course in associate nursing program and you find that 8 out of 12 prefer Maternal and Child health.
a) Write in simplest form the fraction that represents those who do not prefer Maternal and Child health.
b) Which fraction best communicates the survey results?
c) Express to percentage, the fraction of those who prefer Maternal and Child health.
2. At a certain clinic, an hospitalized person had to pay 17,500FRW for consultation, 45,000 FRW for medicine, and 30,000FRW for room in 3days. If the patient was insured by RSSB who pay 85% of the cost,
a. How much money did the RSSB pay for the patient?
b. How much money did the patient pay on his/her own?
3. Consider the table below which shows the relationship between the ages (in year) and quantity of medicine (in ml) to be take.

ages (in year)	1	2	3	4	5	6	7
medicine (in ml)	2	4	6	8	10	12	14

a. Draw the graph of the number of medicine (in ml) against ages (in year)
b. Describe the graph you have drawn in (a) above.
4. Consider the relationship between the speed and time taken by a car to cover a fixed distance of 320 km .

Speed $(\mathrm{km} / \mathrm{h})$	20	40	80	160
Time (h)	16	8	4	2

Take $20 \mathrm{~km} / \mathrm{h}$ to be the original speed.
(i) What do you notice when the speed is doubled?
(ii) Plot the graph of speed against time.
(iii) Describe the graph you drew to your classmates.
5. A pulse is measured as 17 beats over 15 seconds. What is the heart rate per minute?

1. A ratio is a comparison of two quantities. The ratio of a to b can also be expressed as a:b or a / b. This relation gives us how many times one quantity is equal to the other quantity. In simple words, the ratio is the number which can be used to express one quantity as a fraction of the other ones.

Ratio Formula:
Assume that, we have two quantities (or two numbers) and we have to find the ratio of these two, then the formula for ratio is defined as; \mathbf{a} : $\mathbf{b} \Rightarrow \mathbf{a} / \mathbf{b}$, where a and b could be any two quantities.

Example 1.5

The ratio of 2 to 4 is represented as $2: 4=1: 2$.

Example 1.6

Consider a class that has 20 male students and 80 female students. We can think about this in several ways. We could express this simply as the ratio of men to women and write the relationship as $20: 80$ or $20 / 80$. We can also simplify this by dividing both the numerator and the denominator by a number that divides evenly into both
 the numerator and the denominator.

In this case, we could divide both by 20 to simplify this to a $1: 4$ ratio (or $1 / 4$ ratio). This indicates that for every man, there are four women.

We could also consider this from the inverse perspective, i.e., the number of women relative to the number of men; in this case the ratio of women to men is $80 / 20$ which is equivalent to 4 to 1 , i.e., there are four women for every man.

Note that Equivalent ratios are ratios that have the same value. Given a ratio, we can generate equivalent ratios by multiplying both parts of the ratio by the same value.
2. Proportion is an equation which defines that the two given ratios are equivalent to each other. A proportion is a type of ratio that relates a part to a whole.

Proportion Formula:
Assume that, in proportion, the two ratios are a:b and c:d. The two terms 'b' and ' \mathbf{c} ' are called 'means or mean term,' whereas the terms ' \mathbf{a} ' and ' \mathbf{d} ' are known as 'extremes or extreme terms.' $\frac{a}{b}=\frac{c}{d}$. A proportion is read as ' a is to b as c is to d ' and the two ratio s are equal.

Example 1.7

The time taken by train to cover 100 km per hour is equal to the time taken by it to cover the distance of 500 km for 5 hours. Such as $100 \mathrm{~km} /$ $\mathrm{hr}=500 \mathrm{~km} / 5 \mathrm{hrs}$.

Example 1.8

In the class with 20 men and 80 women, the total class size is 100 , and the proportion of men is $20 / 100$ or 20%. The proportion of women is $80 / 100$ or 80%. In both of these proportions the size of part of the class is being related to the size of the entire class.

Difference Between Ratio and Proportion
To understand the concept of ratio and proportion, go through the difference between ratio and proportion given here.

$\#$	Ratio	Proportion
1	The ratio is used to compare the size of two things with the same unit	The proportion is used to express the relation of two ratios
2	It is expressed using a colon (:), slash (/)	It is expressed using equal sign or symbol (=)
3	It is an expression	It is an equation
4	Keyword to identify ratio in a problem is "to every"	Keyword to identify proportion in a problem is "out of"

Example 1.9

The information on mortality from bird flu shows that 44 died and the other 79 lived could be expressed as a simple ratio, which compares the number who died to the number who survived. 44/79 or 44:79 would be two ways of expressing this simple ratio. The ratio of those who died relative to those who lived was 44
 to 79 .
Alternatively, we might want to focus on the proportion who lived. In total, 123 people were infected, and 44 of these died. Therefore, the proportion who died was $44 / 123$, which could be expressed as a decimal fraction (0.36) or as a percentage (36%). This proportion is referred to as the "case-fatality" rate, although strictly speaking, it is a proportion and not a rate.
3. Rate: Rates are a special type of ratio that incorporate the dimension of time into the denominator. Familiar examples include measurements of speed (kilometers per hour.

Example 1.10

If a car travels 24 kilometres in 2 hours, its average speed is a rate of 24 kilometres $/ 2$ hours $=12$ kilometres/hr.

Note that some commonly used measurements of health outcomes are referred to as "rates" even though they are actually proportions.

For example:

- A mortality rate is the proportion of deaths occurring over a span of time in a population.
- An attack rate is the proportion of people developing an infectious disease after exposure to a pathogen.
- A case-fatality rate is the proportion of individuals who die after developing a disease.

Application of ratios, proportions and rates in nursing

Nurses use ratios, proportions and rates when administering medication.

1. Nurses need to be able to understand the doctor's orders.

Example 1.11

A doctor's order may be given as: $25 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$. If the patient weighs 52 kg , how many milligrams should the patient receive in one hour? In order to do this, nurses must convert micrograms (mcg) to milligrams (mg). If $1 \mathrm{mcg}=0.001 \mathrm{mg}$, we can find the amount (in mg) of 25 mcg by setting up a proportion.
2. Nurses use proportions to Calculate Intravenous Infusion rates and drops per minute (dpm), by considering the following:

- The total volume to be given, which is often written on the prescription in mLs.
- The time over which the volume is to be given, often in minutes
- The drop factor (determined by the administration set). This means how many drops per $\mathrm{ml}\left(\frac{d r o p s}{m L}\right)$, which are commonly 15 , 20 or 60 drops $/ \mathrm{mL}$.
- Infusion rate $=\frac{\text { volume }}{\text { time }}$,
- drop rate $=\frac{\text { The total volume }(\text { in } m L s)}{\text { time }(\text { in } \mathrm{min})}=\frac{\text { drops per } \mathrm{min}}{\text { drop factor }}$

Example 1.12

If 1500 mLs of 0.9% sodium chloride fluid is to be given over 10 hours, what is the infusion rate for delivery? If the IV administration set has a drop factor of 20 , what will you set the drop rate at?

Solution :There are 2 parts to this question

1) calculating the infusion rate ($\mathrm{mL} / \mathrm{hr}$)

infusion rate $=\frac{\text { volume }}{\text { time }}$
infusion rate $=\frac{1500 m L}{10 h}=150 m L / \mathrm{h}$
2) calculating the drop rate (dpm).
$\frac{\text { The total volume }(\text { in } m L s)}{\text { time }(\text { in } \mathrm{min})}=\frac{\text { drops per } \mathrm{min}}{\text { drop factor }}$
$\frac{1500 \mathrm{mLs}}{600 \mathrm{~min}}=\frac{\text { drops per } \mathrm{min}}{20}$, where $1 \mathrm{~h}=60 \mathrm{~min}$
drops per $\min =\frac{20 \times 1500}{600}=50$
\therefore ThedroprateontheIVadministrationsetis 50drops per min or 50 dpm
3. Nurses also use proportions to calculate Drug Dosage based on an individual's weight, by considering that:

- Drug dosage is expressed as $\frac{d r u g s}{k g}$
- Dose to administer $=\frac{d r u g s}{k g} \times$ Patient weight

If the drug is in solution (e.g. oral, IV, IM, SC) the correct dose to be administered, may need to be drawn from a stock solution. This is a medication solution that contains a ratio of drug (either as solute or solid) in a diluent (refresh these concepts in section 10 Dilutions using the expression solute in diluent).

- Stock solution $=\frac{\text { Stock dose }}{\text { Stock volume }}$,
- $\frac{\text { Stock dose }}{\text { Stock volume }}=\frac{\text { dose to administer }}{\text { volume to administer }}$

Example 1.13

Mr. Small weights 60 kg . He has been ordered a drug with a dosage of 10 mg per kg. How much drug should be administered? If the drug is available in a stock solution of $250 \mathrm{mg} / 5 \mathrm{~mL}$, what volume of drug solution should be administered?

Solution: There are two parts to this question

1) The dose of drug to give (in mg);

Dose to administer $=\frac{\text { drugs }}{\mathrm{kg}} \times$ Patient weight

Dose to administer $=\frac{10 g}{1 \mathrm{~kg}} \times 60 \mathrm{~kg}=600 \mathrm{~g}$
2) The volume of the stock solution to give that will contain the required dose (in mL).

$$
\text { volume to administer }=\frac{\text { dose to administer }}{\text { Stock dose }} \times \text { Stock volume }
$$

$$
\text { volume to administer }=\frac{600}{250} \times 5=12 \mathrm{~mL}
$$

Application Activity 1.5

1. A first year, physiology subject has 36 males and 48 females, whereas the clinical practice subject has 64 males and 80 females. You are asked to work out which cohort has the largest male to female ratio.
2. Yasmin is checking the IV fluid infusion on Mrs Cannon at the start of the shift. She sees from the fluid balance sheet that Mrs Cannon has received 320 mL over the past 4 hours. Mrs Cannon is to receive the full litre bag. How many hours would you expect it to take to infuse the full litre?
3. Apply your understanding of proportional thinking to solve the following:
a) A patient is prescribed 150 mg of soluble aspirin. We only have 300 mg tablets on hand. How many tablets should be given?
b) A solution contains fluoxetine $20 \mathrm{mg} / 5 \mathrm{~mL}$. How many milligrams of fluoxetine are in 40 mL of solution?
c) A stock has the strength of 5000 units per mL . What volume must be drawn up into an injection to give 6500units?
d) An intravenous line has been inserted in a patient. The total volume to be given is 1200 mL over 5hours at a drop factor of 15 drops $/ \mathrm{mL}$. How many drops per minute will the patient receive?
e) Penicillin syrup contains 200 mg of penicillin in 5 mL of water. If a patient requires 300 mg of penicillin how much water will be required to make the syrup?
4. What fraction of $\mathrm{H}_{2} \mathrm{O}_{2}$ is hydrogen? Calculate it's percentage.

1.6. Absolute value and its properties

Activity 1.6.1

Draw a number line and state the number of units that are between;

1. 0 and -8
2. 0 and 8
3. 0 and $\frac{1}{2}$
4. 4 and 17

Absolute value of a number is the distance of that number from the original (zero point) on a number line. The symbol \| is used to denote the absolute value.

Example 1.14

7 is at 7 units from zero, thus the absolute value of 7 is 7 or $|7|=7$. Also -7 is at 7 units from zero, thus the absolute value of -7 is 7 or $|-7|=7$. So $|-7|=|7|=7$ since -7 and 7 are on equal distance from zero on a number line.

Note:

- The absolute value of zero is zero.
- The absolute value of a non-zero real number is a positive real number.
- Given that $|x|=k$ where k is a positive real number or zero, then $x=-k$ or $x=k$
- $|x|=\left\{\begin{array}{lll}x, & \text { if } & x \geq 0 \\ -x, & \text { if } & x<0\end{array}\right.$

Example 1.15

Find x in the following
a) $|x|=5$
b) $|x|+5=1$
c) $|x-4|=10$

Solution

a) $|x|=5, x=-5$ or $x=5$
b) $|x|+5=1$
$\Leftrightarrow|x|=1-5$
$\Rightarrow|x|=-4$

There is no value of x since the absolute value of x must be a positive real number.
c) $|x-4|=10$

$$
\begin{aligned}
& x-4=-10 \text { or } x-4=10 \\
& x=-10+4 \text { or } x=10+4
\end{aligned}
$$

$$
x=-6 \text { or } x=14
$$

Example 1.16

Simplify:
a) $-|40-12|$
b) $|4(-3)-(2)(5)|$
c) $|-4(-2)|$

Solution

a) $-|40-12|=-|28|=-28$
b) $|4(-3)-(2)(5)|=|-12-10|=|-22|=22$
c) $|-4(-2)|=|8|=8$

Application Activity 1.6.1

Find the value(s) of x

1) $|x|=6$
2) $|x+1|=0$
3) $|x-3|-4=2$
4) $|2 x+1|=4$
5) $|x-3|+3=5$

Activity 1.6.2

Evaluate the following operations and compare your results in eache case

1. $|3|$ and $|-3|$
2. $|3 \times 5|$ and $|3| \times|5|$
3. $|(-8)+5|$ and $|-8|+|5|$

Properties of the Absolute Value

Opposite numbers have equal absolute value.

1. $|a|=|-a|$

Example 1.17

$|5|=|-5|=5$
The absolute value of a product is equal to the product of the absolute values of the factors.
2. $|a b|=|a||b|$

Example 1.18

$|4(-6)|=|4||-6|$
$|4(-6)|=|-24|=24 \quad|4||-6|=4 \times 6=24$
The absolute value of a sum is less than or equal to the sum of the absolute values of the addends.
3. $|a+b| \leq|a|+|b|$

Example 1.19

$|-3+2| \leq|-3|+|2|$
$|-1| \leq 3+2$
$1 \leq 5$
Application Activity 1.6.2
Simplify:

1. $|-5|$
2. $|-4||-5|$
3. $|-7|+|4|$
4. $-|4 \times 6|$
5. $-|-6+8|$

1.7. Powers and radicals

Powers in IR

Activity 1.7.1

Peter suggested that his allowance be changed. He wanted $\$ 2$ the first week, with his allowance to be doubled each week. His parent investigated the suggestion using this table

Week	Dollas
One	$2=\ldots$
Two	$2 \times 2=\ldots$
Three	$2 \times 2 \times 2=\ldots$
Four	$2 \times 2 \times 2 \times 2=\ldots$
Five	$2 \times 2 \times 2 \times 2 \times 2=\ldots$

1. Complete the table to find how many dollars Peter would be paid each of the first five weeks.
2. How much would Peter be paid the seventh week? The tenth week?
3. Do you think his parent will agree with his suggestion? Explain.

We call $n^{\text {th }}$ power of a real number a, that we note a^{n}, the product of n factors of a.

That is
$a^{n}=\underbrace{a \cdot a \cdot a . a}_{n \text { factors }}\left\{\begin{array}{l}n \text { is an exponent } \\ \text { ais the base }\end{array}\right.$

Example 1.20

$2^{4}=\underbrace{2 \cdot 2 \cdot 2 \cdot 2}_{4 \text { factors }}=16 \quad 3^{3}=\underbrace{3 \cdot 3 \cdot 3}_{3 \text { factors }}=27$

Notice

- $a^{1}=a \quad$ - $a^{0}=1, a \neq 0$
- If $a=0, a^{0}$ is not defined

Properties of powers

Let $a, b \in \mathbb{R}$ and $m, n \in \mathbb{R}$
a) $a^{m} \cdot a^{n}=a^{m+n}$

$$
\text { In fact, }{ }^{m} \cdot a^{n}=\underbrace{a \cdot a \cdot a \cdots a}_{m \text { factors }} \times \underbrace{a \cdot a \cdot a \cdots a}_{n \text { factors }}=\underbrace{a \cdot a \cdot a \cdots a}_{m+n \text { factors }}=a^{m+n}
$$

b) $\quad\left(a^{m}\right)^{n}=a^{m n}$

c) $\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$

In fact, $\left(\frac{a}{b}\right)^{m}=\underbrace{\frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b} \cdots \frac{a}{b}}_{m \text { factors }}=\frac{\underbrace{\frac{a \cdot a \cdot a \cdots a}{m \text { factors }}}_{m \text { factors }} \underbrace{b \cdot b \cdot b \cdots b}}{b^{m}}$
d) $\quad \frac{1}{b^{m}}=b^{-m}$

In fact, $\frac{1}{b^{m}}=\frac{1^{m}}{b^{m}}=\left(\frac{1}{b}\right)^{m}=\left(b^{-1}\right)^{m}=b^{-m}$
e) $\quad \frac{a^{m}}{a^{n}}=a^{m-n}$

In fact, $\frac{a^{m}}{a^{n}}=a^{m} \frac{1}{a^{n}}=a^{m} a^{-n}=a^{m-n}$
f) $\quad(a b)^{m}=a^{m} b^{m}$

In fact, $(a b)^{m}=\underbrace{a b \cdot a b \cdots a b}_{m \text { factors }}=\underbrace{a \cdot a \cdots a}_{m \text { factors }} \times \underbrace{b \cdot b \cdots b}_{m \text { factors }}=a^{m} b^{m}$

These properties help us to simplify some powers.
There is no general way to simplify the sum of powers, even when the powers have the same base. For instance, $2^{5}+2^{3}=32+8=40$ and 40 is not an integer power of 2 . But some products or ratios of powers can be simplified using repeated multiplication model of a^{n}.

Example 1.21

a) $2^{4} \cdot 2^{3} \cdot 4=2^{4} \cdot 2^{3} \cdot 2^{2}=2^{9}=512$
b) $a^{4} \cdot b^{3} \cdot a^{5} \cdot b^{8}=a^{4} \cdot a^{5} \cdot b^{3} \cdot b^{8}=a^{9} \cdot b^{11}$
$a^{9} \cdot b^{11}$ cannot be simplified further because the bases are different.
c) $\frac{y^{9}}{y^{2}}=y^{9-2}=y^{7}$

Application Activity 1.7.1

Simplify

1. $x^{3} x^{2}$
2. $\left(x y^{3}\right)^{2}+4 x^{2} y^{6}$
3. $\frac{6 x y^{2}}{3 x y}$
4. $\frac{a b}{a^{3}}-\frac{a^{3} b^{2}}{a^{5} b}$
5. $\frac{y x}{4 x y}$
1.A hummingbird has a mass of about $10^{-2} \mathrm{~kg}$. Show that this mass is 0.01 kg
2.A hydrogen atom has a mass of $1.67 \times 10^{-27} \mathrm{~kg}$. What is the mass of 6×10^{3} hydrogen atoms ? Express your result in scientific notation.
3.a) A microscope can magnify a specimen 10^{3} times. How many times is that?
b) An electronic microscope can magnify a specimen about 10^{6} times. How many times is that?
c) A certain microscope can magnify a specimen 10^{4} times. How many times is that?

Radicals in real numbers

Activity 1.7.2

Evaluate the following powers

1. $(81)^{\frac{1}{2}}$
2. $(216)^{\frac{1}{3}}$
3. $(-27)^{\frac{1}{3}}$
4. $(16)^{\frac{1}{4}}$

The $n^{\text {th }}$ root of a real number is $\frac{1}{n}$ power of that real number. It is denoted by $\sqrt[n]{b}, b \in \mathbb{R}, n \in \mathbb{N} \backslash\{1\} . \forall a, b \in \mathbb{R}, \sqrt[n]{b}=a \Leftrightarrow b^{\frac{1}{n}}=a \Leftrightarrow b=a^{n}$ $\left\{\begin{array}{l}n \text { is called the index } \\ \text { bis called the base or radicand } \\ \sqrt[n]{ } \text { is called the radical sign }\end{array}\right.$

Example 1.22

a) $\sqrt[3]{27}=(27)^{\frac{1}{3}}=\left(3^{3}\right)^{\frac{1}{3}}=3^{3 \times \frac{1}{3}}=3$
b) $\sqrt[4]{16}=(16)^{\frac{1}{4}}=\left(2^{4}\right)^{\frac{1}{4}}=2$

If $n=2$, we say square root and $\sqrt[2]{b}$ is written as \sqrt{b}. Here b must be a positive real number or zero.

If $n=3$, we say cube root denoted by $\sqrt[3]{b}$. Here b can be any real number.
If $n=4$, we say $4^{\text {th }}$ root denoted by $\sqrt[4]{b}$. Here b must be a positive real number or zero.

Generally, for any natural number $\mathrm{n} \geq 2, \mathrm{n}^{\text {th }}$ root of b is denoted as $\sqrt[n]{b}$. Here if n is even, b must be a positive real number or zero and if n is odd b can be any real number.

Example 1.23

$\sqrt{-9}$ is not defined in \mathbb{R} since the index in radical is even. But
$\sqrt[3]{-27}=(-27)^{\frac{1}{3}}=\left[(-3)^{3}\right]^{\frac{1}{3}}=-3$

Properties of radicals

$$
\forall n \in \mathbb{N} \backslash\{1\}, m \in \mathbb{R}
$$

a) $\sqrt[n]{a^{m}}=a^{\frac{m}{n}}$

In fact, $\sqrt[n]{a^{m}}=\left(a^{m}\right)^{\frac{1}{n}}=a^{m \times \frac{1}{n}}=a^{\frac{m}{n}}$
b) $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$

In fact, $\sqrt[n]{a b}=(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} b^{\frac{1}{n}}=\sqrt[n]{a} \sqrt[n]{b}$
c) $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

In fact, $\sqrt[n]{\frac{a}{b}}=\left(\frac{a}{b}\right)^{\frac{1}{n}}=\frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
d) $\sqrt[n]{\sqrt[n]{a}}=\sqrt[n n]{a}=a^{\frac{1}{n m}}$

In fact, $\sqrt[n]{\sqrt[m]{a}}=\left(a^{\frac{1}{m}}\right)^{\frac{1}{n}}=a^{\frac{1}{m}} \times \frac{1}{m}=a^{\frac{1}{m n}}=\sqrt[m n]{a}$

Example 1.24

Simplify:
a) $\sqrt{46656}$
b) $\sqrt[3]{\sqrt{64}}$
c) $\sqrt[3]{a b} \times \sqrt[3]{a^{2} b^{2}}$
d) $\sqrt{\frac{36}{81}}$

Solution

a) $\sqrt{46656}=\sqrt{6^{6}}=6^{3}=216$
b) $\sqrt[3]{\sqrt{64}}=\sqrt[3]{8}=2$
c) $\sqrt[3]{a b} \times \sqrt[3]{a^{2} b^{2}}=\sqrt[3]{a^{3} b^{3}}=\sqrt[3]{(a b)^{3}}=a b$
d) $\sqrt{\frac{36}{81}}=\frac{\sqrt{36}}{\sqrt{81}}=\frac{6}{9}=\frac{2}{3}$

Application Activity 1.7.2

Simplify:

1. $\sqrt{a} \times \sqrt{a b^{3}} \times \sqrt{b c^{2}}$
2. $\sqrt[3]{a b c} \times \sqrt[3]{a^{2} b^{2} c^{2}}$
3. $\sqrt[3]{\frac{8}{27}}$
4. $\sqrt{\sqrt[4]{x^{8}}}$
5. $\sqrt{\frac{x^{3} y^{4}}{4 x}}$

Operations on radicals

When adding or subtracting the radicals, we may need to simplify if we have similar radicals. Similar radicals are the radicals with the same indices and same bases.

Activity 1.7.3

Simplify the following and keep the answer in radical sign

1. $\sqrt{18}+\sqrt{2}$
2. $\sqrt{12}-3 \sqrt{3}$
3. $\sqrt{2} \times \sqrt{3}$
4. $\frac{\sqrt{6}}{\sqrt{2}}$

Addition and subtraction

When adding or subtracting the radicals we may need to simplify if we have similar radicals. Similar radicals are the radicals with the same indices and same bases.

Example 1.25

$\sqrt{2}+\sqrt{8}=\sqrt{2}+\sqrt{2 \times 4}=\sqrt{2}+\sqrt{2} \times \sqrt{4}=\sqrt{2}+2 \sqrt{2}=3 \sqrt{2}$
$\sqrt{3}-\sqrt{27}=\sqrt{3}-\sqrt{3 \times 9}=\sqrt{3}-\sqrt{3} \times \sqrt{9}=\sqrt{3}-3 \sqrt{5}=-2 \sqrt{3}$

Application Activity 1.7.3

Simplify

1. $\sqrt{20}+\sqrt{5}$
2. $4 \sqrt{3}-\sqrt{12}$
3. $5 \sqrt{7}-\sqrt{28}$
4. $\sqrt{18} \times \sqrt{8}$
5. $\sqrt{45}+\sqrt{80}+\sqrt{180}$
6. $\sqrt{108}-\sqrt{48}$
7. A hummingbird has a mass of about $10^{-2} \mathrm{~kg}$. Show that this mass is 0.01 kg
8. A hydrogen atom has a mass of $1.67 \times 10^{-27} \mathrm{~kg}$. What is the mass of 6×10^{3} hydrogen atoms? Express your result in scientific notation.
9.a) A microscope can magnify a specimen 10^{3} times. How many times is that?
b) An electronic microscope can magnify a specimen about 10^{6} times How many times is that?
c)A certain microscope can magnify a specimen 10^{4} times. How many times is that?

Rationalizing the denominator

Activity 1.7.4

Make the denominator of each of the following rational;

1. $\frac{1}{\sqrt{2}}$
2. $\frac{2-\sqrt{3}}{2 \sqrt{5}}$
3. $\frac{2}{1-\sqrt{6}}$
4. $\frac{\sqrt{2}+\sqrt{3}}{\sqrt{3}+\sqrt{5}}$

Rationalizing is to convert a fraction with an irrational denominator to a fraction with rational denominator. To do this, if the denominator involves radicals, we multiply the numerator and denominator by the conjugate of the denominator.

The conjugate of $a \pm \sqrt{b}$ is $a \mp \sqrt{b}$.
The conjugate of \sqrt{a} is \sqrt{a}
The conjugate of $a \sqrt{b}$ is \sqrt{b}

Remember that $(a+b)(a-b)=a^{2}-b^{2}$

Example 1.26

a) $\frac{1}{1+\sqrt{2}}=\frac{1-\sqrt{2}}{(1+\sqrt{2})((1-\sqrt{2})}=\frac{1-\sqrt{2}}{1-2}=\frac{1-\sqrt{2}}{-1}=\sqrt{2}-1$
b) $\frac{\sqrt{2}}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{2}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{\sqrt{10}+\sqrt{6}}{5-3}=\frac{\sqrt{10}+\sqrt{6}}{2}$
c) $\frac{\sqrt{3}+\sqrt{7}}{4 \sqrt{2}}=\frac{(\sqrt{3}+\sqrt{7}) \sqrt{2}}{(4 \sqrt{2}) \sqrt{2}}=\frac{\sqrt{6}+\sqrt{14}}{8}$

Application Activity 1.7.4

Rationalize the denominator;

1. $\frac{5}{\sqrt{7}}$
2. $\frac{3-2 \sqrt{2}}{1-\sqrt{2}}$
3. $\frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$
4. $\frac{2 \sqrt{2}}{4+3 \sqrt{3}}$
5. $\frac{a-\sqrt{b}}{\sqrt{d}}$
6. $\frac{3 \sqrt{3}+2 \sqrt{2}}{1+2 \sqrt{2}}$

1.8. Decimal logarithms and properties

Activity 1.8

What is the real number for which 10 must be raised to obtain

1. 1
2. 10
3. 100
4. 1000
5. 10000
6. 100000

The decimal logarithm of a positive real number x is defined to be a real number y for which 10 must be raised to obtain x. We write $\forall x>0, \quad y=\log x$
$\log x$ is the same as $\log _{10} x$ and is defined for all positive real numbers only. 10 is the base of this logarithm. In general notation, we do not write this base for decimal logarithm.

In the notation $y=\log x, x$ is said to be the antilogarithm of y.

Example 1.27

$\log (100)=?$
We are required to find the power to which 10 must be raised to obtain 100

So $\log (100)=2$
$y=\log x$ means $10^{y}=x$
Be Careful!

$$
\begin{aligned}
& \log 2 x+1 \neq \log (2 x+1) \\
& \log 2 x+1=(\log 2 x)+1
\end{aligned}
$$

Since logs are defined using exponentials, any "log x " has an equivalent "exponent" form, and vice-versa.

Example 1.28

$\log _{5} 13=x \Leftrightarrow 5^{x}=13$

Example 1.29

$y^{14}=x \Leftrightarrow \log _{y} x=14$

Properties

$$
\forall a, b \in] 0,+\infty[
$$

a) $\log a b=\log a+\log b$
b) $\log \frac{1}{b}=-\log b$
c) $\log \frac{a}{b}=\log a-\log b$
d) $\log a^{n}=n \log a$

Example 1.30

Calculate in function of $\log a, \log b$ and $\log c$
a) $\log a^{2} b^{2}$
b) $\log \frac{a b}{c}$

Solution

a) $\log a^{2} b^{2}=\log (a b)^{2}$
b) $\log \frac{a b}{c}=\log a b-\log c$

$$
\begin{aligned}
& =2 \log a b \\
& =2(\log a+\log b)
\end{aligned}
$$

$$
=\log a+\log b-\log c
$$

Example 1.31

Given that $\log 2=0.30, \log 3=0.48$ and $\log 5=0.69$. Calculate
a) $\log 6$
b) $\log 0.9$

Solution

a) $\log 6=\log (2 \times 3)$
$=\log 2+\log 3$
$=0.30+0.48$
$=0.78$
b) $\log 0.9=\log \frac{9}{10}$

$$
\begin{aligned}
& =\log 9-\log 10 \\
& =\log 3^{2}-\log (2 \times 5) \\
& =2 \log 3-\log 2-\log 5 \\
& =2(0.48)-0.30-0.7 \\
& =-0.04
\end{aligned}
$$

Co-logarithm

Co-logarithm, sometimes shortened to colog, of a number is the logarithm of the reciprocal of that number, equal to the negative of the logarithm of the number itself,

$$
\operatorname{colog} x=\log \left(\frac{1}{x}\right)=-\log x
$$

Example 1.32

$\operatorname{colog} 200=-\log 200=-2.3010$

Application Activity 1.8

1. Without using calculator, compare the numbers a and b.
a) $a=3 \log 2$ and $b=\log 7$
b) $a=2 \log 2$ and $b=\log 16-\log 3$
2. Given that $\log 2=0.30, \log 3=0.48$ and $\log 5=0.69$. Calculate
a) $\log 150$
b) $\log 0.2+\log 10$
3. Find co-logarithm of:
a) 100
b) 42
c) 15

Unit summary

1. Absolute value of a number is the number of units it is from 0 on a number line. The symbol $\|$ is used to denote the absolute value.
2. We call $n^{\text {th }}$ power of a real number a that we note a^{n}, the product of n factors of a. that is
$a^{n}=\underbrace{a \cdot a \cdot a \cdot \ldots \cdot a}_{n \text { factors }}\left\{\begin{array}{l}\text { n is an exponent } \\ \text { a is the base }\end{array}\right.$
3. The $n^{\text {th }}$ root of a real number is $\frac{1}{n}$ power of that real number. It is noted by $\sqrt[n]{b}, b \in \mathbb{R}, n \in \mathbb{N} \backslash\{1\} . \forall a, b \in \mathbb{R}, \sqrt[n]{b}=a \Leftrightarrow b^{\frac{1}{n}}=a \Leftrightarrow b=a^{n}$ $\left\{\begin{array}{l}n \text { is called the index } \\ \text { bis called the base or radicand } \\ \sqrt[n]{ } \text { is called the radical sign }\end{array}\right.$
4. Rationalizing is to convert a fraction with an irrational denominator to a fraction with rational denominator. To do this, if the denominator involves radicals we multiply the numerator and denominator by the conjugate of the denominator.
5. The decimal logarithm of a positive real number x is defined to be a real number y for which 10 must be raised to obtain x . We write $\forall x>0, \quad y=\log x$

End Unit Assesment

1. Simplify:
a) $\frac{x y^{2} z}{x y}$
b) $\left(a b^{2}\right)^{3}+a^{3} b^{6}$
c) $\sqrt{2}-\sqrt{8}+\sqrt{18}$
2. Rationalize the denominator
a) $\frac{3 \sqrt{5}+\sqrt{2}}{2 \sqrt{7}}$
b) $\frac{\sqrt{5}+\sqrt{2}}{2-\sqrt{3}}$
c) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{2}+\sqrt{5}}$
3. Given that $\log 2=0.30, \log 3=0.48$ and $\log 5=0.69$. Calculate
a) $\quad \log 12$
b) $\log 0.45$
c) $\log \frac{18}{5}$
4. Match the fact with the power
a) Wheels on a unicycle
i. 2^{5}
b) Planets in the solar system
ii. 3^{2}
c) Freezing point of water in
iii. 1^{17}
5. Contractors are tilling the bathroom floor in new house. The floor measures 288 cm by 192 cm . They are using square tiles with sides measuring 24 cm . How many tiles will they need?
6. Esther's little brother is playing with a set of collared blocks. Each block has edges measuring 4 cm . What is the volume of one of the blocks?
7. Humans breathe about 15 breaths in a minute. The average breath at rest contains 0.76 liter of air. About how many liters of air will you breathe while at rest for 25 minutes?
8. Density is the ratio of a substance's mass to its volume. A volume of 20 cubic centimeters of gold has a mass of 386 grams. Express the density of gold as a unit rate.
9. A lion's heart beats 12 times in 16seconds. How many times does a lion's heart beat in 60seconds?.
10. In a certain village, among 13500 people tested covid-19 test, $3 \frac{2}{5} \%$ were tested positive.
a)How many people were tested negative?
b)How many people were tested positive?
11. Ingabire, Mugenzi and Gahima have jointly invested in buying and selling of shares in the Rwanda stock exchange market. In one sale as they invested different amount of money, they realised a gain of 1080000 Frw and intend to uniquely share it in the ratio 2:3:4 respectively. How much did Mugenzi get?
12. A student claims that a ratio remains unchanged if 1 is added to both numerator and denominator of the fraction. Does $\frac{a}{b}$ equal $\frac{a+1}{b+1}$? Write an explanation, and give an example or a counterexample

Unjt
 Fundamentals of

 2
Trigonometry

2.0 Introductory activity

The angle of elevation of the top of the Cathedral from a point 280 m away from the base of its steeple on level ground is 60°. By using trigonometric concepts, find the height of the cathedral

Objectives

After completing this unit, I will be able to:
(1) Define sine, cosine, and tangent (cosecant, secant and cotangent) of any angle - know special values.
(1) Convert radians to degree and vice versa.
(1) Use trigonometric identities.
(1) Apply trigonometric formulae in real world problems.

2.1. Trigonometric concepts

Activity 2.1

Consider the following diagram

Copy the diagram and rotate vector $\overrightarrow{\mathrm{OA}}$ by an angle of

1. 30 degrees
2. -45 degrees
3. 120 degrees

Trigonometry is the study of how the sides and angles of a triangle are related to each other. A rotation angle is formed by rotating an initial side through an angle, about a fixed point called vertex, to terminal position called terminal side.
Trigonometric concepts contribute to various medical testing and interpretation of those test results. Some of the uses are,
1.Electrocardiography: The measurement of electrical activities in the heart. Through this process, it is possible to determine how long the electrical wave takes to travel from one part of the heart to the next by showing if the electrical activity is normal or slow, fast or irregular.
2.Pulmonary function testing: a spirometer is used to measure the volume of air inhaled and exhaled while breathing by recording the changing volume over time. The output of a spirogram can be quantified using trigonometric equations and generally, it is possible to describe any repeating rhythms of lung capacity.
A rational angle is drawn in what is called standard position if the initial side is on the positive x -axis and the vertex of the angle is at the origin.

Example 2.1

Angles in standard position that have a common terminal side are called co-terminal angles; the measure of smallest positive rotation angle is called principal angle. Angle is positive if rotated in a counterclockwise direction and negative when rotated clockwise.

Angles are named according to where their terminal sides lie. For instance, the x-axis and y-axis divide a plane into four quadrants as follow

Example 2.2

Draw each of the following angles in standard position and show there angles which are co-terminal to 30° ?
a) 30°
b) 120°
c) -230^{0}
d) 750°
e) -330^{0}

Solution

a)

c)

b)

d)

e)

750° and -330° are co-terminal to 30°

Example 2.3

Draw each of the following angles in standard position and indicate in which quadrant the terminal side is.
a) 150°
b) -35°
C) 210°

Solution

a)

150° lies in $2^{\text {nd }}$ quadrant.
b)

c)

210^{0} lies in $3^{\text {rd }}$ quadrant.

Application Activity 1

1. Draw each of the following angles in standard position and show the angles which are co-terminal to 20° ?
a) 20^{0}
b) -200^{0}
c) 740°
d) -340°
2. Draw each of the following angles in standard position and indicate in which quadrant the terminal side is.
a) 40^{0}
b) -235^{0}
c) 280°

2.1.1. Measure of an angle

Activity 2.2

If $\frac{x \text { degrees }}{180}=\frac{y}{\pi}=\frac{z}{200}$ find

1. z for 24 degrees
2. y for 180 degrees
3. z for 248 degrees
4. y for 270 degrees

The amount we rotate the angle is called the measure of the angle and is measured in following units:

a) Degrees

Unit is degree (written with a superscript ${ }^{\circ}$). One degree (1^{0}) is $\frac{1}{90}$ of the right angle. In angular measure, the degree is subdivided into minutes and seconds (' and "). $1^{0}=60^{\prime}, 1^{\prime}=60^{\prime \prime}$.

Example 2.4

The angle which measures 12 degrees, 35 minutes and 15 seconds will be denoted by $12^{\circ} 35^{\prime} 15^{\prime \prime}$.

Degrees $\left({ }^{\circ}\right)$, minutes ($\left.{ }^{(}\right)$, seconds (${ }^{\bullet}$) to decimal degrees and vice versa

Let d represents the integer degrees, $d d$ represents the decimal degree, m represents minutes and s represents seconds. Then:

$$
\begin{array}{ll}
d=\text { integer }(d d) & m=\text { integer }((d d-d) \times 60) \\
s=\left(d d-d-\frac{m}{60}\right) \times 3600 &
\end{array}
$$

For an angle with d integer degrees m minutes and s seconds ($\mathrm{d}^{0} \mathrm{~m}^{\prime} \mathrm{s}$), the decimal degree ($d d$) is:

$$
d d=d+\frac{m}{60}+\frac{s}{360}
$$

Example 2.5

Convert 30.263888889° to $\mathrm{d}^{0} \mathrm{~m}^{\prime} \mathrm{s}^{\prime \prime}\left(\mathrm{d}^{0} \mathrm{~m}^{\prime} \mathrm{s} \mathrm{s}^{\prime}\right.$ notation).

Solution

$d=$ integer $\left(30.263888889^{\circ}\right)=30^{\circ}$
$m=$ integer $((d d-d) \times 60)=$ integer $\left(\left(30.263888889^{\circ}-30^{\circ}\right) \times 60\right)=15^{\prime}$
$s=\left(d d-d-\frac{m}{60}\right) \times 3600=\left(30.263888889^{\circ}-30^{\circ}-\frac{15}{60}\right) \times 3600=50 "$
so, $30.263888889^{\circ}=30^{\circ} 15^{\prime} 50^{\prime \prime}$

Example 2.6

Convert 30 degrees 15 minutes and 50 seconds angle to decimal degrees.

Solution

$30^{\circ} 15^{\prime} 50^{\prime \prime}$
The decimal degrees dd is equal to:

$$
\begin{aligned}
\mathrm{dd} & =\mathrm{d}+\frac{\mathrm{m}}{60}+\frac{\mathrm{s}}{3600} \\
& =30+\frac{15}{60}+\frac{50}{3600} \\
& =30.263888889^{\circ}
\end{aligned}
$$

b) Grades

Unit is grade. One grade is equal to $\frac{1}{100}$ of the right angle and is subdivided into:
decigrade: $\frac{1}{10}$ grades,
centigrade: $\frac{1}{100}$ grades and
milligrade: $\frac{1}{1000}$ grades

Example 2.7

An angle which measures 82 grades, 7 decigrades, 2 centigrades and 5 milligrades will be denoted by $82^{G}, 725$
c) Radian

A central angle of a circle is an angle with a vertex at the centre of a circle. An intercepted arc is the portion of the circle with endpoints on the sides of the central angle and remaining points within the interior of the angle.
When a central angle intercepts an arc that has the same length as a radius of the circle, the measure of the angle is defined to be one radian.

Like degrees, radian measures the amount of the rotation from the initial side to the terminal side of an angle.

Proportions between three units

Because the circumference of the circle is 2π r, there are 2π radians in any circle (as radius must be equal to the arc intercepted by the angle). Since 2π radians $=360$ degrees then π radians $=180$ degrees To convert between degrees and radians, we can use the proportion
$\frac{D}{180}=\frac{R}{\pi}$,
where D stands for degrees and R stands for radians.
Also $1 G=\frac{1}{100} \times 90^{\circ}$ or $100 G=90^{\circ}$ or $200 G=180^{\circ}$
To convert between degrees and grades, we can use the proportion
$\frac{D}{180}=\frac{G}{200}$
where D stands for degrees and G stands for grades. The combined relation is

$$
\frac{D}{180}=\frac{R}{\pi}=\frac{G}{200}
$$

where D stands for degree, R for radians, G for grades and $\pi=3.14 \ldots$
This relation can be split into 3 relations:
$\frac{D}{180}=\frac{R}{\pi}, \frac{D}{180}=\frac{G}{200}$ and $\frac{R}{\pi}=\frac{G}{200}$

Example 2.8

Convert 90° to radians and grades;

$$
\begin{array}{ll}
\frac{D}{180}=\frac{R}{\pi} \Leftrightarrow \frac{90}{180}=\frac{R}{\pi} & \frac{D}{180}=\frac{G}{200} \Leftrightarrow \frac{90}{180}=\frac{G}{200} \\
\Leftrightarrow R=\frac{90 \pi}{180}=\frac{\pi}{2} \text { or } R=1.57 & \Leftrightarrow G=\frac{90 \times 200}{180}=100
\end{array}
$$

Thus, $90^{\circ}=\frac{\pi}{2}$ radians or 1.57 radians and $90^{\circ}=100$ grades

Example 2.9

Convert 20 grades to radians and degrees;

$$
\begin{array}{ll}
\frac{R}{\pi}=\frac{G}{200} \Leftrightarrow \frac{R}{\pi}=\frac{20}{200} & \frac{D}{180}=\frac{G}{200} \Leftrightarrow \frac{D}{180}=\frac{20}{200} \\
\Leftrightarrow R=\frac{20 \pi}{200}=\frac{\pi}{10} \text { or } R=0.314 & \Leftrightarrow D=\frac{20 \times 180}{200}=18
\end{array}
$$

Thus, 20 grades $=18 \mathrm{deg}$ and 20 grades $=\frac{\pi}{10}$ radians or 0.314 radians

Notice: Unit circle

quadrants that are numbered in an anticlockwise direction. Each quadrant measures 90 degrees, meaning that the entire circle measures 360 degrees or 2π radians.

Application Activity 2

1. Convert 220 grades to radians and degrees.
2. Convert 1240 degrees to radians and grades.
3. Convert $\frac{2}{5} \pi$ to degrees.
4. Convert 5.6^{0} to $d^{0} \mathrm{~m}$'s" system.

2.1.2. Trigonometric ratios of acute angles

Activity 2.3

Construct two right angled triangles, one of which is an enlargement of the other.
How is the side opposite to the right angle (or the longest side) called?
For both triangles, consider an angle and compute the following ratios.

- Opposite side to the considered angle and hypotenuse.
- Adjacent side and hypotenuse.
- Opposite side to the considered angle and adjacent side.

How can you conclude?
Consider the following circle with radius r.

In triangle OAB , we define the following six ratios:
The three primary trigonometric values

- The ratio $\frac{x}{r}$ is called cosine of the angle α, noted $\cos \alpha$.
- The ratio $\frac{y}{r}$ is called sine of the angle α, noted $\sin \alpha$.
- The ratio $\frac{y}{x}$ is called tangent of the angle α, noted $\tan \alpha$.

The three reciprocal trigonometric values

- Secant of the angle α, denoted $\sec \alpha$ is the ratio $\frac{r}{x}$,
- Cosecant of the angle α, denoted $\csc \alpha$ is the ratio $\frac{r}{y}$ and
- Cotangent of the angle α, denoted $\cot \alpha$ is the ratio $\frac{y_{x}}{y}$.

Observing the triangle in the above circle, we see that r is the hypotenuse, x is the adjacent side and y is the opposite side.

$$
\text { Then, } \sin \alpha=\frac{\text { opposite side }}{\text { hypotenuse }}, \cos \alpha=\frac{\text { adjacent side }}{\text { hypotenuse }}, \tan a=\frac{\text { opposite }}{\text { adjacent }} \text {. }
$$

$$
\csc a=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{1}{\sin a}, \sec a=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{1}{\cos a} \text { and } \cot a=\frac{\text { adjacent }}{\text { opposite }}=\frac{1}{\tan a}
$$

If the circle is unit, then;

$$
\cos \alpha=\text { adjacent side }=\frac{x-\text { coordinate }}{1} \Rightarrow|\cos \alpha| \leq 1 \text {, }
$$

$\sin \alpha=$ opposite side $=\frac{y-\text { coordinate }}{1} \Rightarrow|\sin \alpha| \leq 1$ and
$\tan \alpha=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{y-\text { coordinate }}{x-\text { coordinate }}$.

Example 2.10

Calculate the six trigonometric values for the diagram.

Solution

Use adjascent $=3$, opposite $=4$ and hypotenuse $=5$

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{4}{5} & \csc \theta=\frac{1}{\sin \theta}=\frac{5}{4} \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{3}{5} & \sec \theta=\frac{1}{\cos \theta}=\frac{5}{3} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{4}{3} & \cot \theta=\frac{1}{\tan \theta}=\frac{3}{4}
\end{array}
$$

Example 2.11

For each angle, calculate the reciprocal trigonometric values.

Angle	cosecant $=\frac{1}{\text { sine }}$ $=\frac{\text { hypotenuse }}{\text { opposite }}$	secant $=\frac{1}{\text { cosine }}$ $=\frac{\text { hypothenuse }}{\text { adjacent }}$	cotangent $=\frac{1}{\text { tangent }}$

\mathbf{B}	$\frac{5}{3}$	$\frac{5}{4}$	$\frac{4}{3}$
$\mathbf{C}=\mathbf{9 0}^{\mathbf{0}}$	$\frac{5}{5}=1$	$\frac{5}{0}$ which does not exist	$\frac{0}{5}=0$

Example 12

A positive angle, θ, is in the second quadrant. If $\cos \theta=-\frac{3}{4}$, find the values of the other primary trigonometric values.

Solution

Let h, x and y be hypotenuse, adjacent and opposite side respectively. $\cos \theta=-\frac{3}{4} \Leftrightarrow \frac{x}{h}=-\frac{3}{4}$.

Since $h>0$, thus $h=4$ and $x=-3$.
$h^{2}=x^{2}+y^{2} \Rightarrow 16=9+y^{2}$
$\Leftrightarrow y^{2}=7 \Rightarrow y= \pm \sqrt{7}$
As θ is in the second quadrant, $y>0 \Rightarrow y=\sqrt{7}$.
Hence the other primary trigonometric values are $\sin \theta=\frac{y}{h}=\frac{\sqrt{7}}{4}$ and $\tan \theta=\frac{x}{y}=-\frac{\sqrt{7}}{3}$.

Application Activity 3

For each angle, calculate the reciprocal trigonometric values.

Trigonometric Number of special Angles $30^{\circ}, 45^{\circ}, 60^{\circ}$

Activity 2.4

1. Consider the following diagram

From pythagoras theorem, definition of trigonometric ratios and given diagrams, find $\sin 45^{\circ}, \cos 45^{\circ}$ and $\tan 45^{\circ}$

2. Consider the following diagram

- From triangle OAC, find the six trigonometric values of 60°
-From triangle OAC, find the six trigonometric values of 30°

As these angles are often used, it is better to keep in your mind their trigonometric ratios in fraction form.

The triangle $A B C$ is an isosceles right angled triangle with $\mathrm{BC}=C A=1$ Hence $A B=\sqrt{2}$ and $\angle A=\angle B=45^{\circ}$.

Then

$$
\begin{aligned}
& \sin 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}=\cos 45^{\circ} \\
& \tan 45^{\circ}=1
\end{aligned}
$$

The figure ABC is an equilateral triangle with the length of side equal to 2 .
$A D$ is perpendicular bisector of $B C$, which implies $B D=1$ and
$A D=\sqrt{3}$, angle $B(\angle B)=60^{\circ}$ and angle $B A D(\angle B A D)=30^{\circ}$.
Then

$$
\begin{aligned}
& \sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2} \\
& \tan 60^{\circ}=\sqrt{3}, \tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
\end{aligned}
$$

Other special angles

Consider the following unit trigonometric circle.

From the figure, we have;

Angles	0^{0}	90^{0}	180^{0}	270^{0}	360^{0}
Sin	0	1	0	-1	0
Cos	1	0	-1	0	1

Application Activity 2.4

Find:

1. $\cot 45^{\circ}$
2. $\tan 45^{\circ}$
3. $\cot 60^{\circ}$
4. $\tan 0^{0}$
5. $\tan 90^{\circ}$
6. $\tan 180^{\circ}$
7. $\tan 270^{\circ}$
8. $\cot 0^{0}$
9. $\cot 90^{\circ}$
10. $\cot 180^{\circ}$
11. $\cot 270^{\circ}$

2.1.4. CAST Rule

Activity 2.5

Copy and complete the table to summarise the signs of the trigonometric values in each quadrant.

	Quadrant			
Value	I	$\boldsymbol{I I}$	III	$I V$
\sin	+	$?$	$?$	$?$
\cos	+	$?$	$?$	$?$
\tan	+	$?$	$?$	$?$

The following diagram shows which primary trigonometric values are positive in each quadrant. This is called the CAST rule.

Sine is positive in first and second quadrant but negative in third and fourth quadrant. Cosine is postive in the first and fourth quadrant but negative in second and third quadrant.

Tangent is positive in in the first and third quadrants but negative in second and fourth quadrant.

Application Activity 2.5

State in which of the four quadrants the angles θ must lie, given that
a) $\cos \theta$ is negative and $\sin \theta$ is positive.
b) $\tan \theta$ is negative and $\sin \theta$ is positive.
c) Both $\cot \theta$ and $\csc \theta$ are positive.
d) Both $\cos \theta$ and $\tan \theta$ are positive.
e) $\cot \theta$ is positive and $\csc \theta$ is negative.
f) $\sec \theta$ is negative and $\cot \theta$ is negative.

Trigonometric identities

Activity 2.6

Here is a right triangle.

In this triangle,
a) Find $\sin \theta, \cos \theta, \sin \alpha$ and $\cos \alpha$
b) Remembering that on this triangle, Pythagoras' theorem states that $r^{2}=x^{2}+y^{2}$ and dividing each term by r^{2} yields $\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}=1$

So express $\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}$ in terms of $\sin \theta$ and $\cos \theta$ and hence, find the values of $\cos ^{2} \alpha+\sin ^{2} \alpha$

Basic Rules

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Which is true for any value of θ
This is called the fundamental formula of trigonometry and is the most frequently used identity in trigonometry. Dividing this identity by $\cos ^{2} \theta$ and $\sin ^{2} \theta$ respectively gives;

$$
\begin{aligned}
1+\tan ^{2} \theta & =\sec ^{2} \theta \\
1+\cot ^{2} \theta & =\csc ^{2} \theta
\end{aligned}
$$

Example 2.13

Simplify $\frac{\csc x}{\sec x}$

Example 2.14

Simplify $\left(\frac{1}{\tan x}+\frac{1}{\cot x}\right) \sin x \cos x$

Solution

$\frac{\csc x}{\sec x}=\frac{\frac{1}{\sin x}}{\frac{1}{\cos x}}=\frac{\cos x}{\sin x}=\cot x$

Solution

$\left(\frac{1}{\tan x}+\frac{1}{\cot x}\right) \sin x \cos x=$
$=\left(\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}\right) \sin x \cos x$
$=\left(\frac{\cos x \cos x+\sin x \sin x}{\sin x \cos x}\right) \sin x \cos x$
$=\cos x \cos x+\sin x \sin x$
$=\cos ^{2} x+\sin ^{2} x$
$=1$

Application Activity 6

Simplify

1. $\sec ^{4} a\left(1-\sin ^{4} a\right)-2 \tan ^{2} a$
2. $\cot ^{2} a-\cot ^{2} b+\frac{\sin ^{2} a-\sin ^{2} b}{\sin ^{2} a \sin ^{2} b}$
3. $\frac{\cos ^{3} a+\cos a \sin ^{2} a+\sin a}{3 \cos ^{3} a+3 \cos a \sin ^{2} a-\sin a}$

2. Triangle and applications

Solving triangle

Solving a triangle is to find the length of its sides and measures of its angles. There are two methods for solving a triangle: cosine law and sine law.

Cosine law

Activity 7

Consider the figure below:

$C X$ is prependicular to side $A B$. Let $A B=c, A C=b, B C=a, C X=h$

1. In triangle $A X C$ find $\cos A$
2. In triangle $A X C$ use pythagoras' theorem to find h^{2}
3. In triangle $B C X$ use pythagoras' theorem to find h^{2}
4. Combine results obtained in 1,2 and 3 and give conclusion

Cosine law (also known as cosine formula or cosine rule) relates the lengths of sides to the cosine of one of the angles as follow.

Consider the $A B C$ below:

Example 2.15

How long is the side c in the following

The cosine law says that

$$
\left\{\begin{array}{l}
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
b^{2}=a^{2}+c^{2}-2 a c \cos B \\
c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{array}\right.
$$

Solution

The formula says

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos \mathrm{C} \\
a & =8, b=11 \text { and } C=37 \\
c^{2} & =8^{2}+(11)-2 \times 8 \times 11 \cos 37^{\circ} \\
& =64+121-176 \times \cos 37^{\circ} \\
c & =\sqrt{64+121-176 \times \cos 37^{\circ}} \\
& =6.67 \text { (to } 2 \text { decimal places) }
\end{aligned}
$$

Solution

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& c=8, a=9, b=5 \\
& 8^{2}=9^{2}+5^{2}-2 \cdot 9 \cdot 5 \cos C \\
& 64=106-90 \cos C
\end{aligned}
$$

$$
\cos C=\frac{42}{90}
$$

$$
C=\cos ^{-1}\left(\frac{42}{90}\right)
$$

$$
=62.2^{\circ} \text { (to1 decimal place) [Since we need the acute angle] }
$$

Application Activity 2.7

1. Find the length of the side $B C$ of triangle $A B C$ in which

$$
A B=7 \mathrm{~cm}, A C=9 \mathrm{~cm} \text { and } \angle B A C=71^{\circ}
$$

2. Find the length of the side $A B$ of triangle $A B C$ in which

$$
B C=15.3 \mathrm{~cm}, A C=9.4 \mathrm{~cm} \text { and } \angle A C B=121^{\circ}
$$

3. From triangle $A B C$ in which $A C=9.5 \mathrm{~cm}, B C=5.5 \mathrm{~cm}$ and $\angle A C B=145^{\circ}$, find the value of the angle at $A \& B$ then the length of side $A B$.

Sine law

Activity 2.8

Consider the following triangle

$C X$ is perpendicular to side AB and BY is perpendicular to side $A C$. Let $A B=c, A C=b, B C=a, C X=h$ and $B Y=k$

1. In triangle $B C X$ find $\sin B$. In triangle $A X C$ find $\sin A$. Deduce the relationship between side a and side c.
2. In triangle $A B Y$ find $\sin A$. In triangle $B C Y$ find sine C. Deduce the relationship between side b and side a.
3. Deduce relationship between three sides.

The sine law (or sine formula or sine rule) is an equation relating the lengths of the sides of a triangle to the sine of its angles.

If a, b, c are the lengths of the sides of a triangle and A, B, C are the opposite angles respectively, then the sine law is

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \text { or } \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Example 2.17

Calculate side c

Example 2.18

Calculate angle B

$$
\begin{aligned}
& \frac{b}{\sin B}=\frac{c}{\sin C} \\
& \Leftrightarrow \frac{4.7}{\sin B}=\frac{5.5}{\sin 63^{\circ}} \\
& \Leftrightarrow \sin B=\frac{4.7 \sin 63^{\circ}}{5.5} \\
& B=\sin ^{-1}\left(\frac{4.7 \sin 63^{\circ}}{5.5}\right) \\
& \left.=49.6^{\circ} \quad \text { (to } 1 \mathrm{dp}\right)
\end{aligned}
$$

Application Activity 2.28

1. Calculate, in $\mathbf{c m}$ to 3 significant figures, the length of the sides $A B$ of triangle $A B C$ in which $\angle A C B=62^{\circ}, \angle A B C=47^{\circ}$ and $A C=7 \mathrm{~cm}$
2. Find, in degrees to 1 decimal place, the size of the angles $C A B$ and $A C B$ in the triangle $A B C$, where $A C=4 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $\angle A B C=42^{\circ}$
3. Calculate, in $\mathbf{c m}$ to 3 significant figures, the length of the sides $A C$ of triangle $A B C$ in which $\angle B A C=71^{\circ}, \angle A C B=43^{\circ}$ and $B C=6.4 \mathrm{~cm}$

Applications

Many real situations involve right triangles. Using angles and trigonometric functions, we can solve problems involving right triangle. We have already seen how to solve a triangle.

1. Bearings and air navigation

We say that point B has a bearing of θ degrees from point A if the line connecting A to B makes an angle of θ with a vertical line drawn through A, the angle being measured clockwise.

If B is north of A then the bearing of A from B is 0°.

If B is east of A then the bearing of A from B is 90°.

Similarly, if B is south of A then the bearing of A from B is 180°, and if B is west of A then the bearing of A from B is 270°. The bearing can be any number between 0 and 360, because there are 360 degrees in a circle. We can also use right triangles to find distances using angles given as bearings.

In navigation, a bearing is the direction from one object to another. Further, angles in navigation and surveying may also be given in terms of north, east, south, and west. For example, $N 70^{\circ} E$ refers to an angle from the north, towards the east, while $N 70^{\circ} W$ refers to an angle from the north, towards the west.

$N 70^{\circ} W$ would result in an angle in the second quadrant.

Example 2.19

A ship travels on a $N 50^{\circ} E$ course. The ship travels until it is due north of a port which is 10 kilometers due east of the port from which the ship originated. How far did the ship travel?

Solution

The angle between d and 10 kilometres is the complement of 50° which is 40°.

$$
\cos 40^{\circ}=\frac{\text { adjacent }}{\text { hypothenuse }}=\frac{10}{d} \Leftrightarrow \cos 40^{\circ}=\frac{10}{d}
$$

$$
\Leftrightarrow d \cos 40^{\circ}=10
$$

$$
d=\frac{10}{\cos 40^{\circ}}
$$

$$
\approx 13.05 \mathrm{~km}
$$

Example 2.20

An airplane flies on a course of $S 30^{\circ} E$, for 150 km . How far south is the plane from where it originated?

Solution

Using known information, consider the following figure:

$$
\begin{aligned}
& \cos 30^{\circ}=\frac{\text { adjacent }}{\text { hypothenuse }} \\
& \cos 30^{\circ}=\frac{y}{150} \\
& 150 \cos 30^{\circ}=y \\
& y \approx 130 \mathrm{~km}
\end{aligned}
$$

Thus, the plane is at 130 km from where it originated.

2. Angle of elevation and angle of depression

You can use right triangles to find distances, if you know an angle of elevation or an angle of depression. The figure below shows each of these kinds of angles.

Suppose that an observer is standing at the top of a building and looking straight ahead at the birds (horizontal line). The observer must lower his/her eyes to see the car parked (slanting line). The angle formed between the two lines is called the angle of depression.

Suppose that an observer is standing at the top of a building and looking straight ahead at the birds (horizontal line). The observer must raise his/ her eyes to see the airplane (slanting line). The angle formed between the two lines is called the angle of elevation.

Example 2.21

The angle of elevation of the top of a pole measures 48° from a point on the ground 18 metres away from its base. Find the height of the flagpole.

Solution

Let x be the height of the flagpole. From the figure

$$
\begin{aligned}
& \tan 48^{\circ}=\frac{x}{18} . \\
& x=18 \tan 48^{\circ} \\
& =19.99 \\
& \approx 20
\end{aligned}
$$

So, the flagpole is about 20 metres high.

Example 2.22

An airplane is flying at a height of 2 kilometres above the level ground. The angle of depression from the plane to the foot of a tree is 15°. Find the distance that the air plane must fly to be directly above the tree.

Solution

Let x be the distance the airplane must fly to be directly above the tree. The level ground and the horizontal are parallel, so the alternate interior angles are equal in measure.

$$
\begin{gathered}
\tan 15^{\circ}=\frac{2}{x} \\
x=\frac{2}{\tan 15^{\circ}} \\
\approx 7.46
\end{gathered}
$$

So, the airplane must fly about 7.46 kilometres to be directly above the tree.

3. Inclined plane

An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle, with one end higher than the other, used as an aid for raising or lowering a load. On the inclined plane the weight of the object causes the object to push into and, the object slides, to rub against the surface of the incline. Also the weight causes the object to be pulled down the slant of the incline. The component that pushes the object into the surface is called the perpendicular force $\left(F_{\text {perp }}\right)$ and the component that pulls the object down the slanted surface is called the parallel force $\left(F_{p a r a}\right)$. The weight vector $\left(F_{g}\right)$ along its two components $F_{\text {perp }}$ and $F_{\text {para }}$ form a right triangle. Angle within this right triangle is
the same as the angle of the incline, as shown below

From the above figure
$\sin \theta=\frac{F_{\text {para }}}{F_{g}} \Rightarrow F_{\text {para }}=F_{g} \sin \theta \quad \cos \theta=\frac{F_{\text {perp }}}{F_{g}} \Rightarrow F_{\text {perp }}=F_{g} \cos \theta$
In above formula $F_{g}=m g$ where m is the mass of object and g is the acceleration of gravity $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

Then we can write

$$
\begin{aligned}
& F_{\text {para }}=m g \sin \theta \\
& F_{\text {perp }}=m g \cos \theta
\end{aligned}
$$

The unit of force is Newton (N)

Example 2.23

An object with a mass of 2.5 kg is placed on an inclined plane. The angle of the inclined is 20 degrees. What are the parallel force and the perpendicular force? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

Solution

$F_{\text {para }}=m g \sin \theta$
$F_{\text {perp }}=m g \cos \theta$

$$
\begin{aligned}
F_{\text {para }}= & =2.5 \times 9.8 \times \sin 20 & F_{\text {perp }} & =2.5 \times 9.8 \times \cos 20 \\
& =8.4 \mathrm{~N} & & =23 \mathrm{~N}
\end{aligned}
$$

Thus, the parallel force is 8.4 N and the perpendicular force is 23 N .

Unit summary

1. Trigonometry is the study of how the sides and angles of a triangle are related to each other. A rotation angle is formed by rotating an initial side through an angle, about a fixed point called vertex, to terminal position called terminal side. Angle is positive if rotated in a counterclockwise direction and negative when rotated clockwise.
2. The amount we rotate the angle is called the measure of the angle and is measured in: degree, grade or radian. $\frac{D}{180}=\frac{R}{\pi}=\frac{G}{200}$, where D stands for degree, R for radians, G for grades and $\pi=3.14 \ldots$
3. In a triangle whose hypotenuse r , the adjacent side x and the opposite side y :

$$
\begin{aligned}
& \sin \alpha=\frac{\text { oppositeside }}{\text { hypotenuse }}, \cos \alpha=\frac{\text { adjacent side }}{\text { hypotenuse }}, \tan a=\frac{\text { opposite }}{\text { adjacent }} \\
& \csc a=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{1}{\sin a}, \sec a=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{1}{\cos a} \\
& \text { and } \cot \alpha=\frac{\text { adjacent }}{\text { opposite }}=\frac{1}{\tan \alpha}
\end{aligned}
$$

4. The unit circle is a circle of radius one centered at the origin $(0,0)$ in the Cartesian coordinate system in the Euclidian plane. In the unit circle, the coordinate axes delimit four quadrants that are numbered in an anticlockwise direction. Each quadrant measures 90 degrees, means that the entire circle measures 360 degrees or radians.

5. The table of trigonometric number of remarkable angles

α	0°	30°	45°	60°	90°	180°	270°	360°
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	does not exist	0	does not exist	0
cotan α	does not exist	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	does not exist	0	does not exist

6. Trigonometric identities

$$
\begin{aligned}
& \cos ^{2} \theta+\sin ^{2} \theta=1 \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

7. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are the lengths of the sides of a triangle and $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are the opposite angles respectively, then cosine law says that

$$
\left\{\begin{array}{l}
a^{2}=b^{2}+c^{2}-2 b c \cos \hat{A} \\
b^{2}=a^{2}+c^{2}-2 a c \cos \hat{B} \\
c^{2}=a^{2}+b^{2}-2 a b \cos \hat{C}
\end{array}\right.
$$

8. If a, b, c are the lengths of the sides of a triangle and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the opposite angles respectively, then the sine law is

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \text { or } \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

9. Applications

Many real situations involve right triangle. Using angles and trigonometric functions, we can solve problems involving right triangle like:

- Bearings and air navigation
- Angles of elevation and angle of depression
- Inclined plane.

End Unit assesment

1. Verify the following identities;
a) $\frac{\sin a}{1-\cos a}=\frac{1+\cos a}{\sin a}$
b) $\sec ^{2} a+\csc ^{2} a=\left(\sec ^{2} a\right) \csc ^{2} a$
c) $\sec ^{4} a-\tan ^{4} a=\sec ^{2} a+\tan ^{2} a$
d) $\sqrt{\frac{1-\cos a}{1+\cos a}}$
2. If $\sin \theta=0.954$ and $\cos \theta=0.3$, find the value of $\tan \theta$.
3. If sine $\mathrm{A}=\frac{3}{5}$ and A is obtuse, find the values of $\cos A$ and $\tan A$.
4. Suppose that the button \cos on your calculator was broken, but the \sin button was working. Explain how you could work out $\cos 14^{\circ}$.
5. Work out the side below;
6. Work out angle P° in the diagram below;

7. Find the missing side in the diagram below:

8. A ladder of length $8 m$ rests against a wall so that the angle between the ladder and the wall is 31 degrees. How far is the base of the ladder from the wall?
9. A point P is $90 m$ away from a vertical flagpole, which is $11 m$ high. What is the angle of elevation to the top of the flagpole from P ?
10. A ship sails 200 km on a bearing of 243.7 degrees
a) How far south has it travelled?
b) How far west has it travelled?
11. An aircraft flies 500 km on a bearing of 100 degrees and then 600 km on a bearing of 160 degrees. Find the distance and bearing of the finishing point from the starting point.
12. A plane is flying at a constant height of 8000 m . It flies vertically above me and 30 seconds later the angle of elevation is 74 degrees. Find the speed of the plane in metres/second.
13. Convert $81^{\circ} 13^{\prime} 08{ }^{\prime \prime}$ to decimal degree.
14. Convert 117.6572^{0} to $\mathrm{d}^{0} \mathrm{~m}^{\prime} \mathrm{s} "$ system.
15. Convert 2.937^{0} to $\mathrm{d}^{0} \mathrm{~m}$ ' s" system.
16. Convert $75^{\circ} 19^{\prime} 35^{\prime \prime}$ to the nearest tenth degree.

Unit

 3
Hhear quadratic equationsand thequalities

3.0 Introductory activity

1. By the use of library and computer lab, do the research and explain the linear equation.
2. If x is the number of pens for a learner, the teacher decides to give him/her two more pens. What is the number of pens will he/she have?
3. Complete the following table called table of value to indicate the number $y=f(x)=x+2$ of pens for a learn who had x pens for $x \geq 0$.

x	-2	-1	0	1	2	3	4
$y=f(x)=x+2$			2				
(x, y)			$(0,2)$				

a) Use the coordinates of points obtained in the table and complete them in the Cartesian plan.
b) Join all points obtained. What is the form of the graph obtained?
c) Suppose that instead of writing $f(x)=x+2$ you write the equation $y=x+2$. Is this equation a linear equation or a quadratic equation? What is the type of the inequality $x+2 \geq 0$
4. Find out an example of problem from the real life situation that can be solved by the use of linear equation in one unknown
5. Smoke jumpers are fire fighters who parachute into areas near forest fires. Jumpers are in free fall from the time they jump from a plane until they open their parachutes. The function $y=-16 t^{2}+1600$ gives a jumper's height in metre after seconds for a jump from.
a) How long is free fall if the parachute opens at 1000 m ?
b) Complete a table of values for $t=0,1,2,3,4,5$ and 6.

objectives

After completing this unit, I will be able to:
(1) Solve equation of the first degree and second degree.
(1) Solve inequality of the first degree and second degree.
(1) Solve a system of linear equations.
(1) Use equations and inequalities to solve word problems.
(1) Apply equations and inequalities in real life problems.

3.1. Equations and inequalities in one unknown

Equations

Activity 3.1.1

Find the value of x such that the following statements are true;

1. $x+1=5$
2. $2 x-4=0$
3. $2 x+1=-5$
4. $x+34=0$
5. $x-1=2$
6. $x-4=10$

An equation is a statement that the values of two mathematical expressions are equal. Consider the statement $x-3=0$. This statement is true when $x=3$. So $x=3$ is called the solution of the statement $x-3=0$. The number 3 is called the root of the equation. Thus, to find a solution to the given equation is to find the value that satisfies that equation.

To do this, rearrange the given equation such that variables will be in the same side and constants in the other side and then find the value of the variable.

Example 3.1

Solve in set of real numbers:
a) $x+6=14$
b) $4 x+5=20+x$
c) $x=14-x$

Solution

a) $x+6=14$
b) $4 x+5=20+x$
c) $x=14-x$
$\Leftrightarrow x=14-6$
$\Leftrightarrow 4 x-x=20-5$
$\Leftrightarrow 2 x=14$
$\Rightarrow x=8$
$\Leftrightarrow 3 x=15$
$\Rightarrow x=7$
$S=\{8\}$
$\Leftrightarrow x=\frac{15}{3}$
$S=\{7\}$
$\Rightarrow x=5$
$S=\{5\}$

Example 3.2

Mugisha's target heart rate is 130 beats $/ \mathrm{min}$. This is 58beats $/ \mathrm{min}$ more than his resting heart rate. Find his resting heart rate.

Solution

Target rate is 58 more than resting rate.
Let r be resting heart rate.
Equation is $130=58+r \Rightarrow r=72$
Therefore, Mugisha's resting heart rate is 72 beats/min.

Application Activity 3.1.1

I. Solve in set of real numbers:

1. $x+5=9$
2. $6 x+5=5$
3. $x-2=3$
4. $25=2 x-5$
5. $-5=x-1$
6. $3 x-4=2 x+1$
7. $x+5=9 x+1$
8. $-6 x-5=9$
9. $x+100=99$
10. $6 x-51=9$
II. Uwamahoro measures her heart rate at 123 beats per minute. This is 55beats per minute more than her resting heart rate r. Write and solve an equation to find Uwamahoro's resting heart rate.

Venus's average distance from the Sun is 108 million km . this distance is 42 million km less than the average distance from the Sun to Earth. Write and solve an equation to find Earth's average distance d from the Sun.

Equations products / quotients

Activity 3.1.2

State the method you can use to solve the following equations

1. $(x+1)(x-1)=0$
2. $(2 x-3) x=0$
3. $\frac{2 x-3}{x}=\frac{1}{2}$

When we are given the equation $A \cdot B=0$ then $A=0$ or $B=0$.
Also $\frac{A}{B}=\frac{C}{D} \Leftrightarrow A \cdot D=B \cdot C$

Example 3.3

Solve in set of real numbers
a) $(3 x+6)(x-5)=0$
b) $(-x+2)(2 x+3)=0$
c) $\frac{2 x+5}{x-6}=4, x \neq 6$

Solution

a) $(3 x+6)(x-5)=0$
b) $(-x+2)(2 x+3)=0$ $2 x+3=0$ $\begin{array}{lll}3 x+6=0 & & \\ x=-2 & \text { or } & \\ x=5\end{array}$
$-x+2=0$
$x=2$ or $\quad x=-\frac{3}{2}$ $S=\left\{-\frac{3}{2}, 2\right\}$

$$
\text { c) } \begin{aligned}
& \frac{2 x+5}{x-6}=4, x \neq 6 \\
& \Leftrightarrow 2 x+5=4(x-6) \\
& \Leftrightarrow 2 x+5=4 x-24 \\
& \Leftrightarrow-2 x=-29 \\
& \Rightarrow x=\frac{29}{2} \\
& S=\left\{\frac{29}{2}\right\}
\end{aligned}
$$

Application Activity 3.1.2

Solve in set of real numbers:
a) $(3 x+6)(x-5)=0$
b) $\frac{3}{x-6}=\frac{4}{2 x-5}$
c) $(x+8)(2 x+1)=0$
d) $\frac{-x+5}{x-3}=\frac{4}{7}$

Inequalities

Activity 3.1.3

Find the value(s) of x such that the following statements are true

1. $x<5$
2. $x>0$
3. $-4<x<12$
4. $x \leq 100$

Suppose that we have the inequality $x+3<10$. In this case, we have an inequality with one unknown. Here, the real value of x satisfies that this inequality is not unique. For example, 1 is a solution but 3 is also a solution. In general, all real numbers less than 7 are solutions. In this case, we will have many solutions combined in an interval.

Now, the solution set of $x+3<10$ is an open interval containing all real numbers less than 7 whereby 7 is excluded. How?

We solve this inequality as follows;
$x+3<10$
$\Leftrightarrow x<10-3$
$\Leftrightarrow x<7$
And then $S=]-\infty, 7[$

Recall that

- When the same real number is added or subtracted from each side of the inequality, the direction of the inequality is not changed.
- The direction of the inequality is not changed if both sides are multiplied or divided by the same positive real number and is reversed if both sides are multiplied or divided by the same negative real number.

Example 3.4

Solve in set of real numbers:
a) $-2 x+5 \leq 0$
b) $x-4>0$
c) $2(x+5)>2 x-8$
d) $2 x+5 \leq 2 x+4$

Solution

a) $-2 x+5 \leq 0$
$\Leftrightarrow-2 x \leq-5$
$\Leftrightarrow x \geq \frac{5}{2} \quad S=\left[\frac{5}{2},+\infty[\right.$
b) $x-4>0$

$$
\Leftrightarrow x>4 \quad S=] 4,+\infty[
$$

c) $2(x+5)>2 x-8$
$\Leftrightarrow 2 x+10>2 x-8$
$\Leftrightarrow 0 x>-18$
Since any real number times zero is zero and zero is greater than -18 , then the solution set is the set of real numbers.

$$
S=\mathbb{R}=]-\infty,+\infty[
$$

d) $2 x+5 \leq 2 x+4 \quad 0 x \leq-1$

Since any real number times zero is zero and zero is not less or equal to, -1 then the solution set is the empty set. $S=\varnothing$

Example 3.5

Food can be labelled low sodium only if it meets the requirement established by the federal government.

Use the table to write an inequality for this requirement.

Label	Definition
Sodium-free food.	Less than 5 mg per serving
Very low sodium food	At most 35 mg per serving
Low-sodium food	At most 140 mg per serving

Solution

A serving of low sodium food has at most 140 mg per serving.
Let s be the number of milligrams of sodium in a serving of low sodium food.

Therefore, $s \leq 140$

Application Activity 3.1.3

I. Solve the following inequalities

1) $x+6<15$
2) $2 x-4<16$
3) $5 x \leq 25$
4) $3 x-5>21$
5) $2 x+8 \geq 18$
6) $6+x<10$
7) $5 x \leq 5 x+2$
8) $3 x-5>2+3 x$
9) $2 x+1 \geq 12+3 x$
10) $6-x<9$
II) Use the table in example 4. A certain food is labelled sodium free. Write an inequality for n, the number of milligrams of sodium in a serving of this sodium-free food.
III) High-fiber foods have at least 5 g of fiber per serving. Write an inequality to represent this situation. Let f be the number of grams of fiber per serving of high -fiber food.

Inequalities products / quotients

Activity 3.1.4

State the method you can use to solve the following inequalities

1. $(x+1)(x-1)<0$
2. $\frac{2 x-3}{x}<0$

Suppose that we need to solve the inequality of the form $(a x+b)(c x+d)<0$
. For this inequality, we need the set of all real numbers that make the left hand side to be negative. Suppose also that we need to solve the inequality of the form $(a x+b)(c x+d)>0$. For this inequality, we need the set of all real numbers that make the left hand side to be positive.

We follow the following steps:
a) First we solve for $(a x+b)(c x+d)=0$
b) We construct the table called sign table, find the sign of each factor and then the sign of the product or quotient if we are given a quotient.

For the quotient, the value that makes the denominator to be zero is always excluded in the solution. For that value, we use the symbol || in the row of quotient sign.
c) Write the interval considering the given inequality sign.

Example 3.6

Solve in set of real numbers;
a) $(3 x+7)(x-2)<0$
b) $\frac{x+4}{2 x-1} \geq 0$

Solution

a) $(3 x+7)(x-2)<0$

Start by solving $(3 x+7)(x-2)=0$

$$
\begin{array}{lll}
3 x+7=0 & & x-2=0 \\
\Leftrightarrow x=-\frac{7}{3} & \text { or } & \Leftrightarrow x=2
\end{array}
$$

Then next is to find the sign table.

x	$-\infty$		$-\frac{7}{3}$		2		$+\infty$
$3 x+7$		-	0	+		+	
$x-2$	-		-	0	+		
$(3 x+7)(x-2)$		+	0	-	0	+	

Since the inequality is $(3 x+7)(x-2)<0$, we will take the interval where the product is negative. Thus, $S=]-\frac{7}{3}, 2[$
b) $\frac{x+4}{2 x-1} \geq 0 \quad x+4=0 \Rightarrow x=-4 \quad 2 x-1=0 \Rightarrow x=\frac{1}{2}$

x	$-\infty$		-4		$\frac{1}{2}$		$+\infty$	
$x+4$		-	0	+		+		
$2 x-1$		-		-	0	+		
$\frac{x+4}{2 x-1}$		+	0	-	$\\|$	+		

$S=]-\infty,-4] \cup] \frac{1}{2},+\infty[$

Application Activity 3.1.4

Solve the following inequalities:

1. $(x-3)(x+3)>0$
2. $(4 x-3)(x-1) \leq 0$
3. $(x-2)(-x-5)(-x-1)<0$
4. $\frac{3 x+4}{-x-1}>0$
5. $\frac{2 x-6}{x+2} \geq 0$

Inequalities involving absolute value

Activity 3.1.5

State the set of all real numbers whose number of units from zero, on number line, are

1. greater than 4
2. less than 6

Hint Draw a number line
Recall that absolute value of a number is the number of units from zero to a number line. That is, $|x|=k$ means k units from zero (k is a positive real number or zero)

For all real number x and $k \geq 0$
a) $|x|<k \Leftrightarrow-k<x<k$
b) $|x-a|<k \Leftrightarrow a-k<x<a+k$
c) $|x|>k \Leftrightarrow x>k$ or $x<-k$
d) $|x-a|>k \Leftrightarrow x>a+k$ or $x<a-k$

Example 3.7

Find the solution set of the inequality $|3 x-15|<3$

Solution

$\mid 3 \overline{x-15 \mid<3} \Leftrightarrow-3<3 x-15<3$
$-3+15<3 x<3+15 \Leftrightarrow 12<3 x<18$ or $\frac{12}{3}<x<\frac{18}{3} \Leftrightarrow 4<x<6$
Solution set is $S=\{x \in I R: 4<x<6\}$

Example 3.8

Solve the inequality $|x+4|>2$

Solution

$$
\begin{aligned}
|x+4|>2 & \Leftrightarrow x+4>2 \text { or } x+4<-2 \\
& \Leftrightarrow x>2-4 \text { or } x<-2-4 \\
& \Leftrightarrow x>-2 \text { or } x<-6
\end{aligned}
$$

This is the set

Example 3.9

Find the solution set of the inequality $|x-3| \geq 1$

Solution

$$
\begin{array}{rrr}
\mid \overline{x-3 \mid} \geq 1 & \Leftrightarrow x-3 \geq 1 & x-3 \leq-1 \\
\Leftrightarrow x \geq 4 & x \leq 2
\end{array}
$$

Number line:

Example 3.10

A technician measures an electric current which is 0.036 A with a possible error of $\pm 0.002 \mathrm{~A}$. Write this current, i , as an inequality with absolute values.

Solution

The possible error of ± 0.002 A means that the difference between the actual current and the value of 0.036 A cannot be more than 0.002 A .

So the values of i we have can be expressed as:

$$
0.034 \leq i \leq 0.038
$$

We can simply write this as:
Number line: $|i-0.036| \leq 0.002$

Application Activity 3.1.5

Solve the following inequalities:

1) $|2 x-1|>5$
2) $2\left|\frac{2 x}{3}+1\right| \geq 4$
3) $|3-2 x|<3$

Equations and inequalities in real life problems

Activity 3.1.6

How can you do the following?

1. A father is 30 years older than his son. 5 years ago he was four times as old as his son. What is the son's age?
2. Betty spent one fifth of her money on food. Then she spent half of what was left for a haircut. She bought a present for 7,000 francs. When she got home, she had 13,000 francs left. How much did Betty have originally?

Equations can be used to solve real life problems.

To solve real life problems, follow the following steps:
a) Identify the variable and assign symbol to it.
b) Write down the equation.
c) Solve the equation.
d) Interpret the result. There may be some restrictions on the variable.

Example 3.11

Kalisa is four times as old as his son, and his daughter is 5 years younger than his brother. If their combined ages amount to 73 years, find the age of each person.

Solution

Let x stands for the age of the son. Then $4 x$ is the age of Kalisa and $x-5$ is the age of daughter. So that $x+4 x+x-5=73$.
$6 x=78 \Rightarrow x=13$
The age of the son is $x=13$ years old.
The age of Kalisa is $4 x=52$ years old.
The age of daughter is $x-5=8$ years old.

Example 3.12

Concrete is a mixture of cement, sand and aggregate. If 4 kg of sand and 6 kg of aggregate are used with each kg of cement, how many kg of each are required to make $1,210 \mathrm{~kg}$?

Solution

Let x be the amount of cement. Then, the amount of sand is $4 x$ and the amount of aggregate is $6 x$

$$
\begin{aligned}
& x+4 x+6 x=1,210 \\
& \Leftrightarrow 11 x=1210 \\
& \Rightarrow x=\frac{1,210}{11}=110
\end{aligned}
$$

Thus,

110 kg of cement are required.
440 kg of sand are required.
660 kg of aggregate are required.

Example 3.13

John has 1,260,000 Francs in an account with his bank. If he deposits 30,000 Francs each week into the account, how many weeks will he need to have more than $1,820,000$ Francs on his account?

Solution

Let x be the number of weeks
We have;
total amount of deposits to be made + the current balance $>$ total amount wanted.

That is;
$30,000 x+1,260,000>1,820,000$
$30,000 x>1,820,000-1,260,000$
30,000x > 560,000

$$
x>\frac{560,000}{30,000} \approx 19
$$

Thus, he needs atleast 19 weeks.

Example 3.14

The yield from 50 acres of wheat was more than 1,250 tones. What was the yield per acre?

Solution

Let m be the yield.
Total number of yield $>$ number of tones.

That is;
$50 m>1,250$
$m>\frac{1,250}{50}$
$m>25$
The yield per acre was more than 25
tones.

Application Activity 3.1.6

1. The sum of two numbers is 25 . One of the numbers exceeds the other by 9 . Find the numbers.
2. The difference between the two numbers is 48 . The ratio of the two numbers is 7:3. What are the two numbers?
3. The length of a rectangle is twice its breadth. If the perimeter is 72 metre, find the length and breadth of the rectangle.
4. Aaron is 5 years younger than Ron. Four years later, Ron will be twice as old as Aaron. Find their present ages.
5. Sam and Alex play in the same soccer team. Last Saturday Alex scored 3 more goals than Sam, but together they scored less than 9 goals. What are the possible number of goals Alex scored?
6. Joe enters a race where he has to cycle and run. He cycles a distance of 25 km , and then runs for 20 km . His average running speed is half of his average cycling speed. Joe completes the race in less than $21 / 2$ hours, what can we say about his average speeds?

3.2. Simultaneous equations in two unknowns

Consider the following system
$\left\{\begin{array}{l}a_{1} x+b_{1} y=c_{1} \\ a_{2} x+b_{2} y=c_{2}\end{array}\right.$
If $c_{1}=c_{2}=0$, the system becomes $\left\{\begin{array}{l}a_{1} x+b_{1} y=0 \\ a_{2} x+b_{2} y=0\end{array}\right.$ and it is said to be homogeneous system.
Algebraically, there are three methods for solving this system: combination method, substitution method and Cramer's rule.

Note

- The solution $\frac{b}{0}, b \neq 0$ means impossible
- The solution $\frac{0}{0}$ means indeterminate

Combination (or addition or elimination) method

Activity 3.2.1

For each of the following, find two numbers to be multiplied to the equations such that one variable will be eliminated;

1. $\left\{\begin{array}{l}x+y=12 \\ 2 x+y=4\end{array}\right.$
2. $\left\{\begin{array}{l}3 x-y=20 \\ -x+2 y=4\end{array}\right.$
3. $\left\{\begin{array}{l}x-2 y=10 \\ 2 x+y=14\end{array}\right.$

We try to combine the two equations such that we will remain with one equation with one unknown. We find two numbers to be multiplied on each equation and then add up such that one unknown is cancelled.

Example 3.15

Solve the following system:
$\left\{\begin{array}{l}x+y=1 \\ 2 x+3 y=2\end{array}\right.$

Example 3.16

Solve the following system:

$$
\left\{\begin{array}{l}
3 x-2 y=5 \\
y+4 x=1
\end{array}\right.
$$

Solution

$$
\left\{\begin{array}{l}
x+y=1 \\
2 x+3 y=2
\end{array} \left\lvert\, \begin{array}{c}
-2 \\
1
\end{array} \Leftrightarrow \frac{\left\{\begin{array}{c}
-2 x-2 y=-2 \\
2 x+3 y=2
\end{array}\right.}{y=0}\right.\right.
$$

$$
\begin{aligned}
x+y & =1 \Leftrightarrow x=1-y=1 \\
S & =\{(1,0)\}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x-2 y=5 \\
y+4 x=1
\end{array} \left\lvert\, \begin{array}{l}
1
\end{array} \Leftrightarrow\left\{\begin{array}{l}
3 x-2 y=5 \\
2 y+8 x=2
\end{array}\right.\right.\right. \\
& 11 x=7 \Rightarrow x=\frac{7}{11}
\end{aligned}
$$

Example 3.17
Solve the following system:
$\left\{\begin{array}{l}y-2 x=2 \\ 2 y-4 x=-3\end{array}\right.$

Example 3.18

Solve the following system:
$\left\{\begin{array}{l}x+y=2 \\ 2 x+2 y=4\end{array}\right.$

Solution

$\left\{\begin{array}{l}y-2 x=2 \\ 2 y-4 x=-3\end{array} \left\lvert\,-2 \Leftrightarrow \frac{\left\{\begin{array}{l}-2 y+4 x=-4 \\ 2 y-4 x=-3\end{array}\right.}{0 x=-7}\right.\right.$ impossible
No solution

Solution

$\left\{\begin{array}{l}x+y=2 \\ 2 x+2 y=4\end{array} \left\lvert\,-2 \Leftrightarrow \frac{\left\{\begin{array}{l}-2 x-2 y=-4 \\ 2 x+2 y=4\end{array}\right.}{0 x=0}\right.\right.$ indeterminate
There is infinite number of solutions.

Application Activity 3.2.1

Use elimination method to solve;

1. $\left\{\begin{array}{l}x-y=3 \\ 2 x-2 y=6\end{array}\right.$
2. $\left\{\begin{array}{l}-x+4 y=0 \\ 2 x-7 y=0\end{array}\right.$
3. $\left\{\begin{array}{l}-3 y+4 x=10 \\ x+3 y=5\end{array}\right.$
4. $\left\{\begin{array}{l}5 y+3 x=9 \\ 10 x+6 y=10\end{array}\right.$
5. $\left\{\begin{array}{l}3 x-4 y=1 \\ x-3 y=2\end{array}\right.$
6. $\left\{\begin{array}{l}x-4 y=1 \\ x-y=2\end{array}\right.$

Substitution method

Activity 3.2.2

In each of the following systems find the value of one variable from one equation and substitute it in the second.

1. $\left\{\begin{array}{l}x-y=5 \\ x+2 y=6\end{array}\right.$
2. $\left\{\begin{array}{l}x+2 y=10 \\ -3 x+2 y=12\end{array}\right.$
3. $\left\{\begin{array}{l}x+y=-10 \\ 4 x+y=0\end{array}\right.$

We find the value of one unknown in one equation and put it in another equation to find the value of the remaining unknown.

Example 3.19

Solve the following system:

$$
\left\{\begin{array}{l}
x+y=1 \\
2 x+3 y=2
\end{array}\right.
$$

solution

From the first equation, $x=1-y$. Put this value in second equation:

$$
\begin{aligned}
& 2(1-y)+3 y=2 \Leftrightarrow 2-2 y+3 y=2 \\
& \Leftrightarrow y=2-2 \Rightarrow y=0 \\
& x=1-y \Rightarrow x=1-0=1 \\
& S=\{(1,0)\}
\end{aligned}
$$

Example 3.20

Solve the following system:

$$
\left\{\begin{array}{l}
3 x-2 y=5 \tag{1}\\
y+4 x=1
\end{array}\right.
$$

solution

From (2): $y=1-4 x$
(3) in (1):

$$
\begin{equation*}
3 x-2(1-4 x)=5 \Leftrightarrow 3 x-2+8 x=5 \tag{3}
\end{equation*}
$$

$\Leftrightarrow 11 x=7 \Rightarrow x=\frac{7}{11}$

$$
y=1-4 x=1-4\left(\frac{7}{11}\right)=\frac{11-28}{11}=-\frac{17}{11}
$$

$$
S=\left\{\left(\frac{7}{11},-\frac{17}{11}\right)\right\}
$$

Example 3.21

Solve the following system:

$$
\left\{\begin{array}{l}
y-2 x=2 \\
2 y-4 x=-3
\end{array}\right.
$$

solution

$y=2+2 x, 2(2+2 x)-4 x=-3$
$\Leftrightarrow 4+4 x-4 x=-3,0 x=-7$ impossible
This system is inconsistent. Thus, there is no solution.

Example 3.22

Solve the following system:
$\left\{\begin{array}{l}x+y=2 \\ 2 x+2 y=4\end{array}\right.$
$x=2-y, 2(2-y)+2 y=4$
$\Leftrightarrow 4-2 y+2 y=4$
$\Leftrightarrow 0 y=0 \Rightarrow y=\frac{0}{0}$ indeterminate
This system is a dependent system. Thus, there is an infinity solutions.

Application Activity 3.2.2

Use elimination method to solve;

1. $\left\{\begin{array}{l}x-y=-4 \\ 3 x-3 y=-12\end{array}\right.$
2. $\left\{\begin{array}{l}-x+y=0 \\ x-7 y=0\end{array}\right.$
3. $\left\{\begin{array}{l}-2 y+4 x=15 \\ x+y=6\end{array}\right.$
4. $\left\{\begin{array}{l}5 y-3 x=9 \\ 10 x-6 y=10\end{array}\right.$
5. $\left\{\begin{array}{l}3 x-2 y=1 \\ 2 x-3 y=0\end{array}\right.$
6. $\left\{\begin{array}{l}x-2 y=1 \\ 2 x+y=2\end{array}\right.$

Cramer's rule (determinants method)

Activity 3.2.3

Find the following determinants.
Hint: $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}$

1. $\left|\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right|$
2. $\left|\begin{array}{cc}3 & 7 \\ -2 & 1\end{array}\right|$
3. $\left|\begin{array}{cc}10 & -1 \\ -5 & 3\end{array}\right|$

In order to use Cramer's rule, x 's must be in the same position and y 's in the same position.

Consider the following system:
$\left\{\begin{array}{l}a_{1} x+b_{1} y=c_{1} \\ a_{2} x+b_{2} y=c_{2}\end{array}\right.$
To use Cramer's rule, first we find;
$\Delta=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}$,
$\Delta_{x}=\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|=c_{1} b_{2}-c_{2} b_{1}$ and
$\Delta_{y}=\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|=a_{1} c_{2}-a_{2} c_{1} \quad$ Then $x=\frac{\Delta_{x}}{\Delta}, y=\frac{\Delta_{y}}{\Delta}$

Example 3.23

Solve the following system:
$\left\{\begin{array}{l}x+y=1 \\ 2 x+3 y=2\end{array}\right.$

solution

$\Delta=\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|=(1)(3)-(2)(1)=1$
$\Delta_{x}=\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|=(1)(3)-(2)(1)=1$
$\Delta_{y}=\left|\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right|=(1)(2)-(2)(1)=0$
$x=\frac{\Delta_{x}}{\Delta}=1, y=\frac{\Delta_{y}}{\Delta}=0$
$S=\{(1,0)\}$

Example3.24

Solve the following system:
$\left\{\begin{array}{l}3 x-2 y=5 \\ y+4 x=1\end{array}\right.$

solution

First rearrange the system such that x 's will be in the same position and y 's will be in the same position.
$\left\{\begin{array}{l}3 x-2 y=5 \\ 4 x+y=1\end{array}\right.$
$\Delta=\left|\begin{array}{cc}3 & -2 \\ 4 & 1\end{array}\right|=(3)(1)-(4)(-2)=11$
$\Delta_{x}=\left|\begin{array}{cc}5 & -2 \\ 1 & 1\end{array}\right|=(5)(1)-(1)(-2)=7$
$\Delta_{y}=\left|\begin{array}{ll}3 & 5 \\ 4 & 1\end{array}\right|=(3)(1)-(4)(5)=-17$
$x=\frac{\Delta_{x}}{\Delta}=\frac{7}{11}, y=\frac{\Delta_{y}}{\Delta}=-\frac{17}{11}$
$S=\left\{\left(\frac{7}{11},-\frac{17}{11}\right)\right\}$

Example 3.25

Solve the following system:
$\left\{\begin{array}{l}y-2 x=2 \\ 2 y-4 x=-3\end{array}\right.$

solution

$\left\{\begin{array}{l}\overline{y-2 x}=2 \\ 2 y-4 x=-3\end{array} \Leftrightarrow\left\{\begin{array}{l}-2 x+y=2 \\ -4 x+2 y=-3\end{array}\right.\right.$
$\Delta=\left|\begin{array}{ll}-2 & 1 \\ -4 & 2\end{array}\right|=(-2)(2)-(-4)(1)=0$
$\Delta_{x}=\left|\begin{array}{cc}2 & 1 \\ -3 & 2\end{array}\right|=(2)(2)-(-3)(1)=7$

$$
\begin{array}{r}
\Delta_{y}=\left|\begin{array}{cc}
-2 & 2 \\
-4 & -3
\end{array}\right|= \\
x=\frac{\Delta_{x}}{\Delta}=\frac{7}{0}, y=\frac{\Delta_{y}}{\Delta}=\frac{14}{0}
\end{array}
$$

This system is inconsistent. Thus, there is no solution.

Example 3.26

$\left\{\begin{array}{l}x+y=2 \\ 2 x+2 y=4\end{array}\right.$

solution

Solve the following system:
$\Delta=\left|\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right|=(1)(2)-(2)(1)=0$
$\Delta_{x}=\left|\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right|=(2)(2)-(4)(1)=0$
$\Delta_{y}=\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|=(1)(4)-(2)(2)=0$
$x=\frac{\Delta_{x}}{\Delta}=\frac{0}{0}, y=\frac{\Delta_{y}}{\Delta}=\frac{0}{0}$
This system is a dependent system. Thus, there is an infinity solutions.

Application Activity 3.2.3

Use Cramer's rule to solve;

1. $\left\{\begin{array}{l}x+y=2 \\ 4 x-4 y=8\end{array}\right.$
2. $\left\{\begin{array}{l}-x+y=0 \\ x+2 y=3\end{array}\right.$
3. $\left\{\begin{array}{l}-y+4 x=8 \\ x+2 y=3\end{array}\right.$
4. $\left\{\begin{array}{l}5 y+3 x=2 \\ 10 x+6 y=0\end{array}\right.$
5. $\left\{\begin{array}{l}3 x+3 y=1 \\ 2 x-3 y=4\end{array}\right.$
6. $\left\{\begin{array}{l}3 x-5 y=10 \\ 2 x+y=12\end{array}\right.$

Graphical method

Activity 3.2.4

Given the system
$\left\{\begin{array}{l}3 x+y=10 \\ x-y=2\end{array}\right.$

1. For each equation, choose any two values of \boldsymbol{x} and use them to find values of y ; this gives you two points in the form (x, y).
2. Plot the obtained points in xy plane and join these points to obtain the lines. Two points for each equation give one line.
3. What is the point of intersection for two lines?

Some systems of linear equations can be solved graphically. To do this, follow the following steps:

1. Find at least two points for each equation.
2. Plot the obtained points in xy plane and join these points to obtain the lines. Two points for each equation give one line.
3. The point of intersection for two lines is the solution for the given system

Example 3.27

Solve the following system by graphical method

$$
\left\{\begin{array}{l}
x+y=4 \\
x-y=2
\end{array}\right.
$$

Solution

For $x+y=4$

x	-3	5
y	7	-1

For $x-y=2$

x	-3	5
y	-5	3

Graph

The two lines intersect at point (3,1). Therefore the solution is $S=\{(3,1)\}$.

Example 3.27

Solve the following equations graphically if possible

$$
\left\{\begin{array}{l}
y-2 x=2 \\
2 y=4 x-3
\end{array}\right.
$$

Solution

For $y-2 x=2$

x	-2	2
y	-2	6

For $2 y=4 x-3$

x	-2	2
y	-5.5	2.5

Graph

We see that the two lines are parallel and do not intersect. Therefore there is no solution. Note that the gradients of the two lines are the same.

Example 3.29

Solve the following equations graphically if possible

$$
\left\{\begin{array}{l}
x+y=2 \\
2 y=4-2 x
\end{array}\right.
$$

Solution

For $x+y=2$

x	-2	3
y	4	-1

For $2 y=4-2 x$

x	-2	3
y	4	-1

Graph

We see that the two lines coincide as a single line. In such case there is an infinite number of solutions.

Application Activity 3.2.4

Solve the following system by graphical method

1. $\left\{\begin{array}{l}3 x+y=1 \\ x-y=-1\end{array}\right.$
2. $\left\{\begin{array}{l}2 x+y=3 \\ 6 x+3 y=9\end{array}\right.$
3. $\left\{\begin{array}{l}2 x-y=3 \\ 6 x-3 y=0\end{array}\right.$

Solving word problems using simultaneous equations

Activity 3.2.5

How can you do the following question?
Margie is responsible for buying a week's supply of food and medication for the dogs and cats at a local shelter. The food and medication for each dog costs twice as much as those supplies for a cat. She needs to feed 164 cats and 24 dogs. Her budget is $\$ 4240$. How much can Margie spend on each dog for food and medication?

To solve word problems, follow the following steps:
a) Identify the variables and assign symbol to them.
b) Express all the relationships, among the variables using equations.
c) Solve the simultaneous equations.
d) Interpret the result. There may be some restrictions on the variables.

Example 3.30

Peter has 23 coins in his pocket. Some of them are 5 Frw coins and the rest are 10 Frw coins. The total value of coins is 205 Frw . Find the number of 10 Frw coins and the number of 5 Frw coins.

Solution

Let x be the number of 10 Frw coins and y be the number of 5 Frw coins. Then,
$\left\{\begin{array}{l}x+y=23 \\ 10 x+5 y=205\end{array}\right.$
$\Leftrightarrow\left\{\begin{array}{l}x+y=23 \\ 2 x+y=41\end{array}\right.$
From first equation, $x=23-y$.
In second equation,

$$
\begin{aligned}
& 2(23-y)+y=41 \\
& 46-2 y+y=41 \\
& \Leftrightarrow-y=-5 \Rightarrow y=5 \text { and } x=23-5=18
\end{aligned}
$$

Thus, there are 18 coins of 10 Frw and 5 coins of 5 Frw .

Example 3.31

Cinema tickets for 2 adults and 3 children cost 1,200 Frw . The cost for 3 adults and 5 children is 1,900 Frw. Find the cost of an adult ticket and the cost of a child ticket.

Solution

Let x be the cost of an adult ticket and y be the cost of a child ticket, then

$$
\left\{\begin{array}{l}
2 x+3 y=1200 \\
3 x+5 y=1900
\end{array}\right.
$$

Solve for x and y
From first equation: $2 x=1200-3 y \Rightarrow x=\frac{1200-3 y}{2}$
Put this value in second equation;
$3\left(\frac{1200-3 y}{2}\right)+5 y=1900$
$\Leftrightarrow \frac{3600-9 y}{2}+5 y=1900$
$\Leftrightarrow 3600-9 y+10 y=3800$
$\Rightarrow y=200$
And $x=\frac{1200-600}{2}=300$
Thus, the cost of an adult ticket is 300 Frw and the cost of a child ticket is 200 Frw

Application Activity 3.2.5

1. A test has twenty questions worth 100 points. The test consists of True/ False questions worth 3 points each and multiple choice questions worth 11 points each. How many multiple choice questions are on the test?
2. Two small pitchers and one large pitcher can hold 8 cups of water. One large pitcher minus one small pitcher constitutes 2 cups of water. How many cups of water can each pitcher hold?
3. The state fair is a popular field trip destination. This year, the senior class at High School A and the senior class at High School B both planned trips there. The senior class at High School A rented and filled 8 vans and 8 buses with 240 students. High School B rented and filled 4 vans and 1 bus with 54 students. Every van had the same number of students in it as did the buses. Find the number of students in each van and in each bus.
4. The sum of the digits of a certain two-digit number is 7. Reversing its digits increases the number by 9 . What is the number?
5. A boat traveled 210 miles downstream and back. The trip downstream took 10 hours. The trip back took 70 hours. What is the speed of the boat in still water? What is the speed of the current?

3.3 Quadratic equations and inequalities

Equations of the type $a x^{2}+b x+c=0(a \neq 0)$ are called quadratic equations.

There are three main ways of solving such equations:
a) By factorizing or finding square roots
b) By the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
c) By completing the square

Quadratic equations by factorizing or finding square roots

Activity 3.3.1

Smoke jumpers are firefighters who parachute into areas near forest fires. Jumpers are in free fall from the time they jump from a plane until they open their parachutes. The function $y=-16 t^{2}+1600$ gives a jumper's height y in metre after t seconds for a jump from 1600 m . How long is free fall if the parachute opens at 1000 m ?

The method of solving quadratic equations by factorization should only be used if is readily factorized by inspection.
The method of solving quadratic equations by factorization should only be used if is readily factorized by inspection.

Example 3.32
Solve in $\mathbb{R}: x^{2}+2 x-24=0$

Solution

$x^{2}+2 x-24=0 \Leftrightarrow(x+6)(x-4)=0$
So, either $x+6=0$ or $x-4=0$ giving $x=-6$ or $x=4$.

Example 3.33

Solve in $\mathbb{R}: 5 x^{2}+7 x-6=0$

Solution

$$
\begin{gathered}
5 x^{2}+7 x-6=0 \Leftrightarrow 5 x^{2}-3 x+10 x-6=0 \\
\Leftrightarrow x(5 x-3)+2(5 x-3)=0 \\
\Leftrightarrow(5 x-3)(x+2)=0
\end{gathered}
$$

So, either $5 x-3=0$ or $x+2=0$ giving $x=\frac{3}{5}$ or $x=-2$.

Application Activity 3.3.1

Solve in set of real numbers the following equations by factorization

1. $x^{2}+6 x+8=0$
2. $x^{2}-2 x=3$
3. $2 x^{2}+6 x=-4$
4. $12 x^{2}-154=0$

Quadratic equations by completing the square

Activity 3.3.2

a) By completing the square, show that $y=a x^{2}+b x+c$ can be written as

$$
y=a\left(x+\frac{b}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right) \text { if } a \neq 0
$$

b) Use the result in a) to solve

$$
2 x^{2}-7 x-4=0
$$

Before solving quadratic equations by completing the square, let's look at some examples of expanding a binomial by squaring it.
$(x+3)^{2}=x^{2}+6 x+9$.
$(x-5)^{2}=x^{2}-10 x+25$
Notice that the constant term $\left(k^{2}\right)$ of the trinomial is the square of half of the coefficient of trinomial's x-term. Thus, to make the expression $x^{2}+k x$ a perfect square, you must add $\left(\frac{1}{2} k\right)^{2}$ to the expression.
When completing the square to solve quadratic equation, remember that you must preserve the equality. When you add a constant to one side of the equation, be sure to add the same constant to the other side of equation.

Example 3.34

Solve $x^{2}-4 x+1=0$ by completing the square

Solution

$x^{2}-4 x+1=0$	Rewrite original equation
$x^{2}-4 x=-1$	Subtract 1 from both sides.
$x^{2}-4 x+(-2)^{2}=1+(-2)^{2}$ Add $(-2)^{2}=4$ to both sides.	
$(x-2)^{2}=3$	Binomial squared.
$x-2= \pm \sqrt{3}$	Take square roots.
$x=2 \pm \sqrt{3}$	Solve for x.

The equation has two solutions: $x=2+\sqrt{3}$ and $x=2-\sqrt{3}$

Example 3.35

Solve $4 x^{2}+2 x-5=0$ by completing the square

Solution

$4 x^{2}+2 x-5=0$
$4 x^{2}+2 x=5$
$x^{2}+\frac{1}{2} x=\frac{5}{4}$
$x^{2}+\frac{1}{2} x+\left(\frac{1}{4}\right)^{2}=\frac{5}{4}+\frac{1}{16}$
$\left(x+\frac{1}{4}\right)^{2}=\frac{21}{16}$
$x+\frac{1}{4}= \pm \frac{\sqrt{21}}{2}$
$x=-\frac{1}{4} \pm \frac{\sqrt{21}}{2}$

Rewrite original equation
Add 5 to both sides.

Divide both sides by 4 .

Add $\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$ to both sides.

Binomial squared.

Take square roots.

Solve for x.

The equation has two solutions: $x=-\frac{1}{4}+\frac{\sqrt{21}}{2}$ and $x=-\frac{1}{4}-\frac{\sqrt{21}}{2}$

Application Activity 3.3.2

Solve in set of real numbers the following equations by completing the square

1. $x^{2}+5 x-24=0$
2. $x^{2}-13 x+36=0$
3. $2 x^{2}-x-6=0$
4. $3 x^{2}+5 x-12=0$

Quadratic equations by the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Activity 3.3.3

Think about two numbers a and b (a can be equal to b) such that

1. $\mathrm{a}+\mathrm{b}=4 \mathrm{and} \mathrm{ab}=4$
2. $a+b=5$ and $a b=6$
3. $a+b=7$ and $a b=12$
4. $a+b=\frac{3}{2}$ and $a b=\frac{1}{2}$
5. $a+b=-2$ and $a b=-35$

Let x and y be two real numbers such that $x+y=s$ and $x y=p . \mathrm{s}$ is the sum and p is the product of two roots.

Here $y=s-x$ and $x(s-x)=p$. Or $s x-x^{2}=p$ or $x^{2}-s x+p=0$. This equation is said to be quadratic equation and s, p are the sum and product of the two roots respectively.

Quadratic equation or equation of second degree has the form where the sum of two roots is $s=-\frac{b}{a}$ and their product is $p=\frac{c}{a}$. To solve this equation, first we find the discriminant (delta): $\Delta=b^{2}-4 a c$ In fact,
$a x^{2}+b x+c=0$
$\Leftrightarrow a x^{2}+b x=-c$
$\Leftrightarrow a\left(x^{2}+\frac{b}{a} x\right)=-$ c as $a \neq 0$
$\Leftrightarrow x^{2}+\frac{b}{a} x=-\frac{c}{a}$ as $a \neq 0$ (making the coefficient of x^{2} one)
$\Leftrightarrow\left(x+\frac{b}{2 a}\right)^{2}=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}} \leftarrow \frac{b^{2}}{4 a^{2}}$ is the square of half the coefficient of x,
$\left(\frac{b}{a}\right)$, in $x^{2}+\frac{b}{a} x$

$$
\begin{aligned}
& \Leftrightarrow\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
& \Rightarrow x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& \Leftrightarrow x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& \Leftrightarrow x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2|a|} \\
& \Leftrightarrow x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}, \text { if } a>0 \\
& \text { or } x+\frac{b}{2 a}=\mp \frac{\sqrt{b^{2}-4 a c}}{2 a}, \text { if } a<0
\end{aligned}
$$

Simply,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Let $\Delta=b^{2}-4 a c$

There are three cases:

- If $\Delta>0$, there are two distinct real roots:

$$
x_{1}=\frac{-b+\sqrt{\Delta}}{2 a} \text { and } x_{2}=\frac{-b-\sqrt{\Delta}}{2 a}
$$

- If $\Delta=0$, there is one repeated real root (one double root):

$$
x_{1}=x_{2}=\frac{-b}{2 a}
$$

- If $\Delta<0$, there is no real root.

Example 3.36

Solve in $\mathbb{R}: x^{2}+2 x+1=0$

Solution

$x^{2}+2 x+1=0$
$\Delta=2^{2}-4(1)(1)=0$
$x_{1}=x_{2}=\frac{-2}{2}=-1$
$s=\{-1\}$

Example 3.37

Solve in $\mathbb{R}: x^{2}-7 x+5=-5$

Solution

$\overline{x^{2}-7 x+5}=-5$
$\Leftrightarrow x^{2}-7 x+10=0$
As we saw it, in this equation the sum of two roots is 7 and the product is 10 . To find those roots we can think about two numbers such that their sum is 7 and their product is 10 . Those numbers are 2 and 5 . Thus $S=\{2,5\}$
Or
$\Delta=(-7)^{2}-4(1)(10)=9$
$x_{1}=\frac{-(-7)+\sqrt{9}}{2}=5, x_{1}=\frac{-(-7)-\sqrt{9}}{2}=2$
$S=\{2,5\}$

Example 3.38

Solve in $\mathbb{R}: 2 x^{2}+3 x+4=0$

Solution

$2 x^{2}+3 x+4=0$
$\Delta=3^{2}-4(2)(4)=-23$
Since $\Delta<0$, there is no real root.
Then, $S=\varnothing$

Example 3.39

For what value of k will the equation $x^{2}+2 x+k=0$ have one double roots? Find that root.

Solution

For one double root $\Delta=0$.
$\Delta=4-4 k$
$4-4 k=0 \Rightarrow k=1$
Thus, the value of k is 1 .
That root is $x=-\frac{2}{2}=-1$.

Appication Activity 3.3.3

Solve in set of real numbers;

1. $x^{2}-12 x+11=0$
2. $x^{2}+2 x=35$
3. $x^{2}-3 x=-11$
4. $3 x^{2}-7 x+2=0$
5. $x^{2}-121=0$

Notice:

This method of solving quadratic equations by the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ helps us to write down factor form of a quadratic expression.

Factor form of a quadratic expression

Activity 3.3.4

In each of the following, remove brackets and discuss about the result and original form.

1. $(x+4)(x-1)$
2. $3(x-2)(x-5)$
3. $(x+2)(x+1)$
4. $6(x-3)(x-8)$
5. $(x-6)(x+2)$

A quadratic expression $a x^{2}+b x+c$ can be written in factor form. To do this, solve for $a x^{2}+b x+c=0$ to find the 2 real roots.
If the two real roots exist, i.e $\Delta \geq 0$, then the factor form is $a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)$. If there is no real root, i.e $\Delta<0$, then the expression $a x^{2}+b x+c$ has no factor form.

If there is no real root, i.e , then the expression has no factor form.

Example 3.40

Put the following expression in factor form $x^{2}-5 x+6$

Example 3.41

Put the following expression in factor form $a^{2}-4 a+4$

Solution

$x^{2}-5 x+6=0$
$\Delta=(-5)^{2}-4(1)(6)=1$
$x_{1}=\frac{5+1}{2}=3, x_{2}=\frac{5-1}{2}=2$
The factor form is
$x^{2}-5 x+6=(x-3)(x-2)$

Solution

$$
\begin{aligned}
& a^{2}-4 a+4 \\
& \Delta=16-16=0 \\
& a_{1}=a_{2}=\frac{4}{2}=2
\end{aligned}
$$

The factor form is
$a^{2}-4 a+4=(a-2)(a-2)$

Example 3.42

Put the following expression in factor form $2 t^{2}+3 t+10$

Solution

$2 t^{2}+3 t+10=0$
$\Delta=9-80=-71$
Since $\Delta<0$, the expression
$2 t^{2}+3 t+10$ has no factor form.

Application Activity 3.3.4

Find the factor form of

1. $x^{2}-10 x+16$
2. $x^{2}-x+1$
3. $6 x^{2}-5 x+1$
4. $x^{2}+4 x-5$
5. $4 x^{2}+7 x-2$

Equations Reducible to Quadratic Form

a) Biquadratic equations

Activity 3.3.5

In each of the following rewrite the given equation letting

1. $x^{4}-2 x^{2}+2=0$
2. $6 x^{4}+5 x^{2}+1=0$
3. $x^{4}-13 x^{2}+36=0$

Biquadratic equations are the equations that if we look at them in the correct light we can make them look like quadratic equations. A biquadratic equation has the form $a x^{2 n}+b x^{n}+c=0$

To solve a biquadratic equations, change $x^{2}=y$. This generates a quadratic equation with the unknown, $y: a y^{2}+b y+c=0$

For every positive value of y there are two values of \mathbf{x}, find: $x= \pm \sqrt{y}$

Example 3.43

Solve $x^{4}-7 x^{2}+12=0$

Solution

Here $x^{4}=\left(x^{2}\right)^{2}$
Let $y=x^{2}$, then $y^{2}=x^{4}$
Now, the given equation becomes $y^{2}-7 y+12=0$
$y^{2}-7 y+12=(y-3)(y-4)=0 \Rightarrow y=3$ or $y=4$
But $y=x^{2}$
$y=3: 3=x^{2} \Rightarrow x= \pm \sqrt{3}$
$y=4: 4=x^{2} \Rightarrow x= \pm 2$
So, we have four solutions to the original equation, $x= \pm 2$ and $\pm \sqrt{3}$.
So, the basic process is to check that the equation is reducible to a quadratic form, then make a quick substitution to turn it into a quadratic equation. In most cases, to make the check that it's reducible to quadratic form, all we really need to do is to check that one of the exponents is twice the other.

Application Activity 3.3.5

Solve in set of real numbers

1. $x^{4}-13 x^{2}+36=0$
2. $x^{6}-7 x^{3}+6=0$
3. $x^{4}-10 x^{2}+9=0$
4. $x^{4}-61 x^{2}+900=0$

b) Nested radicals

Activity 3.3.6

Let $\sqrt{4+\sqrt{12}}=\sqrt{x}+\sqrt{y}$
By squaring both sides find the values of x and y .
A nested radical is a radical expression (one containing a square root sign, cube root sign, etc) that contains (nests) another radical expression. Examples include $\sqrt{5-2 \sqrt{5}}$ and more complicated ones such as $\sqrt[3]{2+\sqrt{3}+\sqrt[3]{4}}$.
We will see the nested radicals of the form $\sqrt{A \pm \sqrt{B}}$
The radical like of $\sqrt{A \pm \sqrt{B}}$ can be transformed and give $\sqrt{x} \pm \sqrt{y}$. The process is called denesting.

To do this we square both side of the relation $\sqrt{A \pm \sqrt{B}}=\sqrt{x} \pm \sqrt{y}$ and we find the values of x and y. That is,
$\sqrt{A \pm \sqrt{B}}=\sqrt{x} \pm \sqrt{y} \Leftrightarrow A \pm \sqrt{B}=(\sqrt{x} \pm \sqrt{y})^{2}$
$\Leftrightarrow A \pm \sqrt{B}=x \pm 2 \sqrt{x y}+y$
$\Leftrightarrow A \pm \sqrt{B}=x+y \pm \sqrt{4 x y}$
$\Leftrightarrow\left\{\begin{array}{l}A=x+y \\ \frac{B}{4}=x y\end{array}\right.$

Example 3.44

Transform the radical $\sqrt{9+\sqrt{80}}$ to simple radical

Solution

Let $\sqrt{9+\sqrt{80}}=\sqrt{x}+\sqrt{y}$

$$
\begin{aligned}
& (\sqrt{9+\sqrt{80}})^{2}=(\sqrt{x}+\sqrt{y})^{2} \\
& \Leftrightarrow 9+\sqrt{80}=x+2 \sqrt{x y}+y
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow 9+\sqrt{80}=x+y+\sqrt{4 x y} \\
& \left\{\begin{array} { l }
{ x + y = 9 } \\
{ 4 x y = 8 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x+y=9 \\
x y=20
\end{array}\right.\right.
\end{aligned}
$$

We need two numbers such that their sum is 9 and their product is 20 $\Rightarrow x=4, y=5$ or $x=5, y=4 \quad$ Thus, $\sqrt{9+\sqrt{80}}=\sqrt{4}+\sqrt{5}$

Example 3.45

Transform the radical $\sqrt{3-\sqrt{5}}$ to simple radical.

Solution

Let $\sqrt{3-\sqrt{5}}=\sqrt{x}-\sqrt{y}$
$(\sqrt{3-\sqrt{5}})^{2}=(\sqrt{x}-\sqrt{y})^{2}$
$\Leftrightarrow 3-\sqrt{5}=x-2 \sqrt{x y}+y$
$\Leftrightarrow 3-\sqrt{5}=x+y-\sqrt{4 x y}$
$\left\{\begin{array}{l}x+y=3 \\ 4 x y=5\end{array} \Rightarrow\left\{\begin{array}{l}x+y=3 \\ x y=\frac{5}{4}\end{array}\right.\right.$
We need two numbers such that their sum is 3 and their product is $\frac{5}{4}$
$\Rightarrow x=\frac{5}{2}, y=\frac{1}{2} \quad$ or $x=\frac{1}{2}, y=\frac{5}{2}$
Because of negative sign between \sqrt{x} and \sqrt{y}, we take the values of x and y such that $\sqrt{x}>\sqrt{y}$ as $\sqrt{3-\sqrt{5}}>0$. Then $\sqrt{3-\sqrt{5}}=\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}$

Application Activity 3.3.6

Solve in set of real numbers the following equations

1. $\sqrt{6-2 \sqrt{5}}$
2. $\sqrt{6-2 \sqrt{5}}$
3. $\sqrt{5+2 \sqrt{6}}$

c) Irrational equations

Activity 3.3.7

Consider the following equation

$$
\sqrt{x+8}=x+2
$$

1. Square both sides of the equation
2. Solve the obtained equation
3. Verify that the obtained solutions are solution of the original equation and then give the solution set of the original equation (given equation)
Irrational equation is the equation involving radical sign. We will see the case the radical sign is a square root.
To solve an irrational equation, follow these steps:
a) Isolate a radical in one of the two members and pass it to another member of the other terms which are also radical.
b) Square both members.
c) Solve the equation obtained.
d) Check if the solutions obtained verify the initial equation.
e) If the equation has several radicals, repeat the first two steps of the process to remove all of them.

Example 3.46

Solve in set of real numbers

$$
1+\sqrt{x^{2}-9}=x
$$

Solution

$\sqrt{x^{2}-9}=x-1 \Leftrightarrow x^{2}-9=(x-1)^{2}$
After developing and simplifying we find $x=5$. We test this value and we see that it is not false. The original equation has solution $x=5$
Thus, $S=\{5\}$

Example 3.47

Solve in set of real numbers

$$
\sqrt{2 x+8}+\sqrt{x+5}=7
$$

Solution

$$
\begin{aligned}
& \overline{\sqrt{2 x+8}}+\sqrt{x+5}=7 \Leftrightarrow \sqrt{2 x+8}=7-\sqrt{x+5} \\
& 2 x+8=(7-\sqrt{x+5})^{2}
\end{aligned}
$$

After developing and simplifying $x-46=-14 \sqrt{x+5}$. Squaring again, we obtain $x^{2}-288 x+1136=0$
Either $x=4$ or $x=248$, but 4 is the only solution of the original equation.
Thus, $S=\{4\}$

Application Activity 3.3.7

Solve in set of real numbers the following equations

1. $\sqrt{x+7}=13$
2. $\sqrt{x-4}=-7$
3. $2-\sqrt{x+3}=5$

Quadratic inequalities

Activity 3.3.8

Find the range where

1. $(x-2)(x+1)$ is positive \quad 2. $(x-1)(x-2)$ is negative

We saw how to solve the inequality product like $(a x+b)(c x+d)>0$. If we find the product of the left hand side, the result will be a quadratic expression of the form ($a x^{2}+b x+c$).
Then to solve the inequality of the second degree like $a x^{2}+b x+c>0$ we need to put the expression $a x^{2}+b x+c$ in factor form and use the method to solve inequality product.
If the expression to be transformed in factor form has no factor form, we find its sign by replacing the unknown by any chosen real number.

We may find that the expression is always positive or always negative. If the expression to be transformed in factor form has a repeated root, it is zero at that root and positive or negative elsewhere depending on coefficient of x^{2}.

Example 3.48

$x^{2}-2 x+1 \leq 0$

Solution

$x^{2}-2 x+1=0$
$x_{1}=x_{2}=1$ and $x^{2}-2 x+1=(x-1)(x-1)$
The expression $x^{2}-2 x+1$ is zero for $x=1$ otherwise it is positive since $x^{2}-2 x+1=(x-1)(x-1)=(x-1)^{2}$
The solution is only $x=1$ since we are given $x^{2}-2 x+1 \leq 0$.

Example 3.49

$3 x^{2}+x-14<0$

Solution

$3 x^{2}+x-14=0$
$x_{1}=-\frac{7}{3} \quad$ or $\quad x_{2}=2$
$x^{2}+x-14=3\left(x+\frac{7}{3}\right)(x-2)=(3 x+7)(x-2)$

x	$-\infty$		$-\frac{7}{3}$		2	
$3 x+7$		-	0	+		$+\infty$
$x-2$		-		-	0	+
$3 x^{2}+x-14$		+	0	-	0	+

Thus, $S=]-\frac{7}{3}, 2[$

Example 3.50

$x^{2}-4 x+4 \geq 0$

Solution

$x^{2}-4 x+4=0$
$x_{1}=x_{2}=2$ and $x^{2}-4 x+4=(x-2)(x-2)$ or $x^{2}-4 x+4=(x-2)^{2}$
The expression $x^{2}-4 x+4$ is zero for $x=2$ and positive elsewhere. Then, $S=\mathbb{R}$

Example 3.51

$2 x^{2}+2 x \leq 4 x-10$

Solution

$2 x^{2}+2 x \leq 4 x-10$
$\Leftrightarrow 2 x^{2}+2 x-4 x+10 \leq 0$
$\Leftrightarrow 2 x^{2}-2 x+10 \leq 0$
$\Leftrightarrow x^{2}-x+5 \leq 0$
$x^{2}-x+5=0$
$\Delta=1-20=-19$
The expression $x^{2}-x+5$ cannot be factorized. Let $x=0 \quad 0^{2}-0+5=5>0$
. Then the expression $x^{2}-x+5$ is always positive and the solution set is an empty set.

Example 3.52

$-2 x^{2}+2 x-10<0$

Solution

$$
\begin{aligned}
& -2 x^{2}+2 x-10<0 \\
& x^{2}-x+5>0 \\
& x^{2}-x+5=0 \\
& \Delta=1-20=-19
\end{aligned}
$$

The expression $x^{2}-x+5$ cannot be factorized. Let $x=0 \quad 0^{2}-0+5=5>0$. Then the expression $x^{2}-x+5$ is always positive and the solution set is the set of real numbers.

Application Activity 3.3.8

Solve in set of real numbers

1. $x^{2}-10 x-20>0$
2. $6 x^{2}-5 x+1 \leq 0$
3. $x^{2}+2 x+12>0$
4. $x^{2}+x+18<0$
5. $x^{2}-17 x-72 \leq 0$

3.4. Applications

Activity 3.4.1

1. Explain how linear equations can be used in daily life1.
2. Give three examples of where you think quadratic equations are useful in daily life

a) Supply and demand analysis

Market equilibrium is when the amount of product produced is equal to the amount of quantity demanded. We can see equilibrium on a graph when the supply function and the demand function intersect, like shown on the graph below. Max can then figure out how to price his new lemonade products based on market equilibrium.

Example 3.53

Assume that in a competitive market the demand schedule is and the supply schedule is $p=60+0.4 q$ ($\mathrm{p}=$ price, $\mathrm{q}=$ quantity). If the market is in equilibrium then the equilibrium price and quantity will be where the demand and supply schedules intersect. As this will correspond to a point which is on both the demand schedule and the supply schedule the equilibrium values of p and q will be such that both equations hold. To find the equilibrium quantity set $420-0.2 q=60+0.4 q$

$$
\begin{aligned}
& 420-0.2 q=60+0.4 q \\
& \Leftrightarrow 420-60=0.6 q+0.2 q \\
& \Leftrightarrow 360=0.6 q \Rightarrow q=600
\end{aligned}
$$

Then, $q=600$ is the equilibrium quantity.
But, $p=420-0.2 q$ then
$p=420-0.2(600)=300$
Thus, $p=300$ is the equilibrium price.

b) Linear motion

Linear motion is a motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion with constant velocity or zero acceleration; non uniform linear motion with variable velocity or non-zero acceleration.

Linear motion of the ball

Example 3.54

Some examples of linear motion are given below:

1. An athlete running 100 m along a straight track
2. Parade of the soldiers
3. Car moving at constant speed
4. A bullet targeted from the pistol
5. A man swimming in the straight lane
6. Train moving in a straight track
7. Object dropped from a certain height
8. Balancing equation

c) Balancing equation

In chemistry, to balance the chemical equation we set the reactants and products equal to each other.

Example 3.55

To balance the chemical equation $\mathrm{Zn}+\mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$, we do the following:

There are two chlorines on the right but only one on the left; and the chlorine is in a single chemical species on each side. Put a 2 in front of the HCl on the left hand side.
$\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
We see that the equation is now balanced, by comparing the numbers of atoms in the reactants and products, with one Zn on each side, two hydrogen on each side and two chlorines on each side.

d)Health care

In medicine, equations are used for modelling medication situations and solve related problems.

Example 3.56

NSHUTI works as a nurse. According to her daily schedule, she has to give Medication dosage to 60 patients' daily. One day she took 1 longer than the expected, and therefore she gave Medication dosage to 3patients less per hour than anticipated.

How long did she expected to give Medication dosage to 60 patients?

Solution

Let t be the number of hours she expected.

- Then $t+1$ is the total number of hours actually took to complete the Medication.
- As she gave Medication dosage to 3 patients less per hour it means $\frac{60}{t}-3$
- The number of patients to the total number of hours $\frac{60}{t+1}$
- Using the above details, we have equation $\frac{60}{t}-3=\frac{60}{t+1}$
- Solving the equation,

$$
\begin{aligned}
& \frac{60-3 t}{t}=\frac{60}{t+1} \\
& (60-3 t)(t+1)=60 t \\
& 60 t+60-3 t^{2}-3 t=60 t \\
& 3 t^{2}+3 t-60=0 \\
& t^{2}+t-20=0 \\
& t^{2}+5 t-4 t-20=0 \\
& t(t+5)-4(t+5)=0 \\
& (t+5)(t-4)=0 \\
& t=-5 \text { or } t=4
\end{aligned}
$$

- Ignore the negative value as it is not valid.
- Therefore, she expected to give Medication dosage to 60 patients in 4 hours.

e) Figuring out a profit

Sometimes calculating a business' profit requires using a quadratic function. If you want to sell something (even something as simple as lemonade) you need to decide how many things to produce so that you'll make a profit.

Example 3.57

Let us say that you're selling glasses of lemonade, and you want to make 12 glasses. You know, however, that you'll sell a different number of glasses depending on how you set your price. At 100 francs per glass, you are not likely to sell any, but at 10 francs per glass, you will probably sell 12 glasses in less than a minute. So, to decide where to set your price, use P as a variable. Let's say you estimate the demand for glasses of lemonade to be at $12-\mathrm{P}$. Your revenue, therefore, will be the price times the number of glasses sold: $\mathrm{P}(12-\mathrm{P})$, or $12 \mathrm{P}-\mathrm{P}^{2}$. Using however much your lemonade costs to produce, you can set this equation equal to that amount and choose a price from there.

f) Quadratics in Athletics

In athletic events that involve throwing things, quadratic equations are highly useful.

Example 3.58

Say, for example, you want to throw a ball into the air and have your friend catch it, but you want to give her the precise time it will take the ball to arrive.

To do this, you would use the velocity equation, which calculates the height of the ball based on a parabolic (quadratic) equation. So, say you begin by throwing the ball at 3 meters, where your hands are. Also assume that you can throw the ball upward at 14 meters per second, and that the earth's gravity is reducing the ball's speed at a rate of 5 meters per second squared. This means that we can calculate the height, using the variable t for time, in the form of $h=3+14 t-5 t^{2}$. If your friend's hands are also at 3 metres in height, how many seconds will it take the ball to reach her? To answer this, set the equation equal to $3=\mathrm{h}$, and solve for t. The answer is approximately 2.8 seconds.

g) Finding a Speed

Quadratic equations are also useful in calculating speeds. Avid kayakers, for example, use quadratic equations to estimate their speed when going up and down a river.

Example 3.59

Assume a kayaker is going up a river, and the river moves at $2 \mathrm{~km} / \mathrm{hr}$. Say he goes upstream -- against the current -- at 15 km , and the trip takes him 3 hours to go there and return. Remember that time $=$ distance $/$ speed. Let $\mathrm{v}=$ the kayak's speed relative to land, and let $\mathrm{x}=$ the kayak's speed in the water. So, we know that, while traveling upstream, the kayak's speed is $\mathrm{v}=\mathrm{x}-2$ (subtract 2 for the resistance from the river current), and while going downstream, the kayak's speed is $\mathrm{v}=\mathrm{x}+2$. The total time is equal to 3 hours, which is equal to the time going upstream plus the time going downstream, and both distances are 15 km . Using our equations, we know that 3 hours $=\frac{15}{(x-2)}+\frac{15}{(x+2)}$. Once this is expanded algebraically,
we get $3 x^{2}-30 x-12=0$ or $x^{2}-10 x-4=0$. Solving for x , we know that the kayaker moved his kayak at a speed of $10.39 \mathrm{~km} / \mathrm{hr}$

Application Activity 3.4.1

1) A pot of water has a temperature of $25^{\circ} \mathrm{C}$. How many degrees should you raise the temperature to boil the water at $100^{\circ} \mathrm{C}$.
2) A piece of glass with an initial temperature $90^{\circ} \mathrm{C}$ is cold at of $3.5^{\circ} \mathrm{C} / \mathrm{min}$. At the same rate of $2.5^{\circ} \mathrm{C} / \mathrm{min}$. Let the $m=$ the number of minutes, and $T=$ temperature in ${ }^{0} \mathrm{C}$ after m minutes.
a)Write a system of equations that relates the temperature of each material to time. Solve the system
b)Explain what solution means in this situation
3) Systolic blood pressure is the higher number in a blood pressure reading.

It is measured as your heart muscle contracts. The formula $P \leq \frac{1}{2} a+110$ gives normal Systolic blood pressure P based on age a.
a) At age 20, does 120 represent a maximum or a minimum normal systolic pressure?
b) Find the normal Systolic blood pressure for 50 year old person.
4. In addition to fixed overhead costs of $\$ 500$ per day, the cost of producing units of an item is $\$ 2.50$ per unit. During the month of August, the total cost of production varied from a high of $\$ 1325$ to a low of $\$ 1200$ per day. Find the high and low production levels during the month.

Unit summary

1. An equation is statement that the values of two mathematical expressions are equal while an inequality is a statement that the values of two mathematical that are not equal.
2. When we are given the equation $A \cdot B=0$ then $A=0$ or $B=0$. Also $\frac{A}{B}=\frac{C}{D} \Leftrightarrow A \cdot D=B \cdot C$ where B, D $\neq \mathrm{O}$
3. To solve real life problems, follow the following steps:

- Identify the variable and assign symbol to it
- Write down the equation
- Solve the equation
- Interpret the result. There may be some restrictions on the variable.

4. Consider the following system

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

Algebraically, there are three methods for solving this system: combination method, substitution method and Cramer's rule. Some systems of linear equations can be solved graphically. To do this, follow the following steps:

- Find at least two points for each equation.
- Plot the obtained points in xy plane and join these points to obtain the lines. Two points for each equation give one line.
- The point of intersection for two lines is the solution for the given system

5. Quadratic equation or equation of second degree has the form $a x+b x+c=0 \quad a, b, c \in \mathbb{R}(a \neq 0)$ where the sum of two roots is $s=-\frac{b}{a}$ and their product is $p=\frac{c}{a}$ To solve this equation, first we find the discriminant (delta):
There are three cases: $\Delta=b^{2}-4 a c$

- If $\Delta>0$ there are two distinct real roots:

$$
x_{1}=\frac{-b+\sqrt{\Delta}}{2 a} \text { and } x_{2}=\frac{-b-\sqrt{\Delta}}{2 a}
$$

- If $\Delta=0$, there is one repeated real root (one double root):

$$
x_{1}=x_{2}=\frac{-b}{2 a}
$$

- If $\Delta<0$, there is no real root.

6. If the two real roots exist, i.e $\Delta \geq 0$, then the factor form is $a x_{2}+b x+c=a\left(x-x_{1}\right)\left(x+x_{2}\right)$.

If there is no real root, i.e $\Delta<0$, then the expression $a x^{2}-b x-c$ has no factor form.
7. Biquadratic equation $a x^{2 n}+x^{n}+c=0$ is solved by letting $y=x^{2}$
8. Nested radical $\sqrt{A \pm \sqrt{B}}$ is denested by letting $\sqrt{A \pm \sqrt{B}}=\sqrt{x} \pm \sqrt{y}$
9. Irrational equation is the equation involving radical sign. We solve irrational equations by squaring both sides. By substituting all obtained solutions in the given equation, those which dont satisfy the given equation are rejected.
10. Application

Supply and demand analysis

Market equilibrium is when the amount of product produced is equal to the amount of quantity demanded. Max can then figure out how to price his new lemonade products based on market equilibrium.

Linear motion

Linear motion is a motion along a straight line, and can therefore be described mathematically using only one spatial dimension.

Balancing equation

In chemistry, to balance the chemical equation we set the reactants and products equal to each other.

Calculating Areas

People frequently need to calculate the area of things like rooms, boxes or plots of land.

Figuring Out a Profit

Sometimes calculating a business' profit requires using a quadratic function. If you want to sell something (even something as simple as lemonade) you need to decide how many things to produce so that you'll make a profit.

Quadratics in Athletics

In athletic events that involve throwing things, quadratic equations are highly useful.

Finding a Speed

Quadratic equations are also useful in calculating speeds. Avid kayakers, for example, use quadratic equations to estimate their speed when going up and down a river.

End Unit Assesment

1. Solve the following equations in set of real numbers;
a) $3 x+82=6-x$
b) $4 x(x+9)=0$
c) $11 x-18=9+8 x$
d) $\frac{x+3}{2 x-1}=4$
e) $24=15+\frac{x}{10}$
f) $\frac{x+2}{3}=4 x-3$
g) $5 x-6=22-2 x$
h) $6 x+9=33-2 x$
2. Solve the following inequalities.
a) $\boldsymbol{x}+4<3$
b) $2 x+6>8$
c) $\quad \frac{x+2}{x}<0$
d) $3 x+6 \leq 1$
e) $\frac{4 x-4}{x+1} \geq 0$
f) $(x+1)(-x-4)<0$
g) $(-x-9)(x+1)(2 x-4)>0$
3. Solve the following equations and inequalities in set of real numbers
a) $x^{2}-17 x+70=0$
b) $4 x^{2}+45 x=34$
c) $x^{2}-10 x+1=0$
d) $x^{2}-7 x+10 \geq 0$
e) $6 x^{2}-5 x+1 \leq 0$
f) $x^{2}+2 x+1 \geq 0$
g) $x^{2}+2 x<-1$
h) $2 x^{2}+3 x+10<-10$ i) $2 x^{2}+3 x+20>0$
j) $\begin{array}{ll}\frac{x^{2}-5 x+6}{x+1} \leq 0 & \text { k) } \frac{x^{2}-5 x+6}{x^{2}+1}>0\end{array}$
4. Solve in set of real numbers the following equations
a) $\sqrt{2 x+4}=8$
b) $4+\sqrt{3 x-1}=9$
c) $\sqrt{x-1}=\sqrt{2 x+1}$
d) $\sqrt{2 x-1}=x$
5. Solve in set of real numbers the following equations
a) $2 x^{4}+5 x^{2}-3=0$
b) $x-4 x^{\frac{1}{2}}-5=0$
c) $2 x+3 x^{\frac{1}{2}}+1=0$
d) $2 x^{\frac{2}{3}}-9 x^{\frac{1}{3}}-5=0$
6. Denest (simplify) the following nested radicals
a) $\sqrt{(1-\sqrt{2})^{2}}$
b) $\sqrt{7+2 \sqrt{12}}$
c) $\sqrt{15-2 \sqrt{56}}$
d) $\sqrt{12+2 \sqrt{32}}$
e) $\sqrt{9-\sqrt{72}}$
7. The senior classes at High School A and High School B planned separate trips to Akagera National Park. The senior class at High School A rented and filled 1 van and 6 buses with 372 students. High School B rented and filled 4 vans and 12 buses with 780 students. Each van and each bus carried the same number of students. How many students can a van carry? How many students can a bus carry?
8. Brenda's school is selling tickets to a spring musical. On the first day of ticket sales the school sold 3 senior citizen tickets and 9 child tickets for a total of $\$ 75$. The school took in $\$ 67$ on the second day by selling 8 senior citizen tickets and 5 child tickets. What is the price each of one senior citizen ticket and one child ticket?
9. A number is divided into two parts, such that one part is 10 more than the other. If the two parts are in the ratio $5: 3$, find the number and the two parts.
10. Robert's father is 4 times as old as Robert. After 5 years, father will be three times as old as Robert. Find their present ages.
11. The sum of two consecutive multiples of 5 is 55 . Find these multiples.
12. The difference in the measures of two complementary angles is 12°. Find the measure of the angles.
13. The cost of two tables and three chairs is $\$ 705$. If the table costs $\$ 40$ more than the chair, find the cost of the table and the chair.
14. The velocity $\mathrm{v} \mathrm{m} / \mathrm{s}$ of a ball thrown directly up in the air is given by $\mathrm{v}=$ $20-5 \mathrm{t}$, where t is the time in seconds. At what times will the velocity be between $5 \mathrm{~m} / \mathrm{s}$ and $15 \mathrm{~m} / \mathrm{s}$?
15. A rectangular room fits at least 7 tables that each have 1 square meter of surface area. The perimeter of the room is 16 m . What could the width and length of the room be?
16. A picture has a height that is $\frac{4}{3}$ of its width. It is to be enlarged to have an area of 192 square metres. What will be the dimensions of the enlargement?
17. The product of two consecutive negative integers is 1122 . What are the numbers?
18. A garden measuring 12 meters by 16 meters is to have a pedestrian pathway installed all around it, increasing the total area to 285 square meters. What will be the width of the pathway?
19. You have to make a square-bottomed, unlidded box with a height of three metres and a volume of approximately 42 cubic metres. You will be taking a piece of cardboard, cutting three- metres squares from each corner, scoring between the corners, and folding up the edges. What should be the dimensions of the cardboard, to the nearest quarter metres?

Unit

Polynomial,

 Rational and irrational functions
4.0 Introductory activity

1. Consider the following sentences:
i. The function of the heart is to pump blood
ii. Last Saturday, my sister got married; the arrangement of chairs in the main hall was in function of the number of guests.
iii. The area of a square is function of the length of its side.

Explain what is meant by the word "Function" in each of the three sentences above.
2. Any function involves at least two variables. Identify the "independent variable" and the "dependent variable" in the following functions:
i. $y=\frac{4 x-4}{(x-1)^{2}}$
ii. $A=\pi r^{2}$
iii. $S=\sqrt{A}$
3. Classify the following functions as "polynomial", "rational" or "irrational"
a) $f(x)=\sqrt{\frac{x^{2}+1}{x-2}}$
b) $f(x)=\frac{x+1}{x-5}$
c) $f(x)=\sqrt{x^{2}-1}$
d) $f(x)=2 x-7$
e) $f(x)=\frac{x^{3}+2 x-4}{5 x}$
4. If we agree that the set of all possible values, the independent variable can assume is called the " Domain" of the function and the set of all
possible values, the dependent value can assume is called the "Range" of the function, determine the range and the domain of each of the functions in part (2) above.

Objectives

After completing this unit, I will be able to:
(1) Demonstrate an understanding of operations on polynomials, rational and irrational functions, and find the composite of two functions.
(1) Identify a function as a rule and recognize rules that are not functions.
(1) Determine the domain and range of a function
(1) Find whether a function is even, odd, or neither
(1) Construct composition of functions.

4.1. Generalifies on numerical functions

Activity 4.1

In the following arrow diagram, for each of the elements of set A, state which element of B is mapped to it.

A function is a rule that assigns to each element in a set A one and only one element in set B. We can even define a function as any relationship which
takes one element of one set and assigns to it one and only one element of second set. The second set is called a co-domain. The set A is called the domain, denoted by Domf.
If x is an element in the domain of a function f, then the element that f associates with x is denoted by the symbol $f(x)(\operatorname{read} \boldsymbol{f}$ of $\boldsymbol{x})$ and is called the image of \boldsymbol{x} under \boldsymbol{f} or the value of \boldsymbol{f} at \boldsymbol{x}.
The set of all possible values of $f(x)$ as x varies over the domain is called the range of \boldsymbol{f} and it is denoted $R(f)$.

Example 4.1

Four children, Ann, Bob, Card and David, are given a spelling test which is market out of 5 ; their marks for the test are shown in the arrow diagram:

Functions for which each element of the domain is associated onto a different element of the range are said to be one-to-one. Relationships which are one-to-many can occur, but from our preceding definition, they are not functions.

Example 4.2

One-to-one function.

Many-to-one function

The domain is $\{a, b, c\}$, the codomain is $\{w, x, y, z\}$ and the range is $\{y, \mathbf{z}\}$

One-to-many relationship

Because this is a one-tomany relationship, it is not a function.

We shall write $f(x)$ to represent the image of x under the function f. The letters commonly used for this purpose are f, g and h.

Example 4.3

Given that $f(x)=x^{2}$,
find the values of
$f(0), f(2), f(3), f(4)$ and $f(5)$

Solution

$$
\begin{aligned}
& f(0)=0^{2}=0 \quad f(2)=2^{2}=4 \\
& f(3)=3^{2}=9 \quad f(4)=4^{2}=16 \\
& f(5)=5^{2}=25
\end{aligned}
$$

Note:

$f(x)=x^{2}$ can also be written as $f: x \rightarrow x^{2}$ which is read as " f is a function which maps x onto x^{2} "

Example 4.4

Draw arrow diagrams for the functions. Use the domain $\{1,2,3\}$;
a) $f: x \rightarrow 3 x$
b) $h: x \rightarrow x^{2}+1$
c) $g: x \rightarrow 2 x+1$

Solution

a) $f: x \rightarrow 3 x$
b) $h: x \rightarrow x^{2}+1$

c) $g: x \rightarrow 2 x+1$

Example 4.5

The functions f and g are given as $f(x)=x+3$ for $x \geq 0$ and
$g(x)=x^{2}$ for $-2 \leq x \leq 3$
State the range of each of these functions.

Solution

If $x \geq 0$, then $x+3 \geq 3$. Thus, the range of f will be $f(x) \geq 3$
If $-2 \leq x \leq 3$, then $0 \leq x^{2} \leq 9$
Thus, the range of g will be
$0 \leq g(x) \leq 9$

Application Activity 4.1

1. State which of the following relations shows a function.

2. In the following arrow diagram, state the domain, co-domain and range

3. If $f(x)=2 x+4$, find;
a) $f(2)$
b) $\quad f(-2)$
c) $f(d)$
d) The value of a if $f(a)=a$
4. You have ever followed a speech talking about NDI UMUNYARWANDA . You have been said that Rwandans have been divided and now they want to be unified. From the types of relationship (in Mathematics), complete this sentence: We have been made......to......by colonialists, NDI UMUNYARWANDA is making us......to......

4.2. Classification of functions

Activity 4.2

State which of the following functions is a polynomial, rational or irrational function

1. $f(x)=(x+1)^{2}$
2. $h(x)=\frac{x^{3}+2 x+1}{x-4}$ $f(x)=\sqrt{x^{2}+x-2}$
3.

a) Constant function

A function that assigns the same value to every member of its domain is called a constant function C.

Example 4.6

The function f given by $f(x)=3$ is constant.

Remark:

The constant function that assigns the value c to each real number is sometimes called the constant function \boldsymbol{c}.

Example 4.7

The function $f(x)=5$ is called constant function 5 .

b) Monomial

A function of the form $c x^{n}$, where c is constant and n a nonnegative integer is called a monomial in \boldsymbol{x}.

Example 4.8

$2 x^{3} ; \pi x^{7} ; 4 x^{0} ;-6 x$ and x^{17} are monomials
The functions $4 x^{\frac{1}{2}}$ and x^{-3} are not monomials because the powers of x are
not nonnegative integers.

c) Polynomial

A function that is expressible as the sum of finitely many monomials in x is called polynomial in \boldsymbol{x}.

Example 4.9

$x^{3}+4 x+7 ; 17-\frac{2}{3} x ; y$ and x^{5} are polynomials. Also $(x-2)^{3}$ is a polynomial in x because it is expressible as a sum of monomials.

In general, f is a polynomial in x if it is expressible in the form
$f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{n} x^{n}$ where n is a nonnegative integer and $a_{0}, a_{1}, \ldots \ldots . ., a_{n}$ are real constants.
A polynomial is called

- linear if it has the form $a_{0}+a_{1} x, a_{1} \neq 0$
- quadratic if it has the form $a_{0}+a_{1} x+a_{2} x^{2}, a_{2} \neq 0$
- cubic if it has the form $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}, a_{3} \neq 0$

d) Rational function

A function that is expressible as a ratio of two polynomials is called rational function. It has the form $\frac{a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{n} x^{n}}{b_{0}+b_{1} x+b_{2} x^{2}+\ldots \ldots . .+b_{m} x^{m}}$.

Example 4.10

$f(x)=\frac{x^{2}+4}{x-1}, g(x)=\frac{1}{3 x-5}$ are rational functions

e) Irrational function

A function that is expressed as root extractions is called irrational function.
It has the form $\sqrt[n]{f(x)}$, where $f(x)$ is a polynomial and n is positive integer greater or equal to 2 .

Example 4.11

$148^{f(x)}=\frac{\sqrt{x^{2}+4}}{\sqrt[3]{x-1}}, g(x)=\sqrt{\frac{x}{x-5}}$ are irrational functions

Application Activity 4.2

Observe the given functions and categorize them into polynomial, rational or irrational functions.

1) $f(x)=x^{3}+2 x^{2}-2$
2) $g(x)=\frac{x^{3}+2 x^{2}-2}{x-5}$
3) $h(x)=\sqrt{x^{3}+2 x^{2}-2}$

4.3. Finding domain of definition

Activity 4.3.1

For which value(s) the following functions are not defined:

1. $f(x)=x^{3}+2 x+1$
2. $f(x)=\frac{1}{x}$ 3. $g(x)=\frac{x+2}{x-1}$

Case 1: The given function is a polynomial
Given that $f(x)$ is polynomial, then the domain of definition is the set of real numbers. That is $\operatorname{Domf}=\mathbb{R}$

Case 2: The given function is a rational function

Given that $f(x)=\frac{g(x)}{h(x)}$ where $g(x)$ and $h(x)$ are polynomials, then the domain of definition is the set of real numbers excluding all values where the denominator is zero. That is $\operatorname{Domf}=\{x \in \mathbb{R}: h(x) \neq 0\}$

Application Activity 4.3.1

Find the domain of definition for each of the following functions:

1. $f(x)=x^{3}+2 x^{2}-2$
2. $g(x)=-2$
3. $h(x)=\frac{x^{3}+2 x^{2}-2}{x-5}$
4. $f(x)=\frac{x^{2}-2}{x^{2}-8 x+15}$
5. $f(x)=(x+6)^{2}$

Case 3: The given function is an irrational function

Activity 4.3.2

For each of the following functions, give a range of values of the variable x for which the function is not defined.

1. $f(x)=\sqrt{2 x+1}$
2. $f(x)=\sqrt[3]{x^{2}+x-2}$
3. $g(x)=\sqrt{\frac{x-2}{x+1}}$

Given that $f(x)=\sqrt[n]{g(x)}$ where $g(x)$ is a polynomial, there are two cases:
a) If n is odd number, then the domain is the set of real numbers. That is $\operatorname{Domf}=\mathbb{R}$
b) If n is even number, then the domain is the set of all values of x such that $g(x)$ is positive or zero. That is $\operatorname{Domf}=\{x \in \overline{\mathbb{R}}: g(x) \geq 0\}$

Example 4.12

The domain of the function $f(x)=3 x^{5}+2 x^{4}+4 x+6$ is \mathbb{R} since it is a polynomial.

Example 4.13

Given $f(x)=\frac{x+1}{3 x+6}$, find the domain of definition.

Solution

Condition: $3 x+6 \neq 0$
$3 x+6=0 \Rightarrow x=-2$
Then, $\operatorname{Domf}=\mathbb{R} \backslash\{-2\}$ or $\operatorname{Domf}=]-\infty-2[\cup]-2,+\infty[$

Example 4.14

Given $f(x)=\sqrt{x^{2}-1}$, find domain of definition.

Solution

Condition: $x^{2}-1 \geq 0$.
We need to construct a sign table to see where $x^{2}-1$ is positive $x^{2}-1=0 \Rightarrow x= \pm 1$

x	$-\infty$		-1	1		$+\infty$	
$x^{2}-1$		+	0	-	0	+	

Thus, $\operatorname{Domf}=]-\infty,-1] \cup[1,+\infty[$

Example 4.15

Find domain of definition of $f(x)=\sqrt[3]{x+1}$

Example 4.16

What is the domain of definition of
$g(x)$ if $g(x)=\sqrt[4]{x^{2}+1}$?

Solution

Since the index in radical sign is odd number, then $\operatorname{Domf}=\mathbb{R}$

Solution

Condition: $x^{2}+1 \geq 0$
Clearly $x^{2}+1$ is always positive.
Thus Domg $=\mathbb{R}$

Example 4.17

Find domain of $f(x)=\frac{x}{\sqrt{x^{3}-4 x^{2}+x+6}}$

Solution

Condition: $x^{3}-4 x^{2}+x+6>0$.
Here we have combined two conditions: $x^{3}-4 x^{2}+x+6 \geq 0$ and

$$
x^{3}-4 x^{2}+x+6 \neq 0
$$

$$
x^{3}-4 x^{2}+x+6=(x+1)(x-2)(x-3)
$$

| x | $-\infty$ | | -1 | | 2 | | 3 | $+\infty$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x+1$ | | - | 0 | + | + | + | + | + |
| $x-2$ | | - | - | - | 0 | + | + | + |
| $x-3$ | - | - | - | - | - | 0 | + | |
| $x^{3}-4 x^{2}+x+6$ | | - | 0 | + | 0 | - | 0 | + |

Then, $\operatorname{Domf}=]-1,2[\cup] 3,+\infty[$

Example 4.18

The following functions map an element \boldsymbol{x} of the domain onto its image y .
i.e $f: x \rightarrow y$

For each of the three functions below, state
(i) the domain for which the function is defined,
(ii) the corresponding range of the function,
(iii) whether the function is one-to-one or many-to-one.
a) $f: x \rightarrow x+3$ b) $f: x \rightarrow \sqrt{x}$
c) $f: x \rightarrow \frac{1}{x^{2}}$
d) $f: x \rightarrow x+3$

Solution

a) $x \rightarrow x+3$
(i) The function is defined for all real numbers, so the domain is \mathbb{R}.
(ii) For this domain, the range will contain all real numbers, so the range is \mathbb{R}.
(iii) Each element of the range is obtained from only one element of the domain, so the function is one-to-one (1 to 1).
b) $f: x \rightarrow \sqrt{x}$
(i) The function is not defined for negative x , so the domain is $\{x \in \mathbb{R}: x \geq 0\}$, $\operatorname{Domf}=[0,+\infty[$
(ii) The range will contain all positive numbers in \mathbb{R}. The range is therefore $\{y \in \mathbb{R}: y \geq 0\}, R(f)=[0,+\infty[$
(iii) Each element of the range is obtained from only one element of the domain, so the function is one-to-one ($\mathbf{1}$ to $\mathbf{1}$).
c) $f: x \rightarrow \frac{1}{x^{2}}$
(i) The function is defined for all real x except for $x=0$. We write the domain as $\{x \in \mathbb{R}: x \neq 0\}$ or $\operatorname{Domf}=]-\infty, 0[\cup] 0,+\infty[$
(ii) For this domain, the range will contain neither zero nor any negative numbers because x^{2} will be positive. The range is therefore $\{y \in \mathbb{R}: y>0\}$ or $R(f)=] 0,+\infty[$
(iii) Here the element of the domain can be obtained by more than one element of the domain. For example, $f(2)=f(-2)=\frac{1}{4}$. So the function is many-to-one.

Application Activity 4.3.2

Find the domain of definition for each of the following functions;

1. $f(x)=\sqrt{4 x-8}$
2. $g(x)=\sqrt{x^{2}+5 x-6}$
3. $h(x)=\frac{x^{3}+2 x^{2}-2}{\sqrt[3]{x+4}}$
4. $f(x)=\frac{x-2}{\sqrt[4]{x^{2}-25}}$
5. $f(x)=\sqrt{\frac{(x-1)^{2}}{x+4}}$

4.4. Operations on functions

Activity 4.4

Given the functions $f(x)=\frac{x+1}{2 x-3}$ and $g(x)=x+1$, find;

$$
\text { 1. } f(x)+g(x) \text { 2. } f(x)-g(x) \quad \text { 3. } f(x) \cdot g(x) \quad \text { 4. } \frac{f(x)}{g(x)}
$$

Just as numbers can be added, subtracted, multiplied and divided to produce other numbers, there is a useful way of adding, subtracting, multiplying and dividing functions to produce other functions. These operations are defined as follows:
Given functions f and g, sum $f+g$, difference $f-g$, product $f \cdot g$ and quotient $\frac{f}{g}$, are defined by

$$
(f+g)(x)=f(x)+g(x) \quad(f-g)(x)=f(x)-g(x)
$$

$(f \cdot g)(x)=f(x) \cdot g(x) \quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
For the functions, $f+g, f-g$ and $f \cdot g$, the domain is defined to be the intersection of the domains of f and g and for $\frac{f}{g}$, as we have seen it, the domain is this intersection with the points where $g(x)=0$ excluded.

Example 4.19

Let \boldsymbol{f} and g be the functions $f(x)=3 x^{4}-5 x^{3}+x-4$ and $g(x)=4 x^{3}-3 x^{2}+4 x+3$. Find $(f+g)(x)$ and $(f-g)(x)$

Solution

$$
\begin{array}{r}
f(x)=3 x^{4}-5 x^{3}+x-4 \\
+\quad 4(x)=\quad 4 x^{3}-3 x^{2}+4 x+3 \\
\frac{(f+g)(x)=3 x^{4}-x^{3}-3 x^{2}+5 x-1}{}
\end{array} \frac{f(x)=3 x^{4}-5 x^{3} \quad+x-4}{(f-g)(x)=3 x^{4}-9 x^{3}+3 x^{2}-3 x-7}
$$

Example 4.20

If $f(x)=\frac{9}{x+2}$ and $g(x)=x^{3}$. Find;
a) $h(x)=f(x)+g(x)$
b) $t(x)=f(x) \cdot g(x)$
c) $k(x)=\frac{f(x)}{g(x)}$

Solution

$$
\begin{array}{lrlrl}
& \text { a. } h(x)=f(x)+g(x) & \text { b. } \begin{array}{rlrl}
t(x) & =f(x) \cdot g(x) & \text { c }^{\cdot} k(x)=\frac{f(x)}{g(x)} \\
=\frac{9}{x+2}+x^{3} & & =\frac{9}{x+2} \cdot x^{3} &
\end{array} \\
=\frac{9+x^{3}(x+2)}{x+2} & & =\frac{9 x^{3}}{x+2} & & =\frac{9}{x+2} \\
=\frac{x^{4}+2 x^{3}+9}{x+2} & & =\frac{9}{x+2} \times \frac{1}{x^{3}} \\
& & & =\frac{9}{x^{4}+2 x^{3}}
\end{array}
$$

Example 4.21

Let f and g be the functions $f(x)=\sqrt{5-x}$ and $g(x)=\sqrt{x-3}$
Then the formulae for $f+g, f-g, f \cdot g$ and $\frac{f}{g}$ are;

- $(f+g)(x)=f(x)+g(x)=\sqrt{5-x}+\sqrt{x-3}$
- $(f-g)(x)=f(x)-g(x)=\sqrt{5-x}-\sqrt{x-3}$
- $(f \cdot g)(x)=f(x) \cdot g(x)=\sqrt{5-x} \cdot \sqrt{x-3}$
- $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{5-x}}{\sqrt{x-3}}$

Since the domain of f is $(-\infty, 5]$ and the domain of g is $[3,+\infty)$ the domain of $f \pm g$ and $f \cdot g$ is [3,5]. Because this is the intersection of $(-\infty, 5]$ and $[3,+\infty)$.

Since $g(x)=0$ when $x=3$, we must exclude this point to obtain the domain of $\frac{f}{\sigma}$ which is $(3,5]$.
It will be easy to find this intersection if we use the number line:

The intersection is $[3,5]$ but remember that $x \neq 3$, so domain is] 3,5].

Example 4.22

Let $f(x)=3 \sqrt{x}$ and $g(x)=\sqrt{x}$, find $(f \cdot g)(x)$

Solution

The formula for $f \cdot g$ is

$$
(f \cdot g)(x)=f(x) \cdot g \cdot(x)
$$

$$
\begin{aligned}
& =3 \sqrt{x} \cdot \sqrt{x} \\
& =3 x
\end{aligned}
$$

$(f \cdot g)(x)=3 x$ makes sense and yields real numbers for all x, the formula alone will not correctly describe the domain of $f \cdot g$ for us, we must write $(f \cdot g)(x)=3 x, x \geq 0$. Because the domain of f is $[0,+\infty)$ and the domain of g is $[0,+\infty)$, the domain of $f \cdot g$ is also $[0,+\infty)$ since this is the intersection of the domains of f and g.

Example 4.23

Find domain of $f(x)=\sqrt{\frac{x-2}{x+3}}-\frac{x}{2 x+4}-\sqrt{x+5}$

Solution

To find the domain of this function, we need to divide it into other functions.
Let $g(x)=\sqrt[3]{\frac{x-2}{x+3}}, h(x)=\frac{x}{2 x+4}$, and $k(x)=\sqrt{x+5}$
such that $f(x)=g(x)-h(x) k(x)$
For $g(x)=\sqrt[3]{\frac{x-2}{x+3}}$:

$$
x+3 \neq 0 \Rightarrow x \neq-3, \operatorname{Domg}=\mathbb{R} \backslash\{-3\} \text { or } \operatorname{Domg}=]-\infty,-3[\cup]-3,+\infty[
$$

[Index in radical sign is odd number]
For $h(x)=\frac{x}{2 x+4}$:
$2 x+4 \neq 0 \Rightarrow x \neq-2$, Domh $=]-\infty,-2[\cup]-2,+\infty[$
For $k(x)=\sqrt{x+5}$:
$x+5 \geq 0 \Rightarrow x \geq-5$, Domk $=[-5,+\infty[$
Now, $\operatorname{Domf}=$ Domg \cap Domh \cap Domk

The intersection is $[-5,+\infty[\backslash\{-3,-2\}$.
Thus, $\operatorname{Domf}=[-5,+\infty[\backslash\{-3,-2\}$ or
$\operatorname{Domf}=[-5,-3[\cup]-3,-2[\cup]-2,+\infty[$

Application Activity 4.4

1. Given the functions $f(x)=2 x^{3}+5 x-1$ and $g(x)=3 x-4$, find $(f+g)(x)$.
2. Given the functions $f(x)=3 x^{3}-5 x^{2}+7 x-4$ and $g(x)=2 x^{2}-x+3$, find $(f \cdot g)(x)$.
3. Find the domain of definition of $(f+g)(x)$ if $f(x)=\sqrt{2 x+3}$ and $g(x)=\frac{x^{2}-x+1}{3 x+9}$
4. Find the domain of definition of $\left(f+\frac{g}{h}\right)(x)$ if $f(x)=\sqrt[3]{x^{3}+2 x+1}$ $g(x)=x-7$ and $h(x)=\sqrt{2 x+8}$.
5. Given the functions $f(x)=2 x^{3}+5 x-1, g(x)=4 x^{2}-13 x-8$ and $h(x)=x-3$, find $(f+g-h)(x)$.

4.5 Parity of function

Odd and even functions

Activity 4.5

For each of the following functions, find $f(-x)$ and $-f(x)$.
Compare $f(-x)$ and $-f(x)$ using $=$ or \neq;

1. $f(x)=x^{2}+2 x+3$ 2. $f(x)=\sqrt[3]{x^{3}+x} \quad$ 3. $f(x)=\frac{x^{2}-3}{x^{2}+1}$

Even Function

A function $f(x)$ is said to be even if the following conditions are satisfied:

- $\forall x \in \operatorname{Domf},-x \in \operatorname{Domf}$
- $f(-x)=f(x)$

The graph of such function is symmetric about the vertical axis. i.e $x=0$

Example 4.24

The function $f(x)=x^{2}$ is an even function since $\forall x \in \operatorname{Domf}=\mathbb{R},-x \in \operatorname{Domf}=\mathbb{R}$ and $f(-x)=(-x)^{2}=x^{2}=f(x)$

Odd function

A function $f(x)$ is said to be odd if the following conditions are satisfied

- $\forall x \in \operatorname{Domf},-x \in \operatorname{Domf}$
- $f(-x)=-f(x)$

The graph of such a function looks the same when rotated through half a revolution about 0 . This is called rotational symmetry.

Example 4.25

$$
f(x)=x^{3} \text { is an }
$$

odd function since
$\forall x \in \operatorname{Domf}=\mathbb{R},-x \in \operatorname{Domf}=\mathbb{R}$
and

$$
f(-x)=(-x)^{3}=-x^{3}=-f(x)
$$

Example 4.26

Consider the function $f(x)=3 x^{2}-|x|+2$ for $x \geq 0$. Is this function odd, even or neither?
Here, the domain of the given function is restricted to $\operatorname{Domf}=[0,+\infty[$ since $x \geq 0$. $\forall x \in \operatorname{Domf},-x \notin \operatorname{Domf}$.
Thus, the given function is neither even nor odd.
Here is the graph

Application Activity 4.5

Study the parity of the following functions:

1. $f(x)=2 x^{2}+2 x-3$
2. $f(x)=\frac{3 x^{3}+2 x^{2}+8}{x-5}$
3. $g(x)=x^{3}-x$
4. $h(x)=\frac{x^{2}+4}{x^{2}-4}$
5. $g(x)=x\left(x^{2}+x\right)$

4.6. Factorization of polynomials

Activity 4.6

Consider the following expressions:
(a) $2 a+2 b$
(b) $3 r+6 r^{2}$
(c) $x y+a x y$
(d) $9 x^{2} y+15 x y^{2}$

For each expression above, identify the common factors for both terms and rewrite the expression in factor form. Compare your results with those of other classmates.

In arithmetic, you are familiar with factorization of integers into prime factors.

For example, $15=3 \times 5$.
15 is called the multiple, while 3 and 5 are called its divisors or factors.
The process of writing 15 as product of 3 and 5 is called factorization.
Factors 3 and 5 cannot be further reduced into other factors.
Like factorization of integers in arithmetic, one can make factorization of polynomials into other irreducible polynomials in algebra.

For example, $x^{2}+2 x$ is a polynomial. It can be factorized into x and $(x+2)$.
$x^{2}+2 x=x(x+2)$.
So, x and $x+2$ are two factors of $x^{2}+2 x$. While x is a monomial factor, $x+2$
is a binomial factor.

Application Activity 4.6

Factorise each of the following expressions:
(a) $2 a b+4 c$
(b) $-3 b^{2}-9 b$
(c) $3 x^{3}+6 x^{2}-9 x$

4.7. Expansion of polynomials

Activity 4.7

Apply distributive properties to perform the following
(i) $(x+4)(x-2)$
(ii) $(x+4)(x+4)$
(iii) $(x-1)(x-1)$
a) How many terms does each result have?
b) Find out the common characteristics for the all above expressions. What is the highest and lowest exponent for the variable $x_{\text {in }}$ all expressions?

Given the expression; $(x+3)(x+2)$. Expansion of the expression takes the steps below:

$$
\begin{aligned}
(x+3)(x+2) & =x(x+2)+3(x+2)=x^{2}+2 x+3 x+6 \\
& \left.=x^{2}+5 x+6 \text { (since } 2 x \text { and } 3 x \text { are like terms }\right) .
\end{aligned}
$$

This means that $(x+3)$ and $(x+2)$ are factors of $x^{2}+5 x+6$.
$\Rightarrow x^{2}+5 x+6=(x+3)(x+2)$ (in factor form).

Note: $\operatorname{In} x^{2}+5 x+6$,
a) The coefficient of the highest degree of this trinomial is 1 ,
b) The coefficient of the linear term is 5 , the sum of the constant terms in the binomial factors, and
c) The constant term is 6 , the product of the constant terms in the binomial factors.

Generally,
In a simple expression like $a x^{2}+b x+c$, where $a=1$, the factors are always of
the form $(x+m)(x+n)$, where m and n are constants. The expression $a x^{2}+b x+c$ is factorised only if there exists two integers m and n such that $m \times n=c$ (product of the factors) and $m+n=b$ (sum of the factors).

To factorise a trinomial whose form: $a x^{2}+b x+c$, where $a=1$, follow the steps below.

1. List all the possible pairs of integers whose product equals the constant term.
2. Identify the only pair whose sum equals the coefficient of the linear term.
3. Rewrite the given expression with the linear term split as per the factors in 2 above.
4. Factorise your new expression by grouping, i.e. taking two terms at a time.
5. Check that the factors are correct by expanding and simplifying.

Example 4.27

Factorise $x^{2}+8 x+12$.

Solution

In this example, $a=1, b=8$ and $c=12$.

1. List all the pairs of integers whose product is 12 . These are:

$$
\begin{aligned}
& 1 \times 12 \quad 3 \times 4 \quad 2 \times 6 \\
& 1 \times-12
\end{aligned}-3 \times-4 \quad-2 \times-6 \text { - }
$$

2. Identify the pair of numbers whose sum is 8 . The numbers are 6 and 2 .
3. Rewrite the expression with the middle term split.

$$
x^{2}+8 x+12=x^{2}+2 x+6 x+12
$$

Factorize $x^{2}+2 x+6 x+12$ by grouping. $x^{2}+2 x+6 x+12$ has 4 terms which we can group in twos so that first and second terms make one group and third and fourth terms make another group.

$$
\text { i.e } x^{2}+2 x+6 x+12 \text { In each group, factor out the common factor. }
$$

Thus,
$x^{2}+2 x+6 x+12=x(x+2)+6(x+2)$ We now have two terms, i.e. $x(x+2)$ and $6(x+2)$, whose common factor is $(x+2)$
$\therefore x^{2}+8 x+12=(x+2)(x+6)($ Factor out the common factor $(x+2))$

Check that $(x+2)(x+6)=x^{2}+8 x+12$.
Note: Since all the terms in the example are positive, the negative pairs of factors of 12 could have been omitted altogether.

Note that:

- If the third term in the split form of the expression is negative, we factor out the negative common factor.

Example 4.28

$y^{2}+2 y-35=y^{2}+7 y-5 y-35$ (the third term is negative)

$$
\begin{aligned}
& =y(y+7)-5(y+7)(\text { we factor out }-5) \\
& =(y+7)(y-5) .
\end{aligned}
$$

- The order in which we write $m x$ and $n x$ in the split form of the expression does not change the answer.

Consider again the expressions $(x+2)^{2}$ and $(x-3)^{2}$, expand and simplify them

Each binomial expansion has three terms
The first term is the square of the first term of the binomial
The third term is the square of the second term of the given binomial
The middle term is twice the product of the two terms of the binomial

$$
\text { i.e. } \begin{aligned}
(x+2)^{2} & =(x)^{2}+2(2 \times x)+(2)^{2} \\
& =x^{2}+4 x+4 \\
(x-3)^{2}= & (x)^{2}+2(x \times-3)+(-3)^{2} \\
& =x^{2}-6 x+9
\end{aligned}
$$

Just like we have square numbers in arithmetic, we also have square trinomials in algebra.

Remember $(a+b)^{2}=(a+b)(a+b)=a^{2}+2 a b+b^{2}$
In this case $a^{2}+2 a b+b^{2}$ is a perfect square because it has two identical factors.

Remarks

If a trinomial is a perfect square,

1. The first term must be a perfect square.
2. The last term must be a perfect square.
3. The middle term must be twice the product of numbers that were squared to give the first and last terms.

Example 4.29

Show that the following expressions are perfect squares and give the factor of each.
(a) $9 x^{2}+12 x+4$
(b) $9 x^{2}-30 x+25$

Solution

(a) $9 x^{2}+12 x+4$

Condition (1): first term $9 x^{2}=(3 x)^{2}$
Condition (2): last term $4=(2)^{2}$
Condition (3): middle term $12 x=2(3 x)(2)$
$\therefore 9 x^{2}+12 x+4$
$=(3 x)^{2}+2(2)(3 x)+2^{2}$
$=(3 x+2)^{2}$
(b) $9 x^{2}-30 x+25$

First term $9 x^{2}=(3 x)^{2}$
Last term $25=(-5)^{2}$
Middle term $-30 x=2(-5)(3 x)$
$\therefore 9 x^{2}-30 x+25$ is a perfect square which factorizes to $(3 x-5)^{2}$.
Note: In $9 x^{2}-30 x+25$, middle term of the expression is negative, hence the constant term in the binomial factor must be negative.

Application Activity 4.7

1. Factorize the following expressions:
(i) $x(x+1)+3(x+1)$
(ii) $3(2 x+1)-x(2 x+1)$
(iii) $4 a(2 a-3)-3(2 a-3)$
(iv) $4 b(b+6)-(b+6)$
(v) $3 y(4-y)+6(4-y)$
2. Show that the following are perfect squares. Hence state their factors.
(i) $x^{2}+8 x+16$
(ii) $x^{2}+12 x+36$

4.8. Graphs of linear and quadratic functions

Activity 4.8

1. Copy and complete the tables below.

x	-3	-2	-1	0	1	2	3
$y=2 x-1$							

x	-3	-2	-1	0	1	2	3
$y=x^{2}-1$							

2. Use the coordinates from each table to plot the graphs on separate Cartesian planes.
3. What is your conclusion about the shapes of the graphs?

4.8.1 Linear functions

Definition of linear function

Any function of the form $f(x)=m x+b$, where m is not equal to 0 is called a linear function. The domain of this function is the set of all real numbers. The range of f is the set of all real numbers. The graph of f is a line with slope m and y intercept b.

Note:

A function $f(x)=b$, where b is a constant real number is called a constant function. Its graph is a horizontal line at $y=b$.

Examples of a linear function are $y=x+1, \quad y=2 x-3, \quad y=-3 x+4, \ldots$

Graphs of linear functions.

The ordered pair (x, y) represents coordinates of any point on the Cartesian plane. Consider a line passing through the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.

From A to B , the change in the x -coordinate (horizontal change) is $x_{2}-x_{1}$ and the change in the y -coordinate (vertical change) is $y_{2}-y_{1}$.

$$
\text { By definition, gradient/slope is equal to } \frac{\text { change in } y-\text { coordinates }}{\text { change in } x-\text { coordinates }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

In the Cartesian plane, the gradient of a line is the measure of its slope or inclination to the x-axis. It is defined as the ratio of the change in y -coordinate (vertical) to the change in the x -coordinate (horizontal).

When drawing a graph of a linear function, it is sufficient to plot only two points and these points may be chosen as the x and y intercepts of the graph. In practice, however, it is wise to plot three points. If the three points lie on the same line, the working is probably correct, if not you have a chance to check whether there could be an error in your calculation.

If we assign x any value, we can easily calculate the corresponding value of y.

Determine the x intercept, set $f(x)=0$ and solve for x and then determine the y intercept, set $x=0$ to find $f(0)$.

Consider the equation $y=2 x+3$.

- When $x=0, y=2 \times 0+3=3$
- When $x=1, y=2 \times 1+3=5$
- When $x=2, y=2 \times 2+3=7$ and so on.

For convenience and ease while reading, the calculations are usually tabulated as
shown below in the table of values for $\mathbf{y}=\mathbf{2 x}+\mathbf{3}$:

x	0	1	2	3	4
$2 x$	0	2	4	6	8
+3	3	3	3	3	3
$y=2 x+3$	3	5	7	9	11

From the table the coordinates (x, y) are $(0,3),(1,5),(2,7),(3,9),(4,11) \ldots$.
When drawing the graph, the dependent variable is marked on the vertical axis generally known as the y - axis. The independent variable is marked on the horizontal axis also known as the $O X$-axis

4.8.2 Quadratic function

Definition of quadratic function

A polynomial equation in which the highest power of the variable is 2 is called a quadratic function. The expression $y=a x^{2}+b x+c$, where a, b and c are constants and $\mathrm{a} \neq 0$, is called a quadratic function of x or a function of the second degree (highest power of x is two).

Table of values are used to determine the coordinates that are used to draw the graph of a quadratic function. To get the table of values, we need to have the domain (values of an independent variable) and then the domain is replaced in a given quadratic function to find range (values of dependent variables). The values obtained are useful for plotting the graph of a quadratic function. All quadratic function graphs are parabolic in nature.

Any quadratic function has a graph which is symmetrical about a line which is parallel to the y-axis i.e. a line $x=h$ where h is constant value. This line is called axis of symmetry.

For any quadratic function $f(x)=a x^{2}+b x+c$ whose axis of symmetry is the line $x=h$, the vertex is the point $(h, f(h))$.

The vertex of a quadratic function is the point where the function crosses its axis of symmetry.

If the coefficient of the x^{2} term is positive, the vertex will be the lowest point on the graph, the point at the bottom of the U-shape. If the coefficient of the term x^{2} is negative, the vertex will be the highest point on the graph, the point at the top of the n -shape. The shapes are as below.

$$
y=a x^{2}+b x+c
$$ always a is positve

There are two intercepts i.e. x-intercept and y-intercept.
x-intercept for any quadratic function is calculated by letting $y=0$
y - intercept is calculated by letting $x=0$

Graph of quadratic function

The graph of a quadratic function can be sketched without table of values as long as the following are known.

- The vertex
- The x-intercepts
- The y-intercept

Example 4.30

Find the vertex and axis of symmetry of the parabolic curve $y=2 x^{2}-8 x+6$

Solution

- The coefficients are $\mathrm{a}=2, \mathrm{~b}=-8$ and $\mathrm{c}=6$
- The x-coordinate of the vertex is $h=-\frac{b}{2 a}=\frac{-(-8)}{2(2)}=\frac{8}{4}=2$
- The y-coordinate of the vertex is obtained by substituting the x-coordinate of the vertex to the quadratic function. We get

$$
y=2(2)^{2}-8(2)+6=-2
$$

- The vertex is $(2,-2)$ and the axis of symmetry is $x=2$.
- When $x=0, y=2(0)^{2}-8(0)+6=6$.
- The y-intercept is $(0,6)$

When $y=0,0=2 x^{2}-8 x+6$, we therefore solve the quadratic equation for the values of x and we find the x-intercepts are $(1,0)$ or $(3,0)$ The following is the graph of the function $y=2 x^{2}-8 x+6$ graph is as below.

Application Activity 4.8

1. Using the table of values sketch the graph of the following functions
a. $y=-3 x+2$
b. $y=x^{2}-3 x+2$
2. Without tables of values, state the vertices, intercepts with axes, axes of symmetry, and sketch the graphs.
3. (a) $y=2 x^{2}+5 x-1$
(b) $y=3 x^{2}+8 x-6$

4.9. Applications

Activity 4.9

Give three examples of where you think functions can be used in daily life.

Polynomials are used to describe curves of various types; people use them in the real world to graph curves. For example, roller coaster designers may use polynomials to describe the curves in their rides. Polynomials can be used to figure how much of a garden's surface area can be covered with a certain amount of soil. The same method applies to many flat-surface projects, including driveway, sidewalk and patio construction.

Functions are important in medicine, building structures (houses, businesses,...), vehicle design, designing games, to build computers (formulas that are used to plug to computer programs), knowing how much change you should receive when making a purchase, driving (amount of gas needed for travel).

In the health field, polynomials are used for example to predict how patients will metabolise medication over time. When painkillers move through the bloodstream, enzymes start to break them down. Over time, the body moves more and more of the drug from the blood..

Example 4.31

In zoology, the irrational function $h(x)=0.4 \sqrt[3]{x}$ is an approximation of the height h in metres of a female giraffe using her weight x in kilograms. Find the heights of female giraffe with weights of 500 kg and 545 kg .

Solution

Evaluate $h(x)$ for both weights. $h(500)=0.4 \sqrt[3]{500} \approx 3.17 \mathrm{~m}$ $h(545)=0.4 \sqrt{545}$

$$
=3.27
$$

The heights are approximately 3.17 m and 3.27 m

Example 4. 32

Health average systolic blood pressure is estimated by $P(x)=0.01 x^{2}+0.05 x+107$ where x is age in years and P is pressure in millimetres of mercury (mmHg).
a) What is the healthy average systolic blood pressure of a 34 years old to the nearest tenth?
b) If a healthy average systolic blood pressure of 132.4 mmHg , what is there age to the nearest year?

Solution

Health average systolic blood pressure $P(x)=0.01 x^{2}+0.05 x+107$
a) For $x=34$, then $P(34)=0.01(34)^{2}+0.05(34)+107$

$$
\therefore P(34)=120.3 m m H g
$$

b)For $P(x)=132.4$, then $132.4=0.01 x^{2}+0.05 x+107$
$0=0.01(x)^{2}+0.05(x)-25.4$
Using quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
x \approx 48
$$

Therefore, the age to the nearest year is 48 years old.

Example 4. 33

The rational function $f(t)=\frac{t}{t^{2}-100}$ describes concentration in blood of a certain medicine taken once depending on time $t>10$,
a) For what value of $t, f(t)$ is not defined?
b)Discuss the parity of the function.

Solution

a) Existence condition of $f(t)$ is that: $t \neq 10$ or $t \neq-10$

Therefore, $f(t)$ is not defined for $t=10$ or $t=-10$.
For $t=10, f(t)=+\infty$ and for $t>10, f(t)$ has positive real values. The concentration of medicine in blood is observed and decrease over time.
b) The function $f(t)=\frac{t}{t^{2}-100}, f(-t)=\frac{-t}{(-t)^{2}-100}=-\frac{t}{(t)^{2}-100}$ Since $f(-t)=-f(t)$, then $f(t)$ is odd.

Application Activity 4.9

1.The temperature of a patient after being given a fever-reducing drug is given by $F(t)=98+\frac{3}{t+1}$, where F is the temperature in degrees Fahrenheit and t is the time in hours since the drug was administered.
a)Use a graphing utility to graph the function. Be sure to choose an appropriate viewing window.
b)For what values of t do you think this function would be valid? Explain.
2. The temperature T (in degrees Fahrenheit) of food placed in a refrigerator is modelled by $T=10\left(\frac{4 t^{2}+16 t+75}{t^{2}+4 t+10}\right)$ where t is the time (in hours).
a)What is the initial temperature of the food?
b)What is the temperature of the food after 3hours?

Unit summary

1. A function f is a rule that assigns to each element in a set A one and only one element in set B. The second set is called a co-domain. The set A is called the domain, denoted by Domf. The set of all possible values of $f(x)$ as x varies over the domain is called the range
2. A function that is expressible as ratio of two polynomials is called rational function. It has the form $\frac{a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots .+a_{n} x^{n}}{b_{0}+b_{1} x+b_{2} x^{2}+\ldots . .+b_{m} x^{m}}$.
3. A function that is expressed as root extractions is called irrational function. It has the form $h(x)=\sqrt[n]{f(x)}$, where $f(x)$ is a polynomial and n is positive integer greater or equal to 2 .
4. Given that $f(x)$ is polynomial, then the domain of definition is the set of real numbers. That is $\operatorname{Domf}=\mathbb{R}$
5. Given that $f(x)=\frac{g(x)}{h(x)}$ where $g(x)$ and $h(x)$ are polynomials, then the domain of definition is the set of real numbers excluding all values where the denominator is zero.
6. Given that $f(x)=\sqrt[n]{g(x)}$ where $g(x)$ is a polynomial, there are two cases

- If n is odd number, then the domain is the set of real numbers. That is $\operatorname{Domf}=\mathbb{R}$
- If n is even number, then the domain is the set of all values of x such $g(x)$ is positive or zero.

7. Given functions f and g, sum $f+g$, difference $f-g$, product $f \cdot g$ and quotient $\frac{f}{g}$, are defined by

- $(f+g)(x)=f(x)+g(x)$ • $(f-g)(x)=f(x)-g(x)$
- $(f \cdot g)(x)=f(x) \cdot g(x) \quad \cdot\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$

8. A function $f(x)$ is said to be even if the following conditions are satisfied

- $\forall x \in \operatorname{Domf},-x \in \operatorname{Domf}$ - $f(-x)=f(x)$

The graph of such function is symmetric about the vertical axis.
i.e $x=0$
9. A function is said to be odd if the following conditions are satisfied:

- $\forall x \in \operatorname{Domf},-x \in \operatorname{Domf}$ - $f(-x)=-f(x)$

The graph of such a function looks the same when rotated through half a revolution about 0 . This is called rotational symmetry.
10. The combined or composite function is written $(\operatorname{gof})(x)$ or $g[f(x)]$ or simply $g f$. The function f is performed first and so is written nearer to the variable $x 9$.
11. If the map $f: x \rightarrow y$ where $x \in X, y \in Y$ can be reversed, i.e $f^{-1}: y \rightarrow x$ and resulting relationship is a function, it is called the inverse of the original function, and is denoted by f^{-1}. Only one-to-one functions can have an inverse function and to find the inverse of one-to-one functions, we can change the subject of a formula.
12. Polynomials are used to describe curves of various types; people use them in the real world to graph curves. Functions are important in calculating medicine, building structures (houses, businesses,...), vehicle design, designing games, to build computers (formulas that are used to plug to computer programs), knowing how much change you should receive when making a purchase, driving (amount of gas needed for travel).

End Unit Assesment

1. State which of the following arrow diagrams show functions.
a)

b)

c)
d)

2. State which of the following arrow diagrams show
(i) a one to one function mapping into the co-domain,
(ii) a one to one function mapping onto the co-domain,
(iii) a many to one function mapping into the co-domain.
a)
b)

c)

d)

3. Given that $f(x)=3 x^{2}+2$, find:
a) $f(-2)$
b) $f(4)$
c) $f(0)$
d) $f(-\sqrt{3})$
e) $f(t)$
4. Given that $g(x)=\frac{x+1}{x-1}$, find:
a) $g(1.1)$
b) $g\left(\frac{1}{4}\right)$
C) $g(\sqrt[3]{5}+1)$
d) $g(\pi)$
e) $g(a-1)$
5. Given that $\phi(x)=\left\{\begin{array}{ll}\frac{1}{x} & x \geq 3 \\ 2 x & x<2\end{array}\right.$, find:
a) $\phi(2)$
b) $\phi(-4)$
c) $\phi(3)$
d) $\phi(3.1)$
e) $\phi(2.9)$
6. If $f(x)=2 x+3$, find the value of a if $f(a)=a$
7. If $f(x)=2 x^{2}$ and $g(x)=3-x$, find the possible values of a if $f(a)=g(a)$
8. The function g is given by $g(x)=a x^{2}-b$. If $g(2)=5$ and $g(-1)=2$, find the values of a and b and hence find $g(-4)$.
9. Each of the following functions map an element x of the domain onto its image y, i.e $f(x)=y$. Find the range of each function for the given domain and state whether the function is one to one or many to one.
a) $f: x \rightarrow x+3$ with domain $\{x: 0 \leq x \leq 4\}$
b) $f: x \rightarrow x^{2}$ with domain $\{x:-3 \leq x \leq 3\}$
c) $f: x \rightarrow \frac{1}{x}$ with domain $\{x: x \geq 1\}$
d) $f: x \rightarrow x^{2}+4$ with domain \mathbb{R}
e) $f: x \rightarrow \frac{1}{x-1}$ with domain $\{x \in \mathbb{R}: x \neq 1\}$
10. Find the domain of the given function:
a) $f(x)=\frac{1}{x-3}$
b) $g(x)=\frac{1}{5 x+7}$
c) $g(x)=\sqrt{x^{2}-3}$
d) $g(x)=\sqrt{(x-1)(x+2)}$
e) $\phi(x)=\sqrt{x^{2}+3}$
f) $\phi(x)=\frac{x}{\sqrt{|x|+1}}$
g) $h(x)=x^{2} \quad x<-3$
h) $h(x)=\sqrt{x} \quad x \geq 5$
i) $f(x)= \begin{cases}\sqrt{x} & x \geq 2 \\ \frac{1}{x-2} & x<2\end{cases}$
j) $f(x)= \begin{cases}\sqrt{-x} & x \leq-3 \\ 0 & x \geq 2\end{cases}$
11. Find the domain of the given function:
a) $f(x)=4 x^{3}-3 x+1$
b) $g(x)=\frac{x+1}{x^{2}+2 x-15}$
c) $h(x)=\sqrt{1-2 x}$
d) $k(x)=\sqrt{4-x}+\sqrt{x+3}$
e) $i(x)=\frac{\sqrt{3 x-1}}{\sqrt{x+3}}$
f) $h(x)=\frac{\sqrt{x^{3}+2 x^{2}-x-2}}{x^{2}-x}$
g) $f(x)=\frac{x^{2}+1}{x^{3}-2 x-3} \sqrt{\frac{x-1}{x^{2}-2 x-8}}$
12. Let $g(x)=x-3$ and let $f(x)= \begin{cases}\frac{x^{2}-9}{x+3} & x \neq-3 \\ k & x=-3\end{cases}$

Find k so that $f(x)=g(x)$ for all x.
13. Let $g(x)=x-4$ and $f(x)= \begin{cases}\frac{x^{2}-5 x+4}{x-1} & x \neq 1 \\ k & x=1\end{cases}$

Find the value of k so that $f(x)=g(x)$ for all x.
14. Given the functions $f(x)=x^{3}+3 x^{2}-2 x-2$ and $g(x)=x^{2}-x$, find:
a) $(f-g)(x)$
b) $(f+g)(x)$
c) $(f \cdot g)(x)$
15. Study the parity of the following functions:
a) $f(x)=\frac{x}{x^{2}+4}$
b) $f(x)=x^{3}-1$
c) $g(x)=\sqrt[3]{x^{3}+3 x}$
d) $h(x)=\frac{x^{3}-2 x}{x^{2}-4}$
16. Find $(f \circ g)(x)$ and $(g o f)(x)$
a) If $f(x)=x^{3}$ and $g(x)=6$
b) If $f(x)=x^{5}-x^{4}-3$ and $g(x)=4 x^{2}+3$
c) If $f(x)=x^{3}-2 x^{2}-4$ and $g(x)=x^{3}+1$
17. Find the inverse of the following functions
a) $f(x)=9 x-2$
b) $g(x)=\frac{-x-2}{x-5}$
c) $h(x)=\frac{x-9}{3 x-2}$

Unitit 5

Limits of polynomial, rational and

irrational functions

5.0 Introductory activity

To find the value of a function $f(x)$ when x approaches 2 , a student used a calculator and dressed a table as follows:

x	$f(x)$	x	
2.5	3.4	1.5	5.0
2.1	3.857142857	1.9	4.157894737
2.01	3.985074627	1.99	4.015075377
2.001	3.998500750	1.999	4.001500750
2.0001	3.999850007	1.9999	4.000150008
2.00001	3.999985000	1.99999	4.000015000

a) Is it possible to put the values of x on a number line? Try to do it and locate the point $x=2$
b) Write 2 possible open intervals of the number line such that their centre is $x=2$
c) Try to approximate the value of $f(x)$ when x approaches 2 .

objectives

After completing this unit, I will be able to:
(1) Calculate limits of certain elementary functions.
(1) Apply informal methods to explore the concept of a limit including one sided limits.
(1) Solve problems involving continuity.
(1) Use the concepts of limits to determine the asymptotes to the rational and polynomial functions.
(1) Develop calculus reasoning.

5.1. Concepts of limits

Neighbourhood of a real number

Activity 5.1.1

Study the following political map of Lesotho, Swaziland and South Africa. What can you say about the boundaries of Lesotho and Swaziland?
What is the actual name of Swaziland?

A set N is called a neighbourhood of point p if there exists an open interval I such that $x \in I \subset N$. The collection of all neighbourhoods of a point is called the neighbourhood system at the point.

A deleted neighbourhood of a point p (sometimes called a punctured neighbourhood) is a neighbourhood of p without p itself.

Example 5.1

A set V in the plane is a neighbourhood of a point p if a small disk around p is contained in V.

Example 5.2

A rectangle is not a neighbourhood of any of its corner.

Example 5.3

The interval $(-1,1)=\{y:-1<y<1\}$ is a neighbourhood of $x=0$ in the real line, so the set $(-1,0) \cup(0,1)=(-1,1) \backslash\{0\}$ is a deleted neighbourhood of 0 .

Application Activity 5.1.1

1. Apart from The Kingdom of Lesotho, give two examples of countries or Cities in the world that are surrounded by a single country or city.
2. Give three examples of intervals that are neighbourhoods of -5 ?
3. Is a circle a neighborhood of each of its points? Why?
4. Draw any plane and show three points on that plane for which the plane is their neighborhood.

Note:

A deleted neighbourhood of a given point is not in fact a neighbourhood of the point. The concept of deleted neighbourhood occurs in the definition of the limit of a function.

Limit of a function

Activity 5.1.2

Find:

1. $f(2)$ if $f(x)=\frac{x+1}{x+2}$
2. $f(1)$ if $f(x)=\frac{\sqrt{x+3}}{\sqrt[3]{3 x-2}}$
3. $f(3)$ if $f(x)=4 x^{3}-2 x^{2}+3 x-1$

Limits are used to describe how a function behaves as the independent variable moves towards a certain value.

Frequently when studying function $y=f(x)$, we find ourselves interested in the function's behavior near a particular point x_{0}, but not at x_{0}.

Example 5.4

Let us explore numerically how the function $f(x)=\frac{x^{2}-9}{x-3}$ behaves near $x=3$.

Note that $f(x)=\frac{x^{2}-9}{x-3}$ is defined for all real numbers x except for $x=3$
. For any $x=3$ we can simplify the expression for $f(x)$ by factoring the numerator and cancelling common factors:
$f(x)=\frac{(x+3)(x-3)}{x-3}=x+3 \quad$ for $x \neq 3$
Even though $f(3)$ is not defined, it is clear that we can make the value of $f(x)$ as close as we want to 6 by choosing x close enough to 3 . Therefore, we say that $f(x)$ approaches arbitrarily close to 6 as x approaches 3 , or, more simply, $f(x)$ approaches the limit 6 as x approaches 3 . We write this as
$\lim _{x \rightarrow 3} f(x)=6$ or $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=6$

Informally,

If $f(x)$ is defined for all x near a, except possibly at a itself, and if we can ensure the $f(x)$ is as close as we want to L by taking x close enough to a, but not equal to a, we say that the function f approaches the limit L as x approaches a, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

To find limit of a function $f(x)$ as x approaches a, first we need to substitute that value a in the function and see what happens. The limit can exist or not.

Example 5.5

$\lim _{x \rightarrow 2}(2 x+1)=2(2)+1=5$

Example 5.6

Since a constant function $f(x)=k$ has the same value k everywhere, it follows that at each point $\lim _{x \rightarrow a} k=k$. For example $\lim _{x \rightarrow 4} 5=5$

Example 5.8

$$
\lim _{x \rightarrow 2} \sqrt{x^{2}-2 x+1}=\sqrt{4-4+1}=1
$$

Example 5.7

The limit $\lim _{x \rightarrow a} x=a$ is self-evident. For example, $\lim _{x \rightarrow-5} x=-5$ $\lim _{x \rightarrow 0} x=0$

Example 5.9

$\lim _{x \rightarrow 3} \frac{\sqrt{2 x+1}}{\sqrt[3]{3 x-1}}=\frac{\sqrt{7}}{\sqrt[3]{8}}=\frac{\sqrt{7}}{2}$
For a rational function $f(x)=\frac{g(x)}{h(x)}$
If x approaches $a \in \mathbb{R}$, we have three cases:
a) $h(x) \neq 0$ for $x=a \Rightarrow \lim _{x \rightarrow a} f(x)=f(a)$
b) $g(x) \neq 0, h(x)=0$ for $x=a \Rightarrow \lim _{x \rightarrow a} f(x)=\infty$
c) $g(x)=0, h(x)=0$ for $x=a \Rightarrow \lim _{x \rightarrow a} f(x)=\frac{0}{0}$ (Indeterminate form) Later, we will see how to remove the indeterminate forms.

Example 5.10

$\lim _{x \rightarrow 2} \frac{x+4}{2+x}=\frac{2+4}{2+2}=\frac{6}{4}=\frac{3}{2}$

Example 5.11

$$
\lim _{x \rightarrow 0} \frac{x^{2}-2 x-3}{x+6}=\frac{0-0-3}{0+6}=-\frac{1}{2}
$$

Application Activity 5.1.2

Evaluate the following limits

1. $\lim _{x \rightarrow 1}\left(4 x^{3}-3 x^{2}+2 x-1\right)$
2. $\lim _{x \rightarrow-4} \frac{x^{2}-16}{x+4}$
3. $\lim _{x \rightarrow 2} \frac{\sqrt{-x+6}}{\sqrt[3]{x^{6}}}$
4. $\lim _{x \rightarrow-1} \frac{3 x^{2}+5}{x}$
5. $\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-4 x-4}{x-2}$

5.2. One sided limits

Activity 5.2

Consider the following function;

$$
f(x)= \begin{cases}x-1, & x \leq 3 \\ 3 x-7, & x>3\end{cases}
$$

Find:

1. $f(2.8)$
2. $f(2.9)$
3. $f(2.99)$
4. $f(3.05)$
5. $f(3.01)$
6. $f(3.001)$

If the value of $f(x)$ approaches L_{1} as x approaches x_{0} from the right side, we write $\lim _{x \rightarrow x_{0}^{+}} f(x)=L_{1}$ and we read "the limit of $f(x)$ as \boldsymbol{x} approaches x_{0} from the right equals L_{1}.
If the value of $f(x)$ approaches L_{2} as x approaches x_{0} from the left side, we write $\lim _{x \rightarrow x_{0}^{-}} f(x)=L_{2}$ and we read "the limit of $f(x)$ as \boldsymbol{x} approaches x_{0} from the left equals L_{2}.
If the limit from the left side is the same as the limit from the right side, say $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)=L$, then we write $\lim _{x \rightarrow x_{0}} f(x)$ and we read "the limit of $f(x)$ as \boldsymbol{x} approaches x_{0} equals L.
We call $\lim _{x \rightarrow x_{0}^{-}} f(x)$ or $\lim _{x \rightarrow x_{0}^{+}} f(x)$ one-side limit.
Note that $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$

Example 5.12

If $f(x)=\frac{|x-2|}{x^{2}+x-6}$. Find $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$

Solution

Observe that $|x-2|=x-2$ if $x>2$ and $|x-2|=-(x-2)$ if $x<2$.
Therefore,

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{x^{2}+x-6} & \lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} \frac{x-2}{x^{2}+x-6} \\
& =\lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{(x-2)(x+3)} & & =\lim _{x \rightarrow 2^{+}} \frac{x-2}{(x-2)(x+3)} \\
& =\lim _{x \rightarrow 2^{-}} \frac{-1}{x+3} & & =\lim _{x \rightarrow 2^{+}} \frac{1}{x+3} \\
& =-\frac{1}{5} & & =\frac{1}{5}
\end{aligned}
$$

Since $\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$, then $\lim _{x \rightarrow 2} f(x)$ does not exist.

Example 5.13

Find $\lim _{x \rightarrow 3} f(x)$ for $f(x)= \begin{cases}x^{2}-5 & \text { if } x \leq 3 \\ \sqrt{x+13} & \text { if } x>3\end{cases}$

Solution

As x approaches 3 from the left, the formula for f is $f(x)=x^{2}-5$. So that $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3}\left(x^{2}-5\right)=4$

As x approaches 3 from the right, the formula for f is $f(x)=\sqrt{x+13}$ So that;

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} f(x) & =\lim _{x \rightarrow 3} \sqrt{x+13} \\
& =\sqrt{\lim _{x \rightarrow 3}(x+13)} \\
& =\sqrt{16} \\
& =4
\end{aligned}
$$

Since the one-sided limits are equal, $\lim _{x \rightarrow 3} f(x)=4$.

Application Activity 5.2

Evaluate the following limits:

1. $\lim _{x \rightarrow 3} f(x)$ if $f(x)= \begin{cases}x^{2}-2 x+1, & x \neq 3 \\ 7, & x=3\end{cases}$
2. $\lim _{x \rightarrow 2} h(x)$ if $h(x)= \begin{cases}x^{2}-x-1, & x<2 \\ 3 x-5, & x \geq 2\end{cases}$
3. $\lim _{x \rightarrow 0} g(x)$ if $g(x)= \begin{cases}x, & x \leq 0 \\ x^{2}, & x>0\end{cases}$
4. $\lim _{x \rightarrow 1} h(x)$ if $h(x)= \begin{cases}1, & x>1 \\ 3, & x \leq 1\end{cases}$

5.3 Infinite limits and limits at infinity

Activity 5.3.1

1. Consider the following function $f(x)=\frac{x+1}{x-1}$. Find:
a) $f(0.97)$
b) $f(0.98)$
c) $f(0.99)$
d) $f(1.01)$
e) $f(1.02)$
e) $f(1.03)$
2. Evaluate the following operations:
a) $-2+\infty$
b) $2-\infty$
C) $-\infty+\infty$
d) $-\infty \times \infty$
e) $3(-\infty)$
f) $\frac{-\infty}{-2}$
g) $\frac{\infty}{-\infty}$

Infinite limits

A function whose values grow arbitrarily large can sometimes be said to have an infinite limit. Since infinity is not a number, infinite limits are not really limits at all but they provide a way of describing the behavior of
functions that grow arbitrarily large positive or negative.

Example 5.14

Describe the behavior of the function $f(x)=\frac{1}{x^{2}}$ near $x=0$.

Solution

As x approaches 0 from either side, the values of $f(x)$ are positive and grow larger and larger, so the limit of $f(x)$ as x approaches 0 does not exist. It is nevertheless convenient to describe the behavior of f near 0 by saying that $f(x)$ approaches ∞ as x approaches zero. We write,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty$ and $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty$

Example 5.15

Describe the behavior of the function $f(x)=\frac{1}{x}$ near $x=0$.

Solution

Let x successively assume values $x=1, \frac{1}{10}, \frac{1}{100}, \ldots$, then $\frac{1}{x}=1,10,100, \ldots$ successively. As x approaches 0 from the right, the value of $\frac{1}{x}$ gets larger and larger without bound, then $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$.
Let x successively assume values $x=-1,-\frac{1}{10},-\frac{1}{100}, \ldots$, then $\frac{1}{x}=-1,-10,-100, \ldots$ successively. As x approaches 0 from the left, the value of $\frac{1}{x}$ decreases and becomes more and more negative without bound, then $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$

x	$-\infty$		0	+	
$+\infty$					
1	+	+	+		
$\frac{1}{x}$		-	$\\|$	+	

Considering the last row, we see that for $x=0$ the value of $\frac{1}{x}$ does not exist (∞). At the left, there is a negative sign, thus $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$. At the right there is a positive sign, thus $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$.
It follows that $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist because the one sided limits as x approaches zero do not exist.

Example 5.16

$\lim _{x \rightarrow 4} \frac{2-x}{x^{2}-2 x-8}$

Solution

As x approaches 4 from the right, the numerator is negative quantity approaching -2 and the denominator, a positive quantity approaching 0 . Consequently the ratio is a negative quantity that decreases without bound. That is;

$$
\lim _{x \rightarrow 4^{+}} \frac{2-x}{x^{2}-2 x-8}=-\infty
$$

As x approaches 4 from the left, the numerator is eventually a negative quantity approaching -2 and the denominator a positive quantity approaching 0 . Consequently the ratio is a negative quantity that increases without bound. That is

$$
\lim _{x \rightarrow 4^{4}} \frac{2-x}{x^{2}-2 x-8}=+\infty
$$

Another way to see this is to construct the sign table:

x	$-\infty$		-2	2	4		$+\infty$		
$2-x$		+	0						
$x^{2}-2 x-8$	+	0		-		0	+		
$\frac{2-x}{x^{2}-2 x-8}$	+	$\\|$	-	0	+	$\\|$	-		

From the last row of the above table, we find that;

$$
\lim _{x \rightarrow 4^{+}} \frac{2-x}{x^{2}-2 x-8}=-\infty \text { and } \lim _{x \rightarrow 4^{-}} \frac{2-x}{x^{2}-2 x-8}=+\infty
$$

Limits at infinity

Let us start by looking at operations with infinity.

a) Addition:

When you add two non-zero numbers you get a new number. For example $3+8=11$. But with infinity, this is not true. A really large positive number plus any positive number, regardless of size, is still a really large positive number.

With infinity you have the following:

$$
\begin{aligned}
& +\infty+c=+\infty \text { with } c \neq-\infty \\
& +\infty+\infty=+\infty
\end{aligned}
$$

b) Subtraction:

A really large negative number minus any positive number, regardless of size, is still a really large negative number. In the case of subtraction we have;
$-\infty-c=-\infty$ with $c \neq-\infty$
$-\infty-\infty=-\infty$

c) Multiplication:

A really large (positive or negative) number times any number, regardless of size, is still a really large number and we have to be careful with signs. In the case of multiplication, we have;
$(a)(\infty)=\infty$ with $a>0$
$(a)(\infty)=-\infty$ with $a<0$
$(\infty)(\infty)=\infty$
$(-\infty)(-\infty)=\infty$
$(-\infty)(\infty)=-\infty$

d) Division:

A really large (positive or negative) number divided by any number that is not too large, is still a really large number and we have to be careful with signs.
$\frac{\infty}{a}=\infty$ if $a>0$ and $a \neq \infty$
$\frac{\infty}{a}=-\infty$ if $a<0$ and $a \neq-\infty$
$\frac{-\infty}{a}=-\infty$ if $a>0$ and $a \neq \infty$
$\frac{-\infty}{a}=\infty$ if $a<0$ and $a \neq-\infty$
$\frac{a}{\infty}=0$
$\frac{a}{-\infty}=0$

Beware!

So, we have dealt with almost every basic algebraic operation involving infinity. There are three cases that we have not dealt with yet. These are

$$
\infty-\infty=?, 0 \cdot \infty=?, \frac{\infty}{\infty}=?
$$

They are one that we call indeterminate form in limits calculation.
Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{0}$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty}\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}\right) \\
& =\lim _{x \rightarrow \infty} a_{n} x^{n}\left(1+\frac{a_{n-1}}{a_{n} x}+\frac{a_{n-2}}{a_{n} x^{2}}+\ldots+\frac{a_{0}}{a_{n} x^{n}}\right) \\
& =\lim _{x \rightarrow \infty} a_{n} x^{n}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} g(x) & =\lim _{x \rightarrow \infty}\left(b_{m} x^{m}+a_{m 1} x^{m-1}+\ldots+a_{0}\right) \\
& =\lim _{x \rightarrow \infty} b_{m} x^{m}\left(1+\frac{b_{m-1}}{b_{m} x}+\frac{b_{m-2}}{b_{m} x^{2}}+\ldots+\frac{b_{0}}{b_{m} x^{m}}\right) \\
& =\lim _{x \rightarrow \infty} b_{m} x^{m}
\end{aligned}
$$

And then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

We have three cases:
a) If $m=n, \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}}{b_{m} x^{m}}=\frac{a_{n}}{b_{m}}$.
b) If $n>m, \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{a_{n} x^{n-m}}{b_{m}}=\infty$.
c) If $n<m, \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{a_{n}}{b_{m} x^{m-n}}=0$.

Example 5.17

$\lim _{x \rightarrow+\infty}(-6)=-6$

Example 5.19

Find the limit $\lim _{x \rightarrow-\infty} \frac{1}{x}$ and $\lim _{x \rightarrow+\infty} \frac{1}{x}$

Example 5.18

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(3 x^{2}+5 x-3\right) & =\lim _{x \rightarrow-\infty} 3 x^{2} \\
& =+\infty
\end{aligned}
$$

Solution

From some sample calculations,

$$
\lim _{x \rightarrow-\infty} \frac{1}{x}=0 \text { and }
$$

$$
\lim _{x \rightarrow+\infty} \frac{1}{x}=0 . \text { We can }
$$

$$
\text { write } \lim _{x \rightarrow \pm \infty} \frac{1}{x}=0
$$

Example 5.20

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{4}+3 x^{2}+1}{3 x^{4}+5 x^{2}+3} & =\lim _{x \rightarrow \infty} \frac{2 x^{4}}{3 x^{4}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{3} \\
& =\frac{2}{3}
\end{aligned}
$$

Example 5.22

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x+2}{3 x^{2}+1} & =\lim _{x \rightarrow \infty} \frac{5 x}{3 x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{5}{3 x} \\
& =0
\end{aligned}
$$

Example 5.21

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{4 x^{3}+5 x-3}{x^{2}+3 x+1} & =\lim _{x \rightarrow-\infty} \frac{4 x^{3}}{x^{2}} \\
& =\lim _{x \rightarrow-\infty} 4 x \\
& =-\infty
\end{aligned}
$$

Application Activity 5.3.1

Evaluate the following limits:

1. $\lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x^{2}-1}{6 x^{3}+x+4}$
2. $\lim _{x \rightarrow-\infty} \frac{(x+3)^{2}}{x^{3}+4 x^{2}-8 x-4}$
3. $\lim _{x \rightarrow \infty} \frac{4 x^{3}+x^{2}-1}{x^{2}-x+4}$
4. $\lim _{x \rightarrow-4} \frac{x+1}{x+4}$
5. $\lim _{x \rightarrow 3} \frac{x^{2}+2 x+1}{x-3}$

Finding limits graphically

Activity 5.3.2

Consider the following curve of function $f(x)$.

Use this graph to find:

1. $\lim _{x \rightarrow 1^{-}} f(x)$
2. $\lim _{x \rightarrow l^{+}} f(x)$

What can you say about
$\lim _{x \rightarrow 1} f(x)$?

To find a limit graphically, we must understand each component of the limit to ensure the graph is used properly to evaluate the limit.

Example 23

Let f be the function whose graph is shown below,

As x approaches 2 from the left, $f(x)$ approaches 1 , so $\lim _{x \rightarrow 2^{-}} f(x)=1$. As x approaches 2 from the left, $f(x)$ approaches 3 , so $\lim _{x \rightarrow 2^{+}} f(x)=3$ but $f(2)=1.5$
Therefore, the value of a function at a point, and the left and right hand limits at the point can all be different.

If we compare f_{1}, f_{2} and f, we find that $f(2)=1.5$ while $f_{1}(2)=1$ but $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} f_{1}(x)=\lim _{x \rightarrow 2^{-}} f_{2}(x)=1$ and $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} f_{1}(x)=\lim _{x \rightarrow 2^{+}} f_{2}(x)=3$.

Example 24

Let f be the function whose graph is:

As x approaches 0 from the right side, $f(x)$ gets larger and larger without bound and consequently approaches no fixed value. Thus, $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist. In this case, we would write $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$ to indicate that the
limit fails to exist because $f(x)$ is increasing without bound.
As x approaches 0 from the left side, $f(x)$ becomes more and more negative without bound and consequently approaches no fixed value. Thus, $\lim _{x \rightarrow 0^{-}} f(x)$ does not exist. In this case, we write $\lim _{x \rightarrow 0^{-}} f(x)=-\infty$ to indicate that the limit fails to exist because $f(x)$ is decreasing without bound.
As x gets larger and larger, $f(x)$ gets close to zero. Also as x becomes more and more negative, $f(x)$ is close to zero. Thus, $\lim _{x \rightarrow+\infty} f(x)=0$ and $\lim _{x \rightarrow-\infty} f(x)=0$.

Application Activity 5.3.2

1. Find $\lim _{x \rightarrow 2} f(x)$ using the following graph of $f(x)$:

2. Find $\lim _{x \rightarrow-1} g(x)$ using the following graph of $g(x)$:

3. Find $\lim _{x \rightarrow-1} h(x), \lim _{x \rightarrow 1} h(x), \lim _{x \rightarrow-\infty} h(x), \lim _{x \rightarrow \infty} h(x)$ using the following graph of $h(x)$:

5.4. The squeeze theorem and operations on limits

Activity 5.4

1. In the same Cartesian plane, sketch the curves of:
$f(x)=x^{2}+5, g(x)=-x^{2}+5$ and $h(x)=5$. What can you say about the three curves?
Evaluate $\lim _{x \rightarrow 0} f(x), \lim _{x \rightarrow 0} \mathrm{~g}(x), \lim _{x \rightarrow 0} \mathrm{~h}(x)$
2. Evaluate the following limits
a) $\lim _{x \rightarrow 0}[3(3 x-1)], 3\left[\lim _{x \rightarrow 0}(3 x-1)\right]$
b) $\lim _{x \rightarrow 0}\left(x^{2}\right), \lim _{x \rightarrow 0}(3 x-1), \lim _{x \rightarrow 0}\left(x^{2}+3 x-1\right)$
c) $\lim _{x \rightarrow 1}\left(x^{2}+3 x-6\right), \lim _{x \rightarrow 1}(x+4), \lim _{x \rightarrow 1} \frac{x^{2}+3 x-6}{x+4}$
d) $\lim _{x \rightarrow 2}(x-1), \lim _{x \rightarrow 2}(x+4), \lim _{x \rightarrow 2}\left(x^{2}+3 x-4\right)$
e) $\lim _{x \rightarrow-4}\left[\left(x^{2}+1\right)^{2}\right],\left[\lim _{x \rightarrow-4}\left(x^{2}+1\right)\right]^{2}$

What can you conclude?

Suppose that $f(x) \leq h(x) \leq g(x)$. If $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=L$ then $\lim _{x \rightarrow c} h(x)=L$.
The following figure illustrates what is happening in this theorem:

From the figure, we can see that if the limits of $f(x)$ and $g(x)$ are equal at $x=c$ then the function values must also be equal at $x=c$. However, because $h(x)$ is "squeezed" between $f(x)$ and
$g(x)$ at this point then $h(x)$ must have the same value. Therefore, the limit of $h(x)$ at this point must also be the same. Similar statements hold for left and right limits.

Example 5.25

Given that

$$
1-\frac{x^{2}}{4} \leq u(x) \leq 1+\frac{x^{2}}{2} .
$$

Find $\lim _{x \rightarrow 0} u(x)$

Example 5.26

Show that if

$$
\begin{aligned}
& \lim _{x \rightarrow a}|f(x)|=0 \text { then } \\
& \lim _{x \rightarrow a} f(x)=0
\end{aligned}
$$

Solution

Since

$$
\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{4}\right)=1 \text { and } \lim _{x \rightarrow 0}\left(1+\frac{x^{2}}{2}\right)=1
$$

the Sandwich theorem
implies that $\lim _{x \rightarrow 0} u(x)=1$.

Solution

Since $-|f(x)| \leq f(x) \leq|f(x)|$,
and $-|f(x)|$ and $|f(x)|$ both
have limit 0 as x approaches
a, so does $f(x)$ by the
Sandwich theorem.

Operations on limits:

Let lim stand for one of the limits $\lim _{x \rightarrow a}, \lim _{x \rightarrow a^{-}}, \lim _{x \rightarrow a^{+}}, \lim _{x \rightarrow-\infty}$ or $\lim _{x \rightarrow+\infty}$. If $\lim f(x)$ and $\lim g(x)$ both exist, say $\lim f(x)=L_{1}$ and $\lim g(x)=L_{2}$, then;
a) A constant factor can be moved through a limit sign. That is, if k is a constant, then $\lim [k f(x)]=k \lim f(x)$.
b) $\lim [f(x)+g(x)]=\lim f(x)+\lim g(x)=L_{1}+L_{2}$.
c) $\lim [f(x)-g(x)]=\lim f(x)-\lim g(x)=L_{1}-L_{2}$.
d) $\lim [f(x) \cdot g(x)]=\lim f(x) \cdot \lim g(x)=L_{1} \cdot L_{2}$.
e) $\lim \left[\frac{f(x)}{g(x)}\right]=\frac{\lim f(x)}{\lim g(x)}=\frac{L_{1}}{L_{2}}$ if $L_{2} \neq 0$.
f) If n and m are positive integers, then $\lim [f(x)]^{\frac{m}{n}}=L_{1}^{\frac{m}{n}} \quad$ provided that $L_{1} \geq 0$ if n is even.

Example 5.27

Find

$$
\lim _{x \rightarrow 3} x^{4}=\left[\lim _{x \rightarrow 3} x\right]^{4}
$$

Example 5.28

Find $\lim _{x \rightarrow 5}\left(x^{2}-4 x+3\right)$

Solution

$$
\lim _{x \rightarrow 3} x^{4}=\left[\lim _{x \rightarrow 3} x\right]^{4}=3^{4}=81
$$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow 5}\left(x^{2}-4 x+3\right) & =\lim _{x \rightarrow 5} x^{2}-\lim _{x \rightarrow 5} 4 x+\lim _{x \rightarrow 5} 3 \\
& =\lim _{x \rightarrow 5} x^{2}-4 \lim _{x \rightarrow 5} x+\lim _{x \rightarrow 5} 3 \\
& =5^{2}-4 \lim _{x \rightarrow 5} x+\lim _{x \rightarrow 5} 3 \\
& =25-4(5)+3 \\
& =8
\end{aligned}
$$

Example 5.29

Find $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}$ if
$f(x)=5 x^{3}+4$
and $g(x)=x-3$

Example 5.30

Find $\lim _{x \rightarrow 0} f(x) g(x)$ if $f(x)=6 x^{2}+2$ and $g(x)=x+2$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow 2} \frac{5 x^{3}+4}{x-3} \\
\lim _{x \rightarrow 2} \frac{5 x^{3}+4}{x-3} & =\frac{\lim _{x \rightarrow 2}\left(5 x^{3}+4\right)}{\lim _{x \rightarrow 2}(x-3)} \\
& =\frac{5(2)^{3}+4}{2-3} \\
& =-44
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x) g(x) \\
& =\lim _{x \rightarrow 0}\left(6 x^{2}+2\right) \lim _{x \rightarrow 0}(x+2)=2 \times 2=4
\end{aligned}
$$

Application Activity 5.4

1. Given that $-x^{2} \leq g(x) \leq x^{2}$. Find $\lim _{x \rightarrow 0} g(x)$.
2. If $\lim _{x \rightarrow 3} f(x)=6$ and $\lim _{x \rightarrow 3} g(x)=-3$. Find;
a) $\lim _{x \rightarrow 3}[f(x)+g(x)]$
b) $\quad \lim _{x \rightarrow 3}[f(x) g(x)]^{3}$
3. Explain why the following calculation is incorrect:
a) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)=\lim _{x \rightarrow 0^{+}} \frac{1}{x}-\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty-\infty=0$
b) Show that $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)=-\infty$

5.5. Indeterminate cases

Activity 5.5.1

1. Find a common factor for numerator and denominator.
a) $f(x)=\frac{x^{2}-1}{x-1}$
b) $f(x)=\frac{x^{3}+x^{2}-5 x-2}{x^{2}-4}$

An indeterminate form is a certain type of expression with a limit that is not evident by inspection. There are several types of indeterminate forms such as $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty, 0^{0}, 1^{\infty}$
In this section we will study the forms $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty$.
The indeterminate forms may be produced in the following ways:

- Suppose that $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty$.

The limit of the product $f(x) g(x)$ has the indeterminate form, $0 \cdot \infty$, at $x=a$.

To evaluate this limit we try to change the limit into one of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ in this way: $f(x) g(x)=\frac{f(x)}{\frac{1}{g(x)}}=\frac{\frac{g(x)}{\frac{1}{f(x)}}}{}$

- If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=+\infty$, then $\lim _{x \rightarrow a}[f(x)-g(x)]$ has the indeterminate form $\infty-\infty$. To evaluate this limit, we try the algebraic manipulations by converting the limit into a form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$. If $f(x)$ or $g(x)$ is expressed as a fraction, we can do this by finding the common denominator.

Example 5.31

Evaluate
$\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

Example 5.32

Evaluate $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$

Solution

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{1-1}{1-1}=\frac{0}{0} I \cdot F \\
& \begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1}(x+1) \\
& =2
\end{aligned}
\end{aligned}
$$

Solution

$\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{0}{0}$, this is the indeterminate form.
By factoring the numerator and cancelling the common factor, we obtain;

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2} \\
& =\lim _{x \rightarrow 2}(x+2) \\
& =4
\end{aligned}
$$

Example 5.33

Evaluate $\lim _{x \rightarrow+\infty} \frac{x^{2}+4 x+5}{4 x^{2}+7 x+9}$

Solution

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}+4 x+5}{4 x^{2}+7 x+9}=\frac{\infty}{\infty} I . F
$$

Factor out x^{2}, we have;

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{x^{2}\left(1+\frac{4}{x}+\frac{5}{x^{2}}\right)}{x^{2}\left(4+\frac{7}{x}+\frac{9}{x^{2}}\right)} & =\lim _{x \rightarrow+\infty} \frac{1+\frac{4}{x}+\frac{5}{x^{2}}}{4+\frac{7}{x}+\frac{9}{x^{2}}} \\
& =\frac{1+0+0}{4+0+0} \\
& =\frac{1}{4}
\end{aligned}
$$

Or Since we have a rational function and degree of numerator is equal to the degree of denominator, to find the limit as x tends to infinity, we need to divide the coefficients of the highest degree for numerator and denominator. That is the limit is given by $\frac{1}{4}$.

Example 5.34

Evaluate $\lim _{x \rightarrow-\infty}\left(3 x^{2}+5 x-3\right)$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(3 x^{2}+5 x-3\right) & =3(-\infty)^{2}+5(-\infty)-3 \\
& =+\infty-\infty \text { I.F }
\end{aligned}
$$

Factor out x^{2} :

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(3 x^{2}+5 x-3\right) & =\lim _{x \rightarrow-\infty} x^{2}\left(3+\frac{5}{x}-\frac{3}{x^{2}}\right) \\
& =+\infty(3+0-0) \\
& =+\infty
\end{aligned}
$$

Application Activity 5.5.1

Evaluate the following limits

1. $\lim _{x \rightarrow \infty}\left(x^{2}-2 x+5\right)$
2. $\lim _{x \rightarrow-\infty}\left(4 x^{3}+3 x^{2}-6\right)$
3. $\lim _{x \rightarrow 4} \frac{x^{4}-16}{x^{2}-4}$

Indeterminate forms in irrational functions

Activity 5.5.2

What is the conjugate of the irrational expression in each of the following functions?
a) $f(x)=\sqrt{x^{2}-2}+3$
b) $f(x)=\frac{\sqrt{x-2}-1}{x-3}$

When we are computing the limits of irrational functions, in case of indeterminate form, we need to know the conjugate of the irrational expression in that function. We may need to find the domain of the given function.

Example 5.35

Evaluate $\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-1}{x-4}$.

Solution

$\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-1}{x-4}=\frac{1-1}{4-4}=\frac{0}{0}$ I.F
To evaluate this limit, we multiply the numerator and denominator by the conjugate of $\sqrt{x-3}-1$ which is $\sqrt{x-3}+1$, then

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-1}{x-4} & =\lim _{x \rightarrow 4} \frac{(\sqrt{x-3}-1)(\sqrt{x-3}+1)}{(x-4)(\sqrt{x-3}+1)} \\
& =\lim _{x \rightarrow 4} \frac{x-3-1}{(x-4)(\sqrt{x-3}+1)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x-3}+1} \\
& =\frac{1}{2}
\end{aligned}
$$

Example 5.36

Evaluate $\lim _{x \rightarrow+\infty}\left(\sqrt{4 x^{2}+2}-2 x\right)$

Solution

$\lim _{x \rightarrow+\infty}\left(\sqrt{4 x^{2}+2}-2 x\right)=+\infty-\infty$ I.F
To evaluate this limit we multiply and divide by the conjugate of $\sqrt{4 x^{2}+2}-2 x$.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty}\left(\sqrt{4 x^{2}+2}-2 x\right) & =\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{4 x^{2}+2}-2 x\right)\left(\sqrt{4 x^{2}+2}+2 x\right)}{\sqrt{4 x^{2}+2}+2 x} \\
& =\lim _{x \rightarrow+\infty} \frac{4 x^{2}+2-4 x^{2}}{\sqrt{4 x^{2}+2}+2 x} \\
& =\lim _{x \rightarrow+\infty} \frac{2}{\sqrt{4 x^{2}+2}+2 x} \\
& =\frac{2}{+\infty} \\
& =0
\end{aligned}
$$

Example 5.37

Evaluate $\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}-11 x-3}}{x}$

Solution

$\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}}-11 x-3}{x}=\frac{\sqrt{\infty-\infty}}{\infty}$ I.F
To evaluate this limit, we try the algebraic manipulations such that the denominator will be cancelled.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}-11 x-3}}{x} & =\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}\left(1-\frac{11}{4 x}-\frac{3}{4 x^{2}}\right)}}{x} \\
& =\lim _{x \rightarrow+\infty} \frac{\left(\sqrt{4 x^{2}}\right) \sqrt{1-\frac{11}{4 x}-\frac{3}{4 x^{2}}}}{x} \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}}}{x} \lim _{x \rightarrow+\infty} \sqrt{1-\frac{11}{4 x}-\frac{3}{4 x^{2}}} \\
& =\left(\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}}}{x}\right) \times 1 \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}}}{x} \\
& =\lim _{x \rightarrow+\infty} \frac{2 \sqrt{x^{2}}}{x}
\end{aligned}
$$

Recall that $\sqrt{x^{2}}= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } \\ x<0\end{cases}$
We need to find the domain of the given function:
Domf $\left.=]-\infty,-\frac{1}{4}\right] \cup[3,+\infty[$. As x tends to $+\infty, x \in[3,+\infty[$ and then $\sqrt{x^{2}}=x$.

Thus,

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}-11 x-3}}{x} & =\lim _{x \rightarrow+\infty} \frac{2 \sqrt{x^{2}}}{x} \\
& =\lim _{x \rightarrow+\infty} \frac{2 x}{x} \\
& =2
\end{aligned}
$$

Example 5.38

Evaluate

$$
\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{x-1}
$$

Example 5.39

Evaluate
$\lim _{x \rightarrow 2} \frac{\sqrt{x-2}}{\sqrt[3]{x-2}}$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{x-1} & =\frac{0}{0} I \cdot F \\
\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{(\sqrt[3]{x}-1)\left(\sqrt[3]{x^{2}}+\sqrt[3]{x}+1\right)}{(x-1)\left(\sqrt[3]{x^{2}}+\sqrt[3]{x}+1\right)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)}{(x-1)\left(\sqrt[3]{x^{2}}+\sqrt[3]{x}+1\right)} \\
& =\lim _{x \rightarrow 1} \frac{1}{\left(\sqrt[3]{x^{2}}+\sqrt[3]{x}+1\right)} \\
& =\frac{1}{3}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\sqrt{x-2}}{\sqrt[3]{x-2}}=\frac{0}{0} I . F \\
& \begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x-2}}{\sqrt[3]{x-2}} & =\lim _{x \rightarrow 2} \frac{(x-2)^{\frac{1}{2}}}{(x-2)^{\frac{1}{3}}} \\
& =\lim _{x \rightarrow 2}(x-2)^{\frac{1}{2}}(x-2)^{-\frac{1}{3}} \\
& =\lim _{x \rightarrow 2}(x-2)^{\frac{1}{2}-\frac{1}{3}} \\
& =\lim _{x \rightarrow 2}(x-2)^{\frac{1}{6}} \\
& =\lim _{x \rightarrow 2} \sqrt[6]{x-2} \\
& =0
\end{aligned}
\end{aligned}
$$

Note that the limits involving indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ can be evaluated by successive derivatives of numerator and denominator. This method is called L'Hôpital rule.

We will see this in application of derivatives.

Application Activity 5.5.2

Evaluate the following limits;

1. $\lim _{x \rightarrow 4} \frac{\sqrt{x^{2}-6}-10}{x-4}$
2. $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{9 x^{2}-3 x+6}}$

5.6. Applications of limit in Mathematics

Continuity of function

Activity 5.6.1

Given the function $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2}, & x \neq 2 \\ 4, & x=2\end{array}\right.$, find;
a) $f(2)$
b) $\lim _{x \rightarrow 2} f(x)$

What can you say about $f(2)$ and $\lim _{x \rightarrow 2} f(x)$?

a) Continuity of a function at a point or on interval I

A function $f(x)$ is said to be continuous at point c if the following conditions are satisfied:
a) $f(c)$ is defined
b) $\lim _{x \rightarrow c} f(x)$ exists
c) $\lim _{x \rightarrow c} f(x)=f(c)$

If one or more conditions in this definition fail to hold, then f is said to be discontinuous at point \boldsymbol{c}, and c is called a point of discontinuity of f. If f is continuous at all point of an open interval (a, b), then f is said to be continuous on (a, b).
A function that is continuous on $(-\infty,+\infty)$ is said to be continuous everywhere or simply continuous.

Example 5.40

Study the continuity of $f(x)=\frac{x^{2}-4}{x-2}$ at $x=2$

Solution

The function $f(x)=\frac{x^{2}-4}{x-2}$ is discontinuous at 2 because $f(2)$ is undefined.

Example 5.41

Study the continuity of $g(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 3 & \text { if } x=2\end{array}\right.$ at $x=2$
Solution
The function $g(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 3 & \text { if } x=2\end{array}\right.$ is discontinuous at 2
because $g(2)=3$ while $\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2}(x+2)=4$ so that $\lim _{x \rightarrow 2} g(x) \neq g(2)$.

Example 5.42

Study the continuity of $g(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\ 6 & \text { if } x=3\end{array}\right.$ at $x=3$

Solution

The function $g(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\ 6 & \text { if } x=3\end{array}\right.$ is continuous at 3 since

$$
g(3)=6 \text { and } \lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3^{-}} g(x)=\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3}(x+3)=6
$$

so that $\lim _{x \rightarrow 3} g(x)=g(3)$.

Example 5.43

Study the continuity of at $f(x)=\cos x$ at $x=0$

Solution

The function $f(x)=\cos x$ is continuous at 0 because $f(0)=1$ and $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \cos x=\cos 0=1$ so that $\lim _{x \rightarrow 0} f(x)=f(0)$.

Example 5.44

The function $f: x \rightarrow[x]$, where $[x]$ is used to denote the greatest integer less or equal to x, has a discontinuity at each integral value of x because, for example, where $x=2: f(2)=[2]=2$ and $\lim _{x \rightarrow 2^{+}}[x]=2, \lim _{x \rightarrow 2^{-}}[x]=1$ so that $\lim _{x \rightarrow 2} f(x)$ does not exist.

If $x=2.4,[x]=2$
If $x=-0.8,[x]=-1$
If $x=4,[x]=4$

Notice

The function $[x]$ is also denoted $\lfloor x\rfloor$ or $\llbracket x \rrbracket$.
$\lceil x\rceil$ or $] x[$ is used to denote the least integer greater than or equal to x
b) Continuity at the left and continuity at the right of a point

A function f is continuous at the left of point c if the following conditions are satisfied:
a) $f(c)$ is defined
b) $\lim _{x \rightarrow c^{-}} f(x)$ exists
c) $\lim _{x \rightarrow c^{-}} f(x)=f(c)$

A function f is continuous at the right at of point c if the following conditions are satisfied:
a) $f(c)$ is defined
b) $\lim _{x \rightarrow c^{+}} f(x)$ exists
c) $\lim _{x \rightarrow c^{+}} f(x)=f(c)$

Example 5.45

From example 5, $\lim _{x \rightarrow 2^{+}}[2]=2=[2]$. Therefore $[x]$ is continuous at the right of point 2 .

c) Continuity at an endpoint

We say that f is continuous at a left endpoint of its domain if it is continuous at the right of that point.

We say that f is continuous at a right endpoint of its domain if it is continuous at the left of that point.

Example 5.46

The function $f(x)=\sqrt{4-x^{2}}$ has domain $[-2,2]$
This function is continuous at the right endpoint 2 because it is left continuous there, that is, because $\lim _{x \rightarrow 2^{-}} f(x)=0=f(2)$.
This function is continuous at the left endpoint -2 because it is right continuous there, that is, because .

$$
\lim f(x)=0=f(-2)
$$

$x \rightarrow-2^{+}$

d) Continuity on an interval

We say that f is continuous on the interval \boldsymbol{I} if it is continuous at each point of I. In particular, we will say that f is a continuous function if f is continuous at every point of its domain.

Example 5.47

The function $f(x)=\sqrt{x}$ is a continuous function on its domain. Its domain is $[0,+\infty[$. It is continuous at the left endpoint 0 because it is right continuous there. Also, f is continuous at every number $c>0$ since $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$.

Example 5.48

The function $f(x)=\frac{x}{\sqrt{1-x^{2}}}$ is a continuous function on its domain. Its domain is]-1,1[. It is continuous at the left endpoint -1 because it is right continuous there. It is continuous at the right endpoint 1 because it is left continuous there. Also, f is continuous at every number $c \in]-1,1\left[\right.$ since $\lim _{x \rightarrow c} \frac{x}{\sqrt{1-x^{2}}}=\frac{c}{\sqrt{1-c^{2}}}$.

e) Continuity on a closed interval

A function f is continuous on a closed interval $[a, b]$, if the following conditions are all satisfied;
a) f is continuous on (a, b).
b) f is continuous at the right of a.
c) f is continuous at the left of b.

Example 5.49

The function $f(x)=\sqrt{9-x^{2}}$ is continuous on the closed interval $[-3,3]$. We observe that $\operatorname{Domf}=[-3,3]$. For c in the interval $(-3,3)$ we have $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} \sqrt{9-x^{2}}=\sqrt{9-c^{2}}=f(c)$. So that f is continuous on $(-3,3)$.
Also, $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \sqrt{9-x^{2}}=0=f(3)$ and

$$
\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}} \sqrt{9-x^{2}}=0=f(-3) .
$$

So that f is continuous on $[-3,3]$.

Theorem

a) Polynomials are continuous functions.
b) If the functions f and g are continuous at c, then;
(i) $f+g$ is continuous at c.
(ii) $f-g$ is continuous at c.
(iii) $f \cdot g$ is continuous at c.
(iv) $\frac{f}{g}$ is continuous at c if $g(c) \neq 0$, and is discontinuous at c if
$g(c)=0$.
c) A rational function is continuous everywhere except at the point where the denominator is zero.
d) Piecewise functions (functions that are defined on a sequence of intervals) are continuous if every function is in its interval of definition, and if the functions match their side limits at the points of separation of their intervals.

Example 5.50

The function $h(x)=\frac{x^{2}-9}{x^{2}-5 x+6}$ is continuous everywhere except at point 2 and 3 because the numerator and denominator are polynomials and denominator is zero at points 2 and 3 .

Example 5.51

The function
$f(x)= \begin{cases}1 & \text { if } x \leq 1 \\ x & \text { if } 1<x \leq 3 \\ -x+6 & \text { if } 3<x \leq 6 \\ 0 & \text { if } x>6 \quad \text { is continuous on } \mathbb{R}, \text { because its constituent }\end{cases}$ functions are polynomials and the side limits at the points of division coincide.

Here is the graph

Application Activity 5.6.1

1. Determine where the function below is not continuous.
$f(x)=\frac{4 x+10}{x^{2}-2 x-15}$
2. Given the function: $f(x)= \begin{cases}\frac{x^{2}-9}{x-3}, & x \neq 3 \\ k, & x=3\end{cases}$

Determine the value of k for which the function is continuous at $x=3$.
3. Determine the values for a and b in order to create a continuous function.

$$
f(x)= \begin{cases}\frac{1}{x^{2}+1}, & x<0 \\ a x+b, & 0 \leq x \leq 3 \\ x-5, & x>3\end{cases}
$$

Classification of discontinuity

Activity 5.6.2

Evaluate

1. $\lim _{x \rightarrow 3^{-}} f(x), \lim _{x \rightarrow 3^{+}} f(x)$ for $f(x)= \begin{cases}x+1, & x>3 \\ x^{2}, & x \leq 3\end{cases}$
2. $\lim _{x \rightarrow 5} f(x), f(x)=\frac{x^{2}-7 x+10}{x-5}$

a) Apparent (or removable) discontinuity and continuous

extensions

As we have seen, a rational function may have a limit even at a point where its denominator is zero. If $f(x)$ is undefined at a but $\lim _{x \rightarrow a} f(x)=L$ exists, we can define a new function $F(x)$ by; $F(x)= \begin{cases}f(x) & \text { if } x \text { is in the domain of } f \\ L & \text { if } x=a\end{cases}$
$F(x)$ is continuous at $x=a$. It is called the continuous extension of $f(x)$ to $x=a$.

If a function is undefined or discontinuous at a point a but can be redefined at that single point so that it becomes continuous there, then we say that f has a removable (or apparent) discontinuity at a.

Example 5.52

The function $f(x)=\frac{x^{2}-4}{x-2}$ is continuous everywhere except at $x=2$. $f(x)$ is undefined at $x=2$ but $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2}(x+2)=4$ so that 2 is the apparent discontinuity point of $f(x)=\frac{x^{2}-4}{x-2}$.
Now the continuous extension of $f(x)$ is
$f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 4 & \text { if } x=2\end{cases}$

b) Discontinuity of the first kind or jump discontinuity

If $\lim _{x \rightarrow c^{+}} f(x)$ and $\lim _{x \rightarrow c^{-}} f(x)$ exist but are different, $f(x)$ is said to have a discontinuity of the first kind at point c and c is called discontinuity point of the first kind.

Example 5.53

Let $f(x)=\frac{x}{|x|}$
$f(x)$ is undefined at $x=0$, then 0 is a point of discontinuity.
$\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0} \frac{x}{-x}=-1$ and $\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=\lim _{x \rightarrow 0} \frac{x}{x}=1$.
As $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$ exist but are different, there is a discontinuity point of the first kind at $x=0$.

c) Discontinuity of the second kind

A function f is said to have a discontinuity of the second kind at point c if atleast one of its limits from the left or from the right does not exist or is infinity.

Example 54

The function $f(x)=\frac{1}{x}$ has a discontinuity of the second
kind at 0 because $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$.

Application Actvity 5.6.2

Classify the points of discontinuity in each of the following functions

1. $f(x)=\frac{x^{3}+x^{2}-2 x-2}{x+1}$
2. $f(x)= \begin{cases}2, & x \leq 4 \\ -4, & x>4\end{cases}$
3. $f(x)=\frac{x^{2}-2 x-2}{x^{2}+2 x+1}$
4. $f(x)=\frac{|x+2|}{x+2}$
5. $f(x)= \begin{cases}x+3, & x>-2 \\ x^{2}-3, & x \leq-2\end{cases}$

Theorem: Intermediate value theorem

Activity 5.6.3

For each of the following functions, find two numbers a and b such that $f(a) f(b)<0$

1. $f(x)=x^{3}$ on interval $[-1,2]$
2. $f(x)=\frac{x^{2}-8}{x-3}$ on interval $[-5,0]$
3. $f(x)=2 x^{3}-3 x^{2}-12 x+20$ on interval $[-4,-1]$

The Intermediate Value Theorem states that if we have a continuous function $f(x)$ on the interval $[a, b]$ with M being any number between $f(a)$ and $f(b)$, there exists a number c such that:
a) $a<c<b$
b) $f(c)=M$

The Intermediate Value Theorem is a geometrical application illustrating that continuous functions will take on all values between $f(a)$ and $f(b)$.

It is important to note that this theorem does not tell us the value of M, but only that it exists. For example, we can use this theorem to see if a function will have any x-intercepts.

Example 5.55

Use the Intermediate Value Theorem to determine if the function $f(x)=2 x^{3}-5 x^{2}-10 x+5$ has a root somewhere in the interval $[-1,2]$. In other words, we are asking if $f(x)=0$ in the interval $[-1,2]$.

Using the Intermediate Value Theorem, we can say that we want to show that there is a number c where $-1<c<2$ such that $f(c)=0$ between $f(-1)$ and $f(2)$.
We see that $f(-1)=8$ and $f(2)=-19$.
Therefore, $8>0>-19$ and atleast one root exists for $f(x)$ in the given interval.

Example 5.56

Show that there is a root of the equation $x^{3}-x-1=0$ between 1 and 2 . Let $f(x)=x^{3}-x-1$. Since $f(1)=-1<0$ and $f(2)=5>0$, we see that 0 is a value between $f(1)$ and $f(2)$. Since f is continuous, the Intermediate Value Theorem says that there is a zero of $f(x)$ between 1 and 2 .

Application Activity 5.6.3

1. Use the Intermediate Value Theorem to determine if the function $y=-x^{3}+3 x$ has a root somewhere in;
a) the interval $[-3,0]$.
b) the interval $[0,4]$
2. Use the Intermediate Value Theorem to determine if the function $y=\frac{2 x}{x+1}$ has a root somewhere in the interval $[-2,4]$.
3. Use the Intermediate Value Theorem to determine if the function $y=\sqrt[3]{(x-1)^{2}(x+1)}$ has a root somewhere in the interval $[-4,1]$.

Asymptotes

Activity 5.6.4

Consider the following curve of function y

What can you say about the curve of y and the lines A and B?
Recall that if $P(x)$ and $Q(x)$ are polynomials, then their ratio $f(x)=\frac{P(x)}{Q(x)}$ is called a rational function of x. The discontinuity occurs at points where $Q(x)=0$.

An asymptote on the curve is a straight line that is closely approached by that curve so that the perpendicular distance between them decreases to zero.

To find any asymptote of the function, first we need to determine its domain of definition and evaluate the limits at the boundaries of the domain.

Types of asymptotes

There are three types of asymptotes:

- Vertical asymptote,
- Horizontal asymptote and
- Oblique asymptote.

a) Vertical asymptote

A line $x=x_{0}$ is called a vertical asymptote for the graph of a function $f(x)$ if $f(x) \rightarrow+\infty$ or $f(x) \rightarrow-\infty$ as x approaches x_{0} at the right or at the left.

Example 5.57

Find the vertical asymptote for $f(x)=$ $f(x)=\frac{2 x^{2}+7 x-1}{x+1}$

Solution

Let $f(x)=\frac{2 x^{2}+7 x-1}{x+1}$
$\operatorname{Domf}=]-\infty,-1[\cup]-1,+\infty[$
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{2 x^{2}+7 x-1}{x+1}$
Hence, $x=-\infty$ is a vertical asymptote for $f(x)=\frac{2 x^{2}+7 x-1}{x+1}$.

Example 5.58

Find the vertical asymptote for $g(x)=\frac{x^{3}-2 x-4}{4-x^{2}}$

Solution

Let $g(x)=\frac{x^{3}-2 x-4}{4-x^{2}}$
Domg $=\mathbb{R} \backslash\{-2,2\}$
$\lim _{x \rightarrow-2} g(x)=\lim _{x \rightarrow-2} \frac{x^{3}-2 x-4}{4-x^{2}}$

$$
=\infty
$$

Hence, $x=-2$ is a vertical asymptote for

$$
g(x)=\frac{x^{3}-2 x-4}{4-x^{2}} .
$$

$$
\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2} \frac{x^{3}-2 x-4}{4-x^{2}}
$$

$$
=\frac{0}{0} I . F
$$

$$
\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+2\right)}{-(x-2)(x+2)}
$$

$$
=\lim _{x \rightarrow 2} \frac{x^{2}+2 x+2}{-(x+2)}
$$

$$
=-\frac{5}{2}
$$

Since $\lim _{x \rightarrow 2} g(x) \neq \infty, x=2$ is not a vertical asymptote for

$$
g(x)=\frac{x^{3}-2 x-4}{4-x^{2}} .
$$

b) Horizontal asymptote

A line $y=L$ is called a horizontal asymptote for the graph of a function $f(x)$ if $f(x) \rightarrow L$ as $x \rightarrow+\infty$ or $x \rightarrow-\infty$.

Horizontal asymptote

Example 5.59

Find the horizontal asymptote for $f(x)=\frac{3 x^{2}+4 x-9}{2 x^{2}+1}$

Solution

Let $f(x)=\frac{3 x^{2}+4 x-9}{2 x^{2}+1}$

$$
\operatorname{Domf}=]-\infty,+\infty[
$$

$\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{3 x^{2}}{2 x^{2}}$

$$
=\frac{3}{2}
$$

Thus, $y=\frac{3}{2}$ is a horizontal asymptote for $f(x)=\frac{3 x^{2}+4 x-9}{2 x^{2}+1}$

Example 5.60

Find the horizontal asymptote for $h(x)=\frac{x \sqrt{4 x^{2}+3 x-1}}{x^{2}+5}$

Solution

Let $h(x)=\frac{x \sqrt{4 x^{2}+3 x-1}}{x^{2}+5}$
Domh $=]-\infty,-1] \cup\left[\frac{1}{4},+\infty[\right.$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} h(x) & =\lim _{x \rightarrow-\infty} \frac{x \sqrt{4 x^{2}+3 x-1}}{x^{2}+5} \\
& =-2
\end{aligned}
$$

Hence, $y=-2$ is a horizontal asymptote for

$$
\begin{aligned}
& h(x)=\frac{x \sqrt{4 x^{2}+3 x-1}}{x^{2}+5} . \\
& \begin{aligned}
\lim _{x \rightarrow+\infty} h(x) & =\lim _{x \rightarrow+\infty} \frac{x \sqrt{4 x^{2}+3 x-1}}{x^{2}+5} \\
& =2
\end{aligned}
\end{aligned}
$$

Hence, $y=2$ is another horizontal asymptote for

$$
h(x)=\frac{x \sqrt{4 x^{2}+3 x-1}}{x^{2}+5} .
$$

c) Oblique asymptote

If a rational function, $\frac{P(x)}{Q(x)}$, is such that the degree of the
numerator exceeds the degree of the denominator by one, then the graph
of $\frac{P(x)}{Q(x)}$ will have an oblique asymptote
(or a slant asymptote); that is, an asymptote that is neither vertical nor horizontal.

We perform the division of $P(x)$ by $Q(x)$ to obtain

$$
\frac{P(x)}{Q(x)}=(a x+b)+\frac{R(x)}{Q(x)}
$$

Where, $a x+b$ is the quotient and $R(x)$ is the remainder.
Use the fact that the degree of the remainder $R(x)$ is less than the degree of the divisor $Q(x)$ to help prove:
$\lim _{x \rightarrow+\infty}\left|\frac{P(x)}{Q(x)}-(a x+b)\right|=0$
$\lim _{x \rightarrow-\infty}\left|\frac{P(x)}{Q(x)}-(a x+b)\right|=0$
These results tell us that the graph of the equation $y=\frac{P(x)}{Q(x)}$ tends towards the line (oblique asymptote) $y=a x+b$ as $x \rightarrow+\infty$ or $x \rightarrow-\infty$.
Another way to find the values of constants a and b is $a=\lim _{x \rightarrow+\infty} \frac{f(x)}{x} \quad a \neq 0$ and $b=\lim _{x \rightarrow \pm \infty}[f(x)-a x]$

Notice

Horizontal asymptote and oblique asymptote do not exist on the same side. That means if $f(x) \rightarrow L$ as $x \rightarrow+\infty$, there is no oblique asymptote on the right side since there is horizontal asymptote and if $f(x) \rightarrow L$ as $x \rightarrow-\infty$, there is no oblique asymptote on the left side since there is horizontal asymptote.

Example 5.61

Find the oblique asymptote of $f(x)=\frac{3 x^{3}+4 x-5}{x^{2}+1}$

Solution

Let $f(x)=\frac{3 x^{3}+4 x-5}{x^{2}+1}$
Domf $=]-\infty,+\infty[$
Let $y=a x+b$ be the oblique asymptote.

$$
\begin{aligned}
& a=\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{3 x^{3}+4 x-5}{x^{3}+x} \\
& =3 \\
& b=\lim _{x \rightarrow \pm \infty}[f(x)-3 x] \\
& =\lim _{x \rightarrow \pm \infty} \frac{3 x^{3}+4 x-5-3 x^{3}-3 x}{x^{2}+1} \\
& =\lim _{x \rightarrow \pm \infty} \frac{x-5}{x^{2}+1} \\
& \text { Thus, } y=3 x \text { is the oblique asymptote for } f(x)=\frac{3 x^{3}+4 x-5}{x^{2}+1}
\end{aligned}
$$

Example 5.62

Let $f(x)=\frac{x}{x-2}$. Find relative asymptotes;

Solution

Domf $=(-\infty, 2) \cup(2,+\infty)$
$\lim _{x \rightarrow 2^{+}} f(x)=+\infty$ and $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$. Thus, there exists a vertical asymptote V.A $\equiv x=2$
$\lim _{x \rightarrow \pm \infty} f(x)=1$. Thus, there exists a horizontal asymptote
H.A $\equiv y=1$

Note that there is no oblique asymptote.

Example 5.63

Let $f(x)=\frac{x^{2}+2 x-3}{x}$. Find relative asymptotes;

Solution

$\overline{\overline{o m f}=(-\infty, 0) \cup(0,+\infty)}$
$\lim _{x \rightarrow 0^{+}} f(x)=-\infty$ and $\lim _{x \rightarrow 0^{-}} f(x)=+\infty$. Thus, there is a vertical asymptote
V.A $\equiv x=0$
$\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$. Thus, the horizontal asymptote does not exist.
To find oblique asymptote, let $y=a x+b$ be the oblique asymptote.

$$
\begin{aligned}
a & =\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x} \\
& =\lim _{x \rightarrow \pm \infty} \frac{x^{2}+2 x-3}{x^{2}} \\
& =1
\end{aligned}
$$

Since $1 \neq 0$, let us find b.

$$
\begin{aligned}
b & =\lim _{x \rightarrow \pm \infty}[f(x)-a x] \\
& =\lim _{x \rightarrow \pm \infty}\left[\frac{x^{2}+2 x-3}{x}-x\right] \\
& =\lim _{x \rightarrow \pm \infty} \frac{2 x-3}{x} \\
& =2
\end{aligned}
$$

Then, O. $\mathrm{A} \equiv y=x+2$.
As the degree of the numerator exceeds the degree of the denominator by one, we could find oblique asymptote after performing long division.

$x |$| $x+2$ |
| :--- |
| $x^{2}+2 x-3$
 $-\left(x^{2}\right)$ |
| $2 x-3$ |
| $-(2 x)$ |
| -3 |

$$
f(x)=x+2-\frac{3}{x} .
$$

Thus, there exists an oblique asymptote $\mathrm{O} . \mathrm{A} \equiv y=x+2$.

Example 5.64

Let $f(x)=x+|x|+\frac{1}{x}$. Find relative asymptotes

Solution

$\overline{\operatorname{Domf}}=\mathbb{R} \backslash\{0\}=]-\infty, 0[\cup] 0,+\infty \Gamma$
$f(x)= \begin{cases}x+x+\frac{1}{x}=2 x+\frac{1}{x} & \text { if } x>0 \\ x-x+\frac{1}{x}=\frac{1}{x} & \text { if } x<0\end{cases}$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}\left(2 x+\frac{1}{x}\right)=\infty$ and $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=\infty$.
Thus, there is a vertical asymptote $V . A \equiv x=0$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(2 x+\frac{1}{x}\right)=+\infty$ and $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{1}{x}=0$.
Thus, there is a horizontal asymptote $H . A \equiv y=0$ on the left side.
As there is no horizontal asymptote on the right side, let us check if there is oblique asymptote.

Let $O . A \equiv y=a x+b$

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty}\left(2+\frac{1}{x^{2}}\right)=2 .
$$

Then $a=2$

$$
\lim _{x \rightarrow+\infty}[f(x)-a x]=\lim _{x \rightarrow+\infty}\left(2 x+\frac{1}{x}-2 x\right)=0 .
$$

Then $b=0$
Thus, on the right side there is oblique asymptote $O . A \equiv y=2 x$

Example 5.65

Let $f(x)=2 x-\sqrt{4 x^{2}+1}$. Find relative asymptotes

Solution

$\operatorname{Domf}=(-\infty,+\infty)$
From Domf , there is no vertical asymptotes.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty}\left(2 x-\sqrt{4 x^{2}+1}\right) \\
& =+\infty-\infty \text { I.F }
\end{aligned}
$$

Remove this I.F

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} \frac{\left(2 x-\sqrt{4 x^{2}+1}\right)\left(2 x+\sqrt{4 x^{2}+1}\right)}{2 x+\sqrt{4 x^{2}+1}} \\
& =\lim _{x \rightarrow+\infty} \frac{4 x^{2}-\left(4 x^{2}+1\right)}{2 x+\sqrt{4 x^{2}+1}} \\
& =\lim _{x \rightarrow+\infty} \frac{-1}{2 x+\sqrt{4 x^{2}+1}} \\
& =0
\end{aligned}
$$

Thus, on the right side, $y=0$ is horizontal asymptote and hence no oblique asymptote on the right side.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty}\left(2 x-\sqrt{4 x^{2}+1}\right) \\
& =-\infty-\infty \\
& =-\infty
\end{aligned}
$$

Thus, there is no horizontal asymptote on the left side.
Oblique asymptote;
Let $O . A \equiv y=a x+b$

$$
\begin{aligned}
a & =\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} \frac{2 x-\sqrt{4 x^{2}+1}}{x} \\
& =\lim _{x \rightarrow-\infty}\left(2-\frac{-x \sqrt{4+\frac{1}{x^{2}}}}{x}\right) \\
& =4 \\
b & =\lim _{x \rightarrow-\infty}[f(x)-4 x] \\
& =\lim _{x \rightarrow-\infty}\left(2 x-\sqrt{4 x^{2}+1}-4 x\right) \\
& =\lim _{x \rightarrow-\infty}\left(-2 x-\sqrt{4 x^{2}+1}\right) \\
& =\lim _{x \rightarrow-\infty} \frac{\left(-2 x-\sqrt{4 x^{2}+1}\right)\left(-2 x+\sqrt{4 x^{2}+1}\right)}{\left(-2 x+\sqrt{4 x^{2}+1}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{4 x^{2}-4 x^{2}-1}{\left(-2 x+\sqrt{4 x^{2}+1}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{-1}{\left(-2 x+\sqrt{4 x^{2}+1}\right)} \\
& =0
\end{aligned}
$$

Thus, $y=4 x$ is the oblique asymptote on the left side.

Example 5.66

Let $f(x)=\frac{x^{2}+3}{\sqrt{2 x^{2}+x-1}}$. Find relative asymptotes

Solution

$$
\begin{aligned}
& \operatorname{Domf}=]-\infty,-1[\cup] \frac{1}{2},+\infty[\\
& \begin{aligned}
\lim _{x \rightarrow-1} f(x) & =\lim _{x \rightarrow-1} \frac{x^{2}+3}{\sqrt{2 x^{2}+x-1}} \\
= & \infty
\end{aligned}
\end{aligned}
$$

$x=-1$ is a vertical asymptote
$\lim _{x \rightarrow \frac{1}{2}} f(x)=\lim _{x \rightarrow \frac{1}{2}} \frac{x^{2}+3}{\sqrt{2 x^{2}+x-1}}$

$$
=\infty
$$

$x=\frac{1}{2}$ is another vertical asymptote for $f(x)=\frac{x^{2}+3}{\sqrt{2 x^{2}+x-1}}$

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} \frac{x^{2}+3}{\sqrt{2 x^{2}+x-1}} \\
& =\frac{+\infty}{+\infty} \quad \text { I.F }
\end{aligned}
$$

Remove this I.F

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} \frac{x^{2}\left(1+\frac{3}{x^{2}}\right)}{x \sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}} \\
& =\lim _{x \rightarrow+\infty} \frac{x\left(1+\frac{3}{x^{2}}\right)}{\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}} \\
& =+\infty
\end{aligned}
$$

Thus, no horizontal asymptote when $x \rightarrow+\infty$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{x^{2}+3}{\sqrt{2 x^{2}+x-1}} \\
& =\frac{+\infty}{+\infty} \quad \text { I.F }
\end{aligned}
$$

Remove this I.F

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{x^{2}\left(1+\frac{3}{x^{2}}\right)}{-x \sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{x\left(1+\frac{3}{x^{2}}\right)}{-\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}} \\
& =+\infty
\end{aligned}
$$

Thus, no horizontal asymptote when $x \rightarrow-\infty$.

Oblique asymptote:

Let $O . A \equiv y=a x+b$

$$
\begin{aligned}
& a=\lim _{x \rightarrow+\infty} \frac{f(x)}{x} \\
& =\lim _{x \rightarrow+\infty} \frac{x^{2}+3}{x \sqrt{2 x^{2}+x-1}} \\
& =\frac{1}{\sqrt{2}} \\
& b=\lim _{x \rightarrow+\infty}\left[f(x)-\frac{1}{\sqrt{2}} x\right] \\
& =\lim _{x \rightarrow+\infty}\left[\frac{x^{2}+3}{\sqrt{2 x^{2}+x-1}}-\frac{x}{\sqrt{2}}\right] \\
& =\lim _{x \rightarrow+\infty}\left(\frac{\sqrt{2}\left(x^{2}+3\right)-x \sqrt{2 x^{2}+x-1}}{\sqrt{4 x^{2}+2 x-2}}\right) \\
& =\lim _{x \rightarrow+\infty}\left(\frac{\sqrt{2}\left(x^{2}+3\right)-x \sqrt{2 x^{2}+x-1}}{\sqrt{4 x^{2}+2 x-2}}\right)\left(\frac{\sqrt{2}\left(x^{2}+3\right)+x \sqrt{2 x^{2}+x-1}}{\sqrt{4 x^{2}+2 x-2}}\right)\left(\frac{\sqrt{4 x^{2}+2 x-2}}{\sqrt{2}\left(x^{2}+3\right)+x \sqrt{2 x^{2}+x-1}}\right) \\
& =\lim _{x \rightarrow+\infty}\left(\frac{2\left(x^{2}+3\right)^{2}-x^{2}\left(2 x^{2}+x-1\right)}{4 x^{2}+2 x-2}\right)\left(\frac{\sqrt{4 x^{2}+2 x-2}}{\sqrt{2}\left(x^{2}+3\right)+x \sqrt{2 x^{2}+x-1}}\right) \\
& =\lim _{x \rightarrow+\infty}\left(\frac{2 x^{4}+12 x^{2}+18-2 x^{4}-x^{3}+x^{2}}{4 x^{2}+2 x-2}\right)\left(\frac{\sqrt{4 x^{2}+2 x-2}}{\sqrt{2}\left(x^{2}+3\right)+x \sqrt{2 x^{2}+x-1}}\right) \\
& =\lim _{x \rightarrow+\infty}\left(\frac{13 x^{2}+18-x^{3}}{4 x^{2}+2 x-2}\right)\left(\frac{\sqrt{4 x^{2}+2 x-2}}{\sqrt{2}\left(x^{2}+3\right)+x \sqrt{2 x^{2}+x-1}}\right) \\
& =\lim _{x \rightarrow+\infty}\left[\left(\frac{13 x^{2}+18-x^{3}}{4 x^{2}+2 x-2}\left(\frac{x \sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{x^{2}\left(\sqrt{2}+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}\right.}\right)\right)\right] \\
& =\lim _{x \rightarrow+\infty}\left[\left(\frac{13 x^{2}+18-x^{3}}{4 x^{2}+2 x-2}\right)\left(\frac{\sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{x\left(\sqrt{2}+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}\right.}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\lim _{x \rightarrow \infty}\left(\frac{13 x^{2}+18-x^{3}}{4 x^{3}+2 x^{2}-2 x}\right) \frac{\sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{\sqrt{2+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}}}\right) \\
& =\lim _{x \rightarrow \infty} \frac{x 3\left(\frac{13}{x}+\frac{18}{x^{3}}-1\right)}{x^{3}\left(4+\frac{2}{x}-\frac{2}{x^{2}}\right)} \frac{\sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{\sqrt{2+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}}} \\
& =\lim _{x \rightarrow \infty} \frac{\left(\frac{13}{x}+\frac{18}{x^{3}}-1\right)}{\left(4+\frac{2}{x}-\frac{2}{x^{2}}\right)} \frac{\sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{\left(\sqrt{2+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}}\right.} \\
& =\frac{-1}{4 \sqrt{2}} \\
& =\frac{-\sqrt{2}}{8}
\end{aligned}
$$

Hence, $y=\frac{\sqrt{2} x}{2}-\frac{\sqrt{2}}{8}$ is oblique asymptote when $x \rightarrow+\infty$.

Let us check if there is oblique asymptote when $x \rightarrow-\infty$.

$$
\begin{aligned}
a & =\lim _{x \rightarrow-\infty} \frac{f(x)}{x} \\
& =\lim _{x \rightarrow-\infty} \frac{x^{2}+3}{x \sqrt{2 x^{2}+x-1}} \\
& =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& b=\lim _{x \rightarrow-\infty}\left[f(x)+\frac{1}{\sqrt{2}} x\right] \\
& =\lim _{x \rightarrow-\infty}\left[\frac{x^{2}+3}{\sqrt{2 x^{2}+x-1}}+\frac{x}{\sqrt{2}}\right] \\
& =\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{2}\left(x^{2}+3\right)+x \sqrt{2 x^{2}+x-1}}{\sqrt{4 x^{2}+2 x-2}}\right) \\
& =\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{2}\left(x^{2}+3\right)+x \sqrt{2 x^{2}+x-1}}{\sqrt{4 x^{2}+2 x-2}}\right)\left(\frac{\sqrt{2}\left(x^{2}+3\right)-x \sqrt{2 x^{2}+x-1}}{\sqrt{4 x^{2}+2 x-2}}\right)\left(\frac{\sqrt{4 x^{2}+2 x-2}}{\sqrt{2}\left(x^{2}+3\right)-x \sqrt{2 x^{2}+x-1}}\right) \\
& =\lim _{x \rightarrow-\infty}\left(\frac{2\left(x^{2}+3\right)^{2}-x^{2}\left(2 x^{2}+x-1\right)}{4 x^{2}+2 x-2}\right)\left(\frac{\sqrt{4 x^{2}+2 x-2}}{\sqrt{2}\left(x^{2}+3\right)-x \sqrt{2 x^{2}+x-1}}\right) \\
& =\lim _{x \rightarrow-\infty}\left(\frac{2 x^{4}+12 x^{2}+18-2 x^{4}-x^{3}+x^{2}}{4 x^{2}+2 x-2}\right)\left(\frac{\sqrt{4 x^{2}+2 x-2}}{\sqrt{2}\left(x^{2}+3\right)-x \sqrt{2 x^{2}+x-1}}\right) \\
& =\lim _{x \rightarrow-\infty}\left(\frac{13 x^{2}+18-x^{3}}{4 x^{2}+2 x-2}\right)\left(\frac{\sqrt{4 x^{2}+2 x-2}}{\sqrt{2}\left(x^{2}+3\right)-x \sqrt{2 x^{2}+x-1}}\right) \\
& =\lim _{x \rightarrow-\infty}\left[\left(\frac{13 x^{2}+18-x^{3}}{4 x^{2}+2 x-2}\right)\left(\frac{-x \sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{x^{2}\left(\sqrt{2}+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}\right)}\right)\right] \\
& =\lim _{x \rightarrow-\infty}\left[\left(\frac{13 x^{2}+18-x^{3}}{4 x^{2}+2 x-2}\right)\left(\frac{-\sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{x\left(\sqrt{2}+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}\right)}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\lim _{x \rightarrow \infty}\left(\frac{13 x^{2}+18-x^{3}}{4 x^{3}+2 x^{2}-2 x}\right) \frac{-\sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{\sqrt{2+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}}}\right) \\
& =\lim _{x \rightarrow \infty} \frac{x^{3}\left(\frac{13}{x}+\frac{18}{x^{3}}-1\right)}{x^{3}\left(4+\frac{2}{x}-\frac{2}{x^{2}}\right)} \frac{-\sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{\sqrt{2+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}}} \\
& =\lim _{x \rightarrow \infty} \frac{\left(\frac{13}{x}+\frac{18}{x^{3}}-1\right)}{\left(4+\frac{2}{x}-\frac{2}{x^{2}}\right)}\left(\frac{-\sqrt{4+\frac{2}{x}-\frac{2}{x^{2}}}}{\left.\sqrt{2+\frac{3 \sqrt{2}}{x^{2}}+\sqrt{2+\frac{1}{x}-\frac{1}{x^{2}}}}\right)}\right. \\
& =\frac{1}{4 \sqrt{2}} \\
& =\frac{\sqrt{2}}{8}
\end{aligned}
$$

Hence, $y=-\frac{\sqrt{2} x}{2}+\frac{\sqrt{2}}{8}$ is oblique asymptote when $x \rightarrow-\infty$.

Example 5. 67

The rational function $f(t)=\frac{t}{t^{2}-100}$ describes concentration in blood of a certain medicine taken once depending on time $t>10$, find:
A)The horizontal asymptote.
B)The vertical asymptote.

Solution

Let $f(t)=\frac{t}{t^{2}-100}$,
Domf : $]-\infty,-10[\cup] 10,+\infty[$
a) $H A \equiv \lim _{t \rightarrow \pm \infty} \frac{t}{t^{2}-100}=0$
$\therefore H A \equiv y=0$
b) $\lim _{t \rightarrow-10} \frac{t}{t^{2}-100}=\infty$ and $\lim _{t \rightarrow+10} \frac{t}{t^{2}-100}=\infty$
$\therefore V A \equiv t=-10$ and $V A \equiv t=+10$

Application Activity 5.6.4

Find relative asymptotes of;

1. $f(x)=\frac{x^{3}+x^{2}-5 x-2}{x^{3}-x^{2}-2 x}$
2. $y=\frac{x+3}{x^{2}+9}$
3. $y=\frac{x^{2}+3 x+1}{4 x-9}$
4. $y=\frac{x^{2}-x-2}{x-2}$
5. $f(x)=\frac{6 x^{2}-3 x+4}{2 x^{2}-8}$

5.4. Application of limits in other subjects.

Activity 5.4

The total cost evolution of a small business is modelled by the function $C=a x+b$ where C is the cost and x is the units sold. If $a=0.5$ and $b=5000$
a) Find the model function for the evolution of the business
b) Find the average cost function \bar{C}, if x units are sold.
c) Using the function on (b) find the average if 100 units are sold, if 1000 units are sold and if 100000 units are sold.
d) Using the values obtained at (c), find the average cost as x approaches to infinity.
e) Discuss the meaning of the limit obtained at (d).

Limits can be applied in different fields in real life. In economics the average cost per unit sold is calculated using limits.

In physics, the velocity and acceleration are calculated using limits,etc.

1. Instantaneous rate of change of a function

The instantaneous rate of change of $f(x)$ at a, also called the rate of change of $f(x)$ at a, is defined to be the limit of the average rate of change of $f(x)$ over shorter and shorter intervals around a.

Since the average rate of change is a difference quotient of the form $\frac{\Delta y}{\Delta t}$, the instantaneous rate of change is a limit of difference quotient. In practice, we often approximate a rate of change by one of these difference quotients.

Example 5.68:

The quantity (in mg) of a drug in the blood at time t (in minutes) is given by $Q=25(0.8)^{t}$. Estimate the rate of change of the quantity at $t=3$ and interpret your answer.

Solution:

We estimate the rate of change at $t=3$ by computing the average rate of change over intervals near $t=3$. We can make our estimate as accurate as we like by choosing our intervals small enough.

Let's look at the average rate of change over the interval $3 \leq \mathrm{t} \leq 3.01$:
Average rate of change $=\frac{\Delta Q}{\Delta t}=\frac{25(0.8)^{3.01}-25(0.8)^{3}}{3.01-3.00}=-2.85$
A reasonable estimate for the rate of change of the quantity at $t=3$ is -2.85 Since Q is in mg and t in minutes, the units of $\frac{\Delta Q}{\Delta t}$ are $\mathrm{mg} /$ minute. Since the rate of change is negative, the quantity of the drug is decreasing. After 3 minutes, the quantity of the drug in the body is decreasing at 2.85 mg / minute

2. Instantaneous velocity

Instantaneous velocity of a moving body is the limit of average velocity over an infinitesimal interval of time.

$$
v=\lim _{t \rightarrow 0} \frac{\Delta s}{\Delta t}
$$

3. Instantaneous acceleration

Instantaneous acceleration for a moving body is the limit of average acceleration over an infinitesimal interval of time $a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}$

Application Activity 5.13

1. The cost $C_{\text {(in millions dollars) for the federal government to seize }}$ $\mathrm{p} \%$ of a type of illegal drug as it enters the country is modelled by the $C=\frac{528 p}{100-p}, 0 \leq p<100$
a. Find the cost of seizing (stopping) $25 \%, 50 \%$ and 75%.
b. Find the limit as $\mathrm{p} \rightarrow 100^{\circ}$, interpret this limit in the context of the problem.
2. A business has a cost in dollars of $C=0.5 x+500$ for producing x units.
a. Find the average cost function \bar{C}.
b. Find $\bar{C}_{\text {when }}=250$ and when $\mathrm{x}=1250$
c. What is the limit of \bar{C} as $x_{\text {approaches to infinity? Interpret the }}$ results in the context of the problem.

Unit summary

1. A set N is called a neighbourhood of point p if there exist an open interval I such that $x \in I \subset N$. The collection of all neighbourhoods of a point is called the neighbourhood system at the point. A deleted neighbourhood of a point p (sometimes called a punctured neighbourhood) is a neighbourhood of p without p itself.
2. To find limit of a function $f(x)$ as x approaches a, first we need to substitute that value a in the function and see what happen. The limit can exist or not.
3. If the value of $f(x)$ approaches L_{1} as x approaches x_{0} from the right side we write $\lim _{x \rightarrow x_{0}^{+}} f(x)=L_{1}$ and we read "the limit of $f(x)$ as \boldsymbol{x} approaches x_{0} from the right equals L_{1}.
4. If the value of $f(x)$ approaches L_{2} as x approaches x_{0} from the left side we write $\lim _{x \rightarrow x_{0}^{-}} f(x)=L_{2}$ and we read "the limit of $f(x)$ as \boldsymbol{x} approaches x_{0} from the left equals L_{2}
5. Squeeze theorem: Suppose that $f(x)<h(x)<g(x)$. If $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=L$, then $\lim _{x \rightarrow c} h(x)=L$
6. Operations on limits

Let \lim stands for one of the limits $\lim _{x \rightarrow a}, \lim _{x \rightarrow a^{-}}, \lim _{x \rightarrow a^{+}}, \lim _{x \rightarrow-\infty}$ or $\lim _{x \rightarrow+\infty}$. If $\lim f(x)$ and $\lim g(x)$ both exist, say $\lim f(x)=L_{1}$ and $\lim g(x)=L_{2}$, then

- A constant factor can be moved through a limit sign. That is, if k is a constant, then $\lim [k f(x)]=k \lim f(x)=\mathrm{kL}_{1}$
- $\lim _{x \rightarrow x_{0}}[f(x)+g(x)]=\lim f(x)+\lim g(x)=L_{1}+L_{2}$
- $\lim _{x \rightarrow x_{0}}[f(x)-g(x)]=\lim f(x)-\lim g(x)=L_{1}-L_{2}$
- $\lim _{x \rightarrow x_{0}}[f(x) \cdot g(x)]=\lim _{x \rightarrow x_{0}} f(x) \cdot \lim _{x \rightarrow x_{0}} g(x)=L_{1} \cdot L_{2}$
- $\lim _{x \rightarrow x_{0}}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim f(x)}{\lim g(x)}=\frac{L_{1}}{L_{2}} \quad$ if $L_{2} \neq 0$
- If n and m are positive integers, then $\lim [f(x)]^{\frac{m}{n}}=L_{1}^{\frac{m}{n}} \quad$ provided that $L_{1} \geq 0$ if n is even.

7. The types $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty$ are indeterminate forms.
8. When we are computing the limits of irrational functions, in case of indeterminate form, we need to know the conjugate of the irrational expression in that function. We may need to find the domain of the given function.
9. A function $f(x)$ is said to be continuous at point c if the following conditions are satisfied:
a) $f(c)$ is defined
b) $\lim _{x \rightarrow c} f(x)$ exists
c) $\lim _{x \rightarrow c} f(x)=f(c)$
10. If a function is undefined or discontinuous at a point a but can be redefined at that single point so that it becomes continuous there, then we say that f has a removable (or apparent) discontinuity at a.
11. If $\lim _{x \rightarrow c^{+}} f(x)$ and $\lim _{x \rightarrow c^{-}} f(x)$ exist but are different, $f(x)$ is said to have a discontinuity of the first kind at point c and c is called discontinuity point of the first kind.
12. A function f is said to have a discontinuity of the second kind at point c if at least one of its limits from the left or from the right does not exist or is infinity.
13. A line $x=x_{0}$ is called a vertical asymptote for the graph of a function $f(x)$ if $f(x) \rightarrow+\infty$ or $f(x) \rightarrow-\infty$ as x approaches x_{0} at the right or at the left.
14. A line $y=L$ is called a horizontal asymptote for the graph of a function $f(x)$ if $f(x) \rightarrow L$ as $x \rightarrow+\infty$ or $x \rightarrow-\infty$.
15. Oblique asymptote: $y=a x+b$ as $x \rightarrow+\infty$ or $x \rightarrow-\infty$. Where

$$
a=\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x} \quad a \neq 0 \text { and } b=\lim _{x \rightarrow \pm \infty}[f(x)-a x]
$$

End unit assessment

From exercise 1 to 10 , evaluate the given limits

1. $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-6 x+8}$
2. $\lim _{x \rightarrow 1} \frac{\sqrt{5 x-4}-\sqrt{x}}{x-1}$
3. $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x^{2}+3}-2}$
4. $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)$
5. $\lim _{x \rightarrow-1}\left(x^{5}-3 x^{2}-3 x+9\right)$
6. $\lim _{x \rightarrow 1} \frac{x^{6}-2 x^{2}+1}{x^{2}-1}$
7. $\lim _{x \rightarrow 2} f(x)$ for $f(x)= \begin{cases}x^{2} & \text { if } 0 \leq x \leq 2 \\ x+2 & \text { if } 2<x \leq 6\end{cases}$
8. $\quad \lim _{x \rightarrow 3} f(x)$ for $f(x)= \begin{cases}x-1 & x \leq 3 \\ 3 x-7 & x>3\end{cases}$
9. $\lim _{t \rightarrow 0} g(t)$ for $g(t)= \begin{cases}t^{2} & t \geq 0 \\ t-2 & t<0\end{cases}$
10. Let the function $f(x)$ be defined by $f(x)= \begin{cases}\frac{x^{2}-9}{x+3} & x \neq-3 \\ k & x=-3\end{cases}$
Determine k if $f(-3)=\lim _{x \rightarrow-3} f(x)$.
11. A function $\phi(x)$ is defined as $\phi(x)=\left\{\begin{array}{ll}1+x, & x<2 \\ 5-x, & x \geq 2\end{array}\right.$. Is this function continuous at $x=2$?
12. For the function $f(x)=\left\{\begin{array}{ll}-x, & x<0 \\ a, & x=0 \\ x^{2}, & x>0\end{array}\right.$ find the value of a that will make it continuous at $x=0$.
13. A function is defined as $f(x)=\left\{\begin{array}{ll}x, & 0 \leq x<1 \\ 2, & x=1 \\ x+1, & 1<x \leq 2\end{array}\right.$. Find the point(s) of discontinuity of the function $f(x)$ and draw its graph.
14. Let $f(x)$ be a function of real variable x defined by $f(x)=\left\{\begin{array}{ll}-x, & x \leq 0 \\ x, & 0<x<1 \\ 2-x, & x \geq 1\end{array}\right.$.

Show that $f(x)$ is continuous at $x=0$ and also at $x=1$
In Exercises 15-17, classify the points of discontinuity (if any):
15. $f(x)=\frac{x^{2}-16}{x-4} \quad$ 16. $f(x)=\frac{x^{2}+2 x+5}{x+2}$ 17. $f(x)= \begin{cases}x-1 & x \leq 3 \\ 2 x-7 & x>3\end{cases}$

Find relative asymptotes in exercises 18-31:
18. $y=\sqrt{\frac{a+x}{a-x}}, a>0 \quad$ 19. $y=\sqrt{\frac{x\left(x^{2}-a^{2}\right)}{a}}, a>0 \quad$ 20. $y=\sqrt{\frac{x^{3}}{x-1}}$
21. $y=\frac{x^{2}}{a}+\frac{a^{2}}{x}, a>0$
22. $y=\frac{2 x^{2}-2 x-1}{x-2}$
23. $y=x+\sqrt{\frac{x-1}{x+1}}$
24. $y=x \sqrt{\frac{x-1}{x-2}}$
25. $y=\frac{2-2 x}{5-3 x}$
26. $y=\frac{x^{4}}{x^{2}+1}$
27. $y=a x+\frac{1}{a x}, a>0$
28. $y=\frac{2 x^{2}-1}{x^{2}-1}$
29. $y=\frac{x^{3}}{x-a}, a>0$
30. $y=\frac{x^{3}-2 x+1}{2 x^{2}+2 x+2} \quad$ 31. $y=x \sqrt{\frac{x^{2}-1}{2 x-1}}$
32. Find horizontal asymptote(s): $y=\frac{x^{3}-2}{|x|^{3}+1}$
33. Find horizontal and vertical asymptotes of $f(x)=\frac{1}{\sqrt{x^{2}-2 x}-x}$

Unit 6
 Differentiation of polynomial, rational and irrational functions

6.0 Introductory activity

1. Consider the function $f(x)=x^{2}+1$ illustrated on the following graph;

It is defined that the slope of the tangerite of the curve of $f(x)$ at a point $P\left(x_{0}, y_{0}\right)$ is obtained bylim $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$,
a) Determine the slope of $f(x)$ at the point for which $x_{0}=1$.
b) Deduce the value of the function $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}+1$ and compare the slope m_{P} and $f^{\prime}\left(x_{0}\right)$ for $x_{0}=1$.
2) Go in library or computer lab, do research and make a short presentation on the following:
a. Derivative of a function
b. Find 2 examples of applications of derivatives.

objectives

After completing this unit, I will be able to:
(1) Use properties of derivatives to differentiate polynomial, rational ad irrational functions
(1) Use first principles to determine the gradient of the tangent line to a curve at a point.
(1) Apply the concepts of and techniques of differentiation to model, analyze and solve rates or optimization problems in different situations.
(1) Use the derivative to find the equation of a line tangent or normal to a curve at a given point.

6.1. Concepts of derivative of a function

Definition

Activity 6.1.1

Consider the following figure

1. If $P\left(x_{0}, y_{0}\right)$ and $Q\left(x_{1}, y_{1}\right)$ are two points on the graph of a function f, find the slope of secant line ($m_{\text {sec }}$) passing through P and Q.

Since $y_{0}=f\left(x_{0}\right)$ and $y_{1}=f\left(x_{1}\right)$, express in terms of $f\left(x_{0}\right)$ and

$$
f\left(x_{1}\right)
$$

2. If we let x_{1} approach x_{0}, how can you conclude about position of Q to P ?
3. Let $m_{\mathrm{tan}}=\lim _{x_{1} \rightarrow x_{0}} m_{\mathrm{sec}}$, write down expression of m_{tan} in terms of $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$.
4. After letting $h=x_{1}-x_{0}$, rewrite $m_{\tan }$ in terms of $f\left(x_{0}\right)$ and $f\left(x_{0}+h\right)$

If $P\left(x_{0}, y_{0}\right)$ is a point on the graph of a function f,
$m_{\mathrm{tan}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ is called slope of tangent line to the graph of f at P; if this limit exists.
m_{tan} has a special notation, we denote it by $f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ and $f^{\prime}\left(x_{0}\right)$ is read f prime of x_{0}

Dropping the subscript on x_{0} in notation of $m_{\tan }$, we get one of the most important in mathematics, the derivative of a function.

The derivative of a function $f(x)$ with respect to x is denoted by $f^{\prime}(x)$ and defined as

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided that the limit exists.

Example 6.1

Let $f(x)=x^{2}+1$, find $f^{\prime}(x)$

Solution

The derivative of $f(x)$ is

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+1-x^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}+1-x^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x
\end{aligned}
$$

Thus, $f^{\prime}(x)=2 x$

Example 6.2

Let $f(x)=2 x^{2}+3$, find $f^{\prime}(4)$

Solution

The derivative of $f(x)$ at $x=4$ is

$$
\begin{aligned}
f^{\prime}(4) & =\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{2 x^{2}+3-35}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{2 x^{2}-32}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{2(x+4)(x-4)}{x-4} \\
& =\lim _{x \rightarrow 4} 2(x+4) \\
& =16
\end{aligned}
$$

Thus, $f^{\prime}(4)=16$

Remarks:

- If $t \rightarrow f(t)$ represents the law of a moving object, then the derivative number of f represents the instantaneous speed of that moving object at instant t .
- The process of finding derivative of a function is called differentiation of that function.

Application Activity 6.1.1

Find the derivative of

1. $f(x)=x+3$ at $x=1$
2. $f(x)=x^{3}+3$ at $x=-2$
3. $f(x)=4 x^{2}-x+3$
4. $f(x)=4 x^{2}+3 x-4$
5. $f(x)=4$

Right-hand and left-hand derivatives

Activity 6.1.2

1. Consider the function

$$
f(x)= \begin{cases}x+2, & x>2 \\ 4, & x \leq 2\end{cases}
$$

Find $f^{\prime}(x)$ from the left of 2 and $f^{\prime}(x)$ from the right of 2
2. Consider the function

$$
f(x)=\left\{\begin{array}{lr}
3 x-2, & x \leq 3 \\
x+4 & x>3
\end{array}\right.
$$

Find $f^{\prime}(x)$ from the left of 3 and $f^{\prime}(x)$ from the right of 3.

Let $y=f(x)$ be a function and let x_{0} be in the domain of f.
The right- hand derivative of f at $x=x_{0}$ is the number
$f^{\prime}\left(x_{0}^{+}\right)=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$
And the left- hand derivative is the number
$f^{\prime}\left(x_{0}^{-}\right)=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$.
The function $f(x)$ is said to be differentiable at $x=x_{0}$ if and only if $f(x)$ has both a right- hand and a left- hand derivatives and all of them are equal.

The function $f(x)$ is said to be differentiable on interval I if it differentiable at every point of that interval.

Example 6.3

Let $f(x)=|x|$
$f(x)= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}$

$$
\begin{aligned}
f^{\prime}\left(0^{+}\right) & =\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x-0}{x-0} \\
& =1 \\
f^{\prime}\left(0^{-}\right) & =\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \\
& =\lim _{x \rightarrow 0^{-}} \frac{-x-0}{x-0} \\
& =-1
\end{aligned}
$$

As $f^{\prime}\left(0^{+}\right) \neq f^{\prime}\left(0^{-}\right)$, then $f(x)=|x|$ is not differentiable at 0 .

Application Activity 6.1.2

1. Consider the function $f(x)=\left\{\begin{array}{ll}x+2, & x>1 \\ 2 x-3 & x \leq 1\end{array}\right.$. Find $f^{\prime}(x)$ at
2. Consider the function $f(x)=\left\{\begin{array}{ll}x^{2}-4, & x>2 \\ x=2 & x \leq 2\end{array}\right.$. Find $f^{\prime}(x)$ at
3. Consider the function $f(x)=\frac{|x|}{4}$. Find $f^{\prime}(x)$ at $x=0$
4. Find $f^{\prime}(4)$ if $f(x)= \begin{cases}2 x-4, & x \leq 4 \\ x & x>4\end{cases}$
5. Find $f^{\prime}(-1)$ if $f(x)=\frac{|x+1|}{x+1}$

Notation

We have used the notation $f^{\prime}(x)$ to denote the derivative of the function $f(x)$. There are many other ways to denote the derivative of a function:
$\frac{d f}{d x}$ and $D_{x} f$ are used by some authors to denote the derivative of the function $f(x)$.

If we consider $y=f(x)$, then y^{\prime} denotes the derivative of the function $f(x)$.

If the function $f(x)$ is differentiable on the interval I then $f(x)$ is continuous on I.
Note that the converse of this theorem is not true.

Example 6.4

From example 3, we have seen that $f(x)=|x|$ is not differentiable at 0 . But this function is continuous at 0 .
$f(x)= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} x=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(-x)=0$
As $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=0$, then $\lim _{x \rightarrow 0} f(x)=0=f(0)$ and hence $f(x)$ is continuous at 0 .

Geometric interpretation of derivative

Let A and B be two points of the curve C of the function $f(x)$
$A B$ has slope $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{\left(x_{0}+h\right)-x_{0}}=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.
When h approaches zero, the point B approaches point A. At this time, the secant line S will approach the tangent line T to the curve C at point A.

Then the slope of tangent line is $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\tan \alpha$
The slope of the tangent line to the curve at a point is equal to the derivative of the function at that point:
$\tan \alpha=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta f(x)}{\Delta x}$
is the angle between x-axis and the tangent line of $y=f(x)$ at point x_{0}.
$f^{\prime}\left(x_{0}\right)$ is the slope of tangent line of $y=f(x)$ at point $\left(x_{0}, f\left(x_{0}\right)\right)$.
Later we shall see how to find the equation of the tangent line.

6.2. Rules of differentiation

a) Constant function and Powers

Activity 6.2.1

Let $D(I, \mathbb{R})$ be the set of functions differentiable on I.

1. If f is a constant function, say $f(x)=c$, for all x , use definition of derivative to find the derivative $f^{\prime}(x)$.
2. If f is a monomial function, with coefficient 1 , say $f(x)=x^{n}$ for all real number n , use definition of derivative to find the derivative $f^{\prime}(x)$.

Derivative of a constant function

From activity 1

If f is a constant function, say $f(x)=c$, for all x, then $\frac{d f}{d x}=\frac{d}{d x}(c)=0$

Derivative of a power

If \boldsymbol{n} is any real number, then
$\frac{d}{d x} x^{n}=n x^{n-1}$ for all x where the powers x^{n} and x^{n-1} are defined.
This holds for any function with power. Thus, if $f \in(D, I)$ for positive and negative, and fractional value of $n,\left(f^{n}\right)^{\prime}=n f^{n-1} f^{\prime}$.

Particular case

Let $f(x)=\sqrt{g(x)}$.
Here $n=\frac{1}{2}$ because $\sqrt{g(x)}=[g(x)]^{\frac{1}{2}}$
The derivative of $f(x)$ is as follows

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}[g(x)]^{\frac{1}{2}-1} g^{\prime}(x) \\
& =\frac{1}{2}[g(x)]^{-\frac{1}{2}} g^{\prime}(x) \\
& =\frac{1}{2} \frac{g^{\prime}(x)}{[g(x)]^{\frac{1}{2}}} \\
& =\frac{g^{\prime}(x)}{2 \sqrt{g(x)}}
\end{aligned}
$$

Thus, if $f(x)=\sqrt{g(x)}$ then $f^{\prime}(x)=\frac{g^{\prime}(x)}{2 \sqrt{g(x)}}$

Example 6.5

Find the derivative of $f(x)=123$.

Example 6.6

Differentiate the
following powers of x
a) x^{4}
b) $\frac{1}{x^{3}}$
c) $x^{\frac{1}{2}}$
d) $x^{-\frac{3}{4}}$
e) $\sqrt{x^{2-\pi}}$

Example 6.7

Let $g(x)=(2 x+1)^{4}$.
Find the derivative of
$g(x)$

Solution

This function is a constant function. Thus, $f^{\prime}(x)=0$

Solution

a) $\frac{d}{d x}\left(x^{4}\right)=4 x^{4-1}=4 x^{3}$
b) $\frac{d}{d x}\left(\frac{1}{x^{3}}\right)=\frac{d}{d x}\left(x^{-3}\right)=-3 x^{-3-1}=-3 x^{-4}$
c) $\frac{d}{d x}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{\frac{1}{2}-1}=\frac{1}{2} x^{-\frac{1}{2}}$
d) $\frac{d}{d x}\left(x^{\frac{3}{4}}\right)=\frac{3}{4} x^{\frac{-1}{4}}$
e) $\frac{d}{d x}\left(\sqrt{x^{2-\pi}}\right)=\frac{d}{d x}\left(x^{\frac{2-\pi}{2}}\right)=\frac{2-\pi}{2} x^{\frac{2-\pi}{2}-1}$
$=\frac{2-\pi}{2} x^{-\frac{\pi}{2}}=\frac{2-\pi}{2} \sqrt{x^{-\pi}}$

Solution

$$
\begin{aligned}
& g^{\prime}(x)=4(2 x+1)^{3} \\
& =4\left(8 x^{3}+12 x^{2}+6 x+1\right)(2): \\
& =64 x^{3}+96 x^{2}+48 x+8
\end{aligned}
$$

$d x$
$d x$

Example 5.8

Let $f(x)=\sqrt{x^{2}+2}$.
Find the derivative of $f(x)$

Solution

$$
f^{\prime}(x)=\frac{\left(x^{2}+2\right)^{\prime}}{2 \sqrt{x^{2}+2}}=\frac{2 x+0}{2 \sqrt{x^{2}+2}}=\frac{x}{\sqrt{x^{2}+2}}
$$

Application Activity 6.2.1

Find the derivative of the following functions

1. $f(x)=67$
2. $g(x)=(x+1)^{3}$
3. $h(x)=\sqrt{2 x^{2}+x-2}$

b) Multiplication by a scalar and product of two functions

Activity 6.2.2

Let $D(I, \mathbb{R})$ be the set of functions differentiable on I.

1. If f is a differentiable function of x, and c is a constant, use definition of derivative to find the derivative of $c[f(x)]$
2. If $f \in D(I, \mathbb{R})$ and $g \in D(I, \mathbb{R})$, use definition of derivative to find the derivative of the product $f(x) g(x)$

Multiplication by a scalar

From activity 2
If f is a differentiable function of x , and c is a constant, then

$$
\frac{d}{d x}(c f(x))=c \frac{d}{d x} f(x)
$$

Derivative of a product

From activity 2:
If f and g are differentiable at x, then their product is $f \cdot g$, hence
$\frac{d}{d x}(f \cdot g)=g \frac{d f}{d x}+f \frac{d g}{d x}$

Example 6.9

Find the derivative of

$$
f(x)=\frac{3}{2} \sqrt[3]{x}
$$

Example 6.10

Let $f(x)=x \sqrt{x}$, find the derivative of $f(x)$

Solution

$$
\begin{aligned}
& \frac{d}{d x}(f(x))=\frac{d}{d x}\left(\frac{3}{2} \sqrt[3]{x}\right) \\
& =\frac{3}{2} \frac{d}{d x}\left(x^{\frac{1}{3}}\right)=\frac{3}{2} \cdot \frac{1}{3} x^{\frac{1}{3}-1}=\frac{1}{2} \sqrt[3]{x^{-2}}
\end{aligned}
$$

Solution

The derivative of $f(x)$ is denoted by $f^{\prime}(x)$, then

$$
\begin{aligned}
f^{\prime}(x) & =x^{\prime} \sqrt{x}+x(\sqrt{x})^{\prime} \\
& =\sqrt{x}+x \frac{x^{\prime}}{2 \sqrt{x}} \\
& =\sqrt{x}+\frac{x}{2 \sqrt{x}} \\
& =\sqrt{x}+\frac{\sqrt{x}}{2} \\
& =\frac{3}{2} \sqrt{x}
\end{aligned}
$$

Thus the derivative of $f(x)=x \sqrt{x}$ is $\frac{3}{2} \sqrt{x}$.

Example 6.11

Find the derivative
of $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$

Example 6.12

Find the derivative of

$$
y=\left(3-x^{2}\right)\left(x^{3}-x+1\right)
$$

Solution

$$
\begin{aligned}
y^{\prime} & =\left(x^{2}+1\right)^{\prime}\left(x^{3}+3\right)+\left(x^{2}+1\right)\left(x^{3}+3\right)^{\prime} \\
& =(2 x)\left(x^{3}+3\right)+\left(x^{2}+1\right)\left(3 x^{2}\right) \\
& =2 x^{4}+6 x+3 x^{4}+3 x^{2} \\
& =5 x^{4}+3 x^{2}+6 x
\end{aligned}
$$

Solution

From the product rule with $f(x)=3-x^{2}$ and $g(x)=x^{3}-x+1$, we get

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[\left(3-x^{2}\right)\left(x^{3}-x+1\right)\right] \\
& =\left(x^{3}-x+1\right) \frac{d}{d x}\left(3-x^{2}\right)+\left(3-x^{2}\right) \frac{d}{d x}\left(x^{3}-x+1\right) \\
& =\left(x^{3}-x+1\right)(-2 x)+\left(3-x^{2}\right)\left(3 x^{2}-1\right) \\
& =-2 x^{4}+2 x^{2}-2 x+9 x^{2}-3-3 x^{4}+x^{2} \\
& =-5 x^{4}+12 x^{2}-2 x-3
\end{aligned}
$$

Application Activity 6.2.2

Find the derivative of the following functions

1. $f(x)=\left(x^{2}+6\right)(x-2)$
2. $g(x)=(x-3)(4 x-5)$
3. $h(x)=5 x^{2}(x-2)$
4. $k(x)=6(x-3)$

c) Sum (difference)of functions

Activity 6.2.3

Let $D(I, \mathbb{R})$ be the set of functions differentiable on I. If $f \in D(I, \mathbb{R})$ and $g \in D(I, \mathbb{R})$, use definition of derivative to find the derivative of the sum $f(x)+g(x)$ and the difference $f(x)-g(x)$

From activity 3

Let $D(I, \mathbb{R})$ be the set of functions differentiable on I.
If $f \in D(I, \mathbb{R})$ and $g \in D(I, \mathbb{R})$, then $f \pm g \in D(I, \mathbb{R})$.
In addition $\frac{d}{d x}(f \pm g)=\frac{d f}{d x} \pm \frac{d g}{d x}$

Example 6.13

Find the derivative of $y=x^{2}-3 x+7$

Solution

Differentiating $y=x^{2}-3 x+7$ yields
$y^{\prime}=\left(x^{2}\right)^{\prime}-(3 x)^{\prime}+(7)^{\prime}=2 x-3$
Thus the derivative of $y=x^{2}-3 x+7$ is $2 x-3$.

Application Activity 6.2.3

Find the derivative of the following functions

1. $f(x)=-4 x^{2}+7 x+5$
2. $g(x)=125 x^{6}-215 x^{6}+75$
3. $h(x)=24 x^{4}-2 x^{3}-85$
d) Reciprocal function and quotient

Activity 6.2.4

Let $D(I, \mathbb{R})$ be the set of functions differentiable on I.

1. If $g \in D(I, \mathbb{R})$ and $g(x) \neq 0$, using the definition of derivative find derivative of $\frac{1}{g}$
2. If $f \in D(I, \mathbb{R}), g \in D(I, \mathbb{R})$, and $\mathrm{g}(x) \neq 0$, using the result in 1 and result for derivative of a product find $\frac{f}{g}$

Derivative of the reciprocal function

From activity 4,

Let $D(I, \mathbb{R})$ be the set of functions differentiable on I.
If $f \in D(I, \mathbb{R})$, then $\frac{1}{f} \in D(I, \mathbb{R}) \quad f(x) \neq 0$. Moreover

$$
\frac{d}{d x}\left(\frac{1}{f}\right)=-\frac{\frac{d f}{d x}}{f^{2}}
$$

From activity 4,

If f and g are differentiable at x and if $g(x) \neq 0$, then the quotient $\frac{f}{g}$ is differentiable at x and $\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{g \frac{d f}{d x}-f \frac{d g}{d x}}{g^{2}}$

Example 6.14

Find the derivative of $\frac{1}{f(x)}$ if $f(x)=6 x$

Example 6.15

Find the derivative of $y=\frac{3}{5-2 x}$

Solution

$$
\left.\overline{\left(\frac{1}{f(x)}\right.}\right)^{\prime}=\left(\frac{1}{6 x}\right)^{\prime}=\frac{-(6 x)^{\prime}}{(6 x)^{2}}=\frac{-6}{36 x^{2}}=\frac{-1}{6 x^{2}}
$$

Solution

$$
\frac{d y}{d x}=-\frac{\frac{d}{d x}(5-2 x)}{(5-2 x)^{2}}=\frac{2}{(5-2 x)^{2}}
$$

Example 6.16

Find the derivative of $f(x)=\frac{2 x^{2}+3 x}{4 x^{3}+x+1}$

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{2 x^{2}+3 x}{4 x^{3}+x+1}\right)^{\prime} \\
& =\frac{\left(2 x^{2}+3 x\right)^{\prime}\left(4 x^{3}+x+1\right)-\left(2 x^{2}+3 x\right)\left(4 x^{3}+x+1\right)^{\prime}}{\left(4 x^{3}+x+1\right)^{2}} \\
& =\frac{(4 x+3)\left(4 x^{3}+x+1\right)-\left(2 x^{2}+3 x\right)\left(12 x^{2}+1\right)}{\left(4 x^{3}+x+1\right)^{2}} \\
& =\frac{16 x^{4}+4 x^{2}+4 x+12 x^{3}+3 x+3-24 x^{4}-2 x^{2}-36 x^{3}-3 x}{\left(4 x^{3}+x+1\right)^{2}} \\
& =\frac{-8 x^{4}-24 x^{3}+2 x^{2}+4 x+3}{\left(4 x^{3}+x+1\right)^{2}}
\end{aligned}
$$

Example 6.17

Given that $y=\frac{x^{2}-4}{x^{2}+4}$, find $\frac{d y}{d x}$.
We apply quotient rule with $f(x)=x^{2}-4$ and $g(x)=x^{2}+4$:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(x^{2}+4\right) \cdot 2 x-\left(x^{2}-4\right) \cdot 2 x}{\left(x^{2}+4\right)^{2}} \\
& =\frac{2 x^{3}+8 x-2 x^{3}+8 x}{\left(x^{2}+4\right)^{2}} \\
& =\frac{16 x}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

Example 6.18

Let $f(x)=\frac{x^{2}+2 x+5}{\sqrt{4 x+1}}$, find its derivative.

Solution

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{x^{2}+2 x+5}{\sqrt{4 x+1}}\right), \\
& =\frac{\left(x^{2}+2 x+5\right)^{\prime} \sqrt{4 x+1}-\left(x^{2}+2 x+5\right)(\sqrt{4 x+1})^{\prime}}{(\sqrt{4 x+1})^{2}} \\
& =\frac{(2 x+2) \sqrt{4 x+1}-\left(x^{2}+2 x+5\right) \frac{4}{2 \sqrt{4 x+1}}}{4 x+1} \\
& =\frac{(2 x+2)(4 x+1)-2 x^{2}-4 x-10}{(4 x+1) \sqrt{4 x+1}} \\
& =\frac{8 x^{2}+2 x+8 x+2-2 x^{2}-4 x-10}{(4 x+1) \sqrt{4 x+1}} \\
& =\frac{6 x^{2}+6 x-8}{(4 x+1) \sqrt{4 x+1}}
\end{aligned}
$$

Example 6.19

Find derivative of $f(x)=\frac{1}{\sqrt{4 x^{2}+3}}-\left(x^{3}+5 x+2\right)^{5}$

$$
\left.\begin{array}{l}
f(x)=\left[\frac{1}{\sqrt{4 x^{2}+3}}\right]^{\prime}-\left[\left(x^{3}+5 x+2\right)^{5}\right] \\
=\frac{8 x}{2 \sqrt{4 x^{2}+3}}-5\left(x^{3}+5 x+2\right)^{4}\left(3 x^{2}+5\right) \\
\left.=-\frac{4 x}{\left(4 x^{2}+3\right.}-3\right) \sqrt{4 x^{2}+3}
\end{array}\left(x^{3}+5 x+2\right)^{4}\left(15 x^{2}+25\right)\right)
$$

Application Activity 6.2.4

Find the derivative of the following functions

1. $f(x)=\frac{3 x^{6}+3 x^{4}+6 x-6}{2 x^{2}+4 x+1}$
2. $f(x)=\frac{1}{x^{3}+2 x^{2}+6}$

e) Composite function

Activity 6.2.5

Given the function $f(x)=x^{2}+3 x-4$ and $g(x)=x+1$. Find

1. $f[g(x)]$
2. $(f[g(x)])^{\prime}$
3. $f^{\prime}(x)$
4. $f^{\prime}[g(x)]$
5. $g^{\prime}(x)$
6. $f^{\prime}[g(x)] \cdot g^{\prime}(x)$

Compare results in 2 and 6

Derivative of a composite function: Chain rule

From activity 5:
If $\quad f \in D(I, \mathbb{R})$ and $g \in D(I, \mathbb{R})$, then $g \circ f \in D(I, \mathbb{R})$. In addition $(g \circ f)^{\prime}=g^{\prime}(f) f^{\prime}$

Moreover, if $y=f[g(x)]$ and $u=g(x)$ then $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$ Another notation of Chain rule states

$$
\frac{d}{d x}[f[g(x)]]=f^{\prime}[g(x)] g^{\prime}(x)
$$

Example 6.20

Find the derivative of fog if $f(x)=x^{2}+3 x+3$ and $g(x)=\frac{x^{2}+1}{x}$

Solution

$$
\begin{aligned}
(f \circ g)^{\prime}(x) & =f^{\prime}[g(x)] g^{\prime}(x) \\
& =\left[2\left(\frac{2 x+1}{x}\right)+3\right]\left(\frac{2 x+1}{x}\right) \\
& =\frac{4 x+2+3 x}{x}\left(\frac{2 x-2 x-1}{x 2}\right) \\
& =\frac{7 x+2}{x}\left(\frac{-1}{x^{2}}\right) \\
& =\frac{-7 x-2}{x^{3}}
\end{aligned}
$$

Example 6.21

Find the derivative of $\boldsymbol{f o g}$ if $f(x)=3 \boldsymbol{x}-4$ and $g(x)=\boldsymbol{x}-3$

Solution

$g^{\prime}(x)=1, f^{\prime}(x)=3$
$f^{\prime}[g(x)]=3$
$(f \circ g)^{\prime}(x)=f^{\prime}[g(x)] g^{\prime}(x)=3(1)=3$

Application Activity 6.2.5

In each of the following find $(f \circ g)^{\prime}(x)$

1. $f(x)=2 x-4$ and $g(x)=x+3$
2. $f(x)=\frac{x-5}{2}$ and $g(x)=x^{2}+3$
3. $f(x)=x^{2}+4 x+3$ and $g(x)=x^{2}+1$
4. $f(x)=x^{5}-30$ and $g(x)=7$
5. $f(x)=4$ and $g(x)=\frac{x^{2}+3 x+3}{x^{2}-4}$

Successive derivatives

Activity 6.2.6

Consider the function $f(x)=x^{6}+x^{5}+3 x^{3}-2 x^{2}+x+8$. Find

1. $f^{\prime}(x)$
2. The derivative of the function obtained in 1 .
3. The derivative of the function obtained in 2 .
4. The derivative of the function obtained in 3 .
5. The derivative of the function obtained in 4 .

We have seen that the derivative of $y=f(x)$ is in general also a function of x. This new function can be also differentiable, in which case the derivative of the first derivative is called the second derivative of the original function. It is written in several ways:
$f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d y^{\prime}}{d x}=y^{\prime \prime}=D^{2}(f(x))=D^{2} f(x)$.
The symbol D^{2} means the operation of differentiation is performed twice.
Similarly, the derivative of the second derivative is called the third derivative and so on.

Thus, if for example $y=3 x^{4}$ then,
$\frac{d y}{d x}=12 x^{3}, \frac{d}{d x}\left(\frac{d y}{d x}\right)=36 x^{2}, \frac{d}{d x}\left[\frac{d}{d x}\left(\frac{d y}{d x}\right)\right]=72 x$ And so on.
The successive derivatives of a function f are higher order derivatives of the same function.

We denote higher order derivatives of the same function as follows:
The second derivative is:
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x)=y^{\prime \prime}$
The third derivative is:
$\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}=f^{\prime \prime \prime}(x)=y^{\prime \prime \prime}$
And the $n^{\text {th }}$ derivative is:
$\frac{d}{d x}\left(\frac{d^{n-1} y}{d x^{n-1}}\right)=\frac{d^{n} y}{d x^{n}}=f^{(n)}(x)=y^{(n)}$

Example 6.22

Successive derivatives of $y=x^{n} \quad n \in \mathbb{R}$

$$
\begin{aligned}
& y^{\prime}=n x^{n-1} \\
& y^{\prime \prime}=n(n-1) x^{n-2} \\
& y^{\prime \prime \prime}=n(n-1)(n-2) x^{n-3} \\
& y^{(n)}=n(n-1)(n-2) \ldots x^{n-n}=n(n-1)(n-2) \ldots .1=n!
\end{aligned}
$$

Thus, if $y=x^{n} \quad n \in \mathbb{R}, y^{(n)}=n!$

Example 6.23

Given $y=x^{4}-3 x+4$. Let us find $\frac{d^{5} y}{d x^{5}}$

Solution

$y^{\prime}=4 x^{3}-3$
$y^{\prime \prime}=12 x^{2}$
$y^{\prime \prime \prime}=24 x$
$y^{(4)}=24$
$y^{(5)}=0$
Thus, $y^{(5)}=0$

Application Activity 6.2.6

1. Find $\frac{d^{4} y}{d x^{4}}$ if $y=4 x^{7}+6 x+8$
2. Find $\frac{d^{5} y}{d x^{5}}$ if $y=12 x+6$
3. Find $\frac{d^{2} y}{d x^{2}}$ if $y=\frac{x+1}{x-2}$
4. Find $\frac{d^{4} y}{d x^{4}}$ if $y=\frac{x^{2}-4}{x+2}$

6.3. Applications of differentiation

Equation of tangent line and normal line

Activity 6.3

Consider the function $f(x)=-x^{3}+3 x$ and the line $y=3 x$ passing through point $(0,0)$.

1. Show that is the intersection of $f(x)=-x^{3}+3 x$ and $y=3 x$
2. Find $f^{\prime}(0)$
3. Compare the result in 2. And the gradient of the given line.

Tangent line

The slope of the tangent line of $y=f(x)$ at $\left(x_{0}, f\left(x_{0}\right)=y_{0}\right)$ is given by $f^{\prime}\left(x_{0}\right)=\frac{y-y_{0}}{x-x_{0}}$.
Then, the equation of the tangent line is $T \equiv y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

Remark

Remember that the function $f(x)$ can have distinct right-hand and lefthand derivatives at point x_{0}; that is, $f^{\prime}\left(x_{0}^{-}\right) \neq f^{\prime}\left(x_{0}^{+}\right)$.

In this case we say that the point x_{0} is a sharp. The curve has no tangent line at x_{0}. Centrally, it has a half tangent at the left and another at the right with different slopes.

See the following figure.

$\tan \alpha_{1}=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ And $\tan \alpha_{2}=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$

Normal line

We call normal line to the curve at point $\left(x_{0}, y_{0}\right)$ the perpendicular line to the tangent line of the curve at point $\left(x_{0}, y_{0}\right)$. Its equation is of the form $N \equiv y-y_{0}=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right)$

Example 6.24

Given the parabola $f(x)=x^{2}$
a) Find the point where the tangent line is parallel to the bisector of the first quadrant.
b) Find the tangent line to the curve of this function at point $(2,4)$

Solution

a) The bisector of the first quadrant has the equation $y=x$, so its slope is $m=1$.
Since the two lines are parallel, they have the same slope.
So $f^{\prime}\left(x_{0}\right)=1$.
Since the slope of the tangent line to the curve is equal to the derivative at $x=x_{0}$,

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{2}-x_{0}^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x_{0}^{2}+2 x_{0} h+h^{2}-x_{0}^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x_{0} h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}\left(2 x_{0}+h\right) \\
& =2 x_{0}
\end{aligned}
$$

But $f^{\prime}\left(x_{0}\right)=1 \Rightarrow 2 x_{0}=1 \Rightarrow x_{0}=\frac{1}{2}$ and $y_{0}=f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$.
Thus, the needed point is $\left(\frac{1}{2}, \frac{1}{4}\right)$.
b) The given point is $(2,4)$, then $x_{0}=2, y_{0}=4 . \quad f^{\prime}\left(x_{0}\right)=2 x_{0}$

$$
\Rightarrow f^{\prime}(2)=4
$$

The tangent line is

$$
\begin{aligned}
& T \equiv y-4=4(x-2) \\
& T \equiv y-4=4 x-8 \\
& T \equiv y=4 x-4 \\
& T \equiv y=4(x-1)
\end{aligned}
$$

Normal line

We call normal line to the curve at point $\left(x_{0}, y_{0}\right)$, the perpendicular line to the tangent line of the curve at point $\left(x_{0}, y_{0}\right)$. Its equation is of the form

$$
N \equiv y-y_{0}=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right)
$$

Example 6.25

Let us determine the equation of the normal line to the curve with equation $y=x^{2}-5 x+6$ at point with abscissa $x=0$.
$f^{\prime}(x)=2 x-5, f^{\prime}(0)=-5, f(0)=6$
The equation of normal line is $N \equiv \Psi(x-4)=-\frac{1}{-5}(x-0)$ or $N \equiv y=\frac{1}{5} x+6$

Rates of change

The purpose here is to remind ourselves one of the more important applications of derivatives. That is the fact that $f^{\prime}(x)$ represents the rate of change of $f(x)$.

If $\left(x_{0}, y_{0}\right)$ are point $8 x i{ }^{2}$ the graph of $y=f(x)$, then $\underset{x^{2}}{\text { we }}-5 x+6$ define $m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$ to be the average rate at which y changes with x over the interval $\left[\begin{array}{c}x_{1}-5 x+6 \\ \left.x_{0}, x_{1}\right]\end{array}\right]$. If $y=f(x)$ and $f(x)$ is differentiable at x_{0}, then we define $n=\left.\frac{d y}{d x}\right|_{x=x_{0}}$ to be the instantaneous rate at which y changes with $x=x_{0}$

Example 6.26

For the curve $y=x^{2}+1$. Let us find the average rate of change of y with x over the interval $[3,5]$ and the instantaneous rate of change of y with x at point $x=3$.

Here $x_{0}=3$ and $x_{1}=5$
$y_{0}=(3)^{2}+1=10, y_{1}=(5)^{2}+1=26$
So average rate of y over $[3,5]$ is $\frac{26-10}{5-3}=\frac{16}{2}=8$. Thus, on the average y increases 8 units for each unit increase in x over the interval $[3,5]$.
$\frac{d y}{d x}=f^{\prime}(x)=2 x$, So instantaneous rate of change of y at $x=3$
Is $\left.\frac{d y}{d x}\right|_{x=3}=\left.2 x\right|_{x=3}=6$.
Thus, at point $x=3$, y is increasing 6 times as fast as x.

Example 6.27

Let us find all points where the function $f(x)=\sin x$ is not changing.
This function will not be changing if the rate of change is zero. Then we need to determine where the derivative is zero.
$\frac{d y}{d x}=f^{\prime}(x)=\cos x$ And $\cos x=0$ for $x= \pm \frac{\pi}{2}+2 k \pi$ or simply $x=\frac{\pi}{2}+k \pi$. Thus, $f(x)=\sin x$ is not changing if $x=\frac{\pi}{2}+k \pi$ $k \in \mathbb{Z}$.

Critical points

We say that $x=c$ is a critical point for the function $f(x)$ if $f(c)$ exists and if either one of the following is true

- $f^{\prime}(c)=0$ Or $f^{\prime}(c)$ does not exist.

Note that we require that $f(c)$ exists in order for $x=c$ to actually be a critical point.

This is an important and often overlooked point.
The critical point $x=c$ where $f^{\prime}(c)=0$ is called stationary point of \mathbf{f}.

Example 6.28

Let us determine all the critical points for the function
$f(x)=6 x^{5}+33 x^{4}-30 x^{3}+100$
We first need the derivative of the function in order to find the critical points and so let us get that and notice that we will factor it as much as possible to make our life easier when we go to find the critical points.

$$
\begin{aligned}
f^{\prime}(x) & =\left(6 x^{5}+33 x^{4}-30 x^{3}+100\right)^{\prime} \\
& =30 x^{4}+132 x^{3}-90 x^{2} \\
& =6 x^{2}\left(5 x^{2}+22 x-15\right) \\
& =6 x^{2}(5 x-3)(x+5)
\end{aligned}
$$

Now, our derivative is a polynomial and so will exist everywhere.
Therefore the only critical points will be those values of x which make the derivative zero. So, we must solve $6 x^{2}(5 x-3)(x+5)=0$

Because this is the factored form of the derivative, it's pretty easy to identify the three critical points. They are, $x=-5, x=0, x=\frac{3}{5}$

Example 6.29

Let us determine all the critical points for the function $f(x)=\sqrt[3]{x^{2}}(2 x-1)$
To find the derivative, it's probably easiest to do a little simplification before we actually differentiate. Let's multiply the root through the parenthesis and simplify as much as possible.

This will allow us to avoid using the product rule when taking the derivative.

$$
f(x)=x^{\frac{2}{3}}(2 x-1)=2 x^{\frac{5}{3}}-x^{\frac{2}{3}}
$$

Now differentiate

$$
f^{\prime}(x)=\frac{10}{3} x^{\frac{2}{3}}-\frac{2}{3} x^{\frac{-1}{3}}=\frac{10 x^{\frac{2}{3}}}{3}-\frac{2}{3 x^{\frac{1}{3}}}=\frac{10 x-2}{3 x^{\frac{1}{3}}}
$$

We will need to be careful with this problem. When faced with a negative exponent it is often best to eliminate the minus sign in the exponent as we did above. This is not really required but it can make our life easier on occasion if we do that.

This derivative is zero if numerator is zero. That is, $10 x-2=0 \Rightarrow x=\frac{1}{5}$.
But this derivative is not defined at $x=0$ and so there are two critical points $x=0$ and $x=\frac{1}{5}$

Example 6.30

Let us determine all the critical points of the function $g(t)=\frac{t^{2}+1}{t^{2}-t-6}$

$$
\begin{aligned}
g^{\prime}(t) & =\left(\frac{t^{2}+1}{t^{2}-t-6}\right) \\
& =\frac{2 t\left(t^{2}-t-6\right)-\left(t^{2}+1\right)(2 t-1)}{\left(t^{2}-t-6\right)^{2}} \\
& =\frac{2 t^{3}-2 t^{2}-12 t-2 t^{3}+t^{2}-2 t+1}{\left(t^{2}-t-6\right)^{2}} \\
& =\frac{-t^{2}-14 t+1}{\left(t^{2}-t-6\right)^{2}}
\end{aligned}
$$

Now, we have two issues to deal with. First the derivative will not exist if there is division by zero in the denominator. So we need to solve, $t^{2}-t-6=(t-3)(t+2)=0$

So, we can see from this that the derivative will not exist at $t=3$ and $t=-2$. However, these are not critical points since the function will also not exist at these points. Recall that in order for a point to be a critical point the function must actually exist at that point.

At this point, we have to be careful. The numerator does not factor, but that does not mean that there are not any critical points where the derivative is zero. We can use the quadratic formula on the numerator to determine if the fraction as a whole is ever zero.

Now, $-t^{2}-14 t+1=-\left(t^{2}+14 t-1\right)=0 \Leftrightarrow t^{2}+14 t-1=0$
$\Delta=196+4=200$
$t=\frac{-14 \pm 10 \sqrt{2}}{2}=-7 \pm 5 \sqrt{2}$
Thus, the critical point are $t=-7+5 \sqrt{2}$ and $t=-7-5 \sqrt{2}$.

Finding absolute extrema

Absolute extrema are the largest and smallest the function will ever be. To find absolute extrema of function $f(x)$ on $[a, b]$ follow the following steps:
a) Verify that the function is continuous on the interval $[a, b]$.
b) Find all critical points of $f(x)$ that are in the interval $[a, b]$. This makes sense if you think about it. Since we are only interested in what the function is doing in this interval, we do not care about critical points that fall outside the interval.
c) Evaluate the function at the critical points found in a) above and the end points.
d) Identify the absolute extrema.

Example 6.31

Let us determine the absolute extrema for the following function
$f(x)=2 x^{3}+3 x^{2}-12 x+4$ On $[-4,2]$.
First notice that this is a polynomial and so is continuous everywhere and in particular is then continuous on the given interval.

Now, we need to get the derivative so that we can find the critical points of the function.

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}+6 x-12 \\
& =6\left(x^{2}+x-2\right) \\
& =6(x+2)(x-1)
\end{aligned}
$$

It looks like we will have two critical points, $x=-2$ and $x=1$. Note that we actually want something more than just the critical points. We only want the critical points of the function that lie in the interval in question. Both of these do fall in the interval as so we will use both of them.

Now we evaluate the function at the critical points and the end points of the interval.

$$
\begin{array}{ll}
f(-2)=24 & f(1)=-3 \\
f(-4)=-28 & f(2)=8
\end{array}
$$

From this list we see that the absolute maximum of $f(x)$ is 24 and it occurs at $x=-2$ (a critical point) and the absolute minimum of $f(x)$ is -28 which occurs $x=-4$ (an endpoint).

Finding relative extrema

First derivative test:

Suppose f is continuous at a critical point x_{0};
a) If $f^{\prime}\left(x_{0}\right)>0$ on an open interval extending left from x_{0} and $f^{\prime}\left(x_{0}\right)<0$ on an open interval extending right from x_{0}, then f has a relative maximum at x_{0}.
b) If $f^{\prime}\left(x_{0}\right)<0$ on an open interval extending left from x_{0} and $f^{\prime}\left(x_{0}\right)>0$ on an open interval extending right from x_{0}, then f has a relative minimum at x_{0}.
c) If $f^{\prime}(x)$ has the same sign (either $f^{\prime}\left(x_{0}\right)>0$ or $f^{\prime}\left(x_{0}\right)<0$) on an open interval extending left and on an open interval extending right from x_{0}, then f does not have a relative extremum at x_{0}.
i.e, the relative extrema of a continuous function occur at those critical points where the first derivative changes sign.

Example 6.32

Locate the relative extrema of $f(x)=3 x^{\frac{5}{3}}-15 x^{\frac{2}{3}}$
$f^{\prime}(x)=5 x^{\frac{2}{3}}-10 x^{\frac{-1}{3}}=5 x^{\frac{-1}{3}}(x-2)$
Since $f^{\prime}(x)$ does not exist at $x=0$ but $f(0)$ exists and $f^{\prime}(x)=0$ if $x=2$, the critical point are 0 and 2 . Sign table of $f^{\prime}(x)$

x	0					
$x-2$	-	-	-	0	+	
$x^{\frac{-1}{3}}$	-	0	+	+	+	
$f^{\prime}(x)$	+	$\\|$	-	0	+	

There is a relative maximum at 0 and a relative minimum at 2 .

Example 6.33

Locate the relative extrema of $f(x)=x^{3}-3 x^{2}+3 x-1$
$f^{\prime}(x)=3 x^{2}-6 x+3=3(x-1)^{2}$
Solving for $f^{\prime}(x)=0$, yields $x=1$ as the only critical point.
Since $f^{\prime}(x)=3(x-1)^{2} \geq 0$ for all $x, f^{\prime}(x)$ does not change the sign. Thus, no relative extremum exists.

Second derivative test:

Suppose that $f(x)$ is twice differentiable at stationary point x_{0}
a) If $f^{\prime \prime}\left(x_{0}\right)>0$, then there is a relative minimum at x_{0}
b) If $f^{\prime \prime}\left(x_{0}\right)<0$, then there is a relative maximum at x_{0}

Note that the second derivative test does not apply if $f^{\prime \prime}\left(x_{0}\right)=0$

Example 6.34

Locate and describe the relative extrema of $f(x)=x^{4}-2 x^{2}$

$$
f^{\prime}(x)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=4 x(x-1)(x+1)
$$

Solving for $f^{\prime}(x)=0$, yields the stationary points $-1,0$ and 1 .
$f^{\prime \prime}(-1)=8>0$
$f^{\prime \prime}(0)=-4<0$
$f^{\prime \prime}(1)=8>0$
There is a relative maximum at $x=0$ and there are relative minimum at $x=-1$ and $x=1$.

Extreme value theorem

Suppose that $f(x)$ is continuous on the interval $[a, b]$ then there are two numbers $a \leq c, d \leq b$ so that $f(c)$ is an absolute maximum for the function and $f(d)$ is an absolute minimum for the function.
So, if we have a continuous function on an interval $[a, b]$ then we are
guaranteed to have both an absolute maximum and an absolute minimum for the function somewhere in the interval. The theorem doesn't tell us where they will occur or if they will occur more than once, but atleast it tells us that they do exist somewhere. Sometimes, all that we need to know is that they do exist. This theorem doesn't say anything about absolute extrema if we aren't working on an interval.

The requirement that a function be continuous is also required in order for us to use the theorem.

Example 6.35

Consider the case of $f(x)=\frac{1}{x^{2}}$ on $[-1,1]$. Here's the graph.

This function is not continuous at $x=0$ as we move in towards zero the function is approaching infinity. So, the function does not have an absolute maximum. Note that it has an absolute minimum however. In fact the absolute minimum occurs twice at both $x=-1$ and $x=1$.

If we changed the interval a little to say, $f(x)=\frac{1}{x^{2}}$ on $\left[\frac{1}{2}, 1\right]$
the function would now have both absolute extrema. We may only run into problems if the interval contains the point of discontinuity. If it doesn't, then the theorem will hold.

We should also point out that just because a function is not continuous at
a point, that doesn't mean that it won't have both absolute extrema in an interval that contains that point.

Example 6.36

Consider the following graph

This graph is not continuous at $x=c$, yet it does have both an absolute maximum (at $x=b$) and an absolute minimum (at $x=c$). Also note that, in this case one of the absolute extrema occurred at the point of discontinuity, but it doesn't need to. The absolute minimum could just have easily been at the other end point or at some other point interior to the region. The point here is that this graph is not continuous and yet does have both absolute extrema

The point of all this is that we need to be careful to only use the extreme value theorem when the conditions of the theorem are met and not misinterpret the results if the conditions are not met.

Note

In order to use the extreme value theorem, we must have an interval and the function must be continuous on that interval. If we don't have an interval and/or the function isn't continuous on the interval, then the function may or may not have absolute extrema.

Fermat's theorem

If $f(x)$ has a relative extrema at $x=c$ and $f^{\prime}(c)$ exists then $x=c$ is a critical point of $f(x)$. In fact, it will be a critical point such that $f^{\prime}(c)=0$.

Note that we can say that $f^{\prime}(c)=0$ because we are also assuming that $f^{\prime}(c)$ exists.

This theorem tells us that there is a nice relationship between relative extrema and critical points. In fact it will allow us to get a list of all possible relative extrema. Since a relative extrema must be a critical point, the list of all critical points will give us a list of all possible relative extrema.

Example 6.37

Consider the case of $f(x)=x^{2}$. We saw that this function had a relative minimum at $x=0$ in several earlier examples. So according to fermat's theorem $x=0$ should be a critical point. The derivative of the function is, $f^{\prime}(x)=2 x$. Sure enough $x=0$ is a critical point.

Be careful not to misuse this theorem. It doesn't say that a critical point will be a relative extrema. To see this, consider the following example.

Example 6.38

Consider the function $f(x)=x^{3}$ then $f^{\prime}(x)=3 x^{2}$
Clearly $x=0$ is a critical point. However this function has no relative extrema of any kind. So, critical points do not have to be relative extrema. Also note that this theorem says nothing about absolute extrema. An absolute extrema may or may not be a critical point.

Increasing and decreasing of a function

In the previous lines we saw how to use the derivative to determine the absolute minimum and maximum values of a function. However, there is a lot more information about a graph that can be determined from the first derivative of a function. The main idea we will be looking at here, we will be identifying all the relative extrema of a function.
We know from our work in previous lines that the first derivative, $f^{\prime}(x)$, is the rate of change of the function. We used this idea to identify where a function was increasing, decreasing or not changing. Let us see definitions:

Given any x_{1} and x_{2} from an interval i with $x_{1}<x_{2}$ if $f\left(x_{1}\right)<f\left(x_{2}\right)$ then $f(x)$ is increasing on I.

Given any x_{1} and x_{2} from an interval I with $x_{1}<x_{2}$ if $f\left(x_{1}\right)>f\left(x_{2}\right)$ then $f(x)$ is decreasing on I.

Now, recall that earlier we constantly used the idea that if the derivative of a function was positive at a point then the function was increasing at that point and if the derivative was negative at a point then the function was decreasing at that point. We also used the fact that if the derivative of a function was zero at a point then the function was not changing at that point. We used these ideas to identify the intervals in which a function is increasing and decreasing. This can be summarised in the following fact.

Fact

- If $f^{\prime}(x)>0$ for every x on some interval i, then $f(x)$ is increasing on the interval.
- If $f^{\prime}(x)<0$ for every x on some interval i, then $f(x)$ is decreasing on the interval.
- If $f^{\prime}(x)=0$ for every x on some interval i, then $f(x)$ is constant on the interval.

Example 6.39

Let us determine all intervals where the following function is increasing or decreasing. $f(x)=-x^{5}+\frac{5}{2} x^{4}+\frac{40}{3} x^{3}+5$

To determine if the function is increasing or decreasing we will need the

$$
f^{\prime}(x)=-5 x^{4}+10 x^{3}+40 x^{2}
$$

derivative.

$$
\begin{aligned}
& =-5 x^{2}\left(x^{2}-2 x-8\right) \\
& =-5 x^{2}(x-4)(x+2)
\end{aligned}
$$

From the factored form of the derivative, we see that we have three critical points: $x=-2, x=0$, and $x=4$. We will need these in a bit.
We now need to determine where the derivative is positive and where it's negative. Since the derivative is a polynomial, it is continuous and so we know that the only way for it to change signs is to first go through zero. In other words, the only place that the derivative may change signs is at the critical points of the function. We have now got another use for critical points. So, we will build sign table of $f^{\prime}(x)$, graph the critical points and pick test points from each region to see if the derivative is positive or negative in each region.

x	$-\infty$	-2		0		4		
$f^{\prime}(x)$	-	0	+	0	+	0	-	

We have
Increase (symbolized by the arrow \nearrow):
$-2<x<0$ and $0<x<4$
Decrease (symbolized by the arrow \searrow):
$x<2$ and $x>$

Concavity of a function

In the lines, we saw how we could use the first derivative of a function to get some information about the graph of a function. In following lines, we are going to look at the information that the second derivative of a function can give us about the graph of a function.

The following figure gives us the idea of concavity

Concave Up, Decreasing	Concave Up, Increasing
Concave Down, Decreasing	Concave Down, Increasing

So a function is concave up if it "opens" up and the function is concave down if it "opens" down. Notice as well that concavity has nothing to do with increasing or decreasing. A function can be concave up and either increasing or decreasing. Similarly, a function can be concave down and either increasing or decreasing.

Given the function $f(x)$ then

- $f(x)$ Is concave up on an interval i if all of the tangents to the curve on i are below the graph of $f(x)$.
- $f(x)$ Is concave down on an interval i if all of the tangents to the curve on i are above the graph of $f(x)$.

To show that the graphs above do in fact have concavity claimed above here is the figure again (blown up a little to make things clearer).

So, as you can see, in the two upper graphs all of the tangent lines sketched in are all below the graph of the function and these are concave up. In the lower two graphs all the tangent lines are above the graph of the function and these are concave down.

There's one more definition that we need to get out of the way.
A point $x=c$ is called an inflection point if the function is continuous at the point and the concavity of the graph changes at that point.

Now that we have all the concavity definitions out of the way, we need to bring the second derivative into the mix. The following fact relates the second derivative of a function to its concavity.

Fact

Given the function $f(x)$ then,

- If $f^{\prime \prime}(x)>0$ for all x in some interval I then $f(x)$ is concave up on I.
- If $f^{\prime \prime}(x)<0$ for all x in some interval I then $f(x)$ is concave down on I.

Notice that this fact tells us that a list of possible inflection points will be those points where the second derivative is zero or doesn't exist. Be careful, however, to not make the assumption that just because the second derivative is zero or doesn't exist that the point will be an inflection point. We will only know that it is an inflection point once we determine the concavity on both sides of it. It will only be an inflection point if the concavity is different on both sides of the point.

Example 6.40

Let us find where the function $f(x)=x^{3}-3 x^{2}$ is concave up or down.
We need the second derivative
$f^{\prime}(x)=3 x^{2}-6 x$,
$f^{\prime \prime}(x)=6 x-6$
Sign of $f^{\prime \prime}(x)$

x	1		
$f^{\prime \prime}(x)$	-	0	+

Thus, $f(x)$ is concave up if $x>1$ and
$f(x)$ Is concave down if $x<1$

Rolle's theorem

Suppose that $f(x)$ is a function that satisfies all of the following.

- $f(x)$ Is continuous on the closed interval $[a, b]$.
- $f(x)$ Is differentiable on the open interval (a, b).
- $f(a)=f(b)$.

Then, there is a number c such that $a<c<b$ and $f^{\prime}(c)=0$.
Or, in other words $f(x)$ has a critical point in (a, b).

Example 6.41

Consider the function $f(x)=x^{2}-1$ on $[-1,1]$
This function is continuous on $[-1,1]$ and differentiable on $(-1,1)$
Moreover $f(-1)=f(1)=0$.
Then from rolle's theorem, we must get a number c such that $-1<c<1$ and $f^{\prime}(c)=0$.
The first derivative is $f^{\prime}(x)=2 x$ and $f^{\prime}(x)=0$ for $x=0$ and we see that $-1<0<1$.

Mean value theorem

Suppose that $f(x)$ is a function that satisfies both of the following;

- $f(x)$ Is continuous on the closed interval $[a, b]$.
- $f(x)$ Is differentiable on the open interval (a, b).

Then, there is a number c such that $a<c<b$ and $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Or, $f(b)-f(a)=f^{\prime}(c)(b-a)$.
Note that the mean value theorem doesn't tell us what c is. It only tells us that there is atleast one number c that will satisfy the conclusion of the theorem.

Also note that if $f(a)=f(b)$, we can think of rolle's theorem as a special case of the mean value theorem.

Geometrical interpretation of the mean value theorem

First define $A=(a, f(a))$ and $B=(b, f(b))$ and then we know from the mean value theorem that there is a c such that $a<c<b$ and that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Now, if we draw in the secant line connecting a and b then we can know that the slope of the secant line is, $\frac{f(b)-f(a)}{b-a}$.
Likewise, if we draw in the tangent line to $f(x)$ at $x=c$ we know that its slope is $f^{\prime}(c)$.

What the mean value theorem tells us is that these two slopes must be equal or in other words the secant line connecting A and B and the tangent line at $x=c$ must be parallel.

We can see this in the following sketch.

Example 6.42

Let us determine all the numbers c which satisfy the conclusions of the mean value theorem for the function $f(x)=x^{3}+2 x^{2}-x$ on $[-1,2]$.

There isn't really a whole lot to this problem other than to notice that since $f^{\prime}(x)$ is a polynomial, it is both continuous and differentiable (i.E, the derivative exists) on the interval given.

First derivative, $f^{\prime}(x)=3 x^{2}+4 x-1$
Now, to find the numbers that satisfy the conclusions of the mean value theorem all we need to do is plug this into the formula given by the mean value theorem.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{f(2)-f(-1)}{2-(-1)} \\
& \Leftrightarrow 3 c^{2}+4 c-1=\frac{14-2}{3}=4 \Leftrightarrow 3 c^{2}+4 c-1=4 \Leftrightarrow 3 c^{2}+4 c-5=0 \\
& \Delta=16+60=76 \\
& c=\frac{-4 \pm 2 \sqrt{19}}{6}=\frac{-2 \pm \sqrt{19}}{3}
\end{aligned}
$$

Thus, the values of c which satisfy the conclusions of the mean value theorem for the function $f(x)=x^{3}+2 x^{2}-x$ on $[-1,2]$ is $\frac{-2+\sqrt{19}}{3}$. The value $\frac{-2-\sqrt{19}}{3}$ is excluded since it is not an element of the given interval. Let us see a couple of nice facts.

Fact 1

If $f^{\prime}(x)=0$ for all x in an interval (a, b) then $f(x)$ is constant on (a, b).

Fact 2

If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b) then in this interval we have $f(x)=g(x)+c$ where c is a constant.

Note that in both of these facts we are assuming the functions are continuous and differentiable on the interval $[a, b]$.

L'hôpital's rule

Back on the section of limits, we saw methods for dealing with the following limits:
$\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4} \quad \lim _{x \rightarrow \infty} \frac{4 x^{2}-5 x}{1-3 x^{2}}$
In the first limit if we plugged in $x=4$, we would get $\frac{0}{0}$ and in the second limit if we plugged in infinity, we would get $\frac{\infty}{-\infty}$ which are the indeterminate forms. In both of these cases, there are competing interests or rules and it is not clear which one will win out.
For the two limits above we work them out as follows.

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4} & =\lim _{x \rightarrow 4} \frac{(x+4)(x-4)}{x-4} \\
& =\lim _{x \rightarrow 4}(x+4) \\
& =8 \\
\lim _{x \rightarrow \infty} \frac{4 x^{2}-5 x}{1-3 x^{2}} & =\lim _{x \rightarrow \infty} \frac{x^{2}\left(4-\frac{5}{x}\right)}{x^{2}\left(\frac{1}{x^{2}}-3\right)} \\
& =\lim _{x \rightarrow \infty} \frac{4-\frac{5}{x}}{\frac{1}{x^{2}}-3} \\
& =-\frac{4}{3}
\end{aligned}
$$

In the first case we simply factored, canceled and took the limit and in the second case we factored out an x^{2} from both the numerator and the denominator and took the limit. Notice as well that none of the competing interests or rules in these cases won out!
There is another method that can help us to evaluate such limits and it is called l'hôpital's rule. It tells us that if we have an indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ all we need to do is to differentiate the numerator and the denominator and then take the limit.

That is, suppose that we have one of the following cases: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$ or $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{ \pm \infty}{ \pm \infty}$ where a can be any real
number, infinity or negative infinity.
In these cases we have, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

Example 6.43

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0} I \cdot F \\
& \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x}{x} & =\lim _{x \rightarrow 0} \frac{(\sin x)^{\prime}}{x^{\prime}} \\
& =\lim _{x \rightarrow 0} \cos x \\
& =1
\end{aligned}
\end{aligned}
$$

Example 6.44

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{5 x^{4}-4 x^{2}-1}{10-x-9 x^{3}} & =\frac{5-4-1}{10-1-9}=\frac{0}{0} I \cdot F \\
\lim _{x \rightarrow 1} \frac{5 x^{4}-4 x^{2}-1}{10-x-9 x^{3}} & =\lim _{x \rightarrow 1} \frac{20 x^{3}-8 x}{-1-27 x^{2}} \\
& =\frac{20-8}{-1-27} \\
& =-\frac{3}{7}
\end{aligned}
$$

Applications of differentiation in medicine

Application of differentiation to find the Concentration of drugs.

Example 6.45

The concentration C (in milligrams per milliliter) of a drug in a patient's blood-stream is monitored over 10minute intervals for 2 hours, where t is measured in minutes, as shown in the table. Find the average rate of change over each interval.
a) $[0,10]$
b) $[0,20]$
c) $[100,110]$

T	0	10	20	30	40	50
C	0	2	17	37	55	73

T	60	70	80	90	100	110	120
C	89	103	111	113	113	103	68

Solution

for the interval $[0,10]$, the average rate of change is
$\frac{\Delta C}{\Delta t}=\frac{2-0}{10-0}=\frac{2}{10}=0.5 \mathrm{mg}$ per ml per min.
for the interval $[0,20]$, the average rate of change is
$\frac{\Delta C}{\Delta t}=\frac{17-0}{20-0}=\frac{17}{20}=0.85 \mathrm{mg}$ per ml per min.
for the interval $[100,110]$, the average rate of change is
$\frac{\Delta C}{\Delta t}=\frac{103-113}{110-100}=\frac{-10}{10}=-1 \mathrm{mg}$ per ml per min.

Example 6.46

As blood moves from the heart through the major arteries out to the capillaries and back through the veins, the systolic blood pressure continuously drops. Consider a person whose systolic blood pressure P (in millimeters of mercury) is given by
$P=\frac{25 t^{2}+125}{t^{2}+1}, 0 \leq t \leq 10$, where t is measured in seconds.
At what rate is the blood pressure changing 5 seconds after blood leaves the heart?

Solution

Begin by applying the Quotient Rule.

$$
\begin{aligned}
\frac{d P}{d t} & =\frac{50 t\left(t^{2}+1\right)-2 t\left(25 t^{2}+125\right)}{\left(t^{2}+1\right)^{2}} \\
& =\frac{50 t^{3}+50 t-50 t^{3}-250 t}{\left(t^{2}+1\right)^{2}} \\
& =\frac{-200 t}{\left(t^{2}+1\right)^{2}}
\end{aligned}
$$

When $t=5$, the rate of change is
$=-\frac{200(5)}{(26)^{2}}=-1.48 \mathrm{~mm} / \mathrm{sec}$
So, the pressure is dropping at a rate of 1.48 millimeters per second when $t=5$ seconds.

Application of differentiation to find the rate of change of the population of bacteria.

Example 6.47

A population of bacteria is introduced into a culture. The number of bacteria P can be modeled by $P=500\left(1+\frac{4 t}{50+t^{2}}\right)$, where t is the time (in hours). Find the rate of change of the population when $t=2$

Solution

$$
\begin{aligned}
& P=500 \frac{\left(50+t^{2}+4 t\right)}{50+t^{2}} \\
& \frac{d P}{d t}=\frac{500\left[(2 t+4)\left(50+t^{2}\right)-2 t\left(50+t^{2}+4 t\right)\right]}{\left(50+t^{2}\right)^{2}} \\
& \frac{d P}{d t}=\frac{500\left[100 t+2 t^{3}+200+4 t^{2}-100 t-2 t^{3}-8 t^{2}\right]}{\left(50+t^{2}\right)^{2}} \\
& \frac{d P}{d t}=\frac{500\left(-4 t^{2}+200\right)}{\left(50+t^{2}\right)^{2}}
\end{aligned}
$$

Since $t=2$, then

$$
\frac{d P}{d t} / t=2=\frac{500\left(-4(2)^{2}+200\right)}{\left(50+(2)^{2}\right)^{2}}=\frac{500(184)}{2916}=31.5
$$

Therefore, the rate of change of the population is 31.5 bacteria per hour when $t=2$ hours.

Application of differentiation to find effectiveness E of a painkilling drug t hours after entering the bloodstream

Example 6.48

The effectiveness E (on a scale from 0 to 1) of a pain-killing drug t hours after entering the bloodstream is given by

$$
E=\frac{1}{27}\left(9 t+3 t^{2}-t^{3}\right), 0 \leq \mathrm{t} \leq 4.5
$$

Find the average rate of change of E on each indicated interval and compare this rate with the instantaneous rates of change at the endpoints of the interval.
a) $[0,1]$
b) $[1,2]$
c) $[2,3]$
d) $[3,4]$

Solution

$E=\frac{1}{27}\left(9 t+3 t^{2}-t^{3}\right)$
$E^{\prime}=\frac{1}{27}\left(9+6 t-3 t^{2}\right)$
a) Average rate $E=\frac{1}{27}\left[9(1)+3(1)^{2}-(1)^{3}\right]=\frac{11}{27}$

The instantaneous rates $E^{\prime}(0)=\frac{9}{27}=\frac{1}{3}, E^{\prime}(1)=\frac{4}{9}$
b) Average rate $E=\frac{1}{27}\left[9(1)+3(1)^{2}-(1)^{3}\right]=\frac{11}{27}$

The instantaneous rates $E^{\prime}(1)=\frac{4}{9}, \quad E^{\prime}(2)=\frac{1}{3}$
c) Average rate $\frac{5}{27}$

The instantaneous rates $E^{\prime}(2)=\frac{1}{3}, \quad E^{\prime}(3)=0$
d) Average rate $\frac{-7}{27}$

The instantaneous rates $E^{\prime}(3)=0, E^{\prime}(4)=-\frac{5}{9}$

Unit summary

1. The derivative of a function $f(x)$ with respect to x is denoted by $f^{\prime}(x)$ and defined as $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ provided that the limit exists.
2. If f is a constant function, say $f(x)=c$, for all x, then $\frac{d f}{d x}=\frac{d}{d x}(c)=0$
3. If \boldsymbol{n} is any real number, then $\frac{d}{d x} x^{n}=n x^{n-1}$ for all x where the powers x^{n} and x^{n-1} are defined.
4. If f is a differentiable function of x, and c is a constant, then $\frac{d}{d x}(c f(x))=c \frac{d}{d x} f(x)$
5. Let $D(I, \mathbb{R})$ be the set of functions differentiable on I. If $f \in D(I, \mathbb{R})$ and $g \in D(I, \mathbb{R})$, then $f \pm g \in D(I, \mathbb{R})$. In addition $\frac{d}{d x}(f \pm g)=\frac{d f}{d x} \pm \frac{d g}{d x}$
6. If f and g are differentiable at x, then so is their product $f \cdot g$, and $\frac{d}{d x}(f . g)=\frac{d f}{d x} g+f \frac{d g}{d x}$.
7. Let $D(I, \mathbb{R})$ be the set of functions differentiable on I. If $f \in D(I, \mathbb{R})$ then $\frac{1}{f} \in D(I, \mathbb{R}) f \neq 0$. Moreover $\frac{d}{d x}\left(\frac{1}{f}\right)=-\frac{\frac{d f}{d x}}{f^{2}}$
8. If f and g are differentiable at x and if $g(x) \neq 0$, then the quotient $\frac{f}{g}$ is differentiable at x, and $\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{g \frac{d f}{d x}-f \frac{d g}{d x}}{g^{2}}$
9. If $f \in D(I, \mathbb{R})$ and $g \in D(I, \mathbb{R})$, then $g \circ f \in D(I, \mathbb{R})$. In addition $(g \circ f)^{\prime}=g^{\prime}(f) f^{\prime}$
10. Chain rule: $\frac{d}{d x}[f[g(x)]]=f^{\prime}[g(x)] g^{\prime}(x)$
11. The equation of the tangent line to the curve at point $\left(x_{0}, y_{0}\right)$, is $T \equiv y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$
12. The normal line to the curve at point $\left(x_{0}, y_{0}\right)$ is the perpendicular line to the tangent line of the curve at point $\left(x_{0}, y_{0}\right)$. Its equation is of the form $N \equiv y-y_{0}=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right)$
13. If $\left(x_{0}, y_{0}\right)$ are points on the graph of $y=f(x)$, then we define $m=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$ to be the average rate at which y changes with x over the interval $\left[x_{0}, x_{1}\right]$. If $y=f(x)$ and $f(x)$ is differentiable at x_{0}, then we define $n=\left.\frac{d y}{d x}\right|_{x=x_{0}}$ to be the instantaneous rate at which y changes with x_{0} at x_{0}.
14. We say that $x=c$ is a critical point for the function $f(x)$ if $f(c)$ exists and if either one of the following is true

- $f^{\prime}(c)=0$ or
- $f^{\prime}(c)$ does not exist.

15. Extreme Value Theorem: Suppose that $f(x)$ is continuous on the interval $[a, b]$ then there are two numbers $a \leq c, d \leq b$ so that $f(c)$ is an absolute maximum for the function and $f(d)$ is an absolute minimum for the function.
16. Fermat's Theorem: If $f(x)$ has a relative extrema at $x=c$ and $f^{\prime}(c)$ exists then $x=c$ is a critical point of $f(x)$. In fact, it will be a critical point such that $f^{\prime}(c)=0$.
17. If $f^{\prime}(x)>0$ for every x on some interval I, then $f(x)$ is increasing on the interval.
18. If $f^{\prime}(x)<0$ for every x on some interval I, then $f(x)$ is decreasing on the interval.

If $f^{\prime}(x)=0$ for every x on some interval I, then $f(x)$ is constant on the interval

If $f^{\prime \prime}(x)$ for all x in some interval I then $f(x)$ is concave up on I. If $f^{\prime \prime}(x)$ for all x in some interval I then $f(x)$ is concave down on I.
19. Rolle's Theorem: Suppose that $f(x)$ is a function that satisfies all of the following:

- $f(x)$ is continuous on the closed interval $[a, b]$,
- $f(x)$ is differentiable on the open interval (a, b), $f(a)=f(b)$

Then, there is a number c such that $a<c<b$ and $f^{\prime}(c)=0$.
20. Mean Value Theorem: Suppose that $f(x)$ is a function that satisfies both of the following.

- $f(x)$ is continuous on the closed interval $[a, b]$.
- $f(x)$ is differentiable on the open interval (a, b).

Then, thereisanumbercsuchthat $a<c<b$ and $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
21. L'Hôpital's rule: If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$ or $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{ \pm \infty}{ \pm \infty}$ where a can be any real number, infinity or negative infinity. Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

End Unit Assesment

1. Write down the derivative of each of the following functions:
a) x^{4}
b) $4 x^{3}$
c) $8 x^{2}$
d) $x^{2}-4 x+5$
2. a) Find equation of the tangent to the curve $y=x^{2}-4 x-5$ at the point $(1,-8)$
b) Find the equation of the tangent to the curve $y=3 x^{2}-4 x$ at the point where $x=\frac{2}{3}$.
3. For the function $f(x)=3 x^{2}-10 x+3$
a) find the value of $f^{\prime}(x)$ when $f(x)=0$
b) find the value of $f(x)$ when $f^{\prime}(x)=0$
4. Write down the first and the second derivatives of each of the following:
a) $5 x-4$
b) $3 x^{2}-6 x-5$
c) $2 x^{3}-5 x^{2}+4 x+2$
d) $x^{3}-\frac{2}{x}$
5. A ball is thrown vertically into the air so that it reaches a height of $y=19.6 t-4.9 t^{2}$ meters in t seconds.
a) Find the time taken and acceleration of the ball at time t seconds.
b) Find the time taken for the ball to reach its highest point.
c) How high did the ball rise?
d) At what time(s) would the ball be at half its maximum height?
6. The function $f(x)=2 x^{3}+a x^{2}+b x$ has stationary points at $x=-1, x=2$. Find the values of the real numbers a and b and sketch the graph of the function.
7. Find the largest and smallest values of $f(x)=x(x-2)^{2}$ for
a) $-1 \leq x \leq 3$
b) $0 \leq x \leq 2$
c) $-\frac{1}{3} \leq x \leq \frac{2}{3}$
8. Find the rate of change of the area of a square with respect to the length of its side when the side is $4 f t$.
9. Find the rate of change of the volume of a sphere (given by $V=\frac{4}{3} \pi r^{3}$) with respect to it radius r when the radius is $2 m$.
10. Find the intervals of increase and decrease of the following functions
a) $f(x)=x^{3}-4 x+1$
b) $f(x)=\left(x^{2}-4\right)^{2}$
c) $f(x)=x^{3}(5-x)^{2}$

In Exercises 11-14, find $\frac{d y}{d x}$ in terms of x and y :
11. $x y-x+2 y=1$
12. $x^{2}+x y=y^{3}$
13. $x^{2} y^{3}=2 x-y$
14. $\frac{x-y}{x+y}=\frac{x^{2}}{y}+1$

In Exercises 15-18, find $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$:
15. $y=(3-2 x)^{7}$
16. $y=\frac{6}{(x-1)^{2}}$
16. $y=\frac{6}{(x-1)^{2}} \quad$ 17. $y=x^{\frac{1}{3}}-x^{-\frac{1}{3}}$
17. $y=x^{\frac{1}{3}}-x^{-\frac{1}{3}}$
18. $y=\left(x^{2}+3\right) \sqrt{x}$

Unifit

 7
Vector space of real numbers

7.0 Introductory activity

Given two points A with coordinates $(1,2)$ and B with coordinates $(-3,1)$.
i) represent the points A and B in the same plane $X Y$
ii) draw arrow from point A to point B
iii) find $B-A$

objectives

After completing this unit, I will be able to:
(1) Find the norm of a vector.
(1) Calculate the scalar product of two vectors.
(1) Calculate the angle between two vectors.
(1) Apply and transfer the skills of vectors to other area of knowledge.

7.1. Euclidian vector space IR 2

Concept of vector and operations in 2D

Activity 7.1.1
Let \vec{i} the unit vector on X -axis and \vec{j} the unit vector on y -axis. If $\vec{v}=\vec{i}+2 \vec{j}=(1,2)$ and $\vec{w}=\overrightarrow{2 i}+4 \vec{j}=(2,4)$.
a) Illustrate \vec{v}, \vec{w} and $\vec{v}+\vec{w}$
b) Use geometric representations and algebraic expressions to verify

$$
\text { if } \vec{v}+\vec{w}=\vec{w}+\vec{v}
$$

Position of points and vectors in $2 D$

In plane, the position of a point is determined by two coordinates x and y obtained with reference to two straight lines (x-axis and y-axis respectively) intersecting at right angle.

The point P has the coordinates (a, b). We use a rectangular coordinate system to represent algebraic vectors in the plane. If $\vec{v}=a \vec{i}+b \vec{j}=(\mathrm{a}, \mathrm{b})$ is an algebraic vector whose initial point is at the origin, then \vec{v} is called a position vector. It can be written as a column vector $\vec{v}=\vec{i}+\vec{b}=(a, b)=\binom{a}{b}$
Definition: A vector \vec{v} of \mathbb{R}^{2} is a vector of the form $\vec{v}=a \vec{i}+b \vec{j}=(a, b)=\binom{a}{b}$ where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

Suppose that \vec{v} is a vector with initial point $P_{1}\left(a_{1}, b_{1}\right)$ not necessarily the origin, and terminal point $P_{2}\left(a_{2}, b_{2}\right)$. If $\vec{v}=\overrightarrow{P_{1} P_{2}}$ then \vec{v} is equal to the position vector $\vec{v}=\left(a_{2}-a_{1}, b_{2}-b_{1}\right)$. Note that this position vector can be written as a column vector $\vec{v}=\binom{a_{2}-a_{1}}{b_{2}-b_{1}}$.

For example, if $P_{1}(-1,2)$ and $P_{2}(4,6)$. The vector position $\vec{v}=\overrightarrow{P_{1} P_{2}}=(4-(-1), 6-2)=(5,4)$

Addition and subtraction of vectors in \mathbb{R}^{2}

Let, $\quad a_{1}, a_{2}, b_{1}$ and $b_{2} \in \mathbb{R}, \quad \vec{v}=a_{1} \vec{i}+b_{1} \vec{j}=\left(a_{1}, b_{1}\right)$ and $\vec{w}=a_{2} \vec{i}+b_{2} \vec{j}=\left(a_{2}, b_{2}\right)$ be two vectors of \mathbb{R}^{2}, and let α be a scalar. The following rules are true:

1) $\vec{v}+\vec{w}=\left(a_{1}+a_{2}\right) \vec{i}+\left(b_{1}+b_{2}\right) \vec{j}=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$

2) $\vec{v}-\vec{w}=\left(a_{1}-a_{2}\right) \vec{i}+\left(b_{1}-b_{2}\right) \vec{j}=\left(a_{1}-a_{2}, b_{1}-b_{2}\right)$
3) $\alpha \vec{v}=\left(\alpha a_{1}\right) \vec{i}+\left(\alpha b_{1}\right) \vec{j}=\left(\alpha a_{1}, \alpha b_{1}\right)$

4) The magnitude of \vec{v} is $\|\vec{v}\|=\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}$

Example 7.1

If $\vec{v}=2 \vec{i}+3 \vec{j}=(2,3)$ and $\vec{w}=3 \vec{i}-4 \vec{j}=(3,-4)$, find
a) $\vec{v}+\vec{w}$
b) $\vec{v}-\vec{w}$
c) $3 \vec{v}+4 \vec{w}$
d) $\|\vec{v}+\vec{w}\|$

Solution

a) $\vec{v}+\vec{w}=(2,3)+(3,-4)=(5,-1)$
b) $\vec{v}-\vec{w}=(2,3)-(3,-4)=(-1,7)$
c) $3 \vec{v}+4 \vec{w}=3(2,3)+4(3,-4)$

$$
=(6,9)+(12,-16)=(18,-7)
$$

d) $\|\vec{v}+\vec{w}\|=\sqrt{5^{2}+(-1)^{2}}=\sqrt{25+1}=\sqrt{26}$

A vector space (also called a linear space) is a collection of objects called vectors of \mathbb{R}^{2}, which may be added together and multiplied ("scaled") by numbers, called scalars in this context. Scalars are often taken to be real numbers. In the vector space $\left(\mathbb{R}^{2},+, x\right)$ the properties mentioned above are verified.

Application Activity 7.1.1

If $\vec{v}=(2,3)$ and $\vec{w}=(3,-4)$.
a) Draw $2 \vec{v}$ and $3 \vec{w}$ in the cartesian plane.
2) Find the algebraic expression of $2 \vec{v}-3 \vec{w}$
3) Draw $2 \vec{v}-3 \vec{w}$ in the same cartesian plane.

Dot product and properties and magnitude of a vector

Activity 7.1.2

Given that $\vec{w}=(a, b) \cdot(c, d)=a \cdot c+b \cdot d$, evaluate:
a) $(1,4) \cdot(3,2)$
b) $(-4,2) \cdot(1,2)$

Scalar product and properties

The scalar product or dot product (or sometimes inner product) is an algebraic operation that takes two coordinate vectors and returns a single number.

Algebraically, it is the sum of the products of the corresponding coordinates of the two vectors. That is, the scalar product of vectors $\vec{u}=\left(a_{1}, a_{2}\right)$ and $\vec{v}=\left(b_{1}, b_{2}\right)$ of plane is defined by $\vec{u} \cdot \vec{v}=a_{1} b_{1}+a_{2} b_{2}$

We can illustrate this scalar product in terms of work done by a force on the body:
Suppose that a person is holding a heavy weight at rest. This person may say and feel he is doing hard work but in fact none is being done on the weight in the scientific sense. Work is done when a force moves its point of application along the direction of its line of action.

If the constant force F and the displacement S are in the same direction and we define the work W done by the force on the body by $W=F \cdot S$

Properties of scalar product

a) If $\vec{u}=\overrightarrow{0}$ or $\vec{v}=\overrightarrow{0}$, then $\vec{u} \cdot \vec{v}=\overrightarrow{0}$.
b) If $\vec{u} \| \vec{v}$ and \vec{u}, \vec{v} have same direction, then $\vec{u} \cdot \vec{v}>0$.
c) If $\vec{u} \| \vec{v}$ and \vec{u}, \vec{v} have opposite direction, then $\vec{u} \cdot \vec{v}<0$.
d) If $\vec{u} \perp \vec{v}$, then $\vec{u} \cdot \vec{v}=0$. Consequently,
e) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.
f) $\vec{u} \cdot(a \vec{v}+b \vec{w})=a \vec{v} \cdot \vec{u}+b \vec{u} \cdot \vec{w},(a \vec{u}+b \vec{v}) \cdot \vec{w}=a \vec{u} \cdot \vec{w}+b \vec{v} \cdot \vec{w}$.
g) $\vec{u} \cdot \vec{u}>0, \vec{u} \neq \overrightarrow{0}$.

We define the square of \vec{u} to be $\vec{u} \cdot \vec{u}=(\vec{u})^{2}$

Example 7.2

Let $\vec{u}=(2,4)$ and $\vec{v}(-5,0)$. Find $\vec{u} \cdot \vec{v},(\vec{u})^{2}$ and $(\vec{v})^{2}$

Solution

The scalar product of the vector $\vec{u}=(2,4)$ and vector $\vec{v}=(-5,0)$ is $\vec{u} \cdot \vec{v}=2(-5)+0=-10$

The square of the vector $\vec{u}=(10,4)$ is $(\vec{u})^{2}=10(10)+4(4)=100+16=116$ $(\vec{v})^{2}=-5(-5)+0=25$

Notice:

Two vectors are perpendicular if their scalar product of two vectors is zero.

Magnitude or modulus of vectors

The magnitude of the vector \vec{u} noted by $\|\vec{u}\|$ is defined as its length and is the square root of its square. That is $\|\vec{u}\|=\sqrt{(\vec{u})^{2}}$ or $\|\vec{u}\|^{2}=(\vec{u})^{2}$. Thus if $\vec{u}=(a, b)$ then $\|\vec{u}\|=\sqrt{a^{2}+b^{2}}$

Note that the notation of absolute value $\|$ is also used for the magnitude of a vector.

That is the magnitude of a vector \vec{u} is also denoted by $|\vec{u}|$.

Consequences

a) If $\vec{u}=\overrightarrow{0}$ then $\|\vec{u}\|=0$
b) $\|k \vec{u}\|=\|k\|\|\vec{u}\|, k$ is a real number.

Example 7.3

Find the norm of the vector $\vec{v}=(3,4)$

Example 7.4

Find the norm of the vector $\vec{u}=(-1,4)$

Solution

The norm is $\|\vec{v}\|=\sqrt{9+16}=5$

Solution

The norm is $\|\vec{u}\|=\sqrt{1+16}=\sqrt{17}$.

Application Activity 7.1.2

1. Find the norm of
a) $\vec{u}=(-3,4)$
b) $\vec{v}=(3,1)$
2. Consider the vectors $\vec{u}=(4,5), \vec{v}=(-3,1)$ in plane. Find
a) the norm of vector \vec{u} and vector \vec{v}
b) the scalar product of vector \vec{u} and vector \vec{v}

Example 7.5

The figure below shows a girl pulling a wagon with a force of 50 Newtons. How much work is done in moving the wagon 100 meters if the handle makes an angle of 30 degrees with the ground?

Solution

Let us position the vector in the cartesian plane in such a way the wagon moved from the origin $\mathrm{O}(0,0)$ to the point $\mathrm{P}(100,0)$. The motion is from O to P .

Then, $\overrightarrow{O P}=100 \vec{i}$
The force vector \vec{F} is given by:
$\vec{F}=50\left[\left(\cos 30^{\circ}\right) \vec{i}+\left(\sin 30^{\circ}\right) \vec{j}\right]=25(\sqrt{3} \vec{i}+\vec{j})$
Therefore, the work done is given by the dot product:
$W=\vec{F} \cdot \overrightarrow{O P}=25(\sqrt{3} \vec{i}+\vec{j}) \cdot(100 \vec{i})=2500 \cdot \sqrt{3}$ Joules.

Note:

If $\vec{u}=(a, b)$ and $\vec{v}=(c, d)$ are two nonzero vectors such that the angle between them is θ, the dot product $\vec{u} \cdot \vec{v}=a \cdot c+c \cdot d=\|\vec{u}\| \cdot\|\vec{v}\| \cos \theta$.

Example 7.6

Given that \vec{i} is the unit vector on the x-axis and \vec{j} the unit vector on y-axis, find:
a) $\vec{i} \cdot \vec{j}$
b) $\overrightarrow{i . i}$,
c) $\vec{j} \cdot \vec{j}$
d) $\vec{j} \cdot \vec{i}$.

Solution

In the cartesian plan, $\vec{i}=(1,0)$ and $\vec{j}=(0,1)$

The angle between \vec{i} and \vec{j} is $\theta=\frac{\pi}{2}=90^{\circ}$
a) $\vec{i} \cdot \vec{j}=(1,0) \cdot(0,1)=0$ or $\vec{i} \cdot \vec{j}=1 \cdot 1 \cdot \cos \left(\frac{\pi}{2}\right)=0$
b) $\overrightarrow{i \cdot i}=(1,0) \cdot(1,0)=1$ or $\overrightarrow{i \cdot i}=1 \cdot 1 \cdot \cos (0)=1$
c) $\vec{j} \cdot \vec{j}=(0,1) \cdot(0,1)=1$ or $\vec{j} \cdot \vec{j}=1 \cdot 1 \cdot \cos (0)=1$
d) $\overrightarrow{j \cdot} \vec{i}=(0,1) \cdot(1,0)=0$ or $\vec{j} \cdot \vec{i}=1 \cdot 1 \cdot \cos \left(\frac{\pi}{2}\right)=0$

Example 7.7

Let $\vec{u}=4 \vec{i}-3 \vec{j}=(4,-3)$ and $\vec{v}=2 \vec{i}+5 \vec{j}=(2,5)$ the angle between them is θ (see the figure below)

This relation shows that:
$\|\vec{u}\|=\sqrt{16+9}=5$ and $\|\vec{v}\|=\sqrt{4+25}=\sqrt{29}$
$\vec{u} \cdot \vec{v}=(4,-3)(2,5)=8-15=-7$
And $\vec{u} \cdot \vec{v}=\|\vec{u}\| \cdot\|\vec{v}\| \cos \theta=5 \sqrt{29} \cos \theta$
Therefore, $5 \sqrt{29} \cos \theta=-7$.
This expression can help us to determine the value for angle θ.

7.2 Angle bełween two vectors

Activity 7.2

In xy plane,

1. Draw the vector $\vec{u}=(3,0)$ with tail at $(0,0)$.
2. Draw another vector \vec{v} with length $3 \sqrt{2}$ such that the angle between \vec{u} and vector \vec{v} will be $\theta=45^{\circ}$
What can you say about the sides of the triangle formed and the angle θ ?

Geometrically, the scalar product of two vectors $\vec{u}=(a, b)$ and $\vec{v}=(c, d)$ of plane is given by $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$. Where θ is the angle between vectors \vec{u} and \vec{v}. From this relation, we have $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}$ or $\cos \theta=\frac{a \cdot c+b \cdot d}{\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}}}$

We deduce that the angle θ between two vectors $\vec{u}=(a, b)$ and $\vec{v}=(c, d)$ is given by $\theta=\cos ^{-1}\left(\frac{a \cdot c+b \cdot d}{\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}}}\right)$.
Where $\cos ^{-1}$ denote the inverse function of cosine.

We can illustrate the scalar product in terms of work done by the force on the body:
If the constant force F and the displacement S are in the same direction, the work W done by the force on the body is $W=F \cdot S$
If the force does not act in the direction in which motion occurs but an angle to it, then the work done is defined as the product of the component of the force in the direction of motion and the displacement in that direction.
$W=F S \cos \theta$

Notice

- Two vectors are perpendicular if the angle between them is a multiple of a right angle.
- Two vectors are parallel and with the same direction if the angle between them is a multiple of a zero angle.
- Two vectors are parallel and with the opposite direction if the angle between them is a multiple of a straight angle.

Example 7.8

Find the angle between vectors $\vec{u}=(3,0)$ and $\vec{v}=(5,5)$.

Example 7.9

Calculate the dot product and the angle formed by the following vectors:
$\vec{u}=(3,4)$ and $\vec{v}=(-8,6)$

Solution

Let α be the angle between these two vectors.

$$
\begin{aligned}
& \alpha=\cos ^{-1}\left(\frac{3 \cdot 5+0 \cdot 5}{\sqrt{3^{3}+0^{2}} \sqrt{5^{2}+5^{2}}}\right)=\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right) \\
& \alpha=45^{\circ}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=3 \cdot(-8)+4 \cdot 6=0 \\
& \alpha=\cos ^{-1}\left(\frac{0}{\sqrt{3^{2}+4^{2}} \sqrt{(-8)^{2}+6^{2}}}\right)=\cos ^{-1}(0) \\
& \alpha=90^{\circ}
\end{aligned}
$$

Example 7.10

Calculate the angles of the triangle with vertices:
$A=(6,0), B=(3,5)$ and $C=(-1-1)$.

Find the value of k if the angle between $\vec{u}=(k, 3)$ and $\vec{v}=(4,0)$ is 45°

Solution

$$
\begin{aligned}
& \overrightarrow{A B}=(-3,5), \overrightarrow{B A}=(3,-5), \overrightarrow{A C}=(-7,-1), \\
& \overrightarrow{C A}=(7,1), \overrightarrow{B C}=(-4,-6), \overrightarrow{C B}=(4,6)
\end{aligned}
$$

$$
\angle A=\cos ^{-1}\left(\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|\overrightarrow{A B}\|\|\overrightarrow{A C}\|}\right)
$$

$$
=\cos ^{-1} \frac{(-3)(-7)+5(-1)}{\sqrt{(-3)^{2}+5^{2}} \sqrt{(-7)^{2}+(-1)^{2}}}
$$

$$
=\cos ^{-1} \frac{16}{\sqrt{34} \sqrt{50}}
$$

$$
\angle A \approx 67.2^{\circ}
$$

$$
\begin{aligned}
\angle B & =\cos ^{-1}\left(\frac{\overrightarrow{B C} \cdot \overrightarrow{B A}}{\|\overrightarrow{B C}\|\|\overrightarrow{B A}\|}\right) \\
& =\cos ^{-1} \frac{18}{\sqrt{52} \sqrt{34}}
\end{aligned}
$$

$$
\angle B \approx 64.6^{\circ}
$$

$$
\angle C=\cos ^{-1}\left(\frac{\overrightarrow{C A} \cdot \overrightarrow{C B}}{\|\overrightarrow{C A}\|\|\overrightarrow{C B}\|}\right)
$$

$$
=\cos ^{-1} \frac{34}{\sqrt{50} \sqrt{52}}
$$

$$
\angle C \approx 48.2^{\circ}
$$

Solution

$\cos 45^{\circ}=\frac{4 k}{\sqrt{k^{2}+9} \sqrt{16}}$
$\frac{\sqrt{2}}{2}=\frac{4 k}{4 \sqrt{k^{2}+9}}$
$\frac{\sqrt{2}}{2}=\frac{k}{\sqrt{k^{2}+9}} \Leftrightarrow 2 k=\sqrt{2} \sqrt{k^{2}+9}$
$4 k^{2}=2 k^{2}+18$
$k^{2}=9 \Rightarrow k= \pm 3$
The value of k is 3 since $\cos 45^{\circ}$ must be positive.

Application Activity $\mathbf{7 . 2}$

1. Find the angle formed by vectors;
a) $\vec{u}=(5,6), \vec{v}=(-1,4)$
b) $\quad \vec{u}=(3,5), \vec{v}=(-1,6)$
2. Given the vectors $\vec{u}=(2, k)$ and $\vec{v}=(3,-2)$, calculate the value of k so that the vectors \vec{u} and \vec{v} are:
a) perpendicular.
b) parallel.
c) make an angle of 60°.

Application

In physics,

Vectors are fundamental in the physical sciences. They can be used to represent any quantity that has magnitude, has direction, and which adheres to the rules of vector addition. An example is velocity, the magnitude of which is speed. For example, the velocity 7 meters per second upward could be represented by the vector (0,7). Another quantity represented by a vector is force, since it has a magnitude and direction and follows the rules of vector addition. Vectors also describe many other physical quantities, such as linear displacement, displacement, linear acceleration, angular acceleration, linear momentum, and angular momentum. Other physical vectors, such as the electric and magnetic field, are represented as a system of vectors at each point of a physical space; that is, a vector field.

In geography,

Vectors can be used in air plane navigation

Use of vectors in real life

Vectors are used whenever some quantity has a size and a direction.
The most important vectors in basic physics are probably position and momentum. These are used to calculate an object's motion. Some other useful vectors in physics are velocity which tells you how fast an object's moving and current density which tells you how the total current is distributed around the conductor.

In chemistry, vectors are used to consider bond polarity; there are chemical bonds where one side is slightly negatively charged, and the other is slightly positively charged. This creates an electric field pointing from the positive to the negative end, which needs to be considered in chemistry calculations.

Vectors can also be used with other shapes to produce vector graphics. These are images which are produced using a set of instructions. When you save the image, the instructions are stored in the computer memory as another type of image.

In many fields, vectors are useful for solving systems which are represented by many simultaneous equations. You arrange the system as the product of a matrix (taken as a vector of vectors) multiplied by a vector, which gives a vector output.

In medicine, the mathematics definition implies that vectors are used to calculate speed of blood flow to and from the heart or air through the lungs.

On the other hand, the medical field takes vectors as animals, insects or means (wind, water, etc) that carry germs, viruses, bacteria, or fungal spores within or outside their bodies from one location to another where it does or does not result in disease.

Unit summary

1. The vector joining point $A\left(a_{1}, a_{2}\right)$ and $B\left(b_{1}, b_{2}\right)$ is given by

$$
\overrightarrow{A B}=\left(b_{1}-a_{1}, b_{2}-a_{2}\right) .
$$

2. The scalar product of vectors $\vec{u}=\left(a_{1}, a_{2}\right)$ and $\vec{v}=\left(b_{1}, b_{2}\right)$ of plane is defined by $\vec{u} \cdot \vec{v}=a_{1} b_{1}+a_{2} b_{2}$
3. The magnitude of the vector \vec{u} noted by $\|\vec{u}\|$ is defined as

$$
\|\vec{u}\|=\sqrt{a^{2}+b^{2}}
$$

4. The angle θ between two vectors $\vec{u}=(a, b)$ and $\vec{v}=(c, d)$ is given by $\theta=\cos ^{-1}\left(\frac{a \cdot c+b \cdot d}{\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}}}\right)$. Where $\cos ^{-1}$ denote the inverse function of cosine.

End Unit assesment

1. Find the magnitude of the vectors
a) $\vec{u}=(12,3)$
b) $\vec{v}=(-9,4)$
c) $\vec{w}=(6,-10)$
2. Find the scalar product of vectors
a) $\vec{u}=(1,4)$ and $\vec{v}=(5,6)$
b) $\vec{u}=(-10,14)$ and $\vec{v}=(2,0)$
c) $\vec{u}=(12,-4)$ and $\vec{v}=(3,8)$
3. Find the cosine of the angle between the vectors $(2,5)$ and $(-1,3)$ as well as the angle itself (in radians and degrees).
4. Find the angle between
a) $\vec{a}=(3,4)$ and $\vec{b}=(4,3)$
a) $\vec{a}=(7,1)$ and $\vec{b}=(5,5)$
5. Find the value of k if the angle between and is:
a) 90°
b) 0°
c) 45°

Unit 8 Matrices and determinants of order 2

8.0 Introductory activity

A pharmacist buys two types of drugs in boxes A and B. On the first day he bought 5 boxes of drug A and 4 boxes of drug B and he paid 35,000Frw.

On the second day, the pharmacist bought 3 boxes of drug A and 6 boxes of drug B and paid 30,000Frw.
a) Arrange what the pharmacist bought according to their types in a simple table as follows:

Number of boxes for drug A	Number of boxes for drug B	Cost
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots

b) Discuss and explain in your own words how you can determine the cost for the box of drug A and the cost for drug B.

objectives

After completing this unit, I will be able to:
(1) Define matrices.
(1) Perform operations on matrices of order 2.
(1) Determine determinant of matrix.
(1) Determine the inverse of a matrix of order 2 .

8.1. Square Matrices of order two

Activity 8.1

A shop sold 20 cell phones and 31 computers in a particular month. Another shop sold 45 cell phones and 23 computers in the same month. Present this information as an array of rows and columns.

A matrix is every set of numbers or terms arranged in a rectangular shape, forming rows and columns. In square matrix of order two, the number of rows is equal to the number of columns equal to 2 and it has the following form;
$\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$
The elements a_{11} and a_{22} constitute the principal diagonal (or leading diagonal or main diagonal or major diagonal or primary diagonal) elements a_{12} and a_{21} constitute the secondary diagonal (or minor diagonal or antidiagonal or counterdiagonal)

The subscript of $a_{i j}$ means that a is an element in row i and column j.

Example 8.1

The following matrix is a square matrix of order two

If we compare these data and the boxes of drugs bought by the pharmacist, we find the following:
the elements 1 and 4 are on the first row, they look like the quantity of drug of type A (1) and the quantity of drug of type B (4) bought by the pharmacist on the first day.

The element 3 and 11 are on the second row. They look like the quantity of drug of type A (3) and the quantity of drug of type B (11) bought by the pharmacist on the second day.

Notice:

- The matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is said to be the identity (or unit) matrix.
- The matrix $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is said to be the zero (or null) matrix.

Notice: Equality of matrices

Two matrices are equal if the elements of the two matrices that occupy the same position are equal.
If $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$, then $\left\{\begin{array}{l}a_{11}=b_{11} \\ a_{21}=b_{21} \\ a_{12}=b_{12} \\ a_{22}=b_{22}\end{array}\right.$

Example 8.2

If $A=\left(\begin{array}{cc}3 y+2 & 2 \\ 2 x+1 & 1\end{array}\right)$ and
$B=\left(\begin{array}{cc}y-3 & 2 \\ 5 & 6\end{array}\right)$
are equal. Find the value of x and y

Solution

$3 y+2=y-3 \Rightarrow y=-\frac{5}{2}$
$2 x+1=5 \Rightarrow x=2$

Application activity 8.1

Give five examples of matrices of order two.

8.2. Operations on matrices

Activity 8.2

Consider the matrices $A=\left(\begin{array}{cc}13 & 4 \\ 6 & 10\end{array}\right)$ and $B=\left(\begin{array}{cc}7 & 10 \\ 3 & 4\end{array}\right)$, find;

1. $A+3 B$
2. $2 A-B$
3. Interchange the rows and column of matrix A and matrix B.

Adding matrices

Given two matrices, $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, the matrix sum is defined as: $A+B=\left(a_{i j}+b_{i j}\right)$. That is, the resultant matrix's elements are obtained by adding the elements of the two matrices that occupy the same position.

If $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$, then
$A+B=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)+\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22}\end{array}\right)$ and
$A-B=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)-\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11}-b_{11} & a_{12}-b_{12} \\ a_{21}-b_{21} & a_{22}-b_{22}\end{array}\right)$

Example 8.3

There are two pharmacists Gerard and Jane who bought boxes of drugs in two different days.

On the first Day, Gerard bought 13 boxes of nystatin and 4 boxes of Amoxicillin. On the second day, he bought 6 boxes of nystatin and 10 boxes of Amoxicillin.

For Jane, she bought 7 boxes of nystatin and 10 boxes of Amoxicillin on the first day. On the second day she bought 3 boxes of nystatin and 4 boxes of Amoxicillin.
a) Organise in the matrix A the number of drugs bought by Gerard in the two days, and the matrix B of drugs bought by Jane.
b) Write the matrix showing the total number of drugs bought by the two pharmacists Gerard and Jane.
c) Interpret the matrix obtained in b).

Solution

a) For Gerard, $A=\left(\begin{array}{cc}13 & 4 \\ 6 & 10\end{array}\right)$,

For Jane, $B=\left(\begin{array}{cc}7 & 10 \\ 3 & 4\end{array}\right)$.
b) The matrix for the total number of boxes is

$$
A+B=\left(\begin{array}{cc}
13 & 4 \\
6 & 10
\end{array}\right)+\left(\begin{array}{cc}
7 & 10 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
20 & 14 \\
9 & 14
\end{array}\right)
$$

c) On the first day, Gerard and Jane bought 20 boxes of nystatin and 14 boxes of Amoxycillin. On the second day, they bought 9 boxes of nystatin and 14 boxes of Amoxycillin.

Example 8.4

If $A=\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right)$, find the sum and the difference

Solution

$A+B=\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)+\left(\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right)=\left(\begin{array}{ll}4 & 4 \\ 3 & 7\end{array}\right)$
$A-B=\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)-\left(\begin{array}{ll}1 & 2 \\ 4 & 6\end{array}\right)=\left(\begin{array}{cc}2 & 0 \\ -5 & -5\end{array}\right)$

Properties

1. Closure

The sum of two matrices of order two is another matrix of order two.

2. Associative

$A+(B+C)=(A+B)+C$

3. Additive identity

$A+0=A$, Where $\mathbf{0}$ is the zero-matrix.

4. Additive inverse

$$
A+(-A)=0
$$

The opposite matrix has each of its elements change sign.

5. Commutative

$A+B=B+A$

Scalar multiplication

Given a matrix, $A=\left(a_{i j}\right)$, and a real number, $k \in I R$, the product of a real number by a matrix is $k \cdot A=\left(k a_{i j}\right)$

If $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $\alpha \in \mathbb{R}$, then

Example 8.5

If $A=\left(\begin{array}{cc}-3 & 6 \\ 5 & 2\end{array}\right)$,
find $2 A$

Solution

$$
2 A=2\left(\begin{array}{cc}
-3 & 6 \\
5 & 2
\end{array}\right)=\left(\begin{array}{cc}
-6 & 12 \\
10 & 4
\end{array}\right)
$$

Example 8.6

According to information from the American Red Cross, the distribution of blood types in the United States is as shown in the accompanying table.

Rh factor	Blood Type			
	A	B	AB	O
$R h^{+}$	34%	9%	3%	38%
$R h^{-}$	6%	2%	1%	7%

(a) Write a $2 x 2$ matrix depicting the distribution of blood types A and O by Rh factor, using decimals as entries.
(b) On any given day in the United States, 38,000 units of blood are needed. Use scalar multiplication to determine the number of units needed each day in the United States by blood type A and O, assuming daily distributions match the percentages above.
(c) State in words what this means about the number of units of O^{+} $\left(R h^{+}, O\right)$ (required.

Source: American Red Cross

Solution:

(a) A 2×2 matrix representing the distribution of blood types is:
A
$R h^{+}\left[\begin{array}{cc}0.34 & 0.38 \\ R h^{-}\end{array}\right]$
(b) If 38,000 units of blood are required and the distribution by type is the matrix found in part (a), the scalar multiple of the matrix by the scalar 38,000 will yield a matrix that gives the number of units required by blood type.
$38,000\left[\begin{array}{ll}0.34 & 0.38 \\ 0.06 & 0.07\end{array}\right]=\left[\begin{array}{cc}12,920 & 14,440 \\ 2280 & 2660\end{array}\right]$
(c) The entry $R h^{+}$in row and column O tells us that 14,440 units of O^{+} would be required.

Properties

Let a and b be two matrices of order two and α, β be any real numbers.

1. $\alpha(\beta A)=(\alpha \beta) A$
2. $\alpha(A+B)=\alpha A+\alpha B$
3. $(\alpha+\beta) A=\alpha A+\beta A$
4. $1 A=A$

Multiplying matrices

Two matrices A and B of order two can be multiplied together.
The element of the product matrix is obtained by multiplying every element in row \boldsymbol{i} of matrix A by each element of column \boldsymbol{j} of matrix B and then adding them together.

If $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$, then
$A \cdot B=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \cdot\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right)$

Example 8.7

If $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$, find the product $A B$

Solution

$A \cdot B=\left(\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right) \cdot\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
1 \cdot 2+3 \cdot 1 & 1 \cdot 0+3 \cdot 1 \\
2 \cdot 2+5 \cdot 1 & 2 \cdot 0+5 \cdot 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
5 & 3 \\
9 & 5
\end{array}\right)
\end{aligned}
$$

Properties

1. Associative

$A \cdot(B \cdot C)=(A \cdot B) \cdot C$

2. Multiplicative identity

$A \cdot I=A$, Where \boldsymbol{I} is the identity or unit matrix.

3. Not commutative

$A \cdot B \neq B \cdot A$

4. Distributive

$$
A \cdot(B+C)=A \cdot B+A \cdot C
$$

Example 8.8

Given the matrices:

$$
\begin{array}{rlrl}
A= & \left(\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right) & \text { And } B=\left(\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right) \\
A \cdot B & =\left(\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right) & B \cdot A & =\left(\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
4 \cdot 2+5 \cdot 1 & 4 \cdot 3+5 \cdot 0 \\
2 \cdot 2+1 \cdot 1 & 2 \cdot 3+1 \cdot 0
\end{array}\right) & =\left(\begin{array}{cc}
2 \cdot 4+3 \cdot 2 & 2 \cdot 5+3 \cdot 1 \\
1 \cdot 4+0 \cdot 2 & 1 \cdot 5+0 \cdot 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
13 & 12 \\
5 & 6
\end{array}\right) & =\left(\begin{array}{cc}
14 & 13 \\
4 & 5
\end{array}\right)
\end{array}
$$

Notice:

- If $A B=0$, it does not necessarily follow that $A=0$ or $B=0$.

Example 8.9

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 2 \\
-2 & -4
\end{array}\right) \neq 0, \quad B=\left(\begin{array}{cc}
2 & -1 \\
-1 & \frac{1}{2}
\end{array}\right) \neq 0 \text { But } \\
& A B=\left(\begin{array}{cc}
1 & 2 \\
-2 & -4
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Commuting matrices

In general the multiplication of matrices is not commutative, i.E, $A B \neq B A$, but we can have the case where two matrices A and B satisfy $A B=B A$. In this case A and B are said to be commuting.

Example 8.10

The matrices $A=\left(\begin{array}{ll}5 & 9 \\ 0 & 2\end{array}\right), B=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)$ commute as,

$$
\begin{aligned}
& A B=\left(\begin{array}{ll}
5 & 9 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
10 & 24 \\
0 & 2
\end{array}\right) \| A B=B A \\
& B A=\left(\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
5 & 9 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
10 & 24 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

Transpose of matrix

Given matrix A, we define the transpose of matrix A, noted A^{t}, to be another matrix where the elements in the columns and rows have interchanged. In other words, the rows become the columns and the columns become the rows. the transpose of $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)$ is $A^{t}=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$. For example

Example 8.11

Find the transpose of $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)$

Solution

The transpose is $A^{t}=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$.

Properties of transpose of matrices

a) $\left(A^{t}\right)^{t}=A$
b) $(A+B)^{t}=A^{t}+B^{t}$
c) $(\alpha \cdot A)^{t}=\alpha \cdot A^{t}$
d) $(A \cdot B)^{t}=B^{t} \cdot A^{t}$

Application activity 8.2

1. If $A=\left(\begin{array}{cc}-1 & -3 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right)$, find:
a) $A+B$
b) $3 A-B$
c) $A B$
d) A^{2}
e) B^{3}
2. Given $A=\left(\begin{array}{cc}x+1 & -3 \\ 4 z+x & 3 y+4\end{array}\right)$ and $B=\left(\begin{array}{cc}2 x-6 & -3 \\ 1 & 1\end{array}\right)$

If $A=B$ find the value of x, y and z and hence find:
a) A
b) A^{t}

8.3. Determinants and inverse of matrices

Activity 8.3

Given that $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$ Find:

1. $\left|\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right|$
2. $\left|\begin{array}{cc}-2 & -4 \\ 3 & 6\end{array}\right|$
3. $\left|\begin{array}{ll}3 & 1 \\ 6 & 8\end{array}\right|$
4. $\left|\begin{array}{ll}12 & 3 \\ -2 & 9\end{array}\right|$

Determinants of matrices

Every square matrix, \boldsymbol{A} of order two is assigned a particular scalar quantity called the determinant of A, denoted by $|A|$ or by $\operatorname{det}(A)$.
$|A|=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$
This determinant is calculated as follows:
$\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$

Example 8.12

$$
\left|\begin{array}{cc}
3 & 5 \\
2 & -1
\end{array}\right|=3(-1)-2(5)=-3-10=-13
$$

Properties of the determinants of matrices

1. The determinant of matrix A and its transpose A^{t} are equal.
$\left|A^{t}\right|=|A|$

Example 8.13

Let $A=\left(\begin{array}{cc}-7 & 8 \\ 9 & -1\end{array}\right)$ then $A^{t}=\left(\begin{array}{cc}-7 & 9 \\ 8 & -1\end{array}\right)$ and $|A|=\left|A^{t}\right|=-65$
2. $|A|=0$ if:

- It has two equal lines

Example 8.14

Let $A=\left(\begin{array}{ll}15 & -5 \\ 15 & -5\end{array}\right)$ then $|A|=\left|\begin{array}{ll}15 & -5 \\ 15 & -5\end{array}\right|=0$
Since the first and second rows are equal.

- All elements of a line are zero.

Example 8.15

Let $A=\left(\begin{array}{cc}-8 & 6 \\ 0 & 0\end{array}\right)$ then $|A|=\left|\begin{array}{cc}-8 & 6 \\ 0 & 0\end{array}\right|=0$
Since all elements of the second row are zero.

- The elements of a line are a linear combination of the other.

Example 8.16

Let $A=\left(\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right)$ then $|A|=\left|\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right|=0$
Since the second row is a multiple of the first row.
3. If a determinant switches two parallel rows or columns, its determinant changes sign.

Example 8.17

Let $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$, then $|A|=\left|\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right|=-\left|\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right|$
Since the two rows have been switched
4. If a determinant is multiplied by a real number, any row or column can be multiplied by the above mentioned number, but only one.

Example 8.18

Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, we can find $2|A|$ as follows:
$2|A|=2\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=\left|\begin{array}{cc}2.2 & 1.2 \\ 1 & 2\end{array}\right|=\left|\begin{array}{ll}4 & 2 \\ 1 & 2\end{array}\right|=8-2=6$
or $2|A|=2\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=\left|\begin{array}{ll}2.2 & 1 \\ 1.2 & 2\end{array}\right|=\left|\begin{array}{ll}4 & 1 \\ 2 & 2\end{array}\right|=8-2=6$
or $2|A|=2\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=\left|\begin{array}{ll}2 & 1.2 \\ 1 & 2.2\end{array}\right|=\left|\begin{array}{ll}2 & 2 \\ 1 & 4\end{array}\right|=8-2=6$
or $2|A|=2\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=\left|\begin{array}{cc}2 & 1 \\ 1.2 & 2.2\end{array}\right|=\left|\begin{array}{ll}2 & 1 \\ 2 & 4\end{array}\right|=8-2=6$
5. The determinant of a product equals the product of the determinants.
$|A \cdot B|=|A||B|$

Example 8.19

Let $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}3 & 6 \\ 0 & 4\end{array}\right)$
$A \cdot B=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}3 & 6 \\ 0 & 4\end{array}\right)=\left(\begin{array}{ll}3 & 14 \\ 3 & 10\end{array}\right)$
$|A \cdot B|=\left|\begin{array}{ll}3 & 14 \\ 3 & 10\end{array}\right|=30-42=-12$

But $|A|=\left|\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right|=-1,|B|=\left|\begin{array}{ll}3 & 6 \\ 0 & 4\end{array}\right|=12$ and $|A||B|=-1 \times 12=-12$
Application Activity 8.3

$$
\begin{aligned}
& \text { If } A=\left(\begin{array}{cc}
-1 & -3 \\
1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
6 & 3 \\
2 & 1
\end{array}\right) \text {, find; } \\
& \begin{array}{lll}
\text { 1. }|A| & \text { 2. }|B| & \text { 3. }|A B|
\end{array} \quad \text { 4. }\left|A^{t}\right|
\end{aligned}
$$

8.4. Matrix inverse

Given the matrix $A=\left(\begin{array}{cc}10 & 2 \\ 6 & 3\end{array}\right)$
Multiply the matrix A by the Matrix $A^{\prime}=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$ so that their product gives the identity matrix $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

$$
A \times \mathrm{A}^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

a) From the equality obtained, find the value of x_{1}, x_{2}, x_{3}, and x_{4}.
b) What can you say about the matrix A^{\prime} with respect to the matrix A ?

Calculating matrix inverse of matrix A, is to find matrix A^{-1} such that, $A \cdot A^{-1}=A^{-1} \cdot A=I$, Where I is the identity matrix.

Consider the following matrix

$$
A=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

The inverse of A is $A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)$
If $\operatorname{det} A=0$ (i.e the determinant is zero) the matrix has no inverse and is said to be a singular matrix.

Example 8.20

Find the inverse of $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$

Example 8.21

Find the inverse of $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)$

Solution

$$
\begin{aligned}
& \operatorname{det} A=1-0=1 \\
& A^{-1}=\frac{1}{1}\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)
\end{aligned}
$$

Solution

$\operatorname{det} A=6-6=0$
Since the determinant is zero,
the given matrix has no inverse.

Properties of the inverse matrix

1. $(A \cdot B)^{-1}=B^{-1} \cdot A^{-1}$
2. $\left(A^{-1}\right)^{-1}=A$
3. $(\alpha \cdot A)^{-1}=\alpha^{-1} \cdot A^{-1}$
4. $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$

Application Activity 8.4

If $A=\left(\begin{array}{cc}-1 & -3 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right)$, find;

1. A^{-1}
2.

B^{-1}
3. $(A B)^{-1}$
4. $\left(A^{t}\right)^{-1}$
5. $(4 B)^{-1}$

8.5. Application of matrices

Activity 8.5

Express the following simultaneous equations in matrix form

1. $\left\{\begin{array}{l}3 x+y=9 \\ x-y=0\end{array}\right.$
2. $\left\{\begin{array}{l}x-y=19 \\ x+y=10\end{array}\right.$

Consider the following system
$\left\{\begin{array}{l}a x+b y=c \\ a^{\prime} x+b^{\prime} y=c^{\prime}\end{array}\right.$
To solve this system by matrix method, first, we express the equations in matrix form as follows:
$\left(\begin{array}{cc}a & b \\ a^{\prime} & b^{\prime}\end{array}\right)\binom{x}{y}=\binom{c}{c^{\prime}}$
We multiply both sides by the inverse of $\left(\begin{array}{cc}a & b \\ a^{\prime} & b^{\prime}\end{array}\right)$ and then
$\binom{x}{y}=\left(\begin{array}{cc}a & b \\ a^{\prime} & b^{\prime}\end{array}\right)^{-1}\binom{c}{c^{\prime}}$.

Example 8.22

Solve the simultaneous equation $\left\{\begin{array}{l}4 x-y=1 \\ -2 x+3 y=12\end{array}\right.$ by matrix method.

Solution

$\left\{\begin{array}{l}\overline{4 x-y=1} \\ -2 x+3 y=12\end{array} \Leftrightarrow\left(\begin{array}{cc}4 & -1 \\ -2 & 3\end{array}\right)\binom{x}{y}=\binom{1}{12}\right.$
Inverse of $\left(\begin{array}{cc}4 & -1 \\ -2 & 3\end{array}\right)$ is $\frac{1}{12-2}\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)=\frac{1}{10}\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)$
Then we have
$\binom{x}{y}=\frac{1}{10}\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)\binom{1}{12}=\frac{1}{10}\binom{15}{50}=\binom{1.5}{5}$
Thus, $x=1.5$ and $y=5$

Example 8.23

A pharmacist buys different boxes for Cefalexin and Cloxacillin. On the first day he bought 5 boxes of Cefalexin and 4 boxes of Cloxacillin and he paid 35,000Frw.

On the second day, the pharmacist bought 3 boxes of Cefalexin and 6 boxes of Cloxacillin and paid 30,000Frw.
a) Let x be the cost of one box of Cefalexin and y the cost of one box of Cloxacillin. Write the product of matrices that model this situation: matrix with the numbers of boxes bought by the column matrix $\binom{x}{y}$ of unknowns.
b) From, the obtained matrix, write the two equations obtained after multiplication.
c) Solve the equation to deduce the value x and y .
d) After solving this problem, try to explain the role of matrices in medicine.

Solution

Let x be the cost of one box of Cefalexin and y the cost of one box of Cloxacillin, we have:
a) $\left(\begin{array}{ll}5 & 4 \\ 3 & 6\end{array}\right) \cdot\binom{x}{y}=\binom{35000}{30000}$
b) After multiplication of the two matrices, we have two simultaneous linear equations:

$$
\left\{\begin{array}{l}
5 x+4 y=35,000 \\
3 x+6 y=30,000
\end{array}\right.
$$

c) Let us solve them:

$$
\begin{aligned}
& \left\{\begin{array}{l}
5 x+4 y=35000 \\
3 x+6 y=30000
\end{array}\right. \\
& \left\{\begin{array} { l l }
{ 5 x + 4 y = 3 5 0 0 0 } & { (\times 3) } \\
{ 3 x + 6 y = 3 0 0 0 0 } & { (\times - 5) }
\end{array} \Rightarrow \left\{\begin{array}{l}
15 x+12 y=105000 \\
-15 x-30 y=-150000
\end{array}\right.\right.
\end{aligned}
$$

$\Rightarrow-18 y=-45000$ or $y=2500$
If we replace y in the first equation, we obtain
$5 x+4(2500)=35,000 \Rightarrow 5 x=25,000 \Rightarrow x=5,000$
Thus, the cost of one box of Cefalexin is 5,000Frw and the cost of one box of Cloxacillin is $2,500 \mathrm{Frw}$.
d) After solving this problem, we see that matrices can be used to solve problem related to the calculation of the number of drugs or other products used in medicine.

Example 8.24

A movie theater sells tickets for $\$ 8$ each. When there are special clients, she allows them a discount of $\$ 2$.

One evening the theater sold 525 tickets and took in $\$ 3580$ in revenue. How many of each type of ticket were sold?

Solution

If x represents the number of tickets sold at $\$ 8$ and y the number of tickets sold at the discounted price of $\$ 6$, then the given information results in the system of equations

$$
\left\{\begin{array}{l}
8 x+6 y=3580 \\
x+y=525
\end{array}\right.
$$

This shows that:

$$
\left(\begin{array}{ll}
8 & 6 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{3580}{525}
$$

Solving these equations, we find $x=215$ and $y=310$.
We conclude that 215 non-discounted tickets and 310 discount tickets were sold.

Application Activity 8.5

Solve the following simultaneous equation by matrix method;

1. $\left\{\begin{array}{l}2 x-y=2 \\ x+3 y=15\end{array}\right.$
2. $\left\{\begin{array}{l}x+y=4 \\ -x-y=-4\end{array}\right.$
3. $\left\{\begin{array}{l}3 x+3 y=6 \\ x-y=0\end{array}\right.$
4. $\left\{\begin{array}{l}3 x-y=6 \\ 2 x+4 y=4\end{array}\right.$

Unit summary

1. A matrix is every set of numbers or terms arranged in a rectangular shape, forming rows and columns.
2. Two matrices are equal if the elements of the two matrices that occupy the same position are equal.
3. Given two matrices, $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, the matrix sum is defined as: $A+B=\left(a_{i j}+b_{i j}\right)$.
4. Two matrices A and B of order two can be multiplied together. The element of the product matrix is obtained by multiplying every element in row \boldsymbol{i} of matrix A by each element of column \boldsymbol{j} of matrix B and then adding them together.
5. Given matrix A, we define the transpose of matrix A, noted A^{t}, to be another matrix where the elements in the columns and rows have switched.
6. The determinant is of order two
$\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$
7. The inverse of $\mathrm{A}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is $A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)$

If $\operatorname{det} A$ (i.e the determinant is zero) the matrix has no inverse and is said to be a singular matrix.
8. Consider the following system

$$
\left\{\begin{array}{l}
a x+b y=c \\
a^{\prime} x+b^{\prime} y=c^{\prime}
\end{array}\right.
$$

To solve this system by matrix method we set

$$
\binom{x}{y}=\left(\begin{array}{ll}
a & b \\
a^{\prime} & b^{\prime}
\end{array}\right)^{-1}\binom{c}{c^{\prime}}
$$

End unit assesment

1. Find the value of x and y in each of the following matrix equations;
а) $\left(\begin{array}{cc}3 & -5 \\ 2 & x\end{array}\right)+\left(\begin{array}{ll}1 & y \\ 3 & 2\end{array}\right)=\left(\begin{array}{cc}4 & 6 \\ 5 & -2\end{array}\right)$
b) $\left(\begin{array}{ll}3 & x \\ 5 & 4\end{array}\right)\left(\begin{array}{ll}1 & y \\ 2 & 3\end{array}\right)=\left(\begin{array}{cc}7 & 3 \\ 13 & 7\end{array}\right)$
c) $\left(\begin{array}{ll}2 & 1 \\ x & 3\end{array}\right)\left(\begin{array}{cc}3 & 2 \\ -4 & 3\end{array}\right)=\left(\begin{array}{ll}2 & 7 \\ 3 & y\end{array}\right)$
2. If $A=\left(\begin{array}{cc}3 & 2 \\ -4 & 1\end{array}\right)$,findthevaluesofmandngiventhat $A^{2}=m A+n I$ where I is the identity matrix.
3. Find the possible values x can make given that $A=\left(\begin{array}{cc}x^{2} & 3 \\ 1 & 3 x\end{array}\right)$, $B=\left(\begin{array}{ll}3 & 6 \\ 2 & x\end{array}\right)$ and $A B=B A$
4. Solve the following simultaneous equations by matrix method:
a) $\left\{\begin{array}{l}x-y=5 \\ 3 x+2 y=5\end{array}\right.$
b) $\left\{\begin{array}{l}x-3 y=3 \\ 5 x-9 y=11\end{array}\right.$
c) $\left\{\begin{array}{l}x+3 y=1 \\ 2 x-4 y=1\end{array}\right.$

Unit 9
 Measures of dispersion

9.0 Introductory activity

1. During 6 consecutive days, a fruit-seller has recorded the number of fruits sold per type.

The table below shows the types and the number of sold fruits in one week.

Type of fruit	A (Banana)	B(Orange)	C(Pineple)	D(Avocado)	E(Mango)	F (apple)
Number of fruits sold	1100	962	1080	1200	884	900

a) Which type of fruits had the highest number of fruits sold?
b) Which type of fruits had the least number of fruits sold?
c) What was the total number of fruits sold that week?
d) Find out the average number of fruits sold per day.
2. During the welcome test of Mathematics out of 10,10 student-teachers of year one of Nursing scored the following marks: $3,5,6,3,8,7,8,4,8$ and 6.
a) Determine the mean mark of the class.
b) What is the mark that was obtained by many students?
c) Compare and discuss the difference between the mean mark of the class and the mark for every student-teacher. What advice could you give to the Mathematics teacher?

Ojectives

After completing this unit, I will be able to:
(1) Determine the measures of dispersion of a given statistical series.
(1) Apply and explain the standard deviation as the more convenient measure of the variability in the interpretation of data.
(1) Express the coefficient of variation as a measure of the spread of a set of data as a proportion of its mean.

Statistics data show that even though you can observe equal means for two different series, the spread, or variation from the mean, can be quite different. If this variation is small, the data are more consistently spread vis Avis the mean.

For the spread or variability of a data set observed in medicine, three measures are commonly used: range, variance, and standard deviation.

In the ordinary level we have already defined the range R as the difference between the largest value and the smallest value.
$\mathrm{R}=$ highest value - lowest value.
The two last measures are going to be discussed in this unit.

9.1. Variance

Activity 9.1

If represents the weight in kg for each of 5 children presented at a health centre, complete the following table if the mean $\bar{x}=16.875$.

x	f	$x-\bar{x}$	$(x-\bar{x})^{2}$	$f(x-\bar{x})^{2}$
12	4			
13	2			
15	1			
19	4			
21	5			

If N is the population size, \bar{x} the mean, the individual value; x_{i} the variance denoted by $\delta^{2}=\frac{\sum_{i}^{N}\left(x_{i}-\bar{x}\right)}{N}$ is the average of the squares of the distance each value is from the mean. A variance of zero indicates that all the values are identical. Variance is always non-negative: a small variance indicates that the data points tend to be very close to the mean and hence to each other, while a high variance indicates that the data points are very spread out around the mean and from each other.

The variance is denoted and defined by:
$\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$

Developing this formula, we have

$$
\begin{aligned}
\sigma^{2} & =\frac{\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}+(\bar{x})^{2}\right)}{n} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n} 2 \bar{x} \sum_{i=1}^{n} x_{i}+\frac{1}{n}(\bar{x})^{2} \sum_{i=1}^{n} 1 \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-2 \bar{x} \bar{x}+(\bar{x})^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}
\end{aligned}
$$

Thus, the variance is also defined by:
$\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}$
Recall that the mean of the set of n values $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is denoted and defined by:

$$
\begin{aligned}
\bar{x} & =\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n} \\
& =\sum_{i=1}^{n} \frac{x_{i}}{n} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Example 9.1

Calculate the variance of the following distribution: $9,3,8,8,9,8,9,18$

Solution

$$
\begin{aligned}
& \bar{x}=\frac{9+3+8+8+9+8+9+18}{8}=9 \\
& \sigma^{2}=\frac{(9-9)^{2}+(3-9)^{2}+(8-9)^{2}+(8-9)^{2}+(9-9)^{2}+(8-9)^{2}+(9-9)^{2}+(18-9)^{2}}{8}=15
\end{aligned}
$$

Example 9.2

Calculate the variance of the distribution of the following grouped data:

Class	$[10,20[$	$[20,30[$	$[30,40[$	$[40,50[$	$[50,60[$	$[60,70[$	$[70,80[$
Frequency	1	8	10	9	8	4	2

Solution

Class	x	f	$x f$	x^{2}	$x^{2} f$
$[10,20[$	15	1	15	225	225
$[20,30[$	25	8	200	625	5000
$[30,40[$	35	10	350	1225	12250
$[40,50[$	45	9	405	2025	18225
$[50,60[$	55	8	440	3025	24200
$[60,70[$	65	4	260	4225	16900
$[70,80[$	75	2	150	5625	11250
		$\sum x=42$	$\sum x f=1820$	$\sum x_{i}^{2}=16975$	$\sum x^{2} f=88050$

For grouped data, we have
$\delta^{2}=\frac{N\left(\sum f . x_{i}^{2}\right)-\left(\sum f . x_{i}\right)^{2}}{N^{2}}$ where x_{i} is the mid-interval value for the $i^{\text {th }}$ group.

Therefore,

$$
\begin{aligned}
& \bar{x}=\frac{1820}{42}=43.33 \\
& \sigma^{2}=\frac{88050}{42}-(43.33)^{2}=218.94 \\
& \bar{x}=\frac{1820}{42}=43.33 \\
& \sigma^{2}=\frac{88050}{42}-(43.33)^{2}=218.94
\end{aligned}
$$

Sample Variance

If the data used are a sample $x_{1}, x_{2}, \ldots, x_{n}$ of the population, the sample variance is defined as:

$$
s^{2}=\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n-1}
$$

where n is the number of items in the sample and \bar{x} the sample mean. If the standard deviation of the set A is less than the standard deviation of the set B , it indicates that the data of the set A are more clustered around the mean than those of the set B.

Application Activity 9.1

Find the variance of the following set of data:

1. $1,3,2,1,2,5,4,0,2,6$
2. $3,2,1,5,4,6,0,4,7,8$
3. 1,5,6,7,6,4,2,6,3
4. $5,4,5,5,4,5,4,4,5,3$
5. $8,7,6,8,6,5,6,4,1$

9.2. Standard deviation

Activity 9.2

Complete the following table

x	f	x^{2}	$f x$	$f x^{2}$
3	2			
4	3			
5	5			
7	1			
9	6			
	$\sum f=$		$\sum f x=$	$\sum f x^{2}=$

The standard deviation has the same dimension as the data, and hence is
comparable to deviations from the mean. We define the standard deviation to be the square root of the variance.

Thus, the standard deviation is denoted and defined by;
$\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}$ or $\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}}$
For grouped data where x_{i} is the mid-interval value for the $i^{\text {th }}$ group, the standard deviation is $\delta=\sqrt{\frac{N\left(\sum f \cdot x_{i}\right)-\left(\sum f \cdot x_{i}\right)^{2}}{N^{2}}}$ The following results follow directly from the definitions of mean and standard deviation:

- When all the data values are multiplied by a constant a, the new mean and new standard deviation are equal to a times the original mean and standard deviation. That is, the mean of $a x_{1}, a x_{2}, a x_{3}, \ldots, a x_{n}$ is $a(\bar{x})$ and the standard deviation is $a \sigma$.
- When a constant value, b , is added to all data values, then new mean is increased by b) However standard deviation does not change. That is, the mean of $a x_{1}, a x_{2}, a x_{3}, \ldots, a x_{n}$ is $\bar{x}+b$ and the standard deviation is σ.

Example 9.3

The six runners in a 200 meter race clocked times (in seconds) of 24.2 , 23.7, 25.0, 23.7, 24.0, 24.6
a) Find the mean and standard deviation of these times.
b) These readings were found to be 10% too low due to faulty timekeeping. Write down the new mean and standard deviation.

Solution

a) $\bar{x}=\frac{24.2+23.7+25.0+23.7+24.0+24.6}{6}=24.2$ seconds

$$
\begin{aligned}
\sigma & =\sqrt{\frac{(24.2-24.2)^{2}+(23.7-24.2)^{2}+(25.0-24.2)^{2}+(23.7-24.2)^{2}+(24.0-24.2)^{2}+(24.6-24.2)^{2}}{6}} \\
& =0.473 \text { seconds }
\end{aligned}
$$

b) We must divide each term 0.9 to find the correct time. The new mean is $\bar{x}=\frac{24.2}{0.9}=26.9 \mathrm{sec}$. The new standard deviation is $\sigma=\frac{0.4726}{0.9}=0.525 \mathrm{sec}$

The method which uses the formula for the standard deviation is not necessarily the most efficient. Consider the following:
variance $=\frac{\sum(x-\bar{x})^{2}}{n}$

$$
\begin{aligned}
& =\frac{\sum\left(x^{2}-2 x \bar{x}+(\bar{x})^{2}\right)}{n} \\
& =\frac{\sum x^{2}}{n}-\frac{\sum 2 x \bar{x}}{n}+\frac{\sum(\bar{x})^{2}}{n} \\
& =\frac{\sum x^{2}}{n}-2 \bar{x} \frac{\sum x}{n}+(\bar{x})^{2} \frac{\sum 1}{n}(\text { since } \bar{x} \text { is a constant }) \\
& =\frac{1}{n} \sum x^{2}-2(\bar{x})^{2}+(\bar{x})^{2} \\
& =\frac{1}{n} \sum x^{2}-(\bar{x})^{2}
\end{aligned}
$$

Example 9.4

The heights (in meters) of six children are 1.42, 1.35, 1.37, 1.50, 1.38 and 1.30. Calculate the mean height and the standard deviation of the heights.

Solution

$$
\begin{aligned}
& \text { Mean }=\frac{1}{6}(1.42+1.35+1.37+1.50+1.38+1.30)=1.39 \mathrm{~m} \\
& \text { Variance }=\frac{1}{6}\left(1.42^{2}+1.35^{2}+1.37^{2}+1.50^{2}+1.38^{2}+1.30^{2}\right)-1.39^{2}
\end{aligned}
$$

$$
=0.00386 \mathrm{~m}^{2}
$$

Standard deviation $=\sqrt{0.00386 \mathrm{~m}^{2}}=0.0621 \mathrm{~m}$

Example 9.5

The number of customers served lunch in a restaurant over a period of 60 days is as follows:

Number of customers served lunch	Number of days in the 60- day period
$20-29$	6
$30-39$	12
$40-49$	16
$50-59$	14
$60-69$	8
$70-79$	4

Find the mean and standard deviation of the number of customers served lunch using this grouped data.

Solution

We need the mid-interval values for all groups

Groups	Mid-interval values $\left(\mathbf{x}_{\mathbf{i}}\right)$	Frequency $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$	$f_{i} x_{i}$	$f_{i} x_{i}^{2}$
$20-29$	24.5	6	147	3601.5
$30-39$	34.5	12	414	14283.0
$40-49$	44.5	16	712	31684.0
$50-59$	54.5	14	763	41583.5
$60-69$	64.5	8	516	33282.0
$70-79$	74.5	4	298	22201.0
		$\sum=60$	$\sum=2850$	$\sum=146635$

The mean is $\bar{x}=\frac{2850}{60}=47.5$
The standard deviation is $\sigma=\sqrt{\frac{146635}{60}-47.5^{2}}=13.7$

Application Activity 9.3

Find the standard deviation of the following set of data

1. $202,205,207,203,205,206,207,209$
2. $1009,1011,1008,1007,1012,1010,106$
3. $154,158,157,156,155,154,159$
4. $7804,7806,7805,7807,7808$
5. $56,54,55,59,58,57,55$

9.3. Coefficient of variation

Activity 9.3

Complete the following table

x	f	x^{2}	$f x$	$f x^{2}$
10	10			
14	2			
16	14			
18	8			
20	6			

The coefficient of variation measures variability in relation to the mean (or average) and is used to compare the relative dispersion in one type of data with the relative dispersion in another type of data. It allows us to compare the dispersions of two different distributions if their means are positive. The greater dispersion corresponds to the value of the coefficient of greater variation.
The coefficient of variation is a calculation built on other calculations: the standard deviation and the mean as follows:
$C v=\frac{\sigma}{\bar{x}} \times 100$

Where:

- σ is the standard deviation.
- \bar{x} is the mean.

Example 9.6

One data series has a mean of 140 and standard deviation 28.28. The second data series has a mean of 150 and standard deviation 24 . Which of the two has a greater dispersion?

Solution

$C v_{1}=\frac{28.28}{140} \times 100=20.2 \%$
$C v_{2}=\frac{24}{150} \times 100=16 \%$
The first data series has a higher dispersion.

Application activity 9.3

Find the coefficient of variation of the following set of data

1. $2,9,8,4,7,3,2$
2. $12,11,9,8,6,10,7,9$
3. $5,9,8,6,0,10,8,3,14$
4. $8,10,7,11,6,12,9$
5. $7,6,0,9,6,12,12,9,8,6$

9.4. Applications

A large standard deviation indicates that the data points can spread far from the mean and a small standard deviation indicates that they are clustered closely around the mean.

Standard deviation is often used to compare real-world data against a model to test the model.

Example 9.7

In industrial applications, the weight of products coming off a production line may need to legally be some value. By weighing some fraction of the products an average weight can be found, which will always be slightly different from the long term average. By using standard deviations, a minimum and maximum value can be calculated that the averaged weight will be within some very high percentage of the time (99.9% or more). If it falls outside the range then the production process may need to be corrected.

Example 9.8

Consider the average daily maximum temperatures for two cities, one inland and one on the coast. It is helpful to understand that the range of daily maximum temperatures for cities near the coast is smaller than for cities inland. Thus, while these two cities may each have the same average maximum temperature, the standard deviation of the daily maximum temperature for the coastal city will be less than that of the inland city as on any particular day, the actual maximum temperature is more likely to be farther from the average maximum temperature for the inland city than for the coastal one.

In finance, standard deviation is often used as a measure of the risk associated with price-fluctuations of a given asset (stocks, bonds, property, etc.), or the risk of a portfolio of assets, Standard deviation provides a quantified estimate of the uncertainty of future returns.

Unit summary

1. Variance measures how far a set of numbers is spread out. The variance is denoted and defined by

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

2. The standard deviation has the same dimension as the data, and hence is comparable to deviations from the mean. We define the standard
deviation to be the square root of the variance. Thus, the standard deviation is denoted and defined by
$\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}$ or $\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}}$
3. The coefficient of variation measures variability in relation to the mean (or average) and is used to compare the relative dispersion in one type of data with the relative dispersion in another type of data. The coefficient of variation is

$$
C v=\frac{\sigma}{\bar{x}} \times 100
$$

4. Application

A large standard deviation indicates that the data points can spread far from the mean and a small standard deviation indicates that they are clustered closely around the mean. Standard deviation is often used to compare real-world data against a model to test the model. Standard deviation is often used as a measure of the risk associated with pricefluctuations of a given asset (stocks, bonds, property, etc.), or the risk of a portfolio of assets. Standard deviation provides a quantified estimate of the uncertainty of future returns.

End Unit Assesment

1. The mean of 200 items was 50 . Later on it was discovered that two items were misread as 92 and 8 instead of 192 and 88 . Find the correct mean.
2. Calculate the mean and standard deviation of the following series:

x	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
Frequency	3	16	26	31	16	8

3. Find the mean of:
a) $6,10,4,13,11,9,1,6,12$
b) 193, 195, 202, 190, 189, 195
4. Find the mean and standard deviation of $25.2,22.8,22.1,25.3,24.6$, 25.0, 24.3 and 22.7.
5. The mean height of a group of 5 people is $\bar{h}=155 \mathrm{~cm}$ and the standard deviation of their heights is 5 cm .
a) Calculate $\sum h$ and $\sum h^{2}$ for this data.
b) If an extra person of height 165 cm is added to the group, calculate the new mean and standard deviation of the heights.
6. The mean of the numbers $12,18,21, c, 13$ is 17 . Find the value of c.
7. The mean of 4 numbers is 5 , and the mean of 3 different numbers is 12. What is the mean of the 7 numbers together?
8. The mean of n numbers is 5 . If the number 13 is now included with the n numbers, the new mean is 6 . Find the value of n.
9. The mean and variance of $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are \bar{x} and σ^{2} respectively. State the mean and variance of $2-3 x_{1}, 2-3 x_{2}, 2-3 x_{3}, \ldots, 2-3 x_{n}$.
10. The mean daily maximum temperature at a fixed location for the month of January was $22^{\circ} \mathrm{C}$ and the standard deviation of these daily maxima was $2^{\circ} \mathrm{C}$.
For the following February which was not a leap year, the mean and standard deviation was $4^{\circ} \mathrm{C}$. Calculate the mean and standard deviation of the daily maximum temperatures for the two months combined.
11. If the mean of the following frequency distribution is 3.66 , find the value of a

x	1	2	3	4	5	6
Frequency	3	9	a	11	8	7

12. For a set of 9 numbers $\sum(x-\bar{x})^{2}=234$. Find the standard deviation of the numbers.
13. For a set of 9 numbers $\sum(x-\bar{x})^{2}=60$ and $\sum x^{2}=285$. Find the mean of the numbers.
14. The mean of the numbers $3,6,7, a, 14$ is 8 . Find the standard deviation of the set of numbers.
15. Twenty values of a random variable have a mean of 15 and a variance of 1.5 . Another thirty values of the same random variable have a mean of 14 and a variance of 1.4. Find the mean and variance of the combined fifty values.
16. Twenty values of a random variable have a mean value of 12.5 and a variance of 1.35. If two more values are added to the original 20 the mean remains at 12.5 but the variance is increased by 0.082 . Find the values added.
17. Using the mean and standard of numbers $3,5,6,8$ and 10 , find the mean and standard deviation of each of the following numbers:
a) $6,8,9,11,13$
b) $9,15,18,24,30$
c) $2.7,4.5,5.4,7.2,9.0$

Find the mean and standard deviation of the numbers containing numbers which are 5% higher than those in original numbers.
18. The mean of 10 numbers is 8 . If an eleventh number is now included in the results, the mean becomes 9 . What is the value of the eleventh number?
19. The numbers $a, b, 8,5,7$ have a mean of 6 and a variance of 2 . Find the value of a and b, if $a>b$.

Unit 10

Elementary probability

10.0 Introductory activity

1. Use the library or the internet to search on counting techniques used to determine outcomes for different random experiments.
2. There are 2 roads joining A and B and 3 roads joining B and C. Write down different roads from A to C via B . How many are they?

\mathbf{A}	\boxed{B}
A	$\mathbf{B 1}$
$\mathbf{B 2}$	

\mathbf{C}
C1
C2
C3

3. When a card is selected from an ordinary deck of 52 cards, one assumes that the deck has been shuffled, and each card has the same chance of being selected. Let A be the event of selecting a black card,
a) If n is the number of black cards in the pack, what is the value of n ?
b) Calculate the value $P(A)=\frac{n}{\text { number of all cards }}$
c) If $P(A)$ is the probability of electing a black card, deduce the definition of probability for any event E.

objectives

After completing this unit, I will be able to:
(1) solve problems involving factorial notation,
(1) determine the number of permutations of n different objects taken r at a time,
(1) determine the number of permutations of n different objects,
(1) determine the number of permutations of n different objects taken r at a time for a given condition,
(1) determine the number of combinations of r objects chosen from n different objects,
(1) determine the number of combinations of r objects chosen from n different objects for a given condition,
(1) use properties of combinations for finding coefficients in Pascal's triangle,
(1) solve problems involving permutations and combinations,
(1) find probability of events,
(1) determine probability of an equiprobable sample space

10.1. Permutations and arrangements

Activity 10.1

1. There are 4 roads joining A and B and 3 roads joining B and C. Write down different roads from A to C via B . How many are they?

c) Toss simultaneously a coin with two sides H and T and a die with six sides 1 through 6 , write down different possible outcomes that can appear. How many are they?

Number of activity	Observation after tossing a coin	Observation after tossing a die	Outcome after tossing a coin and a die
1			
2			
3			
4			
Total number of different possible observations			

It is often necessary to count the ways in which a certain task can be performed. In some cases, the total number of possible ways is very large, and becomes impractical to write down all possible choices.
To solve such problems related to counting, we refer to the theory called "Combinatorial analysis or combinatorics".
In this theory, there are three basic counting principles that will help us to count in a more systematic way: The first is the multiplication principle; the other two, which follow from it, are rules concerning permutations and combinations.

Principle of counting

Some terms:

Experiment: any human activity, like tossing a die.
Trial: small experiment contained in a large experiment. For example, tossing simultaneously a coin and a die may be regarded as an experiment consisting of two smaller experiments, tossing a coin (experiment 1) followed by tossing a die (experiment 2). Here experiment 1 and experiment 2 are called trials.

The set S of all possible outcomes of a given experiment is called the sample space. A particular outcome, i.e., an element in S , is called a sample point. An event A is a set of outcomes or, in other words, a subset of the sample space S.

In particular, the set $\{\mathrm{a}\}$ consisting of a single sample point $\mathrm{a} \in \mathrm{S}$ is called an elementary event.

Furthermore, the empty set \varnothing and S itself are subsets of S and so \varnothing and S are also events; \varnothing is sometimes called the impossible event or the null event.

A probability experiment is a chance process that leads to well-defined results called outcomes.

An outcome is the result of a single trial of a probability experiment.

Example 10.1

For example, tossing simultaneously a coin and a die may be regarded as an experiment consisting of two smaller experiments, tossing a coin (experiment 1) followed by tossing a die (experiment 2). Here experiment 1 and experiment 2 are trials. Point on a side of a die is an outcome.

Notice:

Die (plural dice): small cube of plastic, ivory, bone, or wood, marked on each side with one to six sports, usually used in pairs in games of chance.

Successive experiments

Basic product principle of counting

"If experiment 1 has m possible outcomes and if for each outcome of experiment 1, experiment 2 has n possible outcomes, then an experiment of performing experiment 1 and experiment 2 simultaneously, called experiment 1 and 2 , has $m \times n$ possible outcomes."

Example 10.2

In tossing simultaneously a coin with two sides a and b and a die with six sides 1 through 6 , how many possible outcomes will appear?

Solution

The tossing may be regarded as an experiment (experiment 1 \& 2) consisting of two smaller experiments, tossing a coin (experiment 1) followed by tossing a die (experiment 2).
Experiment 1 has 2 outcomes.
Experiment 2 has 6 outcomes.
So experiment $1 \& 2$ has $2 \times 6=12$ outcomes.

Example 10.3

There are 5 roads joining A and B and 3 roads joining B and C how many different roads from A to C via B ?

Solution

Here;
From A to B we have 5 roads.
From B to C we have 3 roads.
Thus, the number of roads from A to C via B is $3 \times 5=15$

Generalized product principle of counting

"If experiments 1 through k have n_{1} through n_{k} outcomes, respectively, then the experiment $1,2,3 \ldots$ and k has $n_{1} \times n_{2} \times \ldots \times n_{k}$ outcomes."
Note that this multiplication rule only applies when the experiments are independent, i.E, the choice made for one experiment does not affect the choice made for any of other experiments.

Example 10.4

A man has three choices of the way in which he travels to work; he can walk, go by car or go by train. How many different ways can he arrange his travel for the five working days in a week?

Solution

This man has 3 choices on Monday: walk, car or train
3 Choices on Tuesday: walk, car or train
Similarly on Wednesday, Thursday and Friday he has 3 choices.
Then there are 5 successive operations, each of which can be performed in 3 ways. Thus, the total number of choices he has is $3 \times 3 \times 3 \times 3 \times 3=243$ choices.

Example 10.5

A car license plate is to contain three letters of the alphabet, the first of which must be $\mathrm{r}, \mathrm{s}, \mathrm{t}$ or u , followed by three decimal digits. How many different license plates are possible?

Solution

The first letter can be chosen in 4 different ways, the second and third letters in 26 different ways each, and each of the three digits can be chosen in ten ways.
Hence there are $4 \times 26 \times 26 \times 10 \times 10 \times 10=2,704,000$ possible plates.

Example 10.6:

Imagine that we wish to experimentally manipulate growth conditions for plants. We want to grow plants in pots in a green-house at two different levels of fertilizer (low and high) and four different temperatures $\left(10^{\circ} \mathrm{C} ; 15^{\circ} \mathrm{C} ; 20^{\circ} \mathrm{C}\right.$ and $\left.25^{\circ} \mathrm{C}\right)$.
If we want three replicates of each possible combination of fertilizer and temperature treatment, how many pots will we need?

Solution

From the principle, we see that we will need:
$2 \cdot 4 \cdot 3=24$ pots for our experiment.

Application 10.1

1. There are 4 roads joining A and B and 5 roads joining B and C. How many different roads from A to C via B ?
2. A car license plate is to contain two letters of the alphabet, the first of which must be A or B , followed by 6 decimal digits. How many different license plates are possible?

Permutations

Activity 10.2

Consider three letters \mathbf{A}, \mathbf{B} and \mathbf{C} written in a row, one after another.

- Form all possible different words from three letters A, B and C (not necessarily sensible).

In fact, each arrangement is a possible permutation of the letters A, B and C; for example ABC, ACB,...

- How many arrangements are they possible for three letters A, B and C?

How to calculate the number of permutations without having to

 list them allFrom different arrangement of three letters \mathbf{a}, \mathbf{b} and \mathbf{c}, the first letter to be written down can be chosen in 3 ways. The second letter can then be chosen in 2 ways because there are 2 remaining letters to be written down and the third letter can be chosen in 1 way because it is only one letter remaining to be written down. Thus, the three operations can be performed in $3 \times 2 \times 1=6$ ways.

This suggests the following fact:

Fact: Permutations of n objects

The number of different permutations of n different objects (unlike objects) in a row is $n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 2 \times 1$

This corresponds to the number of ways of arranging n unlike objects in a row.
A useful short hand of writing this operation is $n!(\operatorname{read} \boldsymbol{n}$ factorial). Then, $n!=n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 2 \times 1$
Thus, $\quad 1!=1, \quad 2!=2 \times 1=2, \quad 3!=3 \times 2 \times 1=6, \quad 4!=4 \times 3 \times 2 \times 1=24$ $5!=5 \times 4 \times 3 \times 2 \times 1=120$ and so on.
Note that $0!=1$

Example 10.7

a) $\frac{6!}{2!4!}=\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 4 \times 3 \times 2 \times 1}=15$
b) $\frac{7!}{4!2!}=\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1 \times 2 \times 1}=105$

Example 10.8

Five children are to be seated on a bench. In how many ways can they be seated? How many arrangements are they, if the youngest child has to sit at the left end of the bench?

Solution

Since there are five children, the first child can be chosen in 5 ways, the next child in 4 ways, the next in 3 ways, the next in 2 ways and the last in 1 way. Then, the number of ways is
$5!=5 \times 4 \times 3 \times 2 \times 1=120$.
Now, if the youngest child has to sit at the left end of the bench, this place can be filled in only 1 way. The next child can then be chosen in 4 ways, the next in 3 ways and so on. Thus, the number of total arrangement is $1 \times 4!=1 \times 4 \times 3 \times 2 \times 1=24$.

Example 10.9

Three different mathematics books and five other books are to be arranged on a bookshelf. Find:
a) the number of possible arrangements of the books.
b) the number of possible arrangements if the three mathematics books must be kept together.

Solution

We have 8 books altogether.
a) since we have 8 books altogether, the first book can be chosen in 8 ways, the next in 7 ways, the next in 6 ways and so on. Thus, the total arrangement is $8!=40,320$.
b) since the 3 mathematics books have to be together, consider these bound together as one book. There are now 6 books to be arranged and these can be performed in $6!=720$.
Note that we have taken the three mathematics books as one book; these three books can be arranged in $3!=6$ ways.
Thus, the total number of arrangements is $720 \times 6=4,320$.

Application activity 10.2

1. Four different English books, five different Biology books and ten other books are to be arranged on a bookshelf. Find
a) the number of possible arrangements of the books.
b) the number of possible arrangements if the three Biology books must be kept together?
2. Simplify
a) $\frac{5!}{2!}$
b) $\frac{10!}{6!7!}$

Permutations of indistinguishable objects

Activity 10.3

Consider the arrangements of four letters in the word "BOOM".

- Write down all possible different arrangements.
- How many arrangements are they possible of four letters in the word "BOOM"?
In the same way,
- Write down all possible different arrangements of five letters in the word "CLASS".
- How many arrangements are they possible of five letters in the word "CLASS"?

Consider the arrangements of six letters in the word "avatar" (a title used for the movie).

We see that there are three A's (or 3 alike letters).

- Let the three A's in the word be distinguished as $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}$ and $\boldsymbol{A}_{\mathbf{3}}$ respectively. Then all the six letters are different, so the number of permutations of them (called labeled permutations) is $n!=6!$.
- However, consider each of the real permutations without distinguishing the three A's, for example W=RATAVA.
- The following are all of the 6 ($=3$!) Labeled permutations among the 6 ! Ones, which come from permuting the three labeled a's in W=RATAVA: $\mathbf{R A}_{1} \mathbf{T A}_{2} \mathbf{V A}_{3}, \mathbf{R A}_{1} \mathbf{T A}_{3} \mathbf{V A}_{2}, \mathbf{R A}_{2} \mathbf{T A}_{1} \mathbf{V A}_{3}, \mathbf{R A}_{2} \mathbf{T A}_{3} \mathbf{V A}, \mathbf{R A}_{3} \mathbf{T A}_{1} \mathbf{V A}_{2}, \mathbf{R A}_{3} \mathbf{T A}_{2} \mathbf{V A}_{1}$
- All these six labeled permutations should be considered as an identical real permutation, which is $\mathbf{W}=$ RATAVA.
Since each real permutation has six of such labeled permutations coming from the three A's, we conclude that the desired number of real permutations
is just $\frac{6!}{3!}=\frac{6 \times 5 \times 4 \times 3!}{3!}=6 \times 5 \times 4=120$
This suggests the following fact:

Fact: permutations of indistinguishable objects

The number of different permutations of n objects with n_{1} alike, n_{2} alike, \ldots, is $\frac{n!}{n_{1}!n_{2}!\ldots}$.
This corresponds to the number of ways for arranging n objects in line of which n_{1} of one type are alike, n_{2} of the second type are alike and so on.

Note that alike means that the objects in a group are indistinguishable from one another.

Example 10.10

How many distinguishable six digit numbers can be formed from the digits $5,4,8,4,5,4$?

Solution

There are 6 letters in total with three 5's and two 4's. Thus, we have $\frac{6!}{3!2!}=\frac{720}{12}=60$ numbers

Example 10.11

How many arrangements can be made from the letters of the word TERRITORY?

Solution

There are 9 letters in total with three R's and two T's.
Thus, we have $\frac{9!}{3!2!}=\frac{362880}{12}=30,240$ arrangements.

Example 10.12

In how many different ways can 4 identical red balls, 3 identical green balls and a yellow ball be arranged in a row?

Solution

There are 8 balls in total with 4 red, 3 green and one yellow.
Thus, we have $\frac{8!}{4!\times 3!}=\frac{8 \times 7 \times 6 \times 5}{3 \times 2 \times 1}=280$ ways

Application activity $\mathbf{1 0 . 3}$

1. How many arrangements can be made from the letters of the word ENGLISH?
2. How many arrangements can be made from the letters of English alphabet?
3. In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row, if discs of the same color are indistinguishable?

Circular arrangements

Activity 10.4

Take 5 different note books

- Put them on a circular table
- Fix one note book
- Try to interchange other 4 note books as possible
- How many different way obtained?

Remember that there is one note book will not change it place.

We have seen that if we wish to arrange n different things in a row, we have n ! possible arrangements. Suppose that we wish to arrange n things around a circular table. The number of possible arrangements will no longer be n ! because there is now no distinction between certain arrangements that were distinct when written in a row.
For example A B C D E is different arrangement from E A B C D, but
 is not a different arrangement from

With circular arrangement of this type, it is the relative positions of the items being arranged which is important. One item can therefore be fixed and the remaining items arranged around it.

The number of arrangements of n unlike things in a circle will therefore be $(n-1)$!. In those cases where clockwise and anticlockwise arrangements are not considered to be different, this reduces to $\frac{1}{2}(n-1)$!.

Example 10.13

Four men Peter, Rogers, Smith and Thomas are to be seated at a circular table. In how many ways can this be done?

Solution

Suppose peter is seated at some particular place. The seats on his left can be filled in 3 ways, the next seat can then be filled in 2 ways and the remaining seat in 1 way.
Thus, total number of arrangements is $\frac{(\mathrm{n}-1)!}{2}=\frac{(4-1)!}{2}=6$.

Example 10.14

Nine beads, all of different colors are to be arranged on a circular wire. Two arrangements are not considered to be different if they appear the same when the ring is turned over. How many different possible arrangements are there?

Solution

When the ring is turned over, the arrangements

When viewed from one side, these arrangements are only different in that one is a clockwise arrangement and the other is anticlockwise. If one bead is fixed, there are $(9-1)!=8$! ways of arranging the remaining beads relative to the fixed one.

But, half of these arrangements will appear the same as the other half when the ring is turned over, because for every clockwise arrangement there is a similar anticlockwise arrangement. Hence, number of arrangements is $\frac{1}{2} 8!=20160$

Application Activity 10.4

1. Five men Eric, Peter, John, Smith and Thomas are to be seated at a circular table. In how many ways can this be done?
2. Eleven different books are placed on a circular table. In how many ways can this be done?

Mutually exclusive situation

Activity 10.5

When you go to a restaurant you will be asked if you wish to have a soup or juice. Will you pick one, the other or both?

Two experiments 1 and 2 are mutually exclusive, if when experiment 1 occurs, experiment 2 cannot occur. Likewise, if experiment 2 occurs, experiment 1 cannot occur.

Basic sum principle of counting

In such cases, the number of permutations of either experiment 1 or experiment 2 occuring can be obtained by adding the number of permutations of experiment 1 to the number of permutations of experiment 2.

This suggests the following result:
"If experiment 1 has m possible outcomes and if experiment 2 has n possible outcomes, then an experiment which might be experiment 1 or experiment 2 , called experiment 1 or 2 , has $m+n$ possible outcomes."

Example 10.15

In tossing an object which might be a coin (with two sides h and t) or a die (with six sides 1 through 6), how many possible outcomes will appear?

Solution

- The experiment may be t
- Tossing a coin (experiment 1) or tossing a die (experiment 2), or just experiment 1 or 2 .
- So the number of outcomes is $2+6=8$ according to the above basic sum principle of counting.

Example 10.16

How many different four digit numbers, end in a 3 or a 4 , can be formed from the figures $3,4,5,6$ if each figure is used only once in each number.

Solution

We need the numbers that end in 3: the last digit can be chosen in one way, as it must be a 3, the first digit can then be chosen in 3 ways, the second in 2 ways and the third in 1 way. Thus, there are $1 \times 3 \times 2 \times 1=6$ numbers that end in a 3.
Similarly, there are $1 \times 3 \times 2 \times 1=6$ numbers that end in a 4 .
The number that ends in a 3 cannot also end in a 4 , so these are mutually exclusive situations.

Thus, there are $6+6=12$ numbers ending either in a 3 or in a 4 .

Alternatively, this can be solved as follows:
The last digit can be chosen in 2 ways (3 or 4); the first digit can be chosen in 3 ways, the second in 2 ways and the third in 1 way, i.e, $2 \times 3 \times 2 \times 1=12$ numbers end either in a 3 or in a 4.
The number of permutations in which a certain experiment 1 occurs will clearly be mutually exclusive with those permutations in which that experiment does not occur. Thus,

Number of permutations in which experiment 1 does not occur
$=$ total number of permutation - number of permutations in which experiment 1 occurs

Example 10.17

In how many ways can five people Smith, James, Clark, Brown and John, be arranged around a circular table in each of following cases:
a) Smith must sit next to Brown.
b) Smith must not sit next to Brown.

Solution

There are five people.
a) Since Smith and Brown must sit next to each other, consider these two bound together as one person. There are now, 4 people to seat. Fix one of these, and then the remaining 3 people can be seated in $3 \times 2 \times 1=6$ ways relative to the one who was fixed.
In each of these arrangements, smith and brown are seated together in a particular way. Smith and Brown could now change the seats giving another 6 ways of arranging the five people. Total number of arrangements is $6 \times 2=12$.
b) If Smith must not sit next to Brown, then this situation is a mutually exclusive with the situation in a).
Total number of arrangements of 5 people at a circular table is
Thus, if Smith must not sit next to Brown, the number of arrangements is $24-12=12$.

Generalised sum principle of counting

"If experiments 1 through k have respectively n_{1} through n_{k} outcomes, then the experiment 1 or 2 or \ldots or k has $n_{1}+n_{2}+\ldots+n_{k}$ outcomes.

Example 10.18

How many even numbers containing one or more digits can be formed from the digits $2,3,4,5$, 6 if no digit may be repeated?

Solution

Since the required numbers are even, last digit must 2 or 4 or 6 . Note that there are 5 digits.
So we can form one digit, two digits, three digits, four digits or five digits as follows:
One digit: 2 or 4 or 6 . That is 3 numbers.
Two digits: 3 ways to choose the last and 4 ways to choose the first. That is $3 \times 4=12$ numbers.
Three digits: 3 ways to choose the last, 4 ways to choose the first and 3 ways to choose the second. That is $3 \times 4 \times 3=36$
Four digits: 3 ways to choose the last, 4 ways to choose the first, 3 ways to choose the second and 2 ways to choose the fourth. That is $3 \times 4 \times 3 \times 2=72$ Five digits: 3 ways to choose the last, 4 ways to choose the first, 3 ways to choose the second, 2 ways to choose the fourth and 1 way to choose the fifth. That is $3 \times 4 \times 3 \times 2 \times 1=72$
Adding, we have $3+12+36+72+72=195$ even numbers in total.

Application activity 10.5

1. How many odd numbers containing one or more digits can be formed from the digits $2,3,4,5,6,7$ if no digit may be repeated?
2. How many even numbers containing 2 digits can be formed from the digits $2,3,4$ if no digit may be repeated?
3. How many numbers containing three digits can be formed from the digits $1,2,3,4,5,6,7,8$ if no digit may be repeated?

Distinguishable permutations

Activity 10.6

Make a selection of any three letters from the word "KNOW" and fill them in 3 empty spaces

Use a box like this for empty spaces

Write down all different possible permutations of 3 letters selected from the letters of the word "KNOW".

How many are they?
Consider the number of ways of placing 3 of the letters a, b, c, d, e, f, g in 3 empty spaces.

The first space can be filled in 7 ways, the second in 6 ways and the third in 5 ways. Therefore, there are $7 \times 6 \times 5$ ways of arranging 3 letters taken from 7 letters. This is the number of permutations of 3 objects taken from 7 and it is written ${ }^{7} P_{3}$. So $^{7} P_{3}=7 \times 6 \times 5=210$.

Note that the order in which the letters are arranged is important: abc is a different permutation from acb.

Now, $7 \times 6 \times 5$ could be written $\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}$
I.E ${ }^{7} P_{3}=\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}=\frac{7!}{4!}=\frac{7!}{(7-3)!}$

This suggests the following fact:

Fact: Permutations of r objects selected from n ones

The number of different permutations of r unlike objects selected from n different objects is ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$ or we can use the denotation $P_{r}^{n}=\frac{n!}{(n-r)!}$ or $P(n, r)=\frac{n!}{(n-r)!}$

Note that if $r=n$, we have ${ }^{n} P_{n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n!$ which is the ways of arranging n unlike objects.

Example 10.19

How many permutations are there of 3 letters chosen from eight letters of the word relation?

Solution

We see that all those eight letters are distinguishable (unlike). So the required arrangements are given by

$$
{ }^{8} P_{3}=\frac{8!}{(8-3)!}=\frac{8!}{5!}=336 .
$$

Example 1.20

How many permutations are there of 2 letters chosen from letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$?

Solution

There are 5 letters which are distinguishable (unlike). So the required arrangements are given by ${ }^{5} P_{2}=\frac{5!}{(5-2)!}=\frac{5!}{3!}=20$.

Example 10.21

How many different arrangements are there of 3 letters chosen from the word COMBINATION?

Solution

There are 11 letters including two O's, two I's and two N's. to find the total number of different arrangements we consider the possible arrangements as four mutually exclusive situations.
a) Arrangements in which all 3 letters are different: there are ${ }^{8} P_{3}=336$
b) Arrangements containing two O's and one other letter: the other letter can be one of seven letters (C, M, B, I, N, A or T) and can appear in any of the three positions (before the two O'S, between the two O's, or after the two O's). i.e $3 \times 7=21$ arrangements containing two O's and one other letter.
c) Arrangements containing two I's and one other letter: by the same reasoning in b) there will be $3 \times 7=21$ arrangements containing two I's and one other letter.
d) Arrangements containing two N's and one other letter: by the same reasoning in b) there will be $3 \times 7=21$ arrangements containing two N 's and one other letter.
Thus the total number of arrangements of 3 letters chosen from the word COMBINATION will be $336+21+21+21=399$

Application activity 10.6

1. How many permutations are there of 4 letters chosen from letters of the word ENGLISH?
2. How many permutations are there of 2 letters chosen from letters of the word PACIFIC?
3. How many permutations are there of 5 letters chosen from letters A, B, C, D, E, F, and G.
4. How many permutations are there of 10 letters chosen from English alphabet.

10.2. Combinations

Activity 10.7

Take 3 different mathematics books and 4 unlike English books so that you will have 7 books altogether. Form different groups each containing 2 mathematics books and 2 English books. How many groups obtained?

From permutation of r unlike objects selected from n different objects, we have seen that the order in which those objects are placed is important. But when considering the number of combinations of r unlike objects selected
from n different objects, the order in which they are placed is not important. For example, the one combination ABC gives rise to 3! Permutations: ABC, ACB, BCA, BAC, CAB, CBA.

Consider the number of permutations of 3 letters selected from the 7 letters A, B, C, D, E, F, G.
That is;
${ }^{7} P_{3}=\frac{7!}{(7-3)!}=\frac{7!}{4!}$.
If we need the combinations of 3 letters selected from those 7 letters, we will take this number of permutations divided by 3 ! because each permutation gives rise to 3 ! Permutations.

That is, the number of combinations of 3 letters selected from those 7
letters is $\frac{{ }^{7} P_{3}}{3!}=\frac{\frac{7!}{4!}}{3!}=\frac{7!}{4!3!}=\frac{7!}{(7-3)!3!}$.
This number is denoted by ${ }^{7} \mathrm{C}_{3}$.
Thus, the number of combinations of 3 letters selected from those 7 unlike letters is ${ }^{7} C_{3}=\frac{7!}{(7-3)!3!}=\frac{7!}{4!3!}=35$.
This suggests the following fact:

Fact: Basic formula for combinations

The number of different groups of r items that could be formed from a set of n distinct objects with the order of selections being ignored is
${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$.
We can write ${ }^{n} C_{r}=\frac{{ }^{n} P_{r}}{r!}$
${ }^{n} C_{r}$ Is sometimes denoted by C_{r}^{n} or ${ }^{n} c_{r}$ or $\binom{n}{r}$ or $C(n, r)$.
Note that the objects selected to be in a group are regarded as indistinguishable (unlike).

Example 10.22

From a group of 5 men and 7 women, how many different committees consisting of 2 men and 3 women can be formed?

Solution

- Experiment 1: select 2 men from 5.
- Experiment 2: select 3 women from 7.
- Experiment of forming a committee: experiment $1 \& 2$.
- Number of possible outcomes of experiment 1 is

$$
{ }^{5} C_{2}=\frac{5!}{2!3!}=\frac{5 \times 4 \times 3!}{2 \times 3!}=10
$$

- Number of possible outcomes of experiment 2 is ${ }^{7} C_{3}=\frac{7!}{3!4!}=\frac{7 \times 6 \times 5 \times 4!}{6 \times 4!}=35$.
- Number of possible outcomes of experiment 1 and 2 is ${ }^{5} C_{2} \times{ }^{7} C_{3}=10 \times 35=350$ by the basic product principle of counting.
- That is, the desired number of possible outcomes of the experiment of forming a committee is 350 .

Example 10.23

A committee of three men and one woman is obtained from five men and three women. In how many ways can the members be chosen?

Solution

Three men can be selected from five men, i.e ${ }^{5} C_{3}=\frac{5!}{(5-3)!3!}=\frac{5!}{2!3!}$ ways
One woman can be selected from three women, i.e ${ }^{3} C_{1}=\frac{3!}{(3-1)!1!}=\frac{3!}{2!1!}$ ways

By the basic product principle of counting, there are ${ }^{5} C_{3} \times{ }^{3} C_{1}=\frac{5!}{2!3!} \times \frac{3!}{2!1!}=\frac{5!}{2!2!}=30$ ways of selecting the Committee.

Example 10. 24

Suppose that you wish to plant 5 grass species in a plot. You can choose among 12 different species. How many choices do you have?

Solution

Since the order is not important for this selection, there are:

$$
{ }^{12} C_{5}=\binom{12}{5}=\frac{12!}{5!7!}=792 \text { choices. }
$$

Example 10.25

In a sample of 50 people, 21 had type O blood, 22 had type A blood, 5 had type B blood, and 2 had type AB blood. Set up a table of those numbers and find the probability that a person has type O blood.

Solution

Type	Frequency
A	22
B	5
AB	2
O	$\frac{21}{2}$
	Total

$$
P(O)=\frac{21}{50}
$$

Fact: Two identities about computations of combinations

The following two identities are true:

- ${ }^{n} C_{r}={ }^{n} C_{n-r}$

In fact,

$$
\begin{aligned}
{ }^{n} C_{r} & =\frac{n!}{(n-r)!r!} \\
& =\frac{n!}{(n-r)!(n-n+r)!} \\
& =\frac{n!}{(n-r)![n-(n-r)]!} \\
& ={ }^{n} C_{n-r}
\end{aligned}
$$

- Pascal's identity: ${ }^{n+1} C_{r}={ }^{n} C_{r}+{ }^{n} C_{r-1}$

In fact,

$$
\begin{aligned}
&{ }^{n} C_{r}+{ }^{n} C_{r-1}=\frac{n!}{(n-r)!r!}+\frac{n!}{(n-[r-1])!(r-1)!} \\
& \begin{aligned}
(n-r)!r! & +\frac{n!}{(n-r+1)!(r-1)!} \\
= & \frac{n!(r-1)!(n-r+1)!+n!(n-r)!r!}{(n-r)!r!(r-1)!(n-r+1)!} \\
= & \frac{n!(r-1)!(n-r+1)!+n!(n-r)!r!}{(n-r)!r!(r-1)!(n-r+1)!} \\
& =\frac{n!}{r!(n-r+1)!}\left[\frac{(r-1)!(n-r+1)!+(n-r)!r!}{(n-r)!(r-1)!}\right] \\
& =\frac{n!}{r!(n-r+1)!}\left[\frac{(r-1)!(n-r+1)!+(n-r)!r(r-1)!}{(n-r)!(r-1)!}\right] \\
& =\frac{n!}{r!(n-r+1)!}\left[\frac{(r-1)![(n-r+1)!+(n-r)!r]}{(n-r)!(r-1)!}\right] \\
& =\frac{n!}{r!(n-r+1)!}\left[\frac{(n-r+1)!+(n-r)!r}{(n-r)!}\right] \\
& =\frac{n!}{r!(n-r+1)!}\left[\frac{(n-r+1)(n-r)!+(n-r)!r}{(n-r)!}\right] \\
& =\frac{n!}{r!(n-r+1)!}\left[\frac{(n-r)![(n-r+1)+r]}{(n-r)!}\right] \\
& =\frac{n!(n+1)}{r!(n-r+1)!} \\
& =\frac{(n+1)!}{r!(n+1-r)!} \\
& ={ }^{n+1} C_{r}
\end{aligned} \\
&
\end{aligned}
$$

Application activity 10.7

1. A committee of four men and two women is obtained from 10 men and 12 women. In how many ways can the members be chosen?
2. A group containing 4 Mathematics books and 5 Physics books is formed from 9 Mathematics books and 10 Physics books. How many groups can be formed?

Summary- arrangements, permutations and combinations:

The number of ways of arranging n unlike objects in a row.	$n!$
The number of ways of arranging in a row n objects of/ with n_{1} alike, n_{2} alike, \ldots, n_{r} alike.	$\frac{n!}{n_{1}!n_{2}!\ldots}$
The number of ways of arranging n unlike objects in a ring when clockwise and anticlockwise arrangements are different.	$(n-1)!$
The number of ways of arranging n unlike objects in a ring when clockwise and anticlockwise arrangements are the same.	$\frac{(n-1)!}{2}$
The number of permutations of r objects taken from n unlike objects.	${ }^{n} P_{r}=\frac{n!}{(n-r)!}$
The number of combinations of r objects taken from n unlike objects.	${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$

Binomial expansion

Activity 10.8

Expand the expressions $(a+b)^{2}$
Since $(a+b)^{3}=(a+b)^{2}(a+b)$ and $(a+b)^{4}=(a+b)^{3}(a+b)$
Expand $(a+b)^{3}$ and $(a+b)^{4}$
Once more find the expansion of $(a+b)^{5}$.
Complete the following table

Power	Coefficient of powers of \boldsymbol{a} and \boldsymbol{b}			Binomial expression
0			$(a+b)^{0}$	
1				$(a+b)^{1}$
2				$(a+b)^{2}$
3				
4				

Pascal's triangle

Pascal's triangle is a triangular array of the binomial coefficients. The rows of pascal's triangle are conventionally enumerated starting with row $n=0$ at the top. The entries in each row are numbered from the left beginning with $r=0$ and are usually staggered relative to the numbers in the adjacent rows.

The elements of Pascal's triangle are the number of combinations of r objects chosen from n unlike objects. That is ${ }^{n} C_{r}$. This triangle is constructed by the Pascal's identity:

$$
{ }^{n+1} C_{r}={ }^{n} C_{r}+{ }^{n} C_{r-1}
$$

Or

$$
{ }^{n} C_{r}={ }^{n-1} C_{r-1}+{ }^{n-1} C_{r}
$$

Or

$$
\begin{aligned}
& { }^{n+1} C_{r+1}={ }^{n} C_{r}+{ }^{n} C_{r+1} \\
& \vec{x}+\vec{y}
\end{aligned}
$$

Here, $z={ }^{n+1} C_{r}$,

$$
\begin{aligned}
& y={ }^{n} C_{r} \text { And } \\
& x={ }^{n} C_{r-1}
\end{aligned}
$$

n_{n}	0	1	2	3	4	5	...
0	${ }^{0} C_{0}=1$						
1	${ }^{1} C_{0}=1$	${ }^{1} C_{1}=1$					
2	${ }^{2} C_{0}=1$	${ }^{2} C_{1}=2$	${ }^{2} C_{2}=1$				
3	${ }^{3} C_{0}=1$	${ }^{3} C_{1}=3$	${ }^{3} \mathrm{C}_{2}=3$	${ }^{3} C_{3}=1$			
4	${ }^{4} C_{0}=1$	${ }^{4} C_{1}=4$	${ }^{4} C_{2}=6$	${ }^{4} C_{3}=4$	${ }^{4} C_{4}=1$		
5	${ }^{5} C_{0}=1$	${ }^{5} C_{1}=5$	${ }^{5} C_{2}=10$	${ }^{5} C_{3}=10$	${ }^{5} C_{4}=5$	${ }^{5} C_{5}=1$	
:							

A simple construction of this triangle proceeds in the following manner:

- On row 0 , write only the number 1.
- Then, to construct the elements of following rows, add the number above and to the left with the number above to the right to find the new value.
- If either the number to the right or left is not present, substitute a zero in its place. For example, the first number in the first row is $0+1=1$, whereas the numbers 1 and 3 in the third row are added to produce the number 4 in the fourth row.

An element of pascal's triangle, ${ }^{n} C_{r}$, is the coefficients of any term in the expansion of $(a+b)^{n}$ where r is the exponent of either a or b.

Consider the product $(a+b)^{n}=(a+b)(a+b)(a+b) \ldots(a+b)$. If this product is multiplied out, each term of the answer will be of the form $c_{1} c_{2} c_{3} \ldots c_{k} \ldots c_{n}$ where, for all k, c_{k} is either a or b.

Thus, if $c_{k}=a$, for all k we obtain the term a^{k}. If $c_{k}=b$ for one of the terms and $c_{k}=a$ for the rest, we obtain terms such as $b \times a \times a \times \ldots \times a \times a$, $a \times b \times a \times \ldots \times a \times a, \ldots, a \times a \times a \times \ldots \times b \times a \quad b \times a \times a \times \ldots \times a \times b$, and their sum is $n a^{n-1} b$.

If $c_{k}=b$ for r of the terms and $c_{k}=a$ for the rest, we obtain a number of terms of the form $a^{n-r} b^{r}$.

The number of such terms is the number of ways in which r of the form $c_{1} c_{2} c_{3} \ldots c_{n}$ can be selected as equal to b) this number is $\binom{n}{r}$, which is $\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$.
Thus, ${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$ is the coefficient of $a^{n-r} b^{r}$ in the
Expansion of $(a+b)^{n}$.
This suggests the following theorem.

Binomial theorem

For every integer $n \geq 1,(a+b)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} a^{n-r} b^{r}$
The following properties of the expansion of $(a+b)^{n}$ should be observed:
a) There are $n+1$ terms.
b) The sum of the exponents of a and b in each term is n.
c) The exponents of a decrease term by term from n and 0 ; the exponent of b increase term by term from 0 to n.
d) The coefficient of any term is ${ }^{n} C_{r}$ where r is the exponent of either a or b.
e) The coefficients of terms equidistant from the end are equal.

Example 10.26

$$
(a+b)^{2}=\sum_{r=0}^{2}{ }^{2} C_{r} a^{2-r} b^{r}={ }^{2} C_{0} a^{2} b^{0}+{ }^{2} C_{1} a^{2-1} b^{1}+{ }^{2} C_{2} a^{2-2} b^{2}=a^{2}+2 a b+b^{2}
$$

Example 10.27

$$
\begin{aligned}
(a-b)^{3} & =(a+(-b))^{3}=\sum_{r=0}^{3} C_{r} a^{3-r}(-b)^{r}={ }^{3} C_{0} a^{3}(-b)^{0}+{ }^{3} C_{1} a^{3-1}(-b)^{1}+{ }^{3} C_{2} a^{3-2}(-b)^{2}+{ }_{3}^{3} C_{3} a^{3-3}(-b)^{3} \\
& =a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
\end{aligned}
$$

Example 10.28

Find the coefficient of x^{3} in the expansion of $(2 x-1)^{5}$

Solution

The term in x^{r} is ${ }^{5} C_{r}(2 x)^{5-r}(-1)^{r}={ }^{5} C_{r} 2^{5-r} x^{5-r}(-1)^{r}$ and so the term in x^{3} has $r=2$.

The coefficient of this term is ${ }^{5} C_{3} 2^{3}(-1)^{2}=80$.

Example 10.29

Find the coefficient of x^{3} in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{6}$

Solution

The term in x^{r} is will be given by ${ }^{6} C_{r}\left(x^{2}\right)^{6-r}\left(-\frac{1}{x}\right)^{r}$ which can be written as ${ }^{6} C_{r} x^{12-2 r} \frac{(-1)^{r}}{x^{r}}={ }^{6} C_{r} x^{12-3 r}(-1)^{r}$ and so the term in x^{3} has $r=3$.
The coefficient of this term is ${ }^{6} C_{3}(-1)^{3}=-20$.

Application activity 10.8

Find the coefficient of

1. x^{2} in the expansion of $(4 x+1)^{6}$
2. x^{3} in the expansion of $\left(x+\frac{1}{x}\right)^{4}$
3. x^{6} in the expansion of $(9 x-3)^{10}$
4. Expand $(x+4)^{7}$
5. Expand $(2 x-3)^{3}$

10.3 Concepts of probability

Activity 10.3

Consider the deck of 52 playing cards.

	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs:		$\begin{gathered} * \\ \psi \end{gathered}$	$2 *$ $*$ $*$	***	$\begin{gathered} \boldsymbol{*} \boldsymbol{*} \\ \boldsymbol{*} \\ \boldsymbol{*} \boldsymbol{*} \end{gathered}$	$\begin{aligned} & +\phi \\ & \phi \\ & * \\ & * \end{aligned}$		$\boldsymbol{4}_{\boldsymbol{*}}^{\boldsymbol{*}} \boldsymbol{*}$	$\begin{aligned} & 4 \\ & t \end{aligned}$	$\psi \psi$			
Diamonds:		$*$ $*$ \bullet	$\stackrel{*}{*}+$	* **	$\stackrel{+}{*}+$	$\left[\begin{array}{ll}* & * \\ \bullet & * \\ \bullet & *\end{array}\right]$	- *	$\stackrel{+}{*}$		*	8	E_{0}°	
Hearts:	,	$*$ A 1				$\left\lvert\, \begin{array}{cc}v & v \\ v & v \\ \sim & \Delta\end{array}\right.$	$\left\|\begin{array}{ll} \boldsymbol{v}^{\boldsymbol{v}} \\ \boldsymbol{a} & \boldsymbol{A}^{2} \end{array}\right\|$	\pm			5	2	8
Spades:		$\begin{gathered} * \\ * \\ * \end{gathered}$		***	$\begin{array}{ll} * & \star \\ \bullet & * \\ \hline \end{array}$		$\stackrel{\theta}{*}_{0}^{*}$		$\%$	ois			

1. Suppose that you are choosing one card;
(i) How many cards can be chosen?
(ii) How many kings can be chosen?
(iii) How many aces of hearts can be chosen?
2. If a spade card has been declared to be a trump card. How many trumps of Jack can be chosen?

Probability is the chance that something will happen.
The concept of probability can be illustrated in the context of game of 52 playing cards. In a park of deck of 52 playing cards, cards are divided into four suits of 13 cards each. If a player selects a card at random (by simple random sampling), then each card has the same probability of being selected.
In most sampling situations we are generally not concerned with sampling a specific individual but instead we concern ourselves with the probability of sampling certain types of individuals. For example, for our case of a deck of 52 playing cards, what is the probability of selecting a queen? Selecting a queen is the event and selecting any card from 52 cards is an experiment.

Random experiments and events

A random experiment is an experiment that, atleast theoretically, may be repeated as often as we want and whose outcome cannot be predicted, the roll of a die. Each time experiment is repeated, an elementary outcome is obtained. The set of all elementary outcomes of a random experiment is called the sample space, which is denoted by Ω. Sample space may be discrete or continuous.

Discrete sample space:

- Firstly, the number of possible outcomes is finite.
- Secondly, if the number of possible outcomes is countably infinite, which means that there is an infinite number of possible outcomes, Then the outcomes can be put in a one-to-one correspondence with the positive integers.

Example 1.30

If a die is rolled and the number that shows up is noted, then $\Omega=\{1,2,3, \ldots, 6\}$

Example 1.31

If a die is rolled until a " 6 " is obtained, and the number of rolls made before getting first " 6 " is counted, then we have that $\Omega=\{0,1,2,3, \ldots\}$.

Continuous sample space:

If the sample space contains one or more intervals, the sample space is then uncountable infinite.

Example 1.32

A die is rolled until a " 6 " is obtained and the time needed to get this first " 6 " is recorded. In this case, we have that $\Omega=\{t \in \mathbb{R}: t>0\}=(0, \infty)$.
An event is a set of elementary outcomes. That is, it is a subset of the sample space.
In particular, every elementary outcome is an event, and so is the sample space itself.

Remarks:

- An elementary outcome is sometimes called a simple event, whereas a compound event is made up of at least two elementary outcomes.
- To be precise, we should distinguish between the elementary outcome w, which is an element of Ω and the elementary event $\{w\} \subset \Omega$.
- The events are denoted by A, B, C and so on.

Example 1.33

Consider the experiment that consists in rolling a die and recording the number that shows up. Let A be the event "the even number is shown" and B be the event "the odd number less than 5 is shown". Define the events A and B.

Solution

We have the sample space $\Omega=\{1,2,3,4,5,6\}$. $A=\{2,4,6\}$ And $B=\{1,3\}$

Definitions

- Two or more events which have an equal probability of occurrence are said to be equally likely, i.e. If on taking into account all the conditions, there should be no reason to accept any one of the events in preference over the others. Equally, likely events may be simple or compound events.
- Two events, A and B are said to be incompatible (or mutually exclusive) if their intersection is empty. We then write that $A \cap B=\varnothing$.
- Two events, A and B are said to be exhaustive if they satisfy the condition $A \cup B=\Omega$.
- An event which is sure to occur at every performance of an experiment is called a certain event connected with the experiment. For example, "Head or Tail' is a certain event connected with tossing a coin. Face-1 or face-2, face-3,, face-6 is a certain event connected with throwing a die.
- An event which cannot occur at any performance of the experiment is called an impossible event. Following are such examples
i. 'Seven' in case of throwing a die.
ii. 'Sum $=13$ ' in case of throwing a pair of dice.
- Two events are said to be equivalent or identical if one of them implies and implied by other. That is, the occurrence of one event implies the occurrence of the other and vice versa. For example, "even face" and "face-2" or "face-4" or "face-6" are two identical events.
- The outcomes which make necessary the happening of an event in a trial are called favourable events. For example; if two dice are thrown, the number of favourable events of getting a sum 5 is four, i.e., (1, 4), (2, $3),(3,2)$ and $(4,1)$.

Example 10.32

Consider the experiment that consists in rolling a die and recording the number that shows up.

We have that $\Omega=\{1,2,3,4,5,6\}$.

We define the events
$A=\{1,2,4\}, B=\{2,4,6\}, C=\{3,5\}, D=\{1,2,3,4\}$ And $E=\{3,4,5,6\}$
We have;
$A \cup B=\{1,2,4,6\}, A \cap B=\{2,4\}$,
$A \cap C=\varnothing$ and $D \cup E=\Omega$.
Therefore, A and C are incompatible events.
D and E are exhaustive events.
Moreover, we may write that $A^{\prime}=\{3,5,6\}$, where the symbol A^{\prime} denotes the complement of the event A.
This suggests the following definition:
If E is an event, then E^{\prime} is the event which occurs when E does not occur.
Events E and E^{\prime} are said to be complementary events.
To represent a sample space and some events, we often use a venn diagram as in figure below:

In general, for three events we have the following diagram
Ω

$$
\begin{aligned}
& w_{1}=A \cap B \cap C \\
& w_{2}=A \cap B \cap C^{\prime} \\
& w_{3}=A \cap B^{\prime} \cap C \\
& w_{4}=A^{\prime} \cap B \cap C \\
& w_{5}=A \cap B^{\prime} \cap C^{\prime} \\
& w_{6}=A^{\prime} \cap B \cap C^{\prime} \\
& w_{7}=A^{\prime} \cap B^{\prime} \cap C \\
& w_{8}=A^{\prime} \cap B^{\prime} \cap C^{\prime}
\end{aligned}
$$

Example 1.35

In the experiment of tossing a coin:
Where;
(i) A : the event of getting a "head" and
(ii) B : the event of getting a "tail"

Events "A" and "B" are said to be equally likely events. Both the events have the same chance of occurrence.

Example 1.36

Consider the experiment that consists in choosing at random from the list $2,3,5,7,11,13,17,19$. The event that the chosen number is not prime number is impossible events since all numbers are prime numbers.

Example 1.37

Consider the experiment that consists in rolling a die. The event of rolling a number that is not 8 is a certain event.

Application activity 10.9

1. A box contains 5 red, 3 blue and 2 green pens. If a pen is chosen at random from the box, then which of the following is an impossible event?
a) Choosing a red pen.
b) Choosing a blue pen.
c) Choosing a yellow pen.
d) None of the above.
2. A spinner has 9 equal sectors numbered 1 to 9 . If you spin the spinner, then which of the following is a certain event?
a) Landing on a number less than 9 .
b) Landing on a number less than 12 .
c) Landing on a number greater than 1 .
d) None of the above.
3. Which of the following are mutually exclusive events when a day of the week is chosen at random?
a) Choosing a Monday or choosing a Wednesday.
b) Choosing a Saturday or choosing a Sunday.
c) Choosing a weekday or choosing a weekend day.
d) All of the above.
4. A die is tossed, tell whether the following events are exhaustive or not.
a) $\mathrm{X}=$ Get prime number ; $\mathrm{Y}=$ Get multiple of $2 ; \mathrm{Z}=$ Get 1 .
b) $\mathrm{X}=$ Get prime numbers; $\mathrm{Y}=\mathrm{Get}$ composite numbers; $\mathrm{Z}=\mathrm{Get}$ 1.
c) $\mathrm{X}=$ an odd number; $\mathrm{Y}=$ an even number.

10.4. Properties and formulas

Activity 10.4

Consider the letters of the word "PROBABILITY".
a) How many letters are in this word
b) How many vowels are in this word? What is the ratio of numbers of vowels to the total number of letters?
c) How many consonants are in this word? what is the ratio of the numbers of consonants to total number of letters
d) Let A be the set of all vowels and B the set of all consonants. Find
(i) $A \cap B$
(ii) $A \cup B$
(iii) A^{\prime}
(iv) B^{\prime}

The probability of an event $A \subset \Omega$, is a real number obtained by applying to A the function P defined by

$$
P(A)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}=\frac{\# A}{\# \Omega}
$$

Theorem 1

Suppose that an experiment has only a finite number of equally likely outcomes. If e is an event, then $0 \leq P(A) \leq 1$.

Note that if $A=\Omega$, then $P(A)=1$ and $P(\Omega)=1$ (the event is certain to occur), and if $A=\varnothing$ then $P(A)=0$ (the event cannot occur).

Example 10.38

A letter is chosen from the letters of the word "MATHEMATICS". What is the probability that the letter chosen is an " A "?

Solution

Since two of the eleven letters are a 's, we have two favorable outcomes.
There are eleven letters, so we have 11 possible outcomes.
Thus, the probability of choosing a letter a is $\frac{2}{11}$.

Example 10.39

A medical study tests a new medicine on 3500 people. It is effective for 3,010 people. Find the experimental probability that the medicine is effective. Then, predict the number of people in a group of 6,000 for whom the medicine will be effective.

Solution

From the definition, the probability of an event is the quotient of the number of times that event occurs by the number of times experiment is done.

Therefore, $P=\frac{3010}{3500}=0.86$ or 86%

In a group of 6,000 people, the medicine will be effective for $0.86 \times 6000=5100$ people.

Theorem 2

$P(E)=1-P\left(E^{\prime}\right)$ Where E and E^{\prime} are complementary events.

Consider two different events, A and B, which may occur when an experiment is performed.

- The event $A \cup B$ is the event which occurs if A or B or both A and B occur, i.e, at least one of A and B occurs.
- The event $A \cap B$ is the event which occurs if A and B occur.
- The event $A-B$ is the event which occurs when A occurs and B does not occur.
- The event A^{\prime} is the event which occurs when A does not occur.

Note that if $A=A_{1} \cup A_{2} \cup A_{3} \cup \ldots \cup A_{n}$, where $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are incompatible events, then we may write that $P(A)=\sum_{i=1}^{n} P\left(A_{i}\right)$ for $n=2,3, \ldots$

Example 10.40

An integer is chosen at random from the set $S=\left\{x: x \in \mathbb{Z}^{+}, x<14\right\}$. Let A be the event of choosing a multiple of 2 and let B be the event of choosing a multiple of 3. Find $P(A \cup B), P(A \cap B)$ and $P(A-B)$.

Solution

From the diagram, $\# S=13$
$A \cup B=\{2,3,4,6,8,9,10,12\} \Rightarrow \#(A \cup B)=8$, thus $P(A \cup B)=\frac{8}{13}$
$A \cap B=\{6,12\} \Rightarrow \#(A \cap B)=2$, thus $P(A \cap B)=\frac{2}{13}$
$A-B=\{2,4,8,10\} \Rightarrow \#(A-B)=4$, thus $P(A-B)=\frac{4}{13}$

Application activity 10.4

1. A letter is chosen from the letters of the word "MATHEMATICS". What is the probability that the letter chosen is
a) M ?
b)
T?
2. An integer is chosen at random from the set
$S=\{$ all positive integers less than 20$\}$. Let A be the event of choosing a multiple of 3 and let B be the event of choosing an odd number. Find;
a) $P(A \cup B)$
b) $P(A \cap B)$
c) $\quad P(A-B)$

Sum law

Activity 10.11

An integer is chosen at random from the set
$S=\{$ all positive integers less than 10$\}$. Let A be the event of choosing a multiple of 3 and let B be the event of choosing an odd number.
Find
a) $P(A \cup B)$
b) $P(A)+P(B)-P(A \cap B)$

What can you say about result in a and result in b ?

Theorem 3

If A and B are events from a sample space Ω, then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

This is known as the addition law of probability.

Example 10.41

A card is drawn from a deck of 52 playing cards. If A is an event of drawing an ace and B is an event of drawing a spade. Find;

$$
P(A), P(B), P(A \cap B), P(A \cup B)
$$

Solution

There are 4 aces, then $P(A)=\frac{4}{52}=\frac{1}{13}$
There are 13 spades, then $P(B)=\frac{13}{52}=\frac{1}{4}$
There is 1 ace of spades, then $\#(A \cap B)=1$ and $P(A \cap B)=\frac{1}{52}$

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{1}{13}+\frac{1}{4}-\frac{1}{52} \\
& =\frac{16}{52} \\
& =\frac{4}{13}
\end{aligned}
$$

On the other hand, there are 4 aces and 13 spades but also 1 ace of spades. Then
$A \cup B=16$ And $P(A \cup B)=\frac{16}{52}=\frac{4}{13}$

Example 10.42

In a group of 20 adults, 4 out of the 7 women and 2 out of the 13 men wear glasses. What is the probability that a person chosen at random from the group is a woman or someone who wears glasses?

Solution

Let A be the event: "the person chosen is a woman".
B be the event: "the person chosen wears glasses".
Now,
There are 7 women, then $P(A)=\frac{7}{20}$
There are 6 persons who wear glasses, then $P(B)=\frac{6}{20}$
There are 4 women who wear glasses, then $P(A \cap B)=\frac{4}{20}$
The probability that a person chosen at random from the group is a woman
or someone who wears glasses is given by $P(A$ or $B)$ which is

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{7}{20}+\frac{6}{20}-\frac{4}{20} \\
& =\frac{9}{20}
\end{aligned}
$$

On the other hand:
There are 7 women and 6 persons who wear glasses but also 4 women who wear glasses. Then
$A \cup B=9$ And $P(A \cup B)=\frac{9}{20}$

Application activity $\mathbf{1 0 . 1 1}$

1. A fair die is rolled, what is the probability of getting a even number or prime number?
2. Two fair dice are rolled, what is the probability of getting a sum that is divisible by 2 or 4 ?

Mutually exclusive events

Activity 10.12

A book is drawn from a bookshelf containing 15 books of which 5 are Mathematics books and 10 are English books. If A is the event: "a book is a Mathematics book" and B is the event: "a book is an English book", find:
a) $P(A)$
b) $P(B)$
c) $P(A \cap B)$
d) $P(A)+P(B)$
e) $P(A \cup B)$

Compare your results from d to e
Events A and B are said to be mutually exclusive (or incompatible) events if they are disjoint, i.e, they cannot occur at the same time. In this case $A \cap B=\varnothing$ and the law of addition reduces to $P(A \cup B)=P(A)+P(B)$.

Example 10.43

A pen is drawn from a basket containing 10 pens of which 5 are red and 3 are black. If a is the event: "a pen is red" and b is the event: " a pen is black", find $P(A), P(B), P(A \cup B)$.
There are 5 red pens, then $P(A)=\frac{5}{10}=\frac{1}{2}$
There are 3 black pens, then $P(B)=\frac{3}{10}$
Since the pen cannot be red and black at the same time, then $A \cap B=\varnothing$ and two events are mutually exclusive so

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B) \\
& =\frac{1}{2}+\frac{3}{10} \\
& =\frac{8}{10} \\
& =\frac{4}{5}
\end{aligned}
$$

Example 10.44

A card is drawn at random from an ordinary pack of 52 playing cards. Find the probability that the card drawn is a club or a diamond.

Solution

There are 13 clubs, then $P(\operatorname{club})=\frac{13}{52}$
There are 13 diamonds, then $P($ diamond $)=\frac{13}{52}$
Since a card cannot be both a club and a diamond, $P($ club $\cap \operatorname{diamond})=0$ Therefore,

$$
\begin{aligned}
P(\text { a club or a diamond }) & =P(\text { club })+P(\text { diamond }) \\
& =\frac{13}{52}+\frac{13}{52} \\
& =\frac{26}{52} \\
& =\frac{1}{2}
\end{aligned}
$$

Application Activity 10.12

1. If A and B are mutually exclusive events, given the probability of A and B as $\frac{1}{5}$ and $\frac{1}{3}$ respectively, find the probability of at least any one event occurring at a time.
2. If X and Y are two events, the probability of the happening of X or Y is $\frac{7}{10}$ and the probability of X is $\frac{1}{3}$. If X and Y are mutually exclusive find the probability of Y ?

Exhaustive events

Activity 10.13

An integer is chosen at random from the set
$S=\{$ all positive integers less than 15$\}$. Let A be the event of choosing an odd number and let B be the event of choosing an even number. Find:
a) $P(A \cup B)$
b) $P(S)$

What can you say about result in a. and result in b.?

If two events A and B are such that $A \cup B=\Omega$ then $P(A \cup B)=1$ and then these two events are said to be exhaustive.
Generally, given a finite sample space, say $\Omega=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{A}_{\mathrm{n}}\right\}$ we can find a finite probability by assigning to each point $A_{i} \in \Omega$ a real number p_{i}, called the probability of A_{i}, satisfying the following:
a) $p_{i} \geq 0$ for all integers i, $1 \leq i \leq n$
b) $\sum_{i=1}^{n} P_{i}=1$.

If E is an event, then the probability $P(E)$ is defined to be the sum of the probabilities of the sample points in E.

Example 10.41

A coin is weighted so that heads are three times as likely to appear as tails. Find $P(H)$ and $P(T)$.

Example 10.42

A die is thrown once. Let A be the event: "the number obtained is less than 5 " and B be the event: "the number obtained is greater than 3 ". Find probability of $A \cup B$.

Solution

Let $P(T)=p_{1}$, then $P(H)=3 p_{1}$.
But $P(H)+P(T)=1$
Therefore
$3 p_{1}+p_{1}=1 \Leftrightarrow 4 p_{1}=1 \Rightarrow p_{1}=\frac{1}{4}$
Thus, $P(H)=\frac{3}{4}$ and $P(T)=\frac{1}{4}$.

Solution

Here $A=\{1,2,3,4\}$ and
$B=\{4,5,6\}$, then
$A \cup B=\{1,2,3,4,5,6\}$ And then
$P(A \cup B)=P(\Omega)=1$.
Or
$P(A)=\frac{4}{6}, P(A)=\frac{3}{6}, A \cap B=\{1\}$,
Then $P(A \cap B)=\frac{1}{6}$
Therefore,

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{4}{6}+\frac{3}{6}-\frac{1}{6} \\
& =1
\end{aligned}
$$

Example 10.43

Events A and B are such that they are both mutually exclusive and exhaustive. Find the relation between these two events.

Solution

If A and B are mutually exclusive, then
$P(A \cup B)=P(A)+P(B)$
If A and B are exhaustive, then
$P(A \cup B)=1$
Therefore,
$P(A)+P(B)=1$
$P(B)=1-P(A)$
But, $P\left(A^{\prime}\right)=1-P(A)$
Therefore, $P(B)=P\left(A^{\prime}\right)$
i.e, $B=A^{\prime}$

Similarly, $A=B^{\prime}$
Thus, if events A and B are such that they are both mutually exclusive and exhaustive, then they are complementary.

Application activity 10.13

In a class of a certain school, there are 12 girls and 20 boys. If a teacher wants to choose one learner to answer the asked question
a) What is the probability that the chosen learner is a girl?
b) What is the probability that the chosen learner is a boy?
c) If teacher doesn't care on the gender, what is the probability of choosing any learners?

Unit summary

1. Combinatorial analysis is a mathematical theory of counting.
2. Experiment: any human activity.

Trial: small experiment contained in a large experiment.
Outcome called event: a result of an experiment.
3. "If Experiments 1 through k have n_{1} through n_{k} outcomes, respectively, then the experiment $1,2,3 \ldots$ and k has $n_{1} \times n_{2} \times \ldots \times n_{k}$ outcomes."
4. The number of different permutations of n different objects (unlike objects) in a row is

$$
n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 2 \times 1
$$

5. The number of different permutations of n objects with n_{1} alike, n_{2} alike, \ldots, is $\frac{n!}{n_{1}!n_{2}!\ldots}$.
6. The number of arrangements of n unlike things in a circle will therefore be ($n-1$)! . In those cases where clockwise and anticlockwise arrangements are not considered to be different, this reduces to $\frac{1}{2}(n-1)$!
7. "If Experiments 1 through k have respectively n_{1} through n_{k} outcomes, then the experiment 1 or 2 or \ldots or k has $n_{1}+n_{2}+\ldots+n_{k}$ outcomes.
8. The number of different permutations of r unlike objects selected from n different objects is ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$ or we can use the denotation $P_{r}^{n}=\frac{n!}{(n-r)!}$ or $P(n, r)=\frac{n!}{(n-r)!}$
9. The number of different groups of r items that could be formed from a set of n distinct objects with the order of selections being ignored is

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r!} .
$$

10. For every integer $n \geq 1,(a+b)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} a^{n-r} b^{r}$
11. Probability is the chance that something will happen-how likely it is that some event will happen.
12. A random experiment is an experiment that, at least theoretically, may be repeated as often as we want and whose outcome cannot be predicted, the roll of a die.
13. Each time experiment is repeated, an elementary outcome is obtained.
14. The set of all elementary outcomes of a random experiment is called the sample space, which is denoted by Ω.
15. Discrete sample space: Firstly is the number of possible outcomes is finite.
16. Continuous sample space: If the sample space contains one or more intervals, the sample space is then uncountable infinite.
17. An event is a set of elementary outcomes. That is, it is a subset of the sample space.
18. Two or more events which have an equal probability of occurrence are said to be equally likely, i.e. if on taking into account all the conditions, there should be no reason to except any one of the events in preference over the others. Equally likely events may be simple or compound events.
19. Two events, A and B are said to be incompatible (or mutually exclusive) if their intersection is empty. We then write that $A \cap B=\varnothing$
20. Two events, A and B are said to be exhaustive if they satisfy the condition $A \cup B=\Omega$.
21. An event which is sure to occur at every performance of an experiment is called a certain event connected with the experiment.
22. An event which cannot occur at any performance of the experiment is called an impossible event.
23. Two events are said to be equivalent or identical if one of them implies and implied by other. That is, the occurrence of one event
implies the occurrence of the other and vice versa.
24. The outcomes which make necessary the happening of an event in a trial are called favourable events.
25. If E is an event, then E^{\prime} is the event which occurs when E does not occur. Events E and E^{\prime} are said to be complementary events.
26. The probability of an event $A \subset \Omega$, is a real number obtained by applying to A the function P defined by
$p(A)=\frac{\text { number of favourable outcomes }}{\text { number of possible outcomes }}=\frac{\# A}{\# B}$
27. If A and B are events from a sample space E, then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

End unit assesment

1. If there are three different roads joining town A to town B and four different roads joining town B to town C, in how many different ways can I travel from A to C via B and return if:
a) there are no restrictions,
b) I am not able to return on any road I used on the outwards journey?
2. How many 3 -digits numbers can be formed using only the digits 1 , $2,3,5,7$ and 8 ? How many of these numbers are even? How many are less than 500 ?
3. There are three roads joining town X to town Y ; three more roads join Y to z and two roads join Z to A . How many different routes are there from X to A passing through Y and Z ?
4. In how many ways can a group of ten children be arranged in a line?
5. In how many ways can eight different books be arranged on a bookshelf?
6. The letters $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are to be arranged in a row with each letter being used once and once only. In how many ways can this be done?
7. Evaluate:
a) $\frac{15!}{13!}$
b) $\frac{9!}{11!}$
c) $6!-5$!
d) $\frac{10!-9!}{8!}$
8. Simplify:
a) $\frac{(n-1)!}{(n-2)!}$
b) $\frac{(n+2)!}{n!}$
c) $\frac{(n+2)!-n!}{(n-1)!}$
9. There are ten teams in the local football competition. In how many ways can the first four places in the premiership table be filled?
10. In how many different ways can five identical blue balls, two identical red balls and a yellow ball be arranged in a row?
11. Find the number of arrangements of four different letters chosen from the word PROBLEM which:
a) begin with a vowel.
b) end with a consonant.
12. With his breakfast, a man sometimes has tea, sometimes coffee and sometimes fruit juice, but never more than one of these on any one day. Find the number of possible arrangements he can have in a period of 4 days if:
a) he always has a drink of some sort,
b) he may choose not to have a drink on certain days.
13. How many numbers greater than 300 can be formed from the figures $4,3,2$ and 1 if each figure can be used not more than once in each number and all the figures need not be used each time?
14. A box contains 14 colored discs which are identical except for their color. There are 5 red discs, 4 green discs, 4 blue discs and 2 yellow. In how many ways can the 14 discs be arranged in a row?
15. Find the number of different three-letter arrangements that can be made from the letters of the word ISOSCELES.
How many of these arrangements will contain:
a) no E's at all,
b) atleast one \mathbf{E},
c) no vowels at all,
d) atleast one vowel?
16. A basketball team of 6 is to be chosen from 11 available players. In how many ways can this be done if:
a) there no restrictions,
b) 3 of the players are automatically selected,
c) 3 of the players are automatic in selections and 2 other players are injured and cannot play?
17. In how many ways can 9 people be placed in cars which can take 2, 3 and 4 passengers respectively, assuming that the seating arrangements inside the cars are not important?
18. A group consists of 5 boys and 8 girls. In how many ways can a team of four be chosen, if the team contains:
a) no girl.
b) not more than one girl.
c) atleast two boys?
19. Find the number of ways that 9 children can be divided into:
a) a group of 5 and a group of 4 children,
b) three groups of 3 children.
20.

a) A small holiday hotel advertises for a manager and 7 other members of staff. There are 4 applicants for the position of manager and 10 other people apply for the other jobs at the hotel. Find the number of different ways of selecting a group of people for the 8 jobs.
b) The hotel has 4 single rooms, 6 double rooms and 5 family rooms. For a particular week, 4 individuals book single rooms, 3 couples book double rooms and 3 families book family rooms. Given that all the rooms are available for that week, find the number of different possible arrangements of booking amongst the rooms.
c) One afternoon, 12 guests organize a game requiring 2 teams of 6 . Find the number of different ways of selecting the teams.
d) Given that the 12 guests consist of 6 adults and 6 children and that each team must contain atleast 2 adults, find the number of different ways of selecting the teams.
21. Expand the following using binomial theorem:
a) $(3+x)^{3}$
b) $(5+2 x)^{3}$
c) $(2+x)^{4}$
d) $(2-x)^{4}$
e) $(2 y+x)^{5}$
f) $(2 x-3 y)^{5}$
g) $\left(x-\frac{1}{x}\right)^{4}$
h) $\left(x-\frac{2}{x}\right)^{5}$
22. Use the binomial theorem to expand $(1+x)^{12}$ in ascending powers of x up to and including the term in x^{3}.
23. Expand and simplify $\left(2 x+\frac{1}{x^{2}}\right)^{5}+\left(2 x-\frac{1}{x^{2}}\right)^{5}$.
24. Find the value of n if the coefficient of x^{3} in the expansion of $(2+3 x)^{n}$ is twice the coefficient of x^{2}.
25. The coefficient of x^{5} in the expansion of $(1+5 x)^{8}$ is equal to the coefficient of x^{4} in the expansion of $(a+5 x)^{7}$. Find the value of a.
26. Use the expansion of $(2-x)^{5}$ to evaluate $(1.98)^{5}$; correct to 5 decimal places.
27. Find the first four terms in the series expansion of $(a-3 x)^{10}$ in ascending powers of x.
28. If x is such that terms involving x^{5} and higher powers can be neglected, find an approximate expansion of $\left(1+\frac{x}{2}\right)^{20}$.
29. When $(1+a x)^{n}$ is expanded in ascending powers of x, the series expansion is $1+2 x+\frac{15 x^{2}}{8}+\ldots$; find the values of n and a.
30. Find the term independent of x in the expansion of each of the following:
a) $\left(3 x+\frac{1}{x}\right)^{10}$
b) $\left(2 x^{2}+\frac{4}{x}\right)^{12}$
c) $\left(\frac{3}{x^{2}}-2 x\right)^{6}$
d) $\left(1+x^{2}\right)\left(2 x+\frac{1}{x}\right)^{10}$
31. Use binomial expansion to evaluate the following to the stated degree of accuracy:
a) $(1.01)^{9}$ correct to four decimal places,
b) $(0.998)^{7}$ correct to seven decimal places,
c) $(0.99)^{10}$ correct to four decimal places,
d) $(1.99)^{10}$ correct to four significant figures.
32. Use binomial expansion to evaluate the following to the stated degree of accuracy:
a) $\sqrt{0.96}$ correct to five decimal places,
b) $\sqrt{104}$ correct to six significant figures,
c) $\sqrt{4.08}$ correct to four decimal places,
d) $\sqrt[4]{1.08}$ correct to five decimal places,
e) $\sqrt[3]{8.72}$ correct to five decimal places.
33. Expand $\sqrt{\frac{1-x}{1+2 x}}$ in ascending power of x, up to and including the term in x^{3}. State the values of x for which the expansion is valid.
34. When the terms in x^{4} and higher powers of x are neglected, the series expansion of $\frac{2+3 x-x^{2}}{(1+2 x)^{3}}$ in ascending powers of x gives $a+b x+c x^{2}+d x^{3}$. Find the values of a, b, c and d.
35. Find the coefficient of x^{3} in the expansion of;
a) $(5+3 x)^{8}$
b) $(7-2 x)^{7}$
36. In the expansion of each of the following, find the coefficient of the specified power of x :
a) $(1+2 x)^{7}, x^{4}$
b) $(5 x-3)^{7}, x^{4}$
c) $\left(3 x-2 x^{3}\right)^{5}, x^{11}$
d) $\left(x-\frac{2}{x}\right)^{8}, x^{2}$
e) $\left(x^{2}+\frac{4}{x}\right)^{10}, x^{-1}$
f) $\left(\frac{x}{6}-\frac{3}{x}\right)^{9}, x^{3}$
37. Find the possible values of the constant k if the coefficient of x^{-5} in the expansion of $\left(k x+\frac{1}{x}\right)^{9}$ is 16.
38. Find the term involving x^{8} in the expansion of $(4+x)^{12}$
39. The first four terms in the expansion of $(1-x)^{n}$ are $1-6 x+p x^{2}+q x^{3}$. Show that $p=15$ and obtain the value of q.
40. Find the values of the constants a and b for which the expansions, in ascending powers of x, of the two expressions $(1+2 x)^{\frac{1}{2}}$ and $\frac{1+a x}{1+b x}$ up to and including term in x^{2}, are the same. With these values of a and b, use the result $(1+2 x)^{\frac{1}{2}} \approx \frac{1+a x}{1+b x}$, with $x=-\frac{1}{100}$, to obtain an approximate value for $\sqrt{2}$ in the form $\frac{p}{q}$, where p and q are positive integers.
41. Which of the following is an experiment?
a) Tossing a coin,
b) Rolling a single die,
c) Choosing a marble from a jar,
d) All of the above.
42. Which of the following is an outcome?
a) Rolling a pair of dice,
b) Landing on red,
c) Choosing 2 marbles from a jar,
d) None of the above.
43. Which of the following experiments does not have equally likely outcomes?
a) Choose a number at random between 1 and 7,
b) Toss a coin,
c) Choose a letter at random from the word SCHOOL,
d) None of the above.
44. A glass jar contains 5 red, 3 blue and 2 green jelly beans. If a jelly bean is chosen at random from the jar, then which of the following is an impossible event?
a) Choosing a red jelly bean,
b) Choosing a blue jelly bean,
c) Choosing a yellow jelly bean,
d) None of the above.
45. A spinner has 7 equal sectors numbered 1 to 7 . If you spin the spinner, then which of the following is a certain event?
a) Landing on a number less than 7,
b) Landing on a number less than 8,
c) Landing on a number greater than 1 ,
d) None of the above.
46. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5 ?
47. A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?
48. In a box, there are 8 red, 7 blue and 6 green balls. One ball is picked up randomly. What is the probability that it is neither red nor green?
49. In a class, there are 15 boys and 10 girls. Three students are selected at random. What is the probability that 1 girl and 2 boys are selected?
50. From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?
51. One card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a face card (Jack, Queen and King only)?
52. An integer is chosen at random from the first 200 positive integers. Find the probability that the number is:
a) divisible by 2
b) divisible by 7
c) divisible by 2 and 7
d) divisible by neither 2 nor 7
53. The letters of the word FACETIOUS are arranged in a row. Find the probability that:
a) the first 2 letters are consonants,
b) all the vowels are together.

