MATHEMATICS FOR TTCs

STUDENT'S BOOK

YEAR THREE

OPTION:

LANGUAGE EDUCATION (LE)
© 2020 Rwanda Education Board
All rights reserved
This book is property of the Government of Rwanda. Credit must be given to REB when the content is quoted.

FOREWORD

Dear Student,
Rwanda Education Board (REB) is honoured to present Year 3 Mathematics book for Language Education (LE) student teachers. This book serves as a guide to competence-based teaching and learning to ensure consistency and coherence in the learning of the Mathematics. The Rwandan educational philosophy is to ensure that you achieve full potential at every level of education which will prepare you to be well integrated in society and exploit employment opportunities.

The government of Rwanda emphasizes the importance of aligning teaching and learning materials with the syllabus to facilitate your learning process. Many factors influence what you learn, how well you learn and the competences you acquire. Those factors include the relevance of the specific content, the quality of teachers' pedagogical approaches, the assessment strategies and the instructional materials available. In this book, we paid special attention to the activities that facilitate the learning process in which you can develop your ideas and make new discoveries during concrete activities carried out individually or with peers.

In competence-based curriculum, learning is considered as a process of active building and developing knowledge and meanings by the learner where concepts are mainly introduced by an activity, situation or scenario that helps the learner to construct knowledge, develop skills and acquire positive attitudes and values.

For efficiency use of this textbook, your role is to:

- Work on given activities which lead to the development of skills;
- Share relevant information with other learners through presentations, discussions, group work and other active learning techniques such as role play, case studies, investigation and research in the library, on internet or outside;
- Participate and take responsibility for your own learning;
- Draw conclusions based on the findings from the learning activities.

To facilitate you in doing activities, the content of this book is self explanatory so that you can easily use it yourself, acquire and assess your competences. The book is made of units as presented in the syllabus. Each unit has the following structure: the key unit competence is given and it is followed by the introductory activity before the development of mathematical concepts that are connected to real world problems or to other sciences.

The development of each concept has the following points:

- It starts by a learning activity: it is a hand on well set activity to be done by students in order to generate the concept to be learnt;
- Main elements of the content to be emphasized;
- Worked examples; and
- Application activities: those are activities to be done by the user to consolidate competences or to assess the achievement of objectives.

Even though the book has some worked examples, you will succeed on the application activities depending on your ways of reading, questioning, thinking and grappling ideas of calculus not by searching for similar-looking worked out examples.

Furthermore, to succeed in Mathematics, you are asked to keep trying; sometimes you will find concepts that need to be worked at before you completely understand. The only way to really grasp such a concept is to think about it and work-related problems found in other reference books.

I wish to sincerely express my appreciation to the people who contributed towards the development of this book, particularly, REB staff, UR-CE Lecturers and TTC Tutors for their technical support. A word of gratitude goes to Head Teachers and TTCs principals who availed their staff for various activities.

Any comment or contribution would be welcome to the improvement of this text book for the next edition.

Dr. NDAYAMBAJE Irénée

Director General, REB

ACKNOWLEDGEMENT

I wish to express my appreciation to the people who played a major role in the development of this Mathematics book for Year Three student teachers in the option of Language Education (LE). It would not have been successful without active participation of different education stakeholders.

I owe gratitude to different universities and schools in Rwanda that allowed their staff to work with REB in the in-house textbooks production initiative.

I wish to extend my sincere gratitude to lecturers and TTC tutors whose efforts during writing exercise of this book were very much valuable.

Finally, my word of gratitude goes to the Rwanda Education Board staffs who were involved in the whole process of in-house textbook Elaboration.

Joan MURUNGI

Head of CTLR Department
TABLE OF CONTENTS
FOREWORD iii
ACKNOWLEDGEMENT v
BIVARIATE STATISTICS 1
1.1. Bivariate data, scatter diagram and types of correlation 2
1.2 Covariance 6
1.3 Coefficient of correlation 11
1.4 Regression lines 20
1.5 Interpretation of statistical data (Application) 26
1.6 End unit assessment 29
ELEMENTARY PROBABILITY 31
2.1 Concepts of probability: Sample space and Events 31
2.2 Counting techniques 36
2.2.1 Simple counting techniques: (Venn diagram, tree diagrams, contingency table) 36
2.2.2 Basic sum principle of counting (Mutually exclusive situations) 43
2.2.3 Arrangements of n unlike objects in a row 45
2.2.4 Arrangements of indistinguishable objects (Permutations with repetitions) 48
2.2.5 Circular arrangements 50
2.2.6 Distinguishable permutations (Permutations of r unlike objects selected from n distinct objects) 52
2.2.7 Permutations of r objects selected from mixture of n alike and unlike objects 54
2.2.8. Combinations 56
2.3 Determination of Probability of an event, rules and formulas 59
2.3.1: Probability of an event 59
2.3.2: Probability of mutually exclusive (incompatible) and non- inclusive events 63
2.3.3: Probability of independent events and multiplication rule 67
2.3.4 Dependent events 69
2.4 Examples of Events in real life and determination of related probability 70
2.5 End unit assessment 73
REFERENCE 74

UNIT

BIVARIATE STATISTICS

Key Unit competence

Extend understanding, analysis and interpretation of bivariate data to correlation coefficients and regression lines.

(2) Introductory activity

In Kabeza village, after her 9 observations about farming, UMULISA saw that in every family observed, where there are x cows there are also y domestic ducks, then she got the following results:
$(1,4),(2,8),(3,4),(4,12),(5,10)$
$(6,14),(7,16),(8,6),(9,18)$
a) Represent this information graphically in (x, y)-coordinates .
b) Find the equation of line joining any two points of the graph and guess the name of this line.
c) According to your observation from (a), explain in your own words if there is any relationship between the variation of the number of Cows
 (X) and the number of domestic ducks (Y).

1.1. Bivariate data, scatter diagram and types of correlation
 Activity 1.1

Consider the situation in which the mass, $y(\mathrm{~g})$, of a chemical is related to the time, x minutes, for which the chemical reaction has been taking place, according to the table.

Time, x min	5	7	12	16	20
Mass, y g	4	12	18	21	24

a) Plot the above information in (x, y) coordinates.
b) Explain in your own words the relationship between x and y

Content summary

In statistics, bivariate or double series includes technique of analysing data in two variables, the focus on the relationship between a dependent variable-y and an independent variable-x.

For example, between age and weight, weight and height, years of education and salary, amount of daily exercise and cholesterol level, etc. As with data for a single variable, we can describe bivariate data both graphically and numerically. In both cases, we will be primarily concerned with determining whether there is a linear relationship between the two variables under consideration or not.

It should be kept in mind that a statistical relationship between two variables does not necessarily imply a causal relationship between them. For example, a strong relationship between weight and height does not imply that either variable causes the other.

Scatter plots or Scatter diagram and types of correlation

Consider the following data which relate x, the respective number of branches that 10 different banks have in a given common market, with y, the corresponding market share of total deposits held by the banks:

x	198	186	116	89	120	109	28	58	34	31
y	22.7	16.6	15.9	12.5	10.2	6.8	6.8	4.0	2.7	2.8

If each point (x, y) of the data is plotted in an x, y coordinate plane, the scatter plot or Scatter diagram is obtained.

The scatter plot or scatter diagram (in the figure above) indicates that, roughly speaking, the market share increases as the number of branches increases. We say that x and y have a positive correlation.

On the other hand, consider the data below, which relate average daily temperature x, in degrees Fahrenheit, and daily natural gas consumption y, in cubic metre.

$x,{ }^{\circ} \mathrm{F}$	50	45	40	38	32	40	55
$y, \mathrm{~cm}^{3}$	2.5	5.0	6.2	7.4	8.3	4.7	1.8

We see that y tends to decrease as x increases. Here, x and y have a negative correlation

Finally, consider the data items (x, y) below, which relate daily temperature x over a 10-day period to the Dow Jones stock average y.
(63, 3385); (72, 3330); (76, 3325); (70, 3320); (71, 3330); (65, 3325); (70, 3280); (74, 3280)
$(68,3300) ;(61,3265)$.

There is no apparent relationship between x and y (no correlation or Weak correlation).

Note that the correlation is a mutual relationship between two or more things.
Examples of correlation in real life include:

- As students study time increases, the tests average increases too.
- As the number of trees cut down increases, soil erosion increases too.
- The more you exercise your muscles, the stronger they get.
- As a child grows, so does the clothing size.
- The more one smokes, the fewer years he will have to live.

Types of correlation

Correlation can be negative or positive depending on the situation:
In a situation where one variable positively affects another variable, we say positive correlation has occurred.

Examples:

1) The more times people have unprotected sex with different partners, the more the rates of HIV in a society.
2) As students study time increases, the tests average increases too.

On the other hand, when one variable affects another variable negatively, we say negative correlation has occurred.

Examples:

The more one consumes alcohol, the less the judgment one has.
Correlation is a scatter diagram which can be determined whether it is positive or negative by following the trend of the points and the gradient of the line of the best fit.

Application activity 1.1

One measure of personal fitness is the time taken for an individual's pulse rate to return to normal after strenuous exercise, the greater the fitness, the shorter the time. Following a short program of strenuous exercise, Norman recorded his pulse rates P at time t minutes after he had stopped exercising.
Norman's results are given in the table below.

t	0.5	1.0	1.5	2.0	3.0	4.0	5.0
P	125	113	102	94	81	83	71

a) Draw a scatter diagram to represent this information in (x, y) coordinates
b) Explain the relationship between Norman's pulse P and time t .

1.2 Covariance

Activity 1.2

Activity 1.2

Complete the following table

i	x_{i}	y_{i}	$x_{i}-\bar{x}$	$y_{i}-\bar{y}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
1	3	6			
2	5	9			
3	7	12			
4	3	10			
5	2	7			
6	6	8			
				$\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\ldots$	
	$\sum_{i=1}^{6} x_{i}=\ldots$	$\sum_{i=1}^{6} y_{i}=\ldots$			

What can you get from the following expressions :

1) $\sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)$
2) $\sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$

Content summary

In case of two variables, say x and y, there is another important result called covariance of \boldsymbol{x} and \boldsymbol{y}, denoted $\operatorname{cov}(x, y)$.

The covariance of variables \boldsymbol{x} and \boldsymbol{y} is a measure of how these two variables change together. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the smaller values, i.e. the variables tend to show similar behaviour, the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the smaller values of the other, i.e. the variables tend to show opposite behaviour, the covariance is negative. If covariance is zero the variables are said to be
uncorrelated, it means that there is no linear relationship between them.
Therefore, the sign of covariance shows the tendency in the linear relationship between the variables. The magnitude of covariance is not easy to interpret.
Covariance of variables x and y, where the summation of frequencies $\sum_{i=1}^{k} f_{i}=n$ are equal for both variables, is defined to be

$$
\operatorname{cov}(x, y)=\frac{1}{n} \sum_{i=1}^{k} f_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

Developing this formula, we have

$$
\begin{aligned}
\operatorname{cov}(x, y) & =\frac{1}{n} \sum_{i=1}^{k} f_{i}\left(x_{i} y_{i}-x_{i} \bar{y}-\bar{x} y_{i}+\bar{x} \bar{y}\right) \\
& =\frac{1}{n} \sum_{i=1}^{k} f_{i} x_{i} y_{i}-\frac{1}{n} \sum_{i=1}^{k} f_{i} x_{i} \bar{y}-\frac{1}{n} \sum_{i=1}^{k} f_{i} \bar{x} y_{i}+\frac{1}{n} \sum_{i=1}^{k} f_{i} \bar{x} \bar{y} \\
& =\frac{1}{n} \sum_{i=1}^{k} f_{i} x_{i} y_{i}-\frac{1}{n} \bar{y} \sum_{i=1}^{k} f_{i} x_{i}-\frac{1}{n} \bar{x} \sum_{i=1}^{k} f_{i} y_{i}+\bar{x} \bar{y} \frac{1}{n} \sum_{i=1}^{k} f_{i} \quad \quad \quad\left[\frac{1}{n} \sum_{i=1}^{k} f_{i}=\frac{1}{n} \times n=1\right] \\
& =\frac{1}{n} \sum_{i=1}^{k} f_{i} x_{i} y_{i}-\bar{x} \bar{y}-\bar{x} \bar{y}+\bar{x} \bar{y} \\
& =\frac{1}{n} \sum_{i=1}^{k} f_{i} x_{i} y_{i}-\bar{x} \bar{y}
\end{aligned}
$$

Thus, the covariance is also given by
$\operatorname{cov}(x, y)=\frac{1}{n} \sum_{i=1}^{k} f_{i} x_{i} y_{i}-\bar{x} \bar{y}$

Examples

1) Find the covariance of x and y in following data sets

x	3	5	6	8	9	11
y	2	3	4	6	5	8

Solution

We have

x_{i}	y_{i}	$x_{i}-\bar{x}$	$y_{i}-\bar{y}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
3	2	-4	-2.6	10.4
5	3	-2	-1.6	3.2
6	4	-1	-0.6	0.6
8	6	1	1.4	1.4
9	5	2	0.4	0.8
11	8	4	3.4	13.6
$\sum_{i=1}^{6} x_{i}=42$	$\sum_{i=1}^{6} y_{i}=28$			
$\bar{x}=7$	$\bar{y}=4.6$			$\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=30$

Thus,

$$
\begin{aligned}
\operatorname{cov}(x, y) & =\frac{1}{6} \sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& =\frac{1}{6}(30) \\
& =5
\end{aligned}
$$

2) Find the covariance of the following distribution

y	0	2	4
1	2	1	3
2	1	4	2
3	2	5	0

Solution

Convert the double entry into a simple table and compute the arithmetic means

x_{i}	y_{i}	f_{i}	$x_{i} f_{i}$	$y_{i} f_{i}$	$x_{i} y_{i} f_{i}$
0	1	2	0	2	0
0	2	1	0	2	0
0	3	2	0	6	0
2	1	1	2	1	2
2	2	4	8	8	16
2	3	5	10	15	30
4	1	3	12	3	12
4	2	2	8	4	16
4	3	0	0	0	0
		$\sum_{i=1}^{9} f_{i}=20$	$\sum_{i=1}^{9} x_{i} f_{i}=40$	$\sum_{i=1}^{9} y_{i} f_{i}=41$	$\sum_{i=1}^{9} x_{i} y_{i} f_{i}=76$

$\bar{x}=\frac{40}{20}=2, \bar{y}=\frac{41}{20}=2.05$
$\operatorname{cov}(x, y)=\frac{76}{20}-2 \times 2.05=-0.3$
Alternative method
$\operatorname{cov}(x, y)=\frac{1}{n} \sum_{i=1}^{k} f_{i} x_{i} y_{i}-\bar{x} \bar{y}$
$\bar{x}=\frac{1}{n} \sum_{i=1}^{k} x_{i} f_{i}, \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{k} y_{i} f_{i}$

y	0	2	4	Total
1	2	1	3	6
2	1	4	2	7
3	2	5	0	7
Total	5	10	5	20

$$
\begin{aligned}
& \bar{x}=\frac{1}{20}(0 \times 5+2 \times 10+4 \times 5) \\
&=\frac{40}{20}=2 \\
& \bar{y}=\frac{1}{20}(1 \times 6+2 \times 7+3 \times 7) \\
&=\frac{41}{20}=2.05 \\
& \operatorname{cov}(x, y)=\frac{1}{20}\binom{0 \times 1 \times 2+0 \times 2 \times 1+0 \times 3 \times 2+2 \times 1 \times 1+2 \times 2 \times 4}{+2 \times 5+4 \times 1 \times 3+4 \times 2 \times 2+4 \times 3 \times 0}-2 \times 2.05 \\
& \quad=\frac{1}{20}(0+0+0+2+16+30+12+16+0)-4.1
\end{aligned} \quad \begin{aligned}
& =\frac{76}{20}-4.1=-0.3 .
\end{aligned}
$$

Application activity 1.2

1. The scores of 12 students in their mathematics and physics classes are

Mathematics	2	3	4	4	5	6	6	7	7	8	10	10
Physics	1	3	2	4	4	4	6	4	6	7	9	10

Find the covariance of the distribution
2. The values of two variables x and y are distributed according to the following table

y	100	50	25
14	1	1	0
18	2	3	0
22	0	1	2

Calculate the covariance

1.3 Coefficient of correlation

Activity 1.2

Consider the following table

x	y
3	6
5	9
7	12
3	10
2	7
6	8

1. Find σ_{x}, σ_{y}
2. Find $\operatorname{cov}(x, y)$
3. Calculate the ratio $\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \cdot \sigma_{y}}$

Content summary

The Pearson's coefficient of correlation (or Product moment coefficient of correlation or simply coefficient of correlation), denoted by r, is a measure of the strength of linear relationship between two variables.

The coefficient of correlation between two variables x and y is given by
$r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}$
Where, $\operatorname{cov}(x, y)$ is covariance of x and y
σ_{x} is the standard deviation for x
σ_{y} is the standard deviation for y

Properties of the coefficient of correlation

a) The coefficient of correlation does not change the measurement scale. That is, if the height is expressed in meters or feet, the coefficient of correlation does not change.
b) The sign of the coefficient of correlation is the same as the covariance.
c) The square of the coefficient of correlation is equal to the product of the gradient of the regression line of y on x, and the gradient of the regression line of x on y.
In fact, $r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}$. Squaring both sides gives
$r^{2}=\left[\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}\right]^{2}$
$=\frac{\operatorname{cov}^{2}(x, y)}{\sigma_{x}^{2} \sigma_{y}^{2}}$
$=\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}} \times \frac{\operatorname{cov}(x, y)}{\sigma_{y}^{2}}$
$=a c$, where $y=a x+b$ is the equation of the regression line of y on x, and $x=c y+d$ is the equation of the regression line of x on y
d) If the coefficient of correlation is known, it can be used to find the gradients or slopes of two regression lines.
We know that the gradient of the regression line y on x is $\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}}$.
From this we have, $\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{x}} \times \frac{\sigma_{y}}{\sigma_{y}}$

$$
\begin{aligned}
& =\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \times \frac{\sigma_{y}}{\sigma_{x}} \\
& =r \frac{\sigma_{y}}{\sigma_{x}}
\end{aligned}
$$

We know that the gradient of the regression line of x on y is $\frac{\operatorname{cov}(x, y)}{\sigma_{y}^{2}}$. From this we have, $\frac{\operatorname{cov}(x, y)}{\sigma_{y}^{2}}=\frac{\operatorname{cov}(x, y)}{\sigma_{y} \sigma_{y}} \times \frac{\sigma_{x}}{\sigma_{x}}$

$$
\begin{aligned}
& =\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \times \frac{\sigma_{x}}{\sigma_{y}} \\
& =r \frac{\sigma_{x}}{\sigma_{y}}
\end{aligned}
$$

Thus, the gradient of the regression line of y on x is given by $r \frac{\sigma_{y}}{}$ and the gradient of the regression line of x on y is given by $r \frac{\sigma_{x}}{\sigma_{y}}$.
σ_{x}
e) Cauchy Inequality: $\operatorname{cov}^{2}(x, y) \leq \sigma_{x}^{2} \sigma_{y}^{2}$

In fact, $r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \Leftrightarrow \operatorname{cov}(x, y)=r \sigma_{x} \sigma_{y}$.
Squaring both sides gives $\operatorname{cov}^{2}(x, y)=r^{2} \sigma_{x}^{2} \sigma_{y}^{2}$
$\operatorname{Or} \operatorname{cov}^{2}(x, y) \leq \sigma_{x}^{2} \sigma_{y}^{2}$
f) The coefficient of correlation takes value ranging between -1 and +1 . That is $-1 \leq r \leq 1$
In fact, from Cauchy Inequality we have,

$$
\begin{aligned}
& \operatorname{cov}^{2}(x, y) \leq \sigma_{x}^{2} \sigma_{y}^{2} \\
& \Leftrightarrow \frac{\operatorname{cov}^{2}(x, y)}{\sigma_{x}^{2} \sigma_{y}^{2}} \leq 1 \\
& \Leftrightarrow\left[\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}\right]^{2} \leq 1 \\
& \Leftrightarrow r^{2} \leq 1
\end{aligned}
$$

Taking square roots both side

$$
\Leftrightarrow \sqrt{r^{2}} \leq 1
$$

$$
\Leftrightarrow|r| \leq 1 \text { since } \sqrt{x^{2}}=|x|
$$

$$
|r| \leq 1 \text { is equivalent to }-1 \leq r \leq 1
$$

Thus, $-1 \leq r \leq 1$.
g) If the linear coefficient of correlation takes values closer to $\mathbf{- 1}$, the correlation is strong and negative, and will become stronger the closer \boldsymbol{r} approaches -1.
h) If the linear coefficient of correlation takes values close to 1 the correlation is strong and positive, and will become stronger the closer \boldsymbol{r} approaches
1.
i) If the linear coefficient of correlation takes values close to $\mathbf{0}$, the correlation is weak.
j) If $\boldsymbol{r}=\mathbf{1}$ or $\boldsymbol{r}=\mathbf{1}$, there is perfect correlation and the line on the scatter plot is increasing or decreasing respectively.
k) If $\boldsymbol{r}=\mathbf{0}$, there is no linear correlation.

Examples:

1) A test is made over 200 families on number of children (x) and number of beds y per family. Results are collected in the table below
2)

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
1	0	2	7	5	2	0	0	0	0	0	0
2	2	2	10	8	15	1	0	0	0	0	0
3	1	3	5	6	8	6	1	0	0	0	0
4	0	2	8	2	6	12	10	8	0	0	0
5	0	1	0	2	5	6	10	5	7	3	3
6	0	0	0	2	4	5	5	2	3	3	2

a) What is the average number for children and beds per a family?
b) Find the covariance
c) Can we confirm that there is a high linear correlation between the number of children and number of beds per family?

Solution

a) Average number of children per family:

Contingency table:

x	0	1	2	3	4	5	6	7	8	9	10	Total
y	0											
1	0	2	7	5	2	0	0	0	0	0	0	16
2	2	2	10	8	15	1	0	0	0	0	0	38
3	1	3	5	6	8	6	1	0	0	0	0	30
4	0	2	8	2	6	12	10	8	0	0	0	48
5	0	1	0	2	5	6	10	5	7	3	3	42
6	0	0	0	2	4	5	5	2	3	3	2	26
Total	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{3 0}$	$\mathbf{2 5}$	$\mathbf{4 0}$	$\mathbf{3 0}$	$\mathbf{2 6}$	$\mathbf{1 5}$	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{2 0 0}$

$\bar{x}=\frac{1}{n} \sum_{i=1}^{k} f_{i} x_{i}, \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{k} f_{i} y_{i}$
Marginal series:

x_{i}	0	1	2	3	4	5	6	7	8	9	10	Total
f_{i}	3	10	30	25	40	30	26	15	10	6	5	
$f_{i} x_{i}$	0	10	60	75	160	150	156	105	80	54	50	$\sum f_{i} x_{i}=900$

y_{i}	1	2	3	4	5	6	Total
f_{i}	16	38	30	48	42	26	$\sum f_{i}=200$
$f_{i} y_{i}$	16	76	90	192	210	156	$\sum f_{i} y_{i}=740$

The means are

$\bar{x}=\frac{1}{n} \sum_{i=1}^{1} f_{i} x_{i}=\frac{900}{200}=4.5$
And $\bar{y}=\frac{1}{n} \sum_{i=1}^{6} f_{i} y_{i}=\frac{740}{200}=3.7$
There are about 5 children per family and about 4 beds per family.
b) The covariance is calculated as follow:
$\operatorname{Cov}(x, y)=\left(\frac{1}{n} \sum_{(i, j)=(1,1)}^{(p, q)=(1,6)} f_{i, j} x_{i} y_{j}\right)-\overline{x y}$, where i assumes values from 1 to $p=\mathbf{1}$, and j assumes values from 1 to $q=6$,or

$$
\begin{aligned}
& \operatorname{cov}(x, y)=\frac{1}{200} \sum_{i=1}^{66} f_{i} x_{i} y_{i}-\bar{x} \bar{y} \text { Where } \bar{y}=3.7 \text { and } \bar{x}=4.5 \\
& =\frac{1}{200}\left(\begin{array}{l}
0+2+14+15+8+0+4+40+48+120+10+0 \\
+9+30+54+96+90+18+0+8+64+24+96 \\
+240+240+224+0+5+0+30+100+150 \\
+300+175+280+135+150+0+36+96+150 \\
+180+84+144+162+120
\end{array}\right)-4.5 \times 3.7 \\
& =\frac{3751}{200}-16.65 \\
& =18.7555-16.65 \\
& =2.105
\end{aligned}
$$

c) Correlation coefficient is given by $\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}$

$$
\begin{aligned}
\sigma_{y}^{2} & =\frac{1}{200} \sum_{i=1}^{6} f_{i} y_{i}^{2}-(\bar{y})^{2} \\
& =\frac{1}{200}(16+38 \times 4+30 \times 9+48 \times 16+42 \times 25+26 \times 36)-(3.7)^{2} \\
& =15.96-13.69 \\
& =2.27 \\
\sigma_{x}^{2}=\frac{1}{200} & \sum_{i=1}^{11} f_{i} x_{i}^{2}-(\bar{x})^{2}=\frac{1}{200}\binom{0+10+4 \times 30+9 \times 25+40 \times 16+30 \times 25+}{36 \times 26+49 \times 15+64 \times 10+81 \times 6+100 \times 5}-(4.5)^{2}
\end{aligned}
$$

$$
=25.21-20.25=4.96
$$

Therefore, the correlation coefficient is

$$
r=\frac{2.105}{\sqrt{4.96} \sqrt{2.27}} \approx 0.63
$$

There is a high linear correlation.

NOTICE:

Spearman's coefficient of rank correlation

A Spearman coefficient of rank correlation or Spearman's rho (ρ) is measure of statistical dependence between two variables. It assesses how well the relationship between two variables can be described using a monotonic function.

The Spearman's coefficient of rank correlation is denoted and defined by
$\rho=1-\frac{6 \sum_{i=1}^{k} d_{i}^{2}}{n\left(n^{2}-1\right)}$

Where, d refers to the difference of ranks between paired items in two series and n is the number of observations. It is much easier to calculate the Spearman's coefficient of rank correlation than to calculate the Pearson's coefficient of correlation as there is far less working involved. However, in general, the Pearson's coefficient of correlation is a more accurate measure of correlation when data are numerical.

METHOD OF RANKING

Ranking can be done in ascending order or descending order.

Examples:

1) Suppose that we have marks, x, of seven students in this order:
$12,18,10,13,15,16,9$
We assign the rank $1,2,3,4,5,6,7$ such that the smallest value of x will be ranked 1.

That is

x	12	18	10	13	15	16	9
$\operatorname{Rank}(x)$	3	7	2	4	5	6	1

If we have two or more equal values we proceed as follow:
Consider the following series

x	66	65	66	67	66	64	68	68

To assign the rank to this series we do the following:
$x=64$ will take rank 1 , since it is the smallest value of x
$x=65$ will be ranked 2 .
$x=66$ appears 3 times, since the previous value was ranked 2 here 66 would be ranked 3 , another 66 would be ranked 4 and another 5 but since there are three 66 's we need to find the average of those ranks which is $\frac{3+4+5}{3}=4$ so that each 66 will be ranked 4 .
$x=67$ will be ranked 6 since we are on the $6^{\text {th }}$ position
$x=68$ appears 2 times, since the previous value was ranked 6 here 68 would be ranked 7 , and another 66 would be ranked 8 but since there are two 68 's we need to find the average of those ranks which is $\frac{7+8}{2}=7.5$ so that each 68 will be ranked 7.5

Thus we have the following

x	66	65	66	67	66	64	68	68
$\operatorname{Rank}(x)$	4	2	4	6	4	1	7.5	7.5

2) Calculate the Spearman's coefficient of rank correlation for the series

x	12	8	16	12	7	10	12	16	12	9
y	6	5	7	7	4	6	8	13	10	10

Solution

x	y	$\operatorname{Rank}(x)$	$\operatorname{Rank}(y)$	$\operatorname{Rank}(x)-\operatorname{Rank}(y)=d$	d^{2}
12	6	6.5	3.5	3	9

8	5	2	2	0	0
16	7	9.5	5.5	4	16
12	7	6.5	5.5	1	1
7	4	1	1	0	0
10	6	4	3.5	0.5	0.25
12	8	6.5	7	0.5	0.25
16	13	9.5	10	0.5	0.25
12	10	6.5	8.5	5.5	4
9	10	3	8.5		30.25

Then

$$
\begin{aligned}
& \rho=1-\frac{6 \times 61}{10(100-1)} \\
& \Leftrightarrow \rho=1-\frac{366}{990} \quad \Leftrightarrow \rho=\frac{990-366}{990} \quad \text { Or } \rho=0.63
\end{aligned}
$$

Application activity 1.3

1) The scores of 12 students in their mathematics and physics classes are

Mathematics	2	3	4	4	5	6	6	7	7	8	10	10
Physics	1	3	2	4	4	4	6	4	6	7	9	10

Find the correlation coefficient distribution and interpret it.
2) The values of the two variables X and Y are distributed according to the following table:

Y	0	2	4
1	2	1	3
2	1	4	2
3	2	5	0

Calculate the correlation coefficient.
3) The marks of eight candidates in English and Mathematics are

Candidate	1	2	3	4	5	6	7	8
English (x)	50	58	35	86	76	43	40	60
Mathematics (y)	65	72	54	82	32	74	40	53

Rank the results and hence find Spearman's rank correlation coefficient between the two sets of marks. Comment on the value obtained.

1.4 Regression lines

Activity 1.4

1. Given the data in the table below :

x	5	7	12	16	20
y	4	12	18	21	24

Determine:
a) Variance of x
b) Variance of y
c) Covariance of (x, y)
d) The value a given by $\frac{\operatorname{cov}(x, y)}{\operatorname{var} x}=\frac{S_{x, y}}{S_{x, x}}$
e) The value b given by $b=\bar{Y}-a \bar{X}$
f) Establish the equation of the line $y=a x+b$
g) In the Cartesian plane, represent the data (x, y) in the table above and the line $y=a x+b$ found in (f).
h) Discuss the position of the points of coordinate (x, y) with respect to the line $y=a x+b$.

Content summary

We use the regression line of y on x to predict a value of y for any given value of x and vice versa, we use the regression line of x on y, to predict a value of x for a given value of y. The "best" line would make the best predictions: the observed y-values should stray as little as possible from the line. This straight line is the regression line from which we can adjust its algebraic expressions and it is written as $y=a x+b$, where a is the gradient and b is the y -intercept.
The regression line y on x is written as $y=\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}} x+\left(\bar{y}-\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}} \bar{x}\right)$
The above regression line can be re-written as

$$
L_{y / x} \equiv y-\bar{y}=\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}}(x-\bar{x})
$$

Note that the regression line x on y is $x=c y+d$, where c is the gradient of the line and d is the x-intercept, it is given by $x=\frac{\operatorname{cov}(x, y)}{\sigma_{y}^{2}} y+\left(\bar{x}-\frac{\operatorname{cov}(x, y)}{\sigma_{y}^{2}} \bar{y}\right)$

This line is written as $L_{x / y} \equiv x-\bar{x}=\frac{\operatorname{cov}(x, y)}{\sigma_{y}^{2}}(y-\bar{y})$

Shortcut method of finding regression line

To abbreviate the calculations, the two regression lines can be determined as follow:
a) The equation of the regression line of y on x is $L_{y / x} \equiv y=a x+b$ and the values of a and b are found by solving the simultaneous equations:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} f_{i} y_{i}=a \sum_{i=1}^{k} f_{i} x_{i}+b n \\
\sum_{i=1}^{k} f_{i} x_{i} y_{i}=a \sum_{i=1}^{k} f_{i} x_{i}^{2}+b \sum_{i=1}^{k} f_{i} x_{i}
\end{array}\right.
$$

These equations are called the normal equations for y on x.
b) The equation of the regression line of x on y is $L_{x / y} \equiv x=c y+d$ and the values of c and d are found by solving the simultaneous equations:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} f_{i} x_{i}=c \sum_{i=1}^{k} f_{i} y_{i}+d n \\
\sum_{i=1}^{k} f_{i} x_{i} y_{i}=c \sum_{i=1}^{k} f_{i} y_{i}^{2}+d \sum_{i=1}^{k} f_{i} y_{i}
\end{array}\right.
$$

These equations are called the normal equations for x on y.

Examples:

1) Find the equation of the regression line of y on x, and the equation of the regression line of x on y ,for the following data and estimate the value of y for $x=4, x=7, x=16$ and the value of x for $y=7, y=9, y=16$.

x	3	5	6	8	9	11
y	2	3	4	6	5	8

Solution

x	y	$x-\bar{x}$	$y-\bar{y}$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$	$(x-\bar{x})(y-\bar{y})$
3	2	-4	-2.6	16	6.76	10.4
5	3	-2	-1.6	4	2.56	3.2
6	4	-1	-0.6	1	0.36	0.6
8	6	1	1.4	1	1.96	1.4
9	5	2	0.4	4	0.16	0.8
11	8	4	3.4	16	11.56	13.6
$\sum_{i=1}^{6} x_{i}=42$	$\sum_{i=1}^{6} y_{i}=28$			$\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}=42$	$\sum_{i=1}^{6}\left(y_{i}-\bar{y}\right)^{2}=23.36$	$\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=30$

$\bar{x}=\frac{42}{6}=7, \bar{y}=\frac{28}{6}=4.7$
$\operatorname{cov}(x, y)=\frac{1}{n} \sum(x-\bar{x})(y-\bar{y})=\frac{30}{6}=5$
$\sigma_{x}^{2}=\frac{42}{6}=7, \sigma_{y}^{2}=\frac{23.36}{6}=3.89$
$L_{y / x} \equiv y-\bar{y}=\frac{\operatorname{cov}(x, y)}{\sigma_{x}^{2}}(x-\bar{x})$
$L_{y / x} \equiv y-4.7=\frac{5}{7}(x-7)$
Finally, the equation of the regression line of y on x is $\quad L_{y / x} \equiv y=\frac{5}{7} x-0.3$

And

$$
L_{x / y} \equiv x-\bar{x}=\frac{\operatorname{cov}(x, y)}{\sigma_{y}^{2}}(y-\bar{y})
$$

$$
L_{x / y} \equiv x-7=\frac{5}{3.89}(y-4.7)
$$

Finally, the equation of the regression line of x on y is $L_{x / y} \equiv x=1.3 y+1$
Alternative method

x	y	x^{2}	y^{2}	$x y$
3	2	9	4	6
5	3	25	9	15
6	4	36	16	24
8	6	64	36	48
9	5	81	25	45
11	8	121	64	88
$\sum_{i=1}^{6} x_{i}=42$	$\sum_{i=1}^{6} y_{i}=28$	$\sum_{i=1}^{6} x_{i}^{2}=336$	$\sum_{i=1}^{6} y_{i}^{2}=154$	$\sum_{i=1}^{6} x_{i} y_{i}=226$

$L_{y / x} \equiv y=a x+b$
$\left\{\begin{array}{l}\sum_{i=1}^{k} f_{i} y_{i}=a \sum_{i=1}^{k} f_{i} x_{i}+b n \\ \sum_{i=1}^{k} f_{i} x_{i} y_{i}=a \sum_{i=1}^{k} f_{i} x_{i}^{2}+b \sum_{i=1}^{k} f_{i} x_{i}\end{array}\right.$
$\left\{\begin{array}{l}28=42 a+6 b \\ 226=336 a+42 b\end{array} \Leftrightarrow\left\{\begin{array}{l}a=\frac{5}{7} \\ b=-0.3\end{array}\right.\right.$
Thus, the line of y on x is $L_{y / x} \equiv y=\frac{5}{7} x-0.3$

$$
\begin{aligned}
& x=4 \Rightarrow y=2.5 \\
& x=7 \Rightarrow y=4.7 \\
& x=16 \Rightarrow y=11.1 \\
& L_{x / y} \equiv x=c y+d \\
& \left\{\begin{array}{l}
\sum_{i=1}^{k} f_{i} x_{i}=c \sum_{i=1}^{k} f_{i} y_{i}+d n \\
\sum_{i=1}^{k} f_{i} x_{i} y_{i}=c \sum_{i=1}^{k} f_{i} y_{i}^{2}+d \sum_{i=1}^{k} f_{i} y_{i}
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array} { l }
{ 4 2 = 2 8 c + 6 d } \\
{ 2 2 6 = 1 5 4 c + 2 8 d }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
c=1.3 \\
d=1
\end{array}\right.\right.
$$

Thus, the line of x on y is $L_{x / y} \equiv x=1.3 y+1$
$y=7 \Rightarrow x=10.1$
$y=9 \Rightarrow x=12.7$
$y=16 \Rightarrow x=21.8$

Application activity 1.4

1. Consider the following table

x	y
60	3.1
61	3.6
62	3.8
63	4
65	4.1

a) Find the regression line of y on x
b) Calculate the approximate y value for the variable $x=64$
2. The values of two variables x and y are distributed according to the following table

y	100	50	25
14	1	1	0
18	2	3	0
22	0	1	2

Find the regression lines

1.5 Interpretation of statistical data (Application)

Activity 1.5

1. Explain in your own words how statistics, especially bivariate statistics, can be used in our daily life.

Content summary

Bivariate statistics can help in prediction of a value for one variable if we know the value of the other.

Examples

1) One measure of personal fitness is the time taken for an individual's pulse rate to return to normal after strenuous exercise, the greater the fitness, the shorter the time. Following a short program of strenuous exercise Norman recorded his pulse rates P at time t minutes after he had stopped exercising. Norman's results are given in the table below.

t	0.5	1.0	1.5	2.0	3.0	4.0	5.0
P	125	113	102	94	81	83	71

Estimate Norman's pulse rate 2.5 minutes after stopping the exercise program.

Solution

t	P	t^{2}	P^{2}	$t P$
0.5	125	0.25	15625	62.5
1	113	1	12769	113
1.5	102	2.25	10404	153
2	94	4	8836	188
3	81	9	6561	243
4	83	16	6889	332
5	71	25	5041	355
$\sum_{i=1}^{7} t_{i}=17$	$\sum_{i=1}^{7} P_{i}=669$	$\sum_{i=1}^{7} t_{i}^{2}=57.5$	$\sum_{i=1}^{7} P_{i}^{2}=66125$	$\sum_{i=1}^{7} t_{i} P_{i}=1446.5$

We need the line $P=a t+b$

Use the formula

$$
\left\{\begin{array}{l}
\sum_{i=1}^{7} P_{i}=a \sum_{i=1}^{7} t_{i}+b n \\
\sum_{i=1}^{7} t_{i} P_{i}=a \sum_{i=1}^{7} t_{i}^{2}+b \sum_{i=1}^{7} t_{i}
\end{array}\right.
$$

We have

$$
\left\{\begin{array}{l}
669=17 a+7 b \\
1446.5=57.5 a+17 b
\end{array}\right.
$$

Solving we have

$$
\left\{\begin{array}{l}
a=-11 \\
b=122.3
\end{array}\right.
$$

Then $P=-11 t+122.3$
So, the Norman's pulse rate 2.5 minutes after stopping the exercise program is estimated to be $P=-11(2.5)+122.3$ or 94.8 .
2) Collect data on the mass and the height of 10 people. If X represents the mass and Y represents the height.
a) Organise the data in the table
b) Plot the scatter diagram
c) Calculate the mean of x, the mean of y, the variance of x and the variance of y
d) Calculate the $\operatorname{cov}(x, y)$, the correlation coefficient (r) then interpret the relationship between the mass and the height of these people
e) Establish the equation of the regression line y in function of x

Application activity 1.5

1) An old film is treated with a chemical in order to improve the contrast. Preliminary tests on nine samples drawn from a segment of the film produced the following results.

Sample	A	B	C	D	E	F	G	H	I
x	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
y	49	60	66	62	72	64	89	90	90

The quantity x is a measure of the amount of chemical applied, and y is the constant index, which takes values between 0 (no contrasts) and 100 (maximum contrast).
i) Plot a scatter diagram to illustrate the data.
ii) It is subsequently discovered that one of the samples of film was damaged and produced an incorrect result. State which sample you think this was.

In all subsequent calculations, this incorrect sample was ignored. The remaining data can be summarized as follows: $\sum x=23.5 \sum y=584$, $\sum x^{2}=83.75, \sum y^{2}=44622, \quad \sum x y=1883, n=8$
iii) Calculate the product moment correlation coefficient,
iv) State with a reason whether it is sensible to conclude from your answer to part (iii) that x and y are linearly related.
v) The line of regression of y on x has equation $y=a+b x$. Calculate the value of a and b, each correct to three significant figures.
vi) Use your regression line to estimate what the contrast index corresponding to the damaged piece of film would have been if the piece has been undamaged.
vii) State with a reason, whether it would be sensible to use your regression equation to estimate the contrast index when the quantity of chemical applied to the film is zero.

1.6 End unit assessment

1) The following results were obtained from line-ups in Mathematics and Physics examinations:

	Mathematics (x)	Physics (y)
Mean	475	39.5
Standard deviation	16.8	10.8

$$
r=0.95
$$

Find both equations of the regression lines. Also estimate the value of y for $x=30$.
2) For a set of 20 pairs of observations of the variables x and y, it is known that $\sum_{i=1}^{k} f_{i} x_{i}=250, \sum_{i=1}^{k} f_{i} y_{i}=140$, and that the regression line of y on x passes through $(15,10)$. Find the equation of that regression line and use it to estimate y when $x=10$.
3) In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible: Variance of x is 9

Equations of regression lines: $8 x-10 y+66=0$ and $40 x-18 y-214=0$

What were

a) the mean values of x and y
b) the standard deviation of y, and
c) the coefficient of correlation between x and y.
4) The table below shows the marks awarded to six students in a competition:

Student	A	B	C	D	E	F
Judge 1	6.8	7.3	8.1	9.8	7.1	9.2
Judge 2	7.8	9.4	7.9	9.6	8.9	6.9

Calculate a coefficient of rank correlation.
5) A company is to replace its fleet of cars. Eight possible models are considered and the transport manager is asked to rank them, from 1 to 8 , in order of preference. A saleswoman is asked to use each type of car for a week and grade them according to their suitability for the job (A-very suitable to E-unsuitable).
The price is also recorded:

Model	T r a n s p o r t manager's ranking	S ales woman's grade	Price (£10s)
S	5	B	611
T	1	B+	811
U	7	D-	591
V	2	C	792
W	8	B+	520
X	6	D	573
Y	4	C+	683
Z	3	A-	716

a. Calculate the Spearman's coefficient of rank correlation between
i. price and transport manager's rankings,
ii. price and saleswoman's grades.
b. Based on the result of a. state, giving a reason, whether it would be necessary to use all three different methods of assessing the cars.
c. A new employee is asked to collect further data and to do some calculations. He produces the following results:

The coefficient of correlation between
i) price and boot capacity is 1.2,
ii) maximum speed and fuel consumption in miles per gallons is -0.7 ,
iii) price and engine capacity is -0.9

For each of his results say, giving a reason, whether you think it is reasonable.
d. Suggest two sets of circumstances where Spearman's coefficient of rank correlation would be preferred to the Pearson's coefficient of correlation as a measure of association.

UNIT

ELEMENTARY PROBABILITY

Key Unit competence:

Use counting techniques and concepts of probability to determine the probability of possible outcomes of events occurring under equally likely assumptions.

Introductory activity

A woman applying the family planning program considers the assumption that one boy or one girl can be born at each delivery. If she wishes to have 3 children including two girls and one boy, the family knows that this is a case among other cases which can happen for the 3 children they can get.

With your colleagues, discuss all those cases and deduce the chance that the woman has for having a girl at the first and the second delivery with a boy at the last delivery

2.1 Concepts of probability: Sample space and Events

Activity 2.1

Consider the deck of 52 playing cards

	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs:		\% $\begin{array}{r}\text { ¢ } \\ *\end{array}$		***	2** 4 * *	4* * *	$\begin{aligned} & 4 \psi_{4}^{4} \\ & \psi \psi 4 \end{aligned}$		4* $\$ 4$ 中 ψ				
Diamonds:		$\begin{array}{\|cc\|}* & * \\ & *\end{array}$	$\left[\begin{array}{ll}* & + \\ \bullet & \\ \bullet & i\end{array}\right.$	$\begin{array}{lll}* * & * \\ * & *\end{array}$	$\begin{array}{ccc}2 * & * \\ * & * & \\ *\end{array}$	[***	$\left\lvert\, \begin{array}{lll}* & * & * \\ * & * \\ * & *\end{array}\right.$		+ *		8		
Hearts:		$\boldsymbol{*}$ \boldsymbol{v} 4			$\left\|\begin{array}{cc}\boldsymbol{v} & \boldsymbol{v} \\ \boldsymbol{v} \\ \boldsymbol{\omega} & \boldsymbol{\omega}\end{array}\right\|$	$\left\|\begin{array}{ll}\boldsymbol{v} & v \\ \boldsymbol{\omega} & \boldsymbol{A s}\end{array}\right\|$	$\left\|\begin{array}{lll} \boldsymbol{\top} & \boldsymbol{v} & \mathbf{v} \\ \boldsymbol{\omega} & \mathbf{v} \end{array}\right\|$	$\left\|\begin{array}{l} \boldsymbol{v}^{\boldsymbol{v}} \\ \boldsymbol{\omega}^{\boldsymbol{\omega}} \boldsymbol{A}_{i} \end{array}\right\|$					
Spades:				$* *$ $*$ $*$ $*$					${ }_{i}^{i}$	$\dot{\phi} \dot{\phi}$			

1. Suppose that you are choosing one card
a) How many possibilities of choosing one card do you have?
b) How many possibilities of choosing one king do you have?
c) How many possibilities of choosing the aces of hearts do you have?
2. If "selecting a queen is an example of event, give other examples of events.

Probability is the chance that something will happen.
The concept of probability can be illustrated in the context of a game of 52 playing cards. In a deck of 52 playing cards, cards are divided into four suits of 13 cards each. If a player selects a card at random (by simple random sampling), then each card has the same chance or same probability of being selected.

When a coin is tossed, it may show Head (H- face with logos) or Tail (T-face with another symbol).

We cannot say beforehand whether it will show head up or tail up. That depends on chance. The same, a card drawn from a well shuffled pack of 52 cards can be red or black. That depends on chance. Such phenomena are called probabilistic. The theory of probability is concerned with this type of phenomena.

Probability is a concept which numerically measures the degree of uncertainty and therefore of certainty of occurrence of events.

In most sampling situations we are generally not concerned with sampling a specific individual but instead we concern ourselves with the probability of sampling certain types of individuals.

Random experiments and Events

A random experiment is an experiment whose outcome cannot be predicted or determined in advance.

Example of experiments:

- Tossing a coin,
- Throwing a dice
- Selecting a card from a pack of playing cards, etc.

In all these cases there are a number of possible results (outcomes) which can occur but there is an uncertainty as to which one of them will actually occur.

Each performance in a random experiment is called a trial. The result of a trial in a random experiment is called an outcome, an elementary event, or a sample point. The totality of all possible outcome (or sample points) of a random experiment constitutes the sample space which is denoted by Ω. Sample space may be discrete or continuous.

Discrete sample space:

- Firstly, the number of possible outcomes is finite.
- Secondly, the number of possible outcomes is countably infinite, which means that there is an infinite number of possible outcomes, but the outcomes can be put in a one-to-one correspondence with the positive integers.

Example

If a die is rolled and the number that show up is noted, then $\Omega=\{1,2,3, \ldots, 6\}$.

If a die is rolled until a " 6 " is obtained, and the number of rolls made before getting first " 6 " is counted, then we have that $\Omega=\{0,1,2,3, \ldots\}$.

Continuous sample space: If the sample space contains one or more intervals, the sample space is then uncountable infinite.

Example

A die is rolled until a " 6 " is obtained and the time needed to get this first " 6 " is recorded. In this case, we have that $\Omega=\{t \in \mathbb{R}: t>0\}=(0, \infty)$.

An event is a set of outcomes of a probability experiment; it is a subset of the sample space.

The null set ϕ is thus an event known as the impossible event. The sample space Ω corresponds to the sure event.

In particular, every elementary outcome is an event, and so is the sample space itself.

Remarks

- An elementary outcome is sometimes called a simple event, whereas a compound event is made up of at least two elementary outcomes.
- To be precise we should distinguish between the elementary outcome w, which is an element of Ω and the elementary event $\{w\} \subset \Omega$.
- The events are denoted by capital letters such as A, B, C and so on.

Example

Consider the experiment that consists in rolling a die and recording the number that shows up. Let A be the event "the even number is shown" and B be the event "the odd number less than 5 is shown". Define the events A and B.

Solution

We have the sample space $\Omega=\{1,2,3,4,5,6\}$.
$A=\{2,4,6\}$ and $B=\{1,3\}$

Definitions

- Two or more events which have an equal probability (same chance) of occurrence are said to be equally likely, i.e. if on taking into account all the conditions, there should be no reason to except any one of the events in preference over the others. Equally likely events may be simple or compound events.
- Two events, A and B are said to be incompatible (or mutually exclusive) if their intersection is empty. We then write that $A \cap B=\varnothing$.
- Two events, A and B are said to be exhaustive if they satisfy the condition $A \cup B=\Omega$.
- An event is said to be impossible if it cannot occur.

Example

Consider the experiment that consists in rolling a die and recording the number that shows up.

We have that $\Omega=\{1,2,3,4,5,6\}$.
We define the events

$$
A=\{1,2,4\}, B=\{2,4,6\}, C=\{3,5\}, D=\{1,2,3,4\} \text { and } E=\{3,4,5,6\}
$$

We have
$A \cup B=\{1,2,4,6\}$,
$A \cap B=\{2,4\}$,
$A \cap C=\varnothing$ and
$D \cup E=\Omega$.
Therefore, A and C are incompatible events.
D and E are exhaustive events.
Moreover, we may write that $A^{\prime}=\{3,5,6\}$, where the symbol A^{\prime} denotes the complement of the event A.

This suggests the following definition:
If E is an event, then E^{\prime} is the event which occurs when E does not occur. Events E and E ' are said to be complementary events.

Example of event and sample spaces

- Tossing a coin: there are two possible outcomes, you gain Head up or

Tail up. Then, $\Omega=\{H, T\}$ - throwing a die and noting the number of its uppermost face. There are 6 possible outcomes: one number from 1 to 6 can be up. Then, $\Omega=\{1,2,3,4,5,6\}$.

- Two coins are thrown simultaneously. $\Omega=\{H H, H T, T H, T T\}$
- Tree coins are thrown simultaneously.
$\Omega=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$
- Two dice are thrown simultaneously. The sample space consists of 36 points:
$\Omega=\{(1,1),(1,2), \ldots$.$\} . Please complete other points!$
Note: The determination of sample space for some events such as the one for dice thrown simultaneously requires the use of complex reasoning but it can be facilitated by different counting techniques.

Application activity 2.1

Two dice are thrown simultaneously and the sum of points is noted, determine the sample space.

2.2 Counting techniques

2.2.1 Simple counting techniques: (Venn diagram, tree diagrams, contingency table)

Activity 2.2.1

1. Use the library or the internet to search on counting techniques used to determine outcomes for different random experiments.
2. There are 2 roads joining A and B and 3 roads joining B and C. Write down different roads from A to C via B. How many are they?

CONTENT SUMMARY

Many problems in real life can be solved by simply counting the number of different ways in which a certain event can occur.

The main counting techniques are related to arrangement and combination rules. Before these rules, let us have a recall on Venn diagram, Tree diagrams and Contingency table.

1. Use of Venn diagram

As studied in senior two, Venn diagram, Tree diagrams and Contingency table can be used to determine all the possible outcomes of some events.

A Venn diagram refers to representing mathematical or logical sets pictorially as circles or closed curves within an enclosing rectangle (the universal set), common elements of the sets represented by intersections of the circles.

In many cases, events can be described in terms of other events through the use of the standard constructions of set theory. We will briefly review definitions of these constructions. The reader is referred to the following figure for Venn diagrams which illustrate these constructions.

$A \cap B$

$A \cup B$

$\overline{\mathrm{A}}$

A-B

Let A and B be two sets. Then the union of A and B is the set $A \cup B=\{x / x \in$ Aor $x \in B\}$.

The intersection of A and B is the set $A \cap B=\{x / x \in A$ and $x \in B\}$
The difference of A and B is the set $A-B=\{x / x \in A$ and $x \notin B\}$.
The set A is a subset of B , written $A \subset B$, if every element of A is also an element of B.

When $A \cap B=\phi$, the two events are said to be mutually exclusive. This means that they cannot occur at the same time, they do not have outcomes in common.

When $A \cap B \neq \phi$, the two events are not mutually exclusive. This means that they have some outcomes in common.

The complement of an event \mathbf{A}

It is the set of outcomes in the sample space Ω that are not included in the outcomes of event A . The complement of A is denoted A^{\prime}

Finally, the complement of A is the set $\bar{A}=\{x / x \in \Omega$ and $x \notin A\}$

Example

1. Determine which events are mutually exclusive and which are not when a single die is rolled.
a) Getting an odd number and getting an even number.
b) Getting a 3 and getting an odd number.
c) Getting an odd number and getting a number less than 4
d) Getting a number greater than 4 and getting a number less than 4 .

Solution

1. a) Events are mutually exclusive.
b) Events are not mutually exclusive.
c) Events are not mutually exclusive.
d) Events are mutually exclusive
2. A survey involving 120 people about their preferred breakfast showed that;

55 eat eggs for breakfast.
40 drink juice for breakfast.
25 eat both eggs and drink juice for breakfast.
(a) Represent the information on a Venn diagram.
(b) Calculate the following probabilities.
(i) A person selected at random takes only one type for breakfast.
(ii) A person selected at random takes neither eggs nor juice for breakfast.

Solution

a) Let $A=$ those who eat eggs,$B=$ those who take juice and z represent those who did not take anything

Here, we can now find the number of people who take eggs only
$x=55-25=30$
So 30 people took Eggs only
Also, $y=40-25=15$
So, 15 people took Juice only.
Hence $30+25+15+z=120$
$z=120-(30+15+25)$
$z=120-70$
$z=50$

The number of people who did not take anything for breakfast is 50 .

b) i) $P(E)=\frac{30+15}{120}=\frac{45}{120}$
ii) $P\left[(A \cup B)^{\prime}\right]=P(Z)=\frac{50}{120}$

2. Use of tree diagrams

A tree diagram is simply a way of representing a sequence of events. Tree diagrams are particularly useful in probability since they record all possible outcomes in a clear and uncomplicated manner.

It has branches and sub-branches, which help us to see the sequence of events and all the possible outcomes at each stage.

Example

1. Using a tree diagram, determine all the possible outcomes that can be obtained when a coin is tossed twice.

Solution

In the first toss, we get either a head (H) or a tail (T). On getting a H in the first toss, we can get a H or T in the second toss. Likewise, after getting a T in the first toss, we can get a H or T in the second toss.

$S=\{H H, H T, T H, T T\}$

3. Use of a table

A table is simply a way of representing a sequence of events. It is a rectangular array in which the first column has elements of the first set while the first low has elements of the second set to be associated with the first.

Example:

1) Find the space for rolling two dice.

Solution:

As each die cam land in 6 different ways, and two dice are rolled, the sample space can be presented as a rectangular array.

Die 2	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Thus the total number of all possible outcomes while rolling two dice is 36 .
There is a technique of counting without necessarily listing the total number of all possible outcomes. This is known as Basic product principle of counting:

If a sequence of n events in which the first one has n_{1} possibilities, the second with n_{2} possibilities the third with n_{3} possibilities, and so forth until n_{k}, the total number of possibilities of the sequence will be:

Total number $=n_{1} \times n_{2} \times n_{3} \times \ldots \times \mathrm{n}_{\mathrm{k}}$.

Example 2.1

A car license plate is to contain three letters of the alphabet, the first of which must be R, S, T or U, followed by three decimal digits. How many different license plates are possible?

Solution

The first letter can be chosen in 4 different ways, the second and third letters in 26 different ways each, and each of the three digits can be chosen in ten ways.

By using basic product principle of counting, we get that there are $4 \times 26 \times 26 \times 10 \times 10 \times 10=2704000$ plates possible.

Example 2.2

a) How many numbers of four different digits can be formed?
b) How many of these are even?

Solution

a) There are nine ways to choose the first digit since 0 cannot be the first digit, and nine, eight and seven ways to choose the next three digits since no digit may be repeated.
Therefore there are $9 \times 9 \times 8 \times 7=4536$ numbers possible
a) The last digit must be a $0,2,4,6$ or 8 . There are five ways of choosing it. Then the first digit can be chosen in eight different ways since it cannot be a zero or the number chosen for the last digit. The other two digits can be chosen in eight and seven ways respectively.

Therefore the number of even numbers is $8 \times 8 \times 7 \times 5=2240$.

Application activity 2.2.1

1) Use a tree diagram to find the gender for 3 children in a family.
2) A coin is tossed and a die is rolled. Find the number of outcomes for the sequence of events.
3) In a survey of 100 student-teachers, it was found that 77 studentteachers were studying Mathematics; 47 student-teachers were studying Physics; 44 student-teachers were studying Chemistry; 43 student-teachers were studying both Mathematics and Physics; 37 student-teachers were studying both Mathematics and Chemistry; 12 student-teachers were studying both Physics and Chemistry ; 12 student-teachers were studying all three subjects.
a) Find the number of student-teachers from among the 100 who were not studying any one of the three sciences.
b) Find the number of student-teachers from among the 100 who were studying both Physics and Mathematics but not Chemistry.
4) There are 20 teams in the local football competition. In how many ways can the first four places in the premiership table be filled?

2.2.2 Basic sum principle of counting (Mutually exclusive situations)

Activity 2.2.2

1) Suppose that you go to a restaurant and you are allowed a soup or juice. Will you pick one, the other or both?
2) How many different four digits numbers, end in a 3 or a 4, can be formed from the figures $3,4,5,6$ if each figure is used only once in each number.

Two experiments 1 and 2 are mutually exclusive, if when experiment 1 occurs, experiment 2 cannot occur. Likewise, if experiment 2 occurs, experiment 1 cannot occur.

Basic sum principle of counting

In such cases, the number of outcomes of either experiment 1 or experiment 2 occurring can be obtained by adding the number of outcomes of experiment 1 to the number of outcomes of experiment 2.

This suggests the following result:
"If the first experiment has \mathbf{m} possibleoutcomes and if the second experiment has \mathbf{n} possible outcomes, then an experiment which might be "the first experiment or the second experiment",
called experiment 1 or 2, has $(\mathrm{m}+n)$ possible outcomes."

Example

1. In tossing an object, which might be a coin (with two sides H and T) or a die (with six sides 1 through 6), how many possible outcomes, will appear.

Solution

- The experiment may be tossing a coin (experiment 1) or tossing a die (experiment 2), or just experiment 1 or 2.
- So the number of outcomes is $2+6=8$ according to the above basic sum principle of counting.

The number of outcomes in which a certain experiment 1 occurs will clearly be mutually exclusive with those outcomes in which that experiment does not occur. Thus,

Number of outcomes in which exp eriment 1 does not occur
$=$ the total number of outcomes - the number of outcomes in which experiment 1 occurs

Example

1) In tossing an object which might be a coin (with two sides H and T) or a die (with six sides 1 through 6), how many possible outcomes will appear?

Solution

The experiment may be tossing a coin (experiment 1) or tossing a die (experiment $2)$, or just experiment 1 or 2.

So the number of outcomes is $2+6=8$ according to the above basic sum principle of counting.

Notice

The number of outcomes in which a certain experiment 1 occurs will be clearly mutually exclusive with those permutations in which that experiment does not occur. Thus,

Number of permutations in which experiment 1 does not occur
$=$ total number of permutation-number of permutations in which experiment 1 occurs

Generalized sum principle of counting

"If Experiments 1 through k have respectively n_{1} through n_{k} outcomes, then the experiment 1 or 2 or \ldots or k has $\mathrm{n}_{1}+n_{2}+\ldots+\mathrm{n}_{k}$ outcomes.

Example:

1) How many even numbers containing one or more digits can be formed from the digits $2,3,4,5,6$ if no digit may be repeated?

Solution

Since the required numbers are even, last digits must be 2 or 4 or 6 . Note that there are 5 digits.

So we can form a number containing one digit, two digits, three digits, four digits or five digits as follow

From the digits 2, 3, 4, 5, 6,

- the even numbers containing one digit are 2 or 4 or 6 . That is 3 numbers;
- for forming even number containing two digits, there are 3 ways of choosing the last digit and 4 ways to choose the first. That is $3 \times 4=12$ numbers;
- for forming even number containing three digits, there are 3 ways to choose the last digit, 4 ways to choose the first and 3 ways to choose the second. That is $3 \times 4 \times 3=36$;
- for forming even number containing four digits, there are 3 ways of choosing the last digit, 4 ways to choose the first, 3 ways to choose the second and 2 ways to choose the fourth. That is $3 \times 4 \times 3 \times 2=72$;
- for forming even number containing five digits, there are 3 ways to choose the last, 4 ways to choose the first, 3 ways to choose the second, 2 ways to choose the fourth and 1 way to choose the fifth. That is $3 \times 4 \times 3 \times 2 \times 1=72$;

Since these events are mutually exclusive, we can apply basic sum principle of counting;

From which the total number of even numbers that can be formed from the given digits is $3+12+36+72+72=195$.

Application activity 2.2.2

1. How many even numbers containing 2 digits can be formed from the digits $2,3,4$ if no digit may be repeated?
2. In deck of 52 playing cards, How many ways are there to get a heart or a diamond?

2.2.3 Arrangements of n unlike objects in a row

Activity 2.2.2

Consider three letters R, E and B written in a row, one after another.
Form all possible different words from three letters R, E and B (not necessarily sensible).

In fact, each arrangement is a possible permutation of the letters R, B and E; for example REB, RBE, ...

How many arrangements are possible for three letters R, E and B ?

From different arrangement of three letters $\boldsymbol{R}, \boldsymbol{E}$ and \boldsymbol{B}, the first letter to be written down can be chosen in 3 ways. The second letter can then be chosen in 2 ways because there are 2 remaining letters to be written down and the third letter can be chosen in 1 way because it is only one letter remain to be written down. Thus, the three operations can be performed in $3 \times 2 \times 1=6$ ways.

This arrangement of letters is the same as sitting different people on the same bench. A permutation is an arrangement of n objects in a specific order.

Example

Give all different ways three students: Aloys, Emmanuel and Alexis can be sit on the same bench. Two ways were given in the table, complete others.

Aloys	Emmanuel	Alexis
Aloys	Alexis	Emmanuel
..

This suggests the following fact:
The number of different permutations of n different objects (unlike objects) in a row is
$n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 2 \times 1$

This corresponds to the number of ways of arranging n unlike objects in a line
A useful short hand of writing this operation is $n!$ (read \boldsymbol{n} factorial). Then, $n!=n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 2 \times 1$

Where,

$1!=1,2!=2 \times 1=2,3!=3 \times 2 \times 1=6,4!=4 \times 3 \times 2 \times 1=24,5!=5 \times 4 \times 3 \times 2 \times 1=120$ and so on.

Note that $0!=1$

Example:

1) Five children have to be seated on a bench. In how many ways they can be seated. How many arrangements are they, if the youngest child has to sit at the left end of the bench?

Solution

Since there are five children, the first child can be chosen in 5 ways, the next child in 4 ways, the next in 3 ways, the next in 2 ways and the last in 1 way. Then, the number of ways is $5!=5 \times 4 \times 3 \times 2 \times 1=120$.

Now, if the youngest child has to sit at the left end of the bench, this place can be filled in only 1 way. The next child can then be chosen in 4 ways, the next in 3 ways and so on. Thus, the number of total arrangement is $1 \times 4!=1 \times 4 \times 3 \times 2 \times 1=24$.
2) Three different mathematics books and five other books are to be arranged on a bookshelf. Find :
a) The number of possible arrangements of the book.
b) The number of possible arrangements if the three mathematics books must be kept together?

Solution

We have 8 books altogether.
a) Since we have 8 books altogether, the first book can be chosen in 8 ways, the next in 7 ways, the next in 6 ways and so on. Thus, the total arrangement is $8!=40320$
b) Since the 3 mathematics books have to be together, consider these bound together as one book. There are now 6 books to be arranged and these can be performed in $6!=720$.

Note that we have taken the three mathematics book as one book; these three books can be arranged in $3!=6$ ways. Thus, the total number of arrangements is $720 \times 6=4320$.

Application activity 2.2.3

1. Simplify
$\begin{array}{ll}\text { a. } \frac{5!}{2!} & \text { b. } \frac{10!}{6!7!}\end{array}$
2. Four different English books, five different Biology books and ten other books are to be arranged on a bookshelf. Find
a. The number of possible arrangements of the books.
b. The number of possible arrangements if the three Biology books must be kept together?

2.2.4 Arrangements of indistinguishable objects (Permutations with repetitions)

Activity 2.2.4

1) Make a list of all arrangements formed by 4 numbers: $1,2,3,4$. How many arrangements are they possible?
2) Consider the arrangements of four letters in the word "BOOM".

- Write down all possible different arrangements.
- How many arrangements are they possible of four letters in the word "BOOM"?

Consider the arrangements of six letters in the word "AVATAR" (a title used for the movie).

We see that there are three A's (or 3 alike letters).

- Let the three A 's in the word be distinguished as $\boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}} \boldsymbol{A}_{\mathbf{2}}$ and $\boldsymbol{A}_{\mathbf{3}}$ $\boldsymbol{A}_{\mathbf{3}}$ respectively. Then all the six letters are different, so the number of permutations of them (called labeled permutations) is $n!=6!$.
- However, consider each of the real permutations without distinguishing the three A's, for example W=RATAVA.
- The following are all of the $6(=3!)$ labeled permutations among the 6 ! ones, which come from permuting the three labeled A's in W=RATAVA:

$$
\mathrm{RA}_{1} \mathrm{TA}_{2} \mathrm{VA}_{3}, \mathrm{RA}_{1} \mathrm{TA}_{3} V A_{2}, \mathrm{RA}_{2} \mathrm{TA}_{1} V A_{3}, \mathrm{RA}_{2} \mathrm{TA}_{3} V A_{1}, \mathrm{RA}_{3} T A_{1} V A_{2}, \mathrm{RA}_{3} T A_{2} V A_{1}
$$

- All these six labeled permutations should be considered as an identical real permutation, which is W=RATAVA.
- Since each real permutation has six of such labeled permutations coming from the three A's, we conclude that the desired number of
real permutations is just $\frac{6!}{3!}=\frac{6 \times 5 \times 4 \times 3!}{3!}=6 \times 5 \times 4=120$
This suggests the following fact:

The number of different permutations of n indistinguishable objects with n_{1} alike, n_{2} alike, \ldots, is $\frac{n!}{n_{1}!\times n_{2}!\times \ldots}$. This corresponds to the number of arranging n objects in line of which n_{1} of one type are alike, n_{2} of the second type are alike and so on.

Note that alike means that the objects in a group are indistinguishable from one another.

Example:

1. How many distinguishable six digit numbers can be formed from the digits $5,4,8,5,5,4$?

Solution

There are 6 letters in total with three 5's and two 4's. Then the required numbers are $\frac{6!}{3!2!}=\frac{720}{12}=60$
2. How many arrangements can be made from the letters of the word TERRITORY?

Solution

There are 9 letters in total with three R's and two T's.
Thus, we have $\frac{9!}{3!\times 2!}=\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4}{2 \times 1}=\frac{60,480}{2}=30,240$ arrangements .
3. In how many different ways can 4 identical red balls, 3 identical green balls and a yellow ball be arranged in a row?

Solution

There are 8 balls in total with 4 red, 3 green and one yellow.
Thus, we have $\frac{8!}{4!\times 3!}=\frac{8 \times 7 \times 6 \times 5}{3 \times 2 \times 1}=280$ ways .

Application activity 2.2.4

1. How many different arrangements can be made from the letters of the word
a) ENGLISH
b) MATHEMATICS
2. How many arrangements can be made from the letters of English alphabet?
3. In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row, if discs of the same colour are indistinguishable?

2.2.5 Circular arrangements

Activity 2.2.5

Take 5 different note books

- Put them on a circular table
- Fix one note book, for example A;
- Try to interchange other 4 note books as possible
- How many different ways obtained?

Remember that there is one note book that will not change its place

We have seen that if we wish to arrange n different things in a row, we have n ! possible arrangements. Suppose that we wish to arrange n things around a circular table. The number of possible arrangements will no longer be n ! because there is now no distinction between certain arrangements that were distinct when written in a row.

For example $A B C D E$ is different arrangement from EABCD, but

With circular arrangement of this type, it is the relative positions of the items being arranged which is important. One item can therefore be fixed and the remaining items arranged around it.

The number of arrangements of n unlike things in a circle will therefore be $(n-1)$!.

In those cases where clockwise and anticlockwise arrangements are not considered to be different, this reduces to $\frac{1}{2}(n-1)$!.

Example:

1. Four men Peter, Rogers, Smith and Thomas are to be seated at a circular table. In how many ways can this be done?

Solution

Suppose Peter is seated at some particular place. The seats on his left can be filled in 3 ways, the next seat can then be filled in 2 ways and the remaining seat in 1 way.

Thus, total number of arrangements is $3!=6$.
2. Nine beads, all of different colors are to be arranged on a circular wire. Two arrangements are not considered to be different if they appear the same when the ring is turned over. How many different possible arrangements are there?

Solution

When the ring is turned over, the arrangements

When viewed from one side, these arrangements are only different if that one is a clockwise arrangement and the other is anticlockwise. If one bead is fixed, there are $(9-1)$! $=8$! ways of arranging the remaining beads relative to the fixed one.

But, half of these arrangements will appear the same as the other half when the ring is turned over, because for every clockwise arrangement there is a similar anticlockwise arrangement. Hence, number of arrangements is $\frac{1}{2} 8!=20160$.
3. In how many ways can five people Smith, James, Clarisse, Brown and John, be arranged around a circular table in each of following cases?
a) Smith must sit next Brown.
b) Smith must not sit next Brown.

Solution

There are five people.
a) Since Smith and Brown must sit next to each other, consider these two bound together as one person. There are now, 4 people to seat. Fix on of these, and then the remaining 3 people can be seated in $3 \times 2 \times 1=6$ ways relative to the one who was fixed.

In each of these arrangements Smith and Brown are seated together in a particular way. Smith and Brown could now change the seats giving another 6 ways of arranging the five people. Total number of arrangements is $6 \times 2=12$.
b) If Smith must not sit next Brown, then this situation is mutually exclusive with the situation in a), Total number of arrangements of 5 people at a circular table is $(5-1)!=4!=24$.

Thus, if Smith must not sit next Brown, the number of arrangements is $24-12=12$

Application activity 2.2.5

1. Five men Eric, John, Giramata, Peter, and Hogoza are to be seated at a circular table. In how many ways can this be done?
2. Eleven different books are placed on a circular table. In how many ways can this be done?

2.2.6 Distinguishable permutations (Permutations of runlike objects selected from n distinct objects)

Activity 2.2.6

Make a selection of any three letters from the word "PRODUCT" and fill them in 3 empty spaces

Use a box like this for empty spaces		

Write down all different possible permutations of 3 letters selected from the letters of the word "PRODUCT". How many are they?

Consider the number of ways of placing 3 of the letters A, B, C, D, E, F, G in 3 empty spaces.

The first space can be filled in 7 ways, the second in 6 ways and the third in 5 ways. Therefore there are $7 \times 6 \times 5$ ways of arranging 3 letters taken from 7 letters. This is the number of permutations of 3 objects taken from 7 and it is written ${ }^{7} P_{3}$.

So ${ }^{7} P_{3}=7 \times 6 \times 5=210$.
Note that the order in which the letters are arranged is important: $A B C$ is a
different permutation from ACB.
Now, $7 \times 6 \times 5$ could be written $\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}$
i.e ${ }^{7} P_{3}=\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}=\frac{7!}{4!}=\frac{7!}{(7-3)!}$

This suggests the following fact:
The number of different permutations (ways) of r unlike objects taken from n different objects is ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$ or we can use the denotation $P_{r}^{n}=\frac{n!}{(n-r)!}$ or $P(n, r)=\frac{n!}{(n-r)!}$
Note that if $r=n$, we have ${ }^{n} P_{n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n!$ which is the ways of arranging
n unlike objects.

Example:

1. How many permutations are there of 3 letters chosen from eight letters of the word RELATION ?

Solution

We see that all those eight letters are distinguishable (unlike). So the required arrangements are given by
${ }^{8} P_{3}=\frac{8!}{(8-3)!}=\frac{8!}{5!}=336$.
2) How many permutations of 2 letters chosen from letters A, B, C, D, E are there?

Solution

There are 5 letters which are distinguishable (unlike). So the required arrangements are given by ${ }^{5} P_{2}=\frac{5!}{(5-2)!}=\frac{5!}{3!}=20$.
3) How many permutations are there of 4 letters chosen from letters of the word ENGLISH?
4) How many permutations are there of 5 letters chosen from letters A, B, C, D, E, F, and G.
5) How many permutations are there of 10 letters chosen from English alphabet.

2.2.7 Permutations of r objects selected from mixture of n alike and unlike objects

Activity 2.2.7

Make a selection of any three letters from the word "BOOM" and fill them in 3 empty spaces

Use a box like this for empty spaces		

Write down all different possible permutations of 3 letters selected from the letters of the word "BOOM". How many are they? Comment on your findings.

In determining the number of all possible permutations of r objects selected from a mixture of \mathbf{n} alike and unlike objects, determine all possible mutually exclusive events from the given experiment that may occur ;then apply basic sum principle.

Example

How many different arrangements are there of 3 letters chosen from the word COMBINATION?

Solution

There are 11 letters including two O's, two l's and two N's. To find the total number of different arrangements we consider the possible arrangements as four mutually exclusive situations.
a) Arrangements in which all 3 letters are different: there are ${ }^{8} P_{3}=336$
b) Arrangements containing two O's and one other letter: the other letter can be one of seven letters ($\mathrm{C}, \mathrm{M}, \mathrm{B}, \mathrm{I}, \mathrm{N}, \mathrm{A}$ or T) and can appear in any of the three positions (before the two O'S, between the two O's, or after the two O's). i.e $3 \times 7=21$ arrangements containing two O's and one other letter.
c) Arrangements containing two l's and one other letter: by the same reasoning in b) there will be $3 \times 7=21$ arrangements containing two l's and one other letter.
d) Arrangements containing two N's and one other letter: by the same reasoning in b) there will be $3 \times 7=21$ arrangements containing two N's
and one other letter.
Thus the total number of arrangements of 3 letters chosen from the word COMBINATION will be $336+21+21+21=399$.

Application activity 2.2.5

1. How many permutations are there of 2 letters chosen from letters of the word RWANDAN?
2. How many different permutations can be formed from 4 letters chosen from letters of the word EMMANUEL?

NOTE: Ordered Samples

Many problems are concerned with choosing an element from a set S, say , with n elements. When we choose one element after another, say, r times, we call the choice an ordered sample of size r. We consider two cases.

(1) Sampling with replacement

Here the element is replaced in the set S before the next element is chosen. Thus, each time there are n ways to choose an element (repetitions are allowed). The Product rule tells us that the number of such samples is:

$$
\text { n.n.n.....n.n }(r \text { factors })=n^{r}
$$

(2) Sampling without replacement

Here the element is not replaced in the set S before the next element is chosen. Thus, there is no repetition in the ordered sample. Such a sample is simply an r - permutation. Thus the number of such samples is:

$$
P(n, r)=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots \ldots(\mathrm{n}-\mathrm{r}+1)=\frac{n!}{(n-r)!}
$$

Example:

Three cards are chosen one after the other from a 52-card deck. Find the number m of ways this can be done:
(a) with replacement;
(b) without replacement.

Solution

(a) Each card can be chosen in 52 ways. Thus $m=(52)(52)(52)=140608$
(b) Here there is no replacement. Thus, the rst card can be chosen in 52 ways, the second in 51 ways, and the third in 50 ways. Therefore:
$m=(52,3)=52(51)(50)=132600$.

2.2.8. Combinations

Activity 2.2.8

Take 8 different Mathematics books and form different groups each containing 2 mathematics books. How many groups obtained?

From permutation of r unlike objects selected from n different objects, we have seen that the order in which those objects are placed is important. But when considering the number of combinations of r unlike objects selected from n different objects, the order in which they are placed is not important.

For example, the combination $\mathbf{A B C}$ gives rise to 3 ! Permutations: $\mathbf{A B C}, \mathbf{A C B}$, BCA, BAC, CAB, CBA.

Consider the number of permutations of 3 letters selected from the 7 letters \mathbf{A}, B, C, D, E, F, G.

That is

$$
{ }^{7} P_{3}=\frac{7!}{(7-3)!}=\frac{7!}{4!}
$$

If we need the combinations of 3 letters selected from those 7 letters, we will take this number of permutations divided by 3 ! because each permutation gives rise to 3 ! permutations.

That is, the number of combinations of 3 letters selected from those 7 letters is $\frac{{ }^{7} P_{3}}{3!}=\frac{\frac{7!}{4!}}{3!}=\frac{7!}{4!3!}=\frac{7!}{(7-3)!3!}$.
This number is denoted by ${ }^{7} C_{3}$.

Thus, the number of combinations of 3 letters selected from those 7 unlike letters is ${ }^{7} C_{3}=\frac{7!}{(7-3)!3!}=\frac{7!}{4!3!}=35$.

This suggests the following fact:
The number of different groups of r items that could be formed from a set of n distinct objects with the order of selections being ignored is

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r!} .
$$

We can write ${ }^{n} C_{r}=\frac{{ }^{n} P_{r}}{r!}$
${ }^{n} C_{r}$ is sometimes denoted by $C_{n}^{r},{ }_{n} C_{r},\binom{n}{r}$ or $C(n, r)$.
Note that the objects selected to be in a group are regarded as indistinguishable (unlike).

Example

1) From a group of 5 men and 7 women, how many different committees consisting of 2 men and 3 women can be formed?

Solution

- Experiment 1: select 2 men from 5.
- Experiment 2: select 3 women from 7.
- Experiment of forming a committee: experiment $1 \& 2$.
- Numberofpossibleoutcomesofexperiment 1 is ${ }^{5} C_{2}=\frac{5!}{2!3!}=\frac{5 \times 4 \times 3!}{2 \times 3!}=10$
- Number of possible outcomes of experiment 2 is

$$
{ }^{7} C_{3}=\frac{7!}{3!4!}=\frac{7 \times 6 \times 5 \times 4!}{6 \times 4!}=35
$$

- Number of possible outcomes of experiment 1 and 2 is ${ }^{5} C_{2} \times{ }^{7} C_{3}=10 \times 35=350$ by the basic product principle of counting
- That is, the desired number of possible outcomes of the experiment of forming a committee is 350 .

2) A committee of three men and one woman is obtained from five men and three women. In how many ways can the members be chosen?

Solution

Three men can be selected from five men, i.e ${ }^{5} C_{3}=\frac{5!}{(5-3)!3!}=\frac{5!}{2!3!}$ ways
One woman can be selected from three women, i.e ${ }^{3} C_{1}=\frac{3!}{(3-1)!1!}=\frac{3!}{2!1!}$ ways.
By the basic product principle of counting, there are
${ }^{5} C_{3} \times{ }^{3} C_{1}=\frac{5!}{2!3!} \times \frac{3!}{2!1!}=\frac{5!}{2!2!}=30$ ways of selecting the committee.
The following two identities are true:
a) ${ }^{n} C_{r}={ }^{n} C_{n-r}$
b) Pascal's identity: ${ }^{n+1} C_{r}={ }^{n} C_{r}+{ }^{n} C_{r-1}$

Application activity 2.2.8

1. A committee of four men and two women is obtained from 10 men and 12 women. In how many ways can the members be chosen?
2. A group containing 4 Mathematics books and 5 Physics books is formed from 9 Mathematics books and 10 Physics books. How many groups can be formed?

2.3 Determination of Probability of an event, rules and formulas

2.3.1: Probability of an event

Activity 2.3.1

a) If n is the number of black cards in the pack, what is the value of n ?
b) Calculate the value $\mathrm{P}(\mathrm{A})=\frac{n}{\text { number of allcards }}$
c) If $\mathrm{P}(\mathrm{A})$ is the probability of electing a black card, deduce the definition of probability for any event E .

When a card is selected from an ordinary deck of 52 cards, one assumes that the deck has been shuffled, and each card has the same chance of being selected. Let A be the event of selecting a black card,

The probability of an event $A \subset \Omega$, is a real number obtained by applying to A the function P defined by

$$
P(A)=\frac{\text { Number of outcomes in } A}{\text { Total nu mber of outcomes in the sample space }}=\frac{n(A)}{n(\Omega)}
$$

This is the formula for the classical probability, it uses the sample space Ω.
Probability can be expressed as a fraction, decimal or percentage.

Example

1. For a card drawn from an ordinary deck, find the probability of getting a queen.

Solution: there are 52 cards in a deck and there are 4 queens,
$P($ queen $)=\frac{n(\text { queen })}{n(\Omega)}=\frac{4}{52}=\frac{1}{13}=0.076=\frac{7.6}{100}$
2. A letter is chosen from the letters of the word "MATHEMATICS". What is the probability that the letter chosen is an "A"?

Solution

Since two of the eleven letters are A's, we have two favourable outcomes.
There are eleven letters, so we have 11 possible outcomes.
Thus, the probability of choosing a letter A is $\frac{2}{11}$.

Basic probability rules

1. The probability cannot be negative or greater than $\mathbf{1}$

Suppose that an experiment has only a finite number of equally likely outcomes. If A is an event, then $0 \leq P(A) \leq 1$.

2. The probability of a certain event

If the event A is certain to occur, $A=\Omega$, and $P(A)=1$ and $P(\Omega)=1$.

3. Probability of impossible event

The event that cannot occur is an impossible event $A=\varnothing$, and if $A=\varnothing$ then $P(A)=0$.

Example

When a single die is rolled, find the probability of getting a 9 .

Solution

$\Omega=\{1,2,3,4,5,6\}$, it is impossible to get a 9. $A=\varnothing$
$P($ getting a 9$)=0$.

4. The sum of the probabilities of all the outcomes in the sample space is 1 .

Example

When you roll a fair die, there are six possible outcomes. Each outcome in the sample space has probability of $\frac{1}{6}$. Hence, the sum of the probabilities of all outcomes is given by $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{6}{6}=1$

5. Probability of complementary event

When E and E^{\prime} are complementary events, $P(E)=1-P\left(E^{\prime}\right)$.
Consider two different events, A and B, which may occur when an experiment is performed.

- The event $A \cup B$ is the event which occurs if A or B or both A and B occur, i.e, at least one of A and B occurs.
- The event $A \cap B$ is the event which occurs if A and B occur.
- The event $A-B$ is the event which occurs when A occurs and B does not occur.
- The event A^{\prime} is the event which occurs when A does not occur.

Example

1. When a die is rolled, the event E of getting odd number is that $E=\{1,3,5\}$ and $P(E)=\frac{3}{6}=\frac{1}{2}$
The event F of not getting an odd number is a complement of $\mathrm{E} . \quad F=E^{\prime}=\{2,4,6\}$ As $P(\Omega)=1, P(F)=1-\frac{1}{2}=\frac{1}{2}$.
2. If the probability that a person lives in an industrialized country of the world is $\frac{1}{4}$, find the probability that a person does not live in an industrialized country.

Solution

P (not living in an industrialized country $)=1-P$ (living in an industrialized country) $P=1-\frac{1}{5}=\frac{4}{5}$.

Properties of probabilities

Referring to rules mentioned above, probabilities assigned to events on a sample space Ω can be summarized in the following properties:
a) $P(E) \geq 0$ for every $E \subset \Omega$
b) $P(\Omega)=1$
c) If $E \subset F \subset \Omega$, then $P(E) \leq P(F)$
d) d) If A and B are disjoint subsets of Ω, then

$$
\text { If } E \subset F \subset \Omega, P(\mathrm{~A} \cup \mathrm{~B})=P(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

e) $P\left(A^{\prime}\right)=1-\mathrm{P}(\mathrm{A})$ for every $\mathrm{A} \subset \Omega$.

Formula for empirical (classical) probability

Given a frequency distribution, the probability of an event being in a given class is $P(A)=\frac{\text { frequency for the class }}{\text { Total frequency in the distribution }}=\frac{f}{n}$
This probability is called empirical probability and is based on observation.

Examples

1. A researcher asked 25 staff of an institution if they liked the way their breakfast is prepared. The responses were classified as "Yes", "No", and "Undecided". The results were categorized in a frequency distribution as follows:

Response	Frequency
Yes	15
No	8
Undecided	2
Total	$\mathbf{2 5}$

a) What is the probability of selecting a person who disliked the way the breakfast is prepared?
b) What is the probability of selecting a person who liked the way the breakfast is prepared?
c) What is the probability of selecting a person who neither like nor disliked the way the breakfast is prepared?

Solution

d) $\quad P($ non $)=\frac{f}{n}=\frac{8}{25}$
a) $\quad P($ yes $)=\frac{f}{n}=\frac{15}{25}$
b) $\quad P($ undecided $)=\frac{f}{n}=\frac{2}{25}$

Application activity 2.3.1

1. Hospital records indicated that maternity patients stayed in the hospital for the number of days shown in the distribution:

Number of days stayed	Frequency
3	15
4	32
5	56
6	19
7	5
Total	$\mathbf{1 2 7}$

Find these probabilities:
a) A patient stayed exactly 5 days
b) A patient stayed less than 6 days
c) A patient stayed at most 4 days
d) A patient stayed at least 5 days

2.3.2: Probability of mutually exclusive (incompatible) and non- inclusive events

Activity 2.3.2

1) Given a deck of 52 playing cards. If a card is drawn from that pack, Find
(a) the probability $P(A)$ that the card is a club
(b) the probability $P(B)$ that the card is a diamond
(c) the probability P that the card is a club or a diamond.
(d) Compare the probability P to the $P(A)$ and $P(B)$.

If two events A and B are such that $A \cup B=\Omega$ and $P(A \cup B)=1$, these two events are said to be exhaustive.

When $A \cap B=\phi \quad, \quad \mathrm{A}$ and B are mutually exclusive or disjoint and $P(A \cup B)=P(A)+P(B)$

This is called addition rule for mutually exclusive events.

When two events A and B are not mutually exclusive, $A \cap B \neq \phi$ the probability that A or B occurs is given by:

$$
P(A \cup B)=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(A \cap B)
$$

This is called addition rule for non-exclusive events

Example

1. A die is thrown once. Let A be the event: "the number obtained is less than 5 " and B be the event: "the number obtained is greater than 3 ". Find probability of $A \cup B$.

Solution

Here $A=\{1,2,3,4\}$ and $B=\{4,5,6\}$, then $A \cup B=\{1,2,3,4,5,6\}$ and then

$$
\begin{gathered}
P(A \cup B)=P(\Omega)=1 \quad \text { Or } \\
P(A)=\frac{4}{6}, P(A)=\frac{3}{6}, A \cap B=\{1\}, \text { then } P(A \cap B)=\frac{1}{6}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{4}{6}+\frac{3}{6}-\frac{1}{6} \\
& =1
\end{aligned}
$$

Generally, given a finite sample space, say $\Omega=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$, we can find a finite probability by assigning to each point $a_{i} \in \Omega$ a real number P_{i}, called the probability of a_{i}, satisfying the following:
a) $P_{i} \geq 0$ for all integers $i, 1 \leq i \leq n ;$
b) $\sum_{i=1}^{n} P_{i}=1$

If E is an event, then the probability $P(E)$ is defined to be the sum of the probabilities of the sample points in E.

Example

2. A coin is weighted so that heads is three times as likely to appear as tails. Find $P(H)$ and $P(T)$.

Solution

Let $P(T)=p_{1}$, then $P(H)=3 p_{1}$.

But $P(H)+P(T)=1$
Therefore $3 p_{1}+p_{1}=1 \Leftrightarrow 4 p_{1}=1 \Rightarrow p_{1}=\frac{1}{4}$
Thus, $P(H)=\frac{3}{4}$ and $P(T)=\frac{1}{4}$.
3. Events A and B are such that they are both mutually exclusive and exhaustive. Find the relation between these two events.

Solution

If A and B are mutually exclusive then

$$
P(A \cup B)=P(A)+P(B)
$$

If A and B are mutually exclusive then
$P(A \cup B)=1$
Therefore, $\quad P(A)+P(B)=1 \quad P(B)=1-P(A)$
But, $P\left(A^{\prime}\right)=1-P(A)$
Therefore, $P(B)=P\left(A^{\prime}\right) \quad$ i.e. $B=A^{\prime}$
Similarly, $A=B^{\prime}$
Thus, if events A and B are such that they are both mutually exclusive and exhaustive, then they are complementary.
4. A pen is drawn from a basket containing 10 pens of which 5 are red and 3 are black. If A is the event: "a pen is red" and B is the event: "a pen is black", find $P(A), P(B), P(A \cup B)$.

Solution

There are 5 red pens, then $P(A)=\frac{5}{10}=\frac{1}{2}$
There are 3 black pens, then $P(B)=\frac{3}{10}$
Since the pen cannot be red and black at the same time, then $A \cap B=\varnothing$ and two events are mutually exclusive so

$$
P(A \cup B)=P(A)+P(B)
$$

$$
=\frac{1}{2}+\frac{3}{10}=\frac{4}{5}
$$

Note that if $A=A_{1} \cup A_{2} \cup A_{3} \cup \ldots \cup A_{n}$, where $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are incompatible events, then we may write that $P(A)=\sum_{i=1}^{n} P\left(A_{i}\right)$ for $n=2,3, \ldots$

Therefore, the addition rule for exclusive events can be extended to any number of exclusive events and be written as follows:

$P\left(A_{1}\right.$ or A_{2} or $\left.A_{3} \ldots \ldots . A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)+$ \qquad $+P\left(A_{n}\right)$

Example

In race in which there are no dead hearts, the probability that John wins is 0.3 , the probability that Paul wins is 0.2 and the probability that Marks wins is 0.4 . Find the probability that
a) John or Mark wins
b) John or Paul or Mark wins
c) Someone else wins.

Solution

Since only one person wins, the events are mutually exclusive;
$P($ John or Mark wins $)=P($ John wins $)+P($ Mark wins $)=0.3+0.4=0.7$
$P($ John or Paul or Mark wins $)=P($ John wins $)+P($ Paul wins $)+P($ Mark wins $)$

$$
=0.3+0.2+0.4=0.9
$$

$P($ someone else wins $)=1-0.9=0.1$

Application activity 2.3.2

1. An ordinary die is thrown. Find the probability that the number obtained is:
a) Prime number
b) Odd number
c) Even or prime
d) Less than 4 or multiple of 5
e) Greater than 3 or less than 4

2.3.3: Probability of independent events and multiplication rule

Activity 2.3.3

A box contains 3 red pens, 4 green pens and 5 blue pens. One pen is taken from the box and then replaced. Another pen is taken from the box. Let A be the event "the first pen is red" and B be the event the second pen is blue."

Is the occurrence of event B affected by the occurrence of event A ? Explain.

Events A and B in a probability space S are said to be independent if the occurrence of one of them does not influence the occurrence of the other.

Probability of independent events

When two events are independent, the probability of both occurring is $P(A$ and $B)=P(A) . \quad P(B)$ or $P(A \cap B)=P(A) . P(B)$

This is the multiplication rule of independent events or and rule for independent events.

Example

A fair die is thrown twice. Find the probability that two fives are thrown.

Solution

On one throw, $P(5)=\frac{1}{6}$

On two throws,
$P\left(5_{1}\right.$ and $\left.5_{2}\right)=P\left(5_{1} \times 5_{2}\right)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}$
$P($ two fives are thrown $)=\frac{1}{36}$

Example

A factory runs two machines. The first machine operates for 80% of the time while the second machine operates for 60% of the time and at least one machine operates for 92% of the time. Do these two machines operate independently?

Solution

Let the first machine be M_{1} and the second machine be M_{2},
then $P\left(M_{1}\right)=80 \%=0.8, P\left(M_{2}\right)=60 \%=0.6$ and $P\left(M_{1} \cup M_{2}\right)=92 \%=0.92$ Now,

$$
\begin{aligned}
& P\left(M_{1} \cup M_{2}\right)=P\left(M_{1}\right)+P\left(M_{2}\right)-P\left(M_{1} \cap M_{2}\right) \\
& P\left(M_{1} \cap M_{2}\right)=P\left(M_{1}\right)+P\left(M_{2}\right)-P\left(M_{1} \cup M_{2}\right) \\
& \\
& =0.8+0.6-0.92 \\
& =0.48 \\
& \\
& =0.8 \times 0.6 \\
& \\
& =P\left(M_{1}\right) \times P\left(M_{2}\right)
\end{aligned}
$$

Thus, the two machines operate independently.

The multiplication rule can be extended to any number of independent events:

$P\left(A_{1}\right.$ and A_{2} and $\left.A_{3} \ldots \ldots . A_{n}\right)=P\left(A_{1}\right) \times P\left(A_{2}\right) \times P\left(A_{3}\right) \times$ \qquad $P\left(A_{n}\right)$

Example

1) Events A, B and C are independent. If the $P(\mathrm{~A})=\frac{1}{3} ; P(\mathrm{~B})=\frac{1}{4}$ and $P(\mathrm{C})=\frac{2}{5}$.
Find the probability of A, B, and C .

Solution

If events A, B and C are independent, then the $P(A$ and B and $C)=$ $P(A) \times P(B) \times P(\mathrm{C})=P\left(\frac{1}{3}\right) \times P\left(\frac{1}{4}\right) \times P\left(\frac{2}{5}\right)=\frac{2}{60}=\frac{1}{30}$.

Application activity 2.3.3

Work out the following questions

1. If A and B are mutually exclusive events, given the probability of A and B as $\frac{1}{5}$ and $\frac{1}{3}$ respectively, find the probability of at least any one event occurring at a time.
2. If X and Y are two events, the probability of the happening of X or Y is $\frac{7}{10}$ and the probability of X is $\frac{1}{3}$. If X and Y are mutually exclusive, find the probability of Y .
3. In a class of a certain school, there are 12 girls and 20 boys. If a teacher want to choose one student to answer the asked question
a. What is the probability that the chosen student is a girl?
b. What is the probability that the chosen student is a boy?
c. If teacher doesn't care on the gender, what is the probability of choosing any student?

2.3.4 Dependent events

Activity 2.3.4

Suppose that you have a deck of cards; then draw a card from that deck, not replacing it, and then draw a second card, etc.
a) What is the sample space for each event?
b) Explain if there is any relationship (Independence or dependence) between those two events considering the sample space. Does the selection of the first card affect the selection of the second card?

When the outcome or occurrence of the first event affects the outcome or occurrence of the second event in such a way that the probability is changed, the events are said to be dependent.

Example

1) Suppose a card is drawn from a deck and not replaced, and then the second card is drawn. What is the probability of selecting an ace on the first card and a king on the second card?

Solution

The probability of selecting an ace on the first draw is $\frac{4}{52}$. But since that card is not replaced, the probability of selecting a king on the second card is $\frac{4}{51}$, since there are 51 cards remaining.

The outcomes of the first draw has affected the outcome of the second. By multiplication rule, the probability of both events occurring is : $\frac{4}{52} \times \frac{4}{51}=\frac{16}{2652}=\frac{4}{663}=0.006$.

In this case the $P(A \cap B)=P(A) \times P(B \mid A)$

Application activity 2.3.4

1) A die is tossed. Find the probability that the number obtained is a 4 given that the number is greater than 2.

2.4 Examples of Events in real life and determination of related probability

Activity 2.4

1. Two football teams in Rwanda " Rayon Sport" and "APR FC" had to play 3 matches. Two boys Mary and Manasseh made a betting in the following ways in which the winner should be given 400,000Frw when his event succeeds.

Matayo said that APR will gain the first match only and Rayon Sport will gain the second and the third. Manasseh said that APR will gain at least two matches.
a) Between Mary and Manasseh, discuss and determine the boy who has more chances of winning that money.
b) Is there any risk in betting? Referring to the results obtained in a) what are the points of advice you can give to the youth who spend their money in betting?
2. Carry out a research in the library or on internet to find other applications of probability in real life and present them in the classroom discussion.

Many people don't care about the risks involved in some activities since they do not understand the concept of probability. On the other hand, people may fear activities that involve little risk to health or life because these activities have been sensationalized by the press and media.

We have to think big before taking decision regarding our engagement in the games of chance. Such games are for example: betting on card games, slot machine (ikiryabarezi), lotteries, and weather forecasting. In such games, predictions are based on probability and hypotheses are tested by using probability.

The following are example of applications of rules of probability to solve some problems we can meet in our life experience.

Examples

1) A box contains 3 blue marbles, 4 red marbles and 5 yellow marbles. If a person selects one marble at a random, find the probability that it is either a blue or yellow marble.

Solution

The total of marbles is 12 . Since there are 3 blue and 5 yellow marbles, $P($ blue or yellow $)=P($ blue $)+\mathrm{P}($ yellow $)=\frac{3}{12}+\frac{5}{12}=\frac{8}{12}$
2) In a political rally, there are 200 republicans, 130 Democrats and 60 independents. If a person is selected at random, find the probability that he/she is either democrat or independent.

Solution

$P($ Democrat or independent $)=P($ Democrat $)+P($ independent $)=\frac{130}{390}+\frac{60}{390}=\frac{19}{39}$
3) A single card is drawn from a deck. Find the probability that it is a king or a club.

Solution

As the king of clubs is counted twice, one of the two probabilities must be subtracted (it a part of intersection)
$P($ king or c lub $)=P($ king $)+P($ club $)-P($ king of clubs $)=\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{4}{13}$
4) In a hospital unit there are 8 nurses and 5 physicians; 7 nurses and 3 physicians are females. If a staff person is selected, find the probability that the subject is a nurse or a male.

Solution

The sample space is:

Staff	Females	Males	Total
Nurses	7	1	8
Physicians	3	2	5
Total	$\mathbf{1 0}$	$\mathbf{3}$	$\mathbf{1 3}$

The probability is
$P($ nurse or male $)=P($ nurse $)+P($ male $)-P($ male nurse $)=\frac{8}{13}+\frac{3}{13}-\frac{1}{13}=\frac{10}{13}$.
5) A card is drawn from a deck of 52 playing cards. If A is an event of drawing an ace and B is an event of drawing a spade. Find $P(A), P(B), P(A \cap B), P(A \cup B)$

Solution

There are 4 aces, then $P(A)=\frac{4}{52}=\frac{1}{13}$
There are 13 spades, then $P(B)=\frac{13}{52}=\frac{1}{4}$
There is 1 ace of spades, then $\#(A \cap B)=1$ and $P(A \cap B)=\frac{1}{52}$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{1}{13}+\frac{1}{4}-\frac{1}{52}=\frac{4}{13}$

Alternatively, there are 4 aces and 13 spades but also 1 ace of spades. Then $\#(A \cup B)=16$ and $P(A \cup B)=\frac{16}{52}=\frac{4}{13}$.

Application activity 2.4

1. In one state of America, the probability that a student owns a car is 0,65 , and the probability that a student owns a computer is 0.82 . If the probability that a student owns both is 0.55 , what is the probability that a given student owns neither a car nor a computer?
2. At a particular school with 200 male students, 58 play football, 40 play basketball, and 8 play both. What is the probability that a randomly selected male student plays neither sport?

2.5 End unit assessment

Lottery:

An urn contains 20 lottery tickets numbered from 1 to 20 .
To buy a ticket, each one is selected at random and replaced before the next selection. The organizer of the lottery decided to pay 1000Frw to the one who will select a number divisible by 4 and 3 at the same time. He will pay also 500 Fr to the one who will select a number which is divisible by 5 and 2 at the same time.

1. Given that the 20 tickets numbered from 1 to 20 were bought at 200Frw per ticket, do the following:
a) Play this lottery in your class and observe its outcomes. Is the game fair or not?
b) The money received by the organizer of the lottery
c) The probability for participants to win 1000 Fr
d) The probability for participants to win 500 Frw
e) The money to be made by the organizer of the lottery.
2. The parents of your friend Anne Marie gave her 200Frw for buying two pens, however, she wants to participate in the lottery to get more money before buying pens. What can you advise her?

Hint: Use the following events: A: selecting a number divisible by 4; B: selecting the number divisible by 3; C: selecting the number divisible by 5 , and D: Selecting the number divisible by 2.

REFERENCE

1. J. Sadler, D. W. S. Thorning: Understanding Pure Mathematics, Oxford University Press 1987.
2. Arthur Adam Freddy Goossens: Francis Lousberg. Mathématisons 65. DeBoeck,3e edition 1991.
3. Charles D. Hodgman, M.S., Samuel M. Selby, Robert C.Weast. Standard Mathematical Table. Chemical Rubber Publishing Company, Cleveland, Ohio 1959.
4. David Rayner, Higher GCSE Mathematics, Oxford University Press 2000
5. Direction des Progammes de l'Enseignement Secondaire. Géometrie de I'Espace 1er Fascule. Kigali, October1988
6. Direction des Progammes de l'Enseignement Secondaire. Géometrie de l'Espace 2ème Fascule. Kigali, October1988
7. Frank Ebos, Dennis Hamaguchi, Barbana Morrison \& John Klassen, Mathematics Principles \& Process, Nelson Canada A Division of International Thomson Limited 1990
8. George B. Thomas, Maurice D. Weir \& Joel R. Hass, Thomas' Calculus Twelfth Edition, Pearson Education, Inc. 2010
9. Geoff Mannall \& Michael Kenwood, Pure Mathematics 2, Heinemann Educational Publishers 1995
10. H.K.DASS...EngineeringMathematics.NewDelhi,S.CHAND\&COMPANY LTD, thirteenth revised edition 2007.
11. Hubert Carnec, Genevieve Haye, Monique Nouet, ReneSeroux, Jacqueline Venard. Mathématiques TS Enseignement obligatoire. Bordas Paris 1994.
12. James T. McClave, P.George Benson. Statistics for Business and Economics. USA, Dellen Publishing Company, a division of Macmillan, Inc 1988.
13. J CRAWSHAW, J CHAMBERS: A concise course in A-Level statistics with worked examples, Stanley Thornes (Publishers) LTD, 1984.
14. Jean Paul Beltramonde, VincentBrun, ClaudeFelloneau, LydiaMisset, Claude Talamoni. Declic 1re S Mathématiques. Hachette-education, Paris 2005.
15. JF Talber \& HH Heing, Additional Mathematics 6th Edition Pure \& Applied, Pearson Education South Asia Pte Ltd 1995
16. J.K. Backhouse, SPTHouldsworth B.E.D. Copper and P.J.F. Horril. Pure Mathematics 2. Longman, third edition 1985, fifteenth impression 1998.
17. Mukasonga Solange. Mathématiques 12, AnalyseNumérique. KIE, Kigali 2006.
18. N. PISKOUNOV, Calcul Différential et Integral tom II 9ème édition. Editions MIR. Moscou, 1980.
19. Paule Faure- Benjamin Bouchon, Mathématiques Terminales F. Editions Nathan, Paris 1992.
20. Peter Smythe: Mathematics HL \& SL with HL options, Revised Edition, Mathematics Publishing Pty. Limited, 2005.
21. Robert A. Adms \& Christopher Essex, Calculus A complete course Seventh Edition, Pearson Canada Inc., Toronto, Ontario 2010
22. Seymour Lipschutz. Schaum's outline of Theory and Problems of Finite Mathematics. New York, Schaum Publisher, 1966
23. Seymour Lipschutz. Schaum's outline of Theory and Problems of linear algebra. McGraw-Hill 1968.
24. Shampiyona Aimable : Mathématiques 6. Kigali, Juin 2005.
25. Yves Noirot, Jean-Paul Parisot, Nathalie Brouillet. Cours de Physique Mathématiques pour la Physique. Paris, DUNOD, 1997.
26. Swokowski, E.W. (1994). Pre-calculus: Functions and graphs, Seventh edition. PWS Publishing Company, USA.
27. Allan G. B. (2007). Elementary statistics: a step by step approach, seventh edition, Von Hoffmann Press, New York.
28. David R. (2000). Higher GCSE Mathematics, revision and Practice. Oxford University Press, UK.
29. Ngezahayo E.(2016). Subsidiary Mathematics for Rwanda secondary Schools, Learners' book 4, Fountain publishers, Kigali.
30. REB. (2015). Subsidiary Mathematics Syllabus, MINEDUC, Kigali, Rwanda.
31. REB. (2019). Mathematics Syllabus for TTC-Option of LE, MINEDUC, Kigali Rwanda.
32. Peter S. (2005). Mathematics HL\&SL with HL options, Revised edition. Mathematics Publishing PTY. Limited.
33. Elliot M. (1998). Schaum's outline series of Calculus. MCGraw-Hill Companies, Inc. USA.
34. Frank E. et All. (1990). Mathematics. Nelson Canada, Scarborough, Ontario (Canada)
35. Gilbert J.C. et all. (2006). Glencoe Advanced mathematical concepts,

MCGraw-Hill Companies, Inc. USA.
36. Robert A. A. (2006). Calculus, a complete course, sixth edition. Pearson Education Canada, Toronto, Ontario (Canada).
37. Sadler A. J \& Thorning D.W. (1997). Understanding Pure mathematics, Oxford university press, UK.
38. J. CRAWSHAW and J. CHAMBERS 2001. A concise course in Advanced Level Statistics with worked examples $4^{\text {th }}$ Edition. Nelson Thornes Ltd, UK.
39. Ron Larson and David C (2009). Falvo. Brief Calculus, An applied approach. Houghton Mifflin Company.
40. Michael Sullivan, 2012. Algebra and Trigonometry $9^{\text {th }}$ Edition. Pearson Education, Inc
41. Swokowski \& Cole. (1992). Preaclaculus, Functions and Graphs. Seventh edition.
42. Glencoe. (2006). Advanced mathematical concepts, Precalculus with Applications.
43. Seymour Lipschutz, PhD. \& Marc Lipson, PhD. (2007). Discrete mathematics. $3^{\text {rd }}$ edition.
44. K.A. Stroud. (2001). Engineering mathematics. $5^{\text {th }}$ Edition. Industrial Press, Inc, New York
45. John bird. (2005). Basic engineering mathematics. $4^{\text {th }}$ Edition. Linacre House, Jordan Hill, Oxford OX2 8DP

