

SUBSIDIARY MATHEMATIC SYLLABUS FOR PCB COMBINATION

Second edition

Kigali, 2022

© 2022 Rwanda Basic Education Board

All rights reserved

This syllabus is the property of the Government of Rwanda, Credit must be provided to REB when the content is quoted.

FOREWORD

Rwanda Basic Education Board (REB) is honored to avail the Mathematics Syllabus as one of the subjects for the PCB combination. This syllabus serves as official guide to teaching and learning of Mathematics. Syllabi ensure consistency and coherence in the delivery of quality education across all levels of general education in Rwandan schools.

The Rwandan education philosophy is to ensure that young people at every level of education achieve their full potential in terms of relevant knowledge, skills and appropriate attitudes that prepare them to be well integrated in society and exploit employment opportunities.

In line with efforts to improve the quality of education, the government of Rwanda emphasises the importance of aligning the syllabus, teaching and learning and assessment approaches in order to ensure that the system is producing the kind of citizens the country needs. Many factors influence what children are taught, how well they learn and the competencies they acquire, particularly the relevance of the syllabus, the quality of teachers' pedagogical approaches, the assessment strategies and the instructional materials available. The ambition to develop a knowledge-based society and the growth of regional and global competition in the job markets has necessitated the shift to a competence-based syllabus. With the help of the teachers, whose role is central to the success of the syllabus, learners will gain appropriate skills and be able to apply what they have learned in real life situations. Hence, they will make a difference not only to their own lives but also to the success of the nation.

I wish to sincerely extend my appreciation to the people who contributed towards the development of this document, particularly REB and its staff who organized the whole process from its inception. Special appreciation goes to the

development partners who supported the exercise throughout. Any comment of contribution would be welcome for the improvement of this syllabus.

Dr. MBARUSHIMANA Nelson

Director General of REB

ACKNOWLEDGEMENT

I wish to sincerely extend my special appreciation to the people who played a major role in development of this syllabus. It would not have been successful without the participation of different education stakeholders and financial support from different donors that I would like to express my deep gratitude.

My thanks firstly go to the Rwanda Education leadership who supervised the curriculum review process and the Rwanda Education Board staff who were involved in the conception and writing of the syllabus. I wish to extend my appreciation to teachers from pre-primary to university level for their valuable efforts during the conception of the syllabus.

I owe gratitude to different education partners such as UNICEF, UNFPA, DFID and Access to Finance Rwanda for their financial and technical support. We also value the contribution of other education partner organisations such as CNLG, AEGIS trust, Itorero ry'Igihugu, Center for Gender Studies, Gender Monitoring Office, National Unit and Reconciliation Commission, RBS, REMA, Handicap International, Wellspring Foundation, Right to Play, MEDISAR, EDC/L3, EDC/Akazi Kanoze, Save the Children, Faith Based Organisations, WDA, MINECOFIN and Local and International consultants. Their respective initiative, co- operation and support were basically responsible for the successful production of this syllabus.

MURUNGI Joan

Head of Curriculum Teaching and Learning Resources Department/REB

TABLE OF CONTENTS

FOREV	WORD	ii
ACKNO	OWLEDGEMENT	v
	E OF CONTENTS	
	RODUCTION	
1.1 Ba	ackground to curriculum review	i
	Rationale of teaching and learning Mathematics	ii
2. Com	petences	ii
3.1.	AGOGICAL APPROACH	vi
3.3 Sp	pecial needs education and inclusive approach	х
4. ASSI	ESSMENT APPROACH	X
-	ypes of Assessmentecord keeping	
4.3 Ite	em writing in summative assessment	xii
	eporting to Parents	

	5.1 Ma	aterials needed for implementation	xvi
	5.2 Hu	ıman Resource	xvi
6.	SYLL	ABUS UNITS	xviii
	6.1 Pre	esentation of the structure of the Syllabus Units	.xviii
	1.1.	Secondary four	1
	1.2.	Secondary Five	29
	5.4	Secondary Six	54
4.	RE	FERENCES	67
\boldsymbol{A}	PPEN.	DIX: SUBJECTS AND WEEKLY TIME ALOCATION	69

1. INTRODUCTION

1.1 Background to curriculum review

The Subsidiary Mathematics syllabus is developed to help leaners in combinations where Mathematics is not core subject and draws on the previous syllabus for Pysics-Chemistry and Biology combination.

The motive of reviewing the syllabus was to ensure that the syllabus is responsive to the needs of the learner and to shift from objective and knowledge-based learning to competence-based learning. Emphasis in the review is put more on skills and COMPETENCES and the coherence within the existing content by benchmarking with syllabi elsewhere with best practices.

The new Mathematics syllabus guides the interaction between the teacher and the learners in the learning processes and highlights the COMPETENCES a learner should acquire during and at the end of each unit of learning.

Learners will have the opportunity to apply Mathematics in different contexts, and see its importance in daily life. Teachers help the learners appreciate the relevance and benefits for studying this subject in advanced level.

This syllabus is prepared to be taught in four periods a week in Physics - Chemistry - Biology (PCB) combination.

1.2 Rationale of teaching and learning Mathematics

1.2.1 Mathematics and society

Mathematics plays an important role in society through abstraction and logic, counting, calculation, measurement, systematic study of shapes and motion. It is also used in natural sciences, engineering, medicine, finance and social sciences. The applied mathematics such as statistics and probability play an important role in game of chance, in the national census process, in scientific research, etc. In addition, some cross-cutting issues such as financial awareness are incorporated into some of the mathematics units to improve social and economic welfare of Rwandan society.

Mathematics is key to the Rwandan education ambition of developing a knowledge-based and technology-led economy since it provides to learners all required knowledge and skills to be used in different learning areas. Therefore, Mathematics is an important subject as it supports other subjects. The CBC will address gaps in the Rwanda Education system which lacks of appropriate skills and attitudes provided by the previous education system.

1.2.2 Mathematics and learners

Learners need enough basic Mathematical COMPETENCES to be effective members of Rwandan society including the ability to estimate, analyse, interpret statistics, assess probabilities, and read the commonly used mathematical representations and graphs.

Therefore, Mathematics equips learners with knowledge, skills and attitudes necessary to enable them to succeed in an era of rapid technological growth and socio-economic development. Mastery of basic Mathematical ideas and calculations makes learners being confident in problem-solving. It enables learners to be systematic, creative and self confident in using mathematical language and techniques to reason; think critically; develop imagination, initiative and flexibility of mind. In this regard, learning of Matheamtics needs to include practical problem-solving activities with opportunities for students to plan their own investigations in order to develop their mathematical competence and confidence.

As new technologies have had a dramatic impact on all aspects of life, wherever possible in Mathematics, learners should gain experience of a range of ICT equipment and applications.

2. COMPETENCES

Competence is defined as the ability to perform a particular task successfully, resulting from having gained an appropriate combination of knowledge, skills and attitudes.

The mathematics syllabus gives the opportunity to learners to develop different competences, including the generic competences.

Basic competences are addressed in the stated broad subject competences and in objectives highlighted year on year basis and in each of units of learning. The generic competences, basic competences that must be emphasized and reflected in the learning process are briefly described below and teachers will ensure that learners are exposed to tasks that help the learners acquire the skills.

2.1 Generic Competences and Values

- Critical and problem-solving skills: Learners use different techniques to solve mathematical problems related to real life situations. They are engaged in mathematical thinking; they construct, symbolize, apply and generalize mathematical ideas.
 - The acquisition of such skills will help learners to think imaginatively and broadly to evaluate and find solutions to problems encountered in all situations.
- Creativity and innovation: The acquisition of such skills will help learners to take initiatives and use imagination beyond knowledge provided to generate new ideas and construct new concepts. Learners improve these skills through Mathematics contest, Mathematics competitions, etc.
- **Research:** This will help learners to find answers to questions basing on existing information and concepts and to explain phenomena basing on findings from information gathered.
- Communication: Learners communicate effectively their findings through explanations, construction of arguments and drawing relevant conclusions.
 - Teachers, irrespective of not being teachers of language, will ensure the proper use of the language of instruction by learners which will help them to communicate clearly and confidently and convey ideas effectively through speaking and writing and using the correct language structure and relevant vocabulary.

- Cooperation, interpersonal management and life skills: Learners are engaged in cooperative learning groups to promote higher achievement than do competitive and individual work.
 - This will help them to cooperate with others as a team in whatever task assigned and to practice positive ethical moral values and respect for the rights, feelings and views of others. Perform practical activities related to environmental conservation and protection. Advocating for personal, family and community health, hygiene and nutrition and responding creatively to the variety of challenges encountered in life.
- **Lifelong learning**: The acquisition of such skills will help learners to update knowledge and skills with minimum external support and to cope with evolution of knowledge advances for personal fulfillment in areas that need improvement and development

2.2 Broad Mathematics Competences

During and at the end of learning process, the learner can:

- 1. Develop clear, logical, creative and coherent thinking.
- 2. Master basic mathematical concepts and to use them correctly in daily life problem solving;
- 3. Express clearly, comprehensibly, correctly and precisely in verbal and/or in written form all the reasons and calculations leading to the required result whenever finding a solution to any given exercise;
- 4. Master the presented mathematical models and to identify their applications in the learner's environment.
- 5. Arouse learner's mathematical interest and research curiosity in theories and their applications.

- 6. Use the acquired mathematical concepts and skills to follow easily higher studies (Colleges, Higher Institutions and Universities);
- 7. Use acquired mathematical skills to develop work spirit, team work, self-confidence and time management without supervision;
- 8. Use ICT tools to explore Mathematics (examples: calculators, computers, mathematical software...).
- 9. Demonstrate a sense of research, curiosity and creativity in their areas of study.

2.3 Mathematics and Developing Competences

The national policy documents based on national aspirations identify some "basic competences" alongside the "Generic competences" that will develop higher order thinking skills and help student learn subject content and promote application of acquired knowledge and skills.

Through observations, constructions, using symbols, applying and generalizing mathematical ideas, and presentation of information during the learning process, the learner will not only develop deductive and inductive skills but also acquire cooperation and communication, critical thinking and problem-solving skills. This will be realized when learners make presentations leading to inferences and conclusions at the end of learning unit. This will be achieved through learner group work and cooperative learning which in turn will promote interpersonal relations and teamwork.

The acquired knowledge in learning Mathematics should develop a responsible citizen who adapts to scientific reasoning and attitudes and develops confidence in reasoning independently. The learner should show concern of individual attitudes,

environmental protection and comply with the scientific method of reasoning. The scientific method should be applied with the necessary rigor, intellectual honesty to promote critical thinking while systematically pursuing the line of thought.

The selection of types of learning activities must focus on what the learners are able to demonstrate such COMPETENCES throughout and at the end of the learning process.

3. PEDAGOGICAL APPROACH

The change to a competence-based curriculum is about transforming learning, ensuring that learning is deep, enjoyable, and habit-forming.

3.1. Role of the learner

In the competence-based curriculum, the learner is the principal actor of his/her education. He/she is not an empty bottle to fill. Considering the initial capacities and abilities of the learner the syllabus lists, under each unit, suggested activities of the learner to reflect appropriate engagement of the learner in the learning process.

The teaching- learning processes will be tailored towards creating a learner's friendly environment basing on the capabilities, needs, experience and interests. Therefore, the following are some of the roles or the expectations from the learners:

• Learners construct the knowledge either individually or in groups in an active way. From the learning theory,

learners move in their understanding from concrete through pictorial to abstract. Therefore, the opportunities should be given to learners to manipulate concrete objects and to use models.

- Learners are encouraged to use hand-held calculator. This stimulates mathematics as it is really used, both on job and in scientific applications. Frequent use of calculators can enhance learners' understanding and mastering of arithmetic.
- Learners work on one competence at a time in form of concrete units with specific learning objectives broken down into knowledge, skills, attitudes, and values.
- Learners will be encouraged to do research and present their findings through group work activities.
- A learner is cooperative: learners work in heterogeneous groups to increase tolerance and understanding.
- Learners are responsible for their own participation and ensure the effectiveness of their work.
- Help is sought from within the group and the teacher is asked for help only when the whole group agrees to ask a question. The learners who learn at a faster pace do not the task alone and then the others merely sign off on it.
- Participants ensure the effective contribution of each member, through clear explanation and argumentation to improve the English literacy and to develop sense of responsibility and to increase the self-confidence, the public speech ability, etc.

3.2. Role of the teacher

In the competence-based curriculum, the teacher is a facilitator, organizer, advisor, a conflict solver, etc. He/she has to ensure that cross-cutting issues are addressed appropriately in teaching and learning process.

The specific duties of the teacher in a competence-based approach are the following:

- He/she is a facilitator, his/her role is to provide opportunities for learners to discuss problems that interest and challenge them and that, with appropriate effort, they can solve. This requires an elaborated preparation to plan the activities, related learning materials and appropriate learning environment.
- He/she is an organizer: his/her role is to organize the learners in the classroom or outside and engage them throughparticipatory and interactive methods during the learning processes as individuals, in pairs or in groups. To ensure that the learning is personalized, active, participative and co-operative, the teacher must identify the needs of the learners, the nature of the learning to be done, and the means to shape learning experiences accordingly.
- He/she is an advisor: he/she provides counseling and guidance for learners in need. He/she comforts and encourageslearners by valuing their contributions in the class activities.
- He/she is a conflict-solver: most of the competence-based activities are performed in groups. The members of a group may have problems such as attribution of tasks; they should find useful and constructive the intervention of the teacher as a unifying element.

• He/she is ethical and preaches by examples, being impartial, being a role-model, and caring for individual needs of learners. Slow learners and learners with physical impairments are provided a special assistance through remedial activities or re-enforcement activities. One should notice that this list is not exhaustive.

3.3 Special needs education and inclusive approach

All Rwandans have the right to access education regardless of their different needs. The underpinnings of this provision would naturally hold that all citizens benefit from the same menu of educational programs. The possibility of this assumption is the focus of special needs education. The critical issue is that we have persons/ learners who are totally different in their ways of living and learning as opposed to the majority. The difference can either be emotional, physical, sensory and intellectual learning challenged traditionally known as mental retardation.

These learners equally have the right to benefit from the free and compulsory basic education in the nearby ordinary/mainstream schools. Therefore, the schools' role is to enrol them and also set strategies to provide relevant education to them. The teacher therefore is requested to consider each learner's needs during teaching and learning process. Assessment strategies and conditions should also be standardised to the needs of these learners. Detailed guidance for each category of learners with special education needs is provided for in the guidance for teachers.

4. ASSESSMENT APPROACH

Assessment is the process of evaluating the teaching and learning processes through collecting and interpreting evidence of individual learner's progress in learning and to make a judgment about a learner's achievements measured against defined standards. Assessment is an integral part of the teaching learning processes. In the new competence-based curriculum assessment must also be competence-based; whereby a learner is given a complex situation related to his/her everyday life and asked to try to overcome the situation by applying what he/she learned.

Assessment will be organized at the following levels: School-based assessment, District examinations, National assessment (LARS) and National examinations.

4.1 Types of Assessment

4.1.1 Formative Assessment

Formative assessment helps to check the efficiency of the process of learning. It is done within the teaching/learning process.

Continuous assessment involves formal and informal methods used by schools to check whether learning is taking place. When a teacher is planning his/her lesson, he/she should establish criteria for performance and behavior changes at the beginning of a unit. Then at the end of every unit, the teacher should ensure that all the learners have mastered the stated key unit COMPETENCES basing on the criteria stated, before going to the next unit. The teacher will assess how well each learner masters both the subject and the generic COMPETENCES described in the syllabus and from this, the teacher will

gain a picture of the all-round progress of the learner. The teacher will use one or a combination of the following: (a) observation (b) pen and paper (c) oral questioning.

4.1.2 Summative assessment

When assessment is used to record a judgment of a competence or performance of the learner, it serves a summative purpose. Summative assessment gives a picture of a learner's competence or progress at any specific moment. The main purpose of summative assessment is to evaluate whether learning objectives have been achieved and to use the results for the ranking or grading of learners, for deciding on progression, for selection into the next level of education and for certification. This assessment should have an integrative aspect whereby a student must be able to show mastery of all COMPETENCES.

It can be internal school-based assessment or external assessment in the form of national examinations. School based summative assessment should take place once at the end of each term and once at the end of the year. School summative assessment average scores for each subject will be weighted and included in the final national examinations grade. School based assessment average grade will contribute a certain percentage as teachers gain more experience and confidence in assessment techniques and in the third year of the implementation of the new curriculum it will initially contribute 10% of the final grade, but will be progressively increased. Districts will be supported to continue their initiative to organize a common test per class for all the schools to evaluate the performance and the achievement level of learners in individual schools. External summative assessment will be done at the end of P6, S3 and S6.

4.2 Record keeping

This is gathering facts and evidence from assessment instruments and using them to judge the student's performance by assigning an indicator against the set criteria or standard. Whatever assessment procedures used shall generate data in the form of scores which will be carefully be recorded and stored in a portfolio because they will contribute for remedial actions, for alternative instructional strategy and feed back to the learner and to the parents to check the learning progress and to advice accordingly or to the final assessment of the students.

This portfolio is a folder (or binder or even a digital collection) containing the student's work as well as the student's evaluation of the strengths and weaknesses of the work. Portfolios reflect not only work produced (such as papers and assignments), but also it is a record of the activities undertaken over time as part of student learning. Besides, it will serve as a verification tool for each learner that he/she attended the whole learning before he/she undergoes the summative assessment for the subject.

4.3 Item writing in summative assessment

Before developing a question paper, a plan or specification of what is to be tested or examined must be elaborated to show the units or topics to be tested on, the number of questions in each level of Bloom's taxonomy and the marks allocation for each question. In a competence-based curriculum, questions from higher levels of Bloom's taxonomy should be given more weight than those from knowledge and comprehension level.

Before developing a question paper, the item writer must ensure that the test or examination questions are tailored towards competence-based assessment by doing the following:

- Identify topic areas to be tested on from the subject syllabus.
- Outline subject-matter content to be considered as the basis for the test.
- Identify learning outcomes to be measured by the test.
- Prepare a table of specifications.
- Ensure that the verbs used in the formulation of questions do not require memorization or recall answers only but testing broad COMPETENCES as stated in the syllabus.

4.4 Structure and format of the examination

There will be one paper in Mathematics at the end of Primary 6. The paper will be composed by two sections, where the first section will be composed with short answer items or items with short calculations which include the questions testing for knowledge and understanding, investigation of patterns, quick calculations and applications of Mathematics in real life situations. The second section will be composed with long answer items or answers with constructions, more calculations, investigation of patterns and generalization, analysis, interpratation and drawing conclusions. The items for the second section will emphasize on the mastering of Mathematics facts, the understanding of Mathematics concepts and its applications in real life situations. In this section, the assessment will find out not only what skills and facts have been mastered, but also how well learners understand the process of solving a mathematical problem and whether they can link

the application of what they have learned to the context or to the real-life situation. The Time required for the paper is three hours (3hrs).

The following topic areas have to be assessed: Trigonometry; algebra; analysis; linear algebra; geometry; statistics and probability. Topic areas with more weight will have more emphasis in the second section where learners should have the right to choose to answer 3 items out of 5.

4.5 Reporting to Parents

The wider range of learning in the new curriculum means that it is necessary to think again about how to share learners' progress with parents. A single mark is not sufficient to convey the different expectations of learning which are in the learning objectives. The most helpful reporting is to share to parents what students are doing well and where they need to improve.

5. RESOURCES

5.1 Materials needed for implementation

The following list shows the main materials/equipments needed in the learning and teaching process:

- Materials to encourage group work activities and presentations: Computers (Desk tops&lab tops) and projectors; Manila papers and markers
- Materials for drawing & measuring geometrical figures/shapes and graphs: Geometric instruments, ICT tools such as geogebra, Microsoft student ENCARTA, ...
- Materials for enhancing research skills: Textbooks and internet (the list of the textbooks to consult is given in the reference at the end of the syllabus and those books can be found in printed or digital copies).
- Materials to encourage the development of Mathematical models: scientific calculators, Math type, Matlab, etc

The technology used in teaching and learning of Mathematics has to be regarded as tools to enhance the teaching and learning process and not to replace teachers.

5.2 Human Resource

The effective implementation of this curriculum needs a joint collaboration of educators at all levels. Given the material requirements, teachers are expected to accomplish their noble role as stated above. On the other hand school head teachers and directors of studies are required to make a follow-up and assess the teaching and learning of this subject due to their

profiles in the schools. These combined efforts will ensure bright future careers and lives for learners as well as the contemporary development of the country.

In a special way, the teacher of Mathematics at ordinary level should have a firm understanding of mathematical concepts at the leavel he / she teaches. He/she should be qualified in Mathematics and have a firm ethical conduct. The teacher should possess the qualities of a good facilitator, organizer, problem solver, listener and adviser. He/she is required to have basic skills and competence of guidance and counseling because students may come to him or her for advice.

Skills required for the Teacher of Mathematics

The teacher of Mathematics should have the following skills, values and qualities:

- Engage learners in a variety of learning activities
- Use multiple teaching and assessment methods, techniques and approaches.
- Adjust instruction to the level of the learners
- Have creativity and innovation in the teaching and learning process.
- Be a good communicator and organizer.
- Be a guide/ facilitator and a counsellor.
- Manifest passion and impartial love for learners in the teaching and learning process.
- Make useful link of Mathematics with other Subjects and real-life situations.

xvii

- Have a good master of the Mathematics Content.
- Have good classroom management skills.

6. SYLLABUS UNITS

6.1 Presentation of the structure of the Syllabus Units

Subsidiary Mathematics is developed to be taught and learnt in advanced level of secondary education, i.e. in S4, S5 and S6 respectively. It means that subsidiary Mathematics syllabus is developed for combinations where Mathematics is not core subject. At every grade, the syllabus is structured in Topic Areas, sub-topic Areas where applicable and then further broken down into Units to promote the uniformity, effectivness and efficiency of teaching and learning Mathematics. The units have the following elements:

- 1. Unit is aligned with the Number of periods.
- 2. Each Unit has a Key Unit Competence whose achievement is pursued by all teaching and learning activities undertaken by both the teacher and the learners.
- 3. Each Unit Key Competence is broken into three types of Learning Objectives as follows:
 - a. *Type I:* Learning Objectives relating to Knowledge and Understanding (*Type I* Learning Objectives are also known as Lower Order Thinking Skills or LOTS)

xviii

- b. *Type II a*nd *Type III:* These Learning Objectives relate to acquisition of skills, Attitudes and Values (*Type II* and *Type III* Learning Objectives are also known as Higher Order Thinking Skills or HOTS). These Learning Objectives are actually considered to be the ones targeted by the present reviewed curriculum.
- 4. Each Unit has a Content which indicates the scope of coverage of what to be tought and learnt in line with stated learning objectives
- 5. Each Unit suggests a non exhaustive list of Learning Activities that are expected to engage learners in an interactive learning process as much as possible (learner-centered and participatory approach).
- 6. Finally, each Unit is linked to other Subjects, its Assessment Criteria and the Materials (or Resources) that are expected to be used in teaching and learning process.

6.2 Secondary four

6.2.1 Key Competences at the end of Secondary Four

After completion of secondary 4, the mathematics syallabus will help the learner to:

- Think critically to understand and perform operations on the set of real numbers.
- Use the trigonometric concepts and formulas to solve related problems in Physics, Air navigation, Water navigation, bearings, Surveying.
- Model and solve algebraically or graphically daily life problems using linear, quadratic equations or inequalities.
- Use concepts and definitions of Polynomial, Rational and Irrational functions to determine their domain, represent and interpret their graphs.
- Evaluate correctly limits of functions and apply them to solve related problems
- Use differentiation to solve and interpret problems in various contexts.
- Use concepts of vectors in 2D to solve related problems such as distance, angles, ...
- Use matrices and determinants of order 2 to solve problems involving the system of 2 linear equations with 2 unknowns.
- Extend understanding, analysis and interpretation of data arising from problems in daily life to the standard deviation
- Use combinations and permutations to determine the number of outcomes and the probability for an event.

6.2.2 Mathematics units for Secondary Four

Topic Area: ALGEBRA		Sub-topic Are	a: NUMBERS AND	
	O	PERATIONS		
S4 - MATHEMATICS	Unit 1: SET OF RE	EAL NUMBERS	Numbe	r of periods: 12
Key Unit Competence: Think cr	ritically to understand	l and perform oper	rations on the set of r	eal numbers
Learning Objectives				
Dearming Objectives			Content	Learning Activities
Knowledge and Skills	Att	titudes and	Content	Learning Metrices
understanding	val	lues		
❖ Match a ❖ Clas	sify numbers *	Appreciate the	Set of Real	❖ Group investigation –
number and the into	naturals,	importance	numbers.	
set to which it integ	gers, rational	and the use of	-Elements of	-Make research in
belongs and i	irrationals	properties of	the set \mathbb{R} of	advance in the library
❖ Define a ❖ Perfo	orm	operations on	real	about Sets of numbers
power, an num	erical	real numbers	numbers.	(natural numbers,
exponential, a calcu	alations in the	Show	- Operations	integers, rational
radical, a set	\mathbb{R} of real	curiosity for	on the set of	numbers and irrational
logarithm, the num	bers.	the study of	real	numbers.
absolute value		operations on		- Use a thermometer

of a real	❖ Determine the	real numbers	numbers.	to explore the use of
number	restrictions on the		- Arithmetic	positive and
	variables in rational		of integers	negative integers in
	and irrational		and whole	medicine.
	expressions		numbers.	Mental task
	❖ Illustrate each		- Rounding	-What are the main facts
	property of a power,		and	about set R of real
	an exponential, a		estimating	numbers?
	radical, a logarithm,		decimal	
	the absolute value		numbers.	-Apply operations on set
	of a real number		-	of real numbers to
	❖ Use logarithm and		Equivalent	illustrate relation to
	exponentials to		fractions, ratios	arithmetic
	model simple		and proportions,	
	problems about		rates.	
	growth, decay,		❖ Absolute	
	compound interest,		value and	
	magnitude of an		its	
	earthquake		properties	

❖ Transform a ❖ Powers
logarithmic and
expression to radicals
equivalent power or
radical form and logarithms
vice versa and
Rewrite an properties.
expression
containing
"absolute value"
using order relation/
inequality signs.

Links to other subjects: Physics, e.g.: converting temperature from degree Celsius to degree Fahrenheit, converting seconds to minutes and vice versa; Entrepreneurship; Chemistry: e.g.: Thedecay process; Biology: e.g.: growth of bacteria.

Assessment criteria: Ability to think critically to understand and perform operations on the set of real numbers.

Materials: Graph papers, manila papers, digital technology including calculators, ...

Topic Area: TRIGONOMETRY Sub-topic Area: TRIGONOMETRIC CIRCLE AND

IDENTITIES

S4- MATHEMATICS Unit 2: Fundamentals of trigonometry Number of periods: 16

Key unit Competence: Use the trigonometric concepts and formulas to solve related problems in Physics, Air navigation, Water navigation, bearings, Surveying, ...

Learning Objectives					
Knowledge and understanding	Skills	Attitudes and values	Contents	Learning Activities	
❖ Define sine,	* Represent	Appreciate	* Trigonometric	❖ Mental task – imagine a point	
cosine, and	graphically	the	concepts:	on the edge of a wheel – as the	
tangent	sine, cosine	relationship	• Angle and its	wheel turns how high is the	
(cosecant, secant	and tangent,	between the	measurements	point above the centre? – sketch	
and cotangent) of	functions and,	trigonometric	Unit circle	the graph	
any angle –	together with	values for	• Trigonometric	❖ Practical – on graph paper draw	
know special	the unit circle,	different	ratios	circle radius 10cm and measure	
values (30°, 45°,	❖ Use	angles	• Trigonometric	half chord length and distance	
60°)	trigonometry,		identities	from centre to chord for angles	
❖ Convert radians	including the		Triangles and	(say multiples of 15°) – plot the	
to degree and	sine and		Applications of	graphs – use calculator to	

radius of the unit circle geometry
geometry
5J
ora) and
illustrate
en sine,
of the
circle and
rmine the
between
ons of any
j
-What
length
define a
ble of
i

		equivalences between radians
		and degrees.
		 Derive trigonometric identities,
		sine and cosine rules
		Apply trigonometry to practical
		problems involving triangles
		and angles.

Links to other subjects: Physics (optics, wave, electricity), Geography, Architecture, Engineering,

Assessment criteria: Ability to 4se the trigonometric concepts and formulas to solve related problems in Physics, Air navigation, Water navigation, bearings, Surveying...

Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators

Topic Area: ALGEBRA	Sub-topic	Area:	EQUATIONS	AND
	INEQUAL	ITIES		
S4 - MATHEMATICS	Unit 3: Linear, Quadratic equations and in	equalities	Number of periods:	12
Key unit Competence: Model and	I solve algebraically or graphically daily lif	e problems us	sing linear, quadratic e	quations

Key unit Competence: Model and solve algebraically or graphically daily life problems using linear, quadratic equations or inequalities.

Learning Objectives

Knowledge and Attitudes and Content

Learning Activities

gg		-		
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
❖ List the steps to	❖ Solve	❖ Appreciate the	Equations and	Group
follow in solving a	graphically	importance of	inequalities in one	investigation -
word problem	and	linear equations	unknown	discuss in groups
involving linear or	algebraically	and inequalities	Simultaneous equations	the importance
quadratic equations	linear	in solving	in two unknowns.	and necessity of
or inequalities.	equations and	related word	Quadratic equations	linear equations

inequalities to	problems from	in one unknown.	and inequalities
model a given	a given	Applications:	and how it takes
situation	situation	o Economics (Problems	place in the trade
	❖ Listen	about supply and	Practical - solve
	colleagues	demand analysis,)	linear equations
	arguments in	o Physics (Linear	and
	solving linear	motions, Electric circuits,	simultaneous
	equations and	projectile motions,)	equations on a
	inequalities	o Chemistry (Balancing	graph paper
		equations)	

Links to other subjects: Physics (kinematics), Chemistry, Economics...

Assessment criteria: Ability to model and solve algebraically or graphically daily life problems using linear or quadratic equations or inequalities.

Materials: Geometric instruments (ruler-square), Digital technology including calculator, ...

Topic Area: ANALYSIS Sub-topic Area: FUNCTIONS

S4 - MATHEMATICS Unit 4: Polynomial, Rational and Irrational functions Number of periods: 12

Key unit Competence: Use concepts and definitions of Polynomial, Rational and Irrational functions to determine their domain and represent and interpret their graphs.

Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
❖ Identify a function		❖ Increase self-	❖ Generalities on numerical	A G. 1
as a rule and	operations on	confidence and	functions:	Study
recognize rules	functions	determination to	- Definition.	algebraically and
that are not	Apply	appreciate and explain	- Types of functions	graphically
functions	different	the importance of	(Polynomial, rational,	polynomial
❖ Determine the	properties of	functions and how	irrational functions)	functions.
domain and range	functions to	they are related or	- Injective, surjective and	❖ Practical: discuss
of a function	model and	how are helpful to	bijective functions,	in groups
❖ Construct	solve related problems in	different event occurring in different	- Existence conditions for a	patiently in

composition of various	ous doma	ins.	given function.	mutual respect
functions prac	etical	concern on	❖ Domain of definition and	and tolerance,
❖ Find the even and cont	exts. patien	nce, mutual	range of a numerical	different
odd parts of a 🌣 Ana	lyse, respec	ct and tolerance	function (Polynomial	operations on
function mod	lel and		functions, rational functions,	factorizations
❖ Demonstrate an solv	e		irrational functions).	 Model or interpret
understanding of prob	olems		 Parity of a function 	the problems
operations on, and invo	olving		(odd or even).	related to
compositions of, linea	ar or		❖ Factorization and	polynomial
functions. quad	dratic		expansion of	functions
func	etions and		polynomials.	
inter	rpret the			
resu	lts.		❖ Graphical interpretation	
			of linear, quadratic,	
			polynomial, and simple	
			rational functions.	
			 Application of polynomial 	
			functions in Physics,	

		chemistry and medicine.	
		•	

Links to other subjects: Physics (eg: Use a quadratic function to model the fall of a ball...), Economics (Use of polynomials to represent the cost of producing "x" units of a commodity, or marginal cost,), Chemistry (use polynomial to express the rate of reaction in chemistry)

Assessment criteria: Use concepts and definitions of Polynomial, Rational and Irrational functions to determine their domain, represent and interpret their graphs.

Materials: Pair of compasses, Graph Papers, ruler, Digital technology (including calculators...)

Topic Area: ANALYSIS Sub-topic A		ic Area: LIMITS, DIFF	ERENTIATION AND INTE	GRATION	
S4 - MATHEMATICS Unit 5: L irrational fu		Limits of polynomial,	rational and Number of p	Number of periods: 16	
Key unit Competence: Evaluate correctly limits of functions and apply them to solve related problems					
Learning Objectives					
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities	
❖ Define the concept	❖ Calculate	❖ Show concern on	❖ Concepts of limits:	❖ Discuss in group	
of limit for real-	limits of	the importance, the	• Neighborhood of a	how to evaluate	
valued functions of	certain	use and	real number	the limit of a	
one real variable	elementary	determination of	Limit of a variable	function at a point	
	functions	limit of functions	• Definition and	both algebraically	
❖ Evaluate the limit	❖ Develop	❖ Appreciate the use	graphical	and graphically,	
of a function and	introductory	of	interpretation of	extend this	
extend this concept	calculus	intermediate□value	limit of a function	understanding to	
to determine the	reasoning.	theorem	One-sided limits	determine the	
asymptotes of the	❖ Solve			asymptotes.	

given function.	problems	Squeeze theorem	* Represent on
	involving	Limits of functions at	graph papers
	continuity.	infinity.	limits of some
	* Apply	Operations on limits	chosen functions
	informal	❖ Indeterminate cases:	and draw the
	methods to	∞ 0	possible
	explore the	$\frac{\infty}{\infty}, \frac{0}{0}, \infty - \infty, 0.\infty$	asymptotes
	concept of a	❖ Applications:	
	limit	• Continuity of a	
	including one	function at a point	
	sided limit.	or on interval I	
	❖ Use the	Asymptotes	
	concepts of		
	limits to		
	calculate the		
	asymptotes to		
	the rational		
	and		

	polynomial				
	functions				
Links to other subjects: Physics (Calculation of velocity, acceleration using concepts of limits)					
Assessment criteria: Ability to evaluate correctly limits of functions and apply them to solve related problems.					
Materials: Manila papers, Graph Papers, ruler, markers, Digital technology					

Topic Area: ANALYS	SIS Sub-topic A	Area: LIMITS. DIFFEREN	RATION	
S4 - MATHEMATICS		fferentiation of polynomiand their applications	ls, rational and irrational	Number of periods:16
Key unit Competence:	Use differentiation to sol	ve and interpret problems in	n various contexts.	
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
❖ Define and	Evaluate	Appreciate the	Concepts of	❖ In group,
evaluate from	derivatives of	use of gradient	derivative of a	Determine the gradient
first principles	functions using	as a measure of	function:	of different functions
of	the definition of	rate of change.	 Definition 	at a point using
differentiation	derivative.	Appreciate the	• High order	definition of
the gradient at a	❖ Perform operations	importance	derivatives	derivatives, from first
point.	on derivative of	and use of	* Rules of	principles of
❖ Identify	rational functions and	differentiation	differentiation	differentiation, chain
techniques	simple trigonometric	in Kinematics	❖ Applications of	rule, and interpret the

(rules) of	functions (sine,	(velocity,	differentiation:	results.
differentiation	cosine, tangent and	acceleration).	Geometric	❖ Practical - represent
to any	cotangent).		interpretation of	on graph papers the
differentiable	❖ Use first principles of		derivatives:	gradient of a straight
function.	differentiation to		- Equation of	line and interpret it
	determine the		the tangent to	geometrically in
	gradient of a straight		a curve	various practical
	line at a point.		- Equation of	problems.
	❖ Use the derivative to		normal to a	❖ In group, use different
	find the equation of a		curve	techniques of
	line tangent or normal		Hospital's theorem	differentiation to
	to a curve at a given		• Variations of	model, to analyze and
	point.		functions	solve rates or
	❖ Apply the concepts of		Rates problems	optimization
	and techniques of			problems.
	differentiation to			❖ In group, determine
	model, analyse and			rate of change from
	solve rates or			practical various

	optimisation			problems and interpret	
	problems in different			the results	
	situation.				
Links to other subjects: Physics, Economics (in Optimization problems, related rates problems,)					
Assessment criteria: Ability to use differentiation to solve and interpret problems in various contexts.					
Materials: Manila paper, graph paper, digital technology including calculators					

Topic Area: LINEAR ALGEBRA Sub-topic Are				PRS	
S4 - MATHEMATIC	S	Unit 7: Vector S ₁	pace of real numbers	Number of periods: 12	
Key unit Competend	ee: Use concepts of vec	etors in 2D to solve	related problems such as dista	ance, angles.	
Learning Objectives					
Knowledge and	Skills	Attitudes and	Content	Learning Activities	
understanding		values			
❖ Define the scalar	❖ Calculate the	❖ Apply and	❖ Euclidian Vector	❖ In group, make	
product of two	scalar product of	transfer the	space ℝ²	research on vectors in	
vectors	two vectors	skills of dot	• Concept of	2D, Operations of	
❖ Give examples of	❖ Analyse a vector	product,	vector in	vectors and their	
scalar product	in term of size.	magnitude to	2D.	properties.	
❖ Determine the	❖ Determine the	other area of	 Operation 	Group investigation:	
magnitude or	angle between	knowledge	and	- Discuss about the	
norm (size) of	two vectors		properties	scalar product of two	

vector and angle	❖ Use concepts of	of vectors vectors,	
between two	vectors in 2D to	in 2D Determine	the
vectors	solve related	• Dot product magnitude or norm (size)	of
	problems.	and vector and measure the an	gle
		propertie between two vectors.	
		Modulus or	
		Magnitude	
		of vectors	
		• Angle	
		between	
		two vectors	

Links to other subjects: Physics (Dynamics), Geography...

Assessment criteria: Ability to use concepts of vectors in 2D to solve related problems such as distance, angles, ...

Materials: Manila papers, Graph papers, Geometric instruments: rulers, T-square, Protectors, Computers ...

Topic Area: LINEAR ALGEBRA Sub-topic Area: LINEAR TRANSFORMATION IN 2D S4 - MATHEMATICS Unit 8: Matrices of and determinants of order 2 Number of periods: 12

Key Unit Competence: Use matrices and determinants of order 2 to solve problems involving the system of 2 linear equations with 2 unknowns.

Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
Define the	* Reorganise data into	❖ Appreciate the	Operations on matrices:	In group:
order of a	matrices	importance and the	• Equality of matrices	❖ Learners should be
matrix	❖ Perform operations	use of matrices in	Addition	given a task to
	on matrices of order	organising data	• Multiplication by a	reorganize given data
❖ Define a	2	Show curiosity	scalar	into matrices be asked
linear	❖ Determine the	for the use and	• Multiplication of	to perform different
transformation	inverse of a matrix	application of matrix	matrices	operations on matrices
in 2D by a	of order 2	concepts in solving	• Transpose of a matrix	by calculating their
matrix	❖ Use matrices to	problems.	• Inverse of a square	determinant,

Define operations on	as organisation of data in a shopping,	matrix Determinant of a matrix of order 2	 Learners in group discuss about to show
matrices of order 2 Show that a square matrix of order 2 is invertible or not	Physics (problems about quantum or	* Applications of matrices in solving daily life problems (physics, buying and selling, medicine).	is invertible

Links to other subjects:

Physics (problems about quantum or circuits), Entrepreneurship and in Economics (Organisation of data from sales)

Assessment criteria: Ability to use matrices and determinants of order 2 to solve problems involving the system of 2 linear equations

with 2 unknowns.

Materials: Geometric instruments (ruler, T-square, pair of compasses), graph papers, digital technology including calculators,...

Topic Area: STATISTICS AND PROBABILITY Sub-topic Area: DESCRIPTIVE STATISTICS

S4 - MATHEMATICS Unit 9: Measures of dispersion Number of periods: 12

Key Topic Competence: Extend understanding, analysis and interpretation of data arising from problems and questions in daily life to include the standard deviation.

Learning Objectives	S			
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
❖ Define the	❖ Determine the	❖ Appreciate the	Variance	In group, learners will be
variance,	measures of	importance of	❖ Standard deviation	given a task and be asked
standard	dispersion of a	measures of	(including combined set of	to:
deviation and	given statistical	dispersion in the	data)	❖ Discuss about the
the coefficient	series.	interpretation of	❖ Coefficient of variation	measures of dispersion,
of variation	❖ Apply and explain	data	❖ Application:	interpret them and
	the standard		• Problems to include	represent their findings.
❖ Analyse and	deviation as the	❖ Show concern	measure of dispersion	❖ Represent data on

interpret		more convenient	on how to use	and explain the	graph papers, interpret
critically d	ata	measure of the	the standard	standard deviation as	them and infer
and in	fer	variability in the	deviation as	the more convenient	conclusion.
conclusion.		interpretation of	measure of	measure of the	Make a research on given
		data	variability of	variability in the	problems arising from
	•	Express the	data.	interpretation of data	various situation in daily
		coefficient of		• Problems to include	life, investigate them to
		variation as a		measure of dispersion	include the standard
		measure of the		and express the	deviation, nad represent
		spread of a set of		coefficient of variation	their findings.
		data as a		as a measure of the	
		proportion of its		spread of a set of data	
		mean.		as a proportion of its	
				mean.	

Links to other subjects: Physics, Biology, Chemistry, Geography, Finance, Economics...

Assessment criteria: Ability to extend understanding, analysis and interpretation of data arising from problems in daily life to the standard deviation.

Materials: Manila papers, Graph Papers, ruler, digital technology including calculators ...

Topic Area: STATIS	Topic Area: STATISTICS AND PROBABILITY Sub-topic Area: COMBINATORIAL ANALYSIS AND					
PROBABILITY						
S4 - MATHEMATICS	S	Unit 10: Elementary	probability	Number of periods: 24		
Key unit Competence	Key unit Competence: Use combinations and permutations to determine probabilities of occurrence of an event					
Learning Objectives						
Knowledge and	Skills	Attitudes and	Content	Learning Activities		
understanding	SKIIIS	values				
❖ Define the	❖ Determine the	❖ Appreciate the	Counting techniques:	Mental task:		
combinatorial	number of	importance and	 Venn diagram 	Imagine you are a		
analysis	permutations and	the use of	Tree diagrams	photographer who		
❖ Define factorial	combinations of	counting	Contingency table	need to take a picture		
and recognize that	"n" items, "r"	techniques	Multiplication	of a group of people		
for n different	taken at a time.	❖ Appreciate the	principles	who are sitting in a		
items there are	❖ Use counting	use of	❖ Arrangement and	row. You need to		
different	techniques to	probability as a	Permutations:	determine how many		
combinations	solve related	measure of	Arrangements with	different ways you		

❖ Construct Pascal's	problems.	chance	or without repetition	can seat the group.
triangle	❖ Use and apply	❖ Show concern on	• Permutations with	
❖ Distinguish	elementary	patience, mutual	or without repetition	Solve in group questions about
between	properties of	respect,	Combinations:	counting techniques
permutations and	probability to	tolerance and	• Definitions and	for example "In how
combinations	calculate the	curiosity of the	properties	many different ways
Define notion, axioms of	number possible outcomes of	possible	Pascal's triangles	could a committee of
axioms of probability and	outcomes of occurring event	outcomes of occurring event	Binomial expansion	5 people be chosen
explain	under equally	under equally	* Concepts of probability:	from a class of 30
probability as a	likely	likely	Random experimentSample space	students?"
measure of chance	assumptions	assumptions	Event	Form the paper words
❖ Distinguish	❖ Determine and		Definition of	using letters of "MISSISSIPI",
between mutually	explain		probability of an	without prior
exclusive and	expectations		event under equally	instructions, then
non-exclusive	from an		likely assumptions	givefeedback.
events and	experiment with		 Properties and formulas 	Sit 3 men and 4
compute their	possible			

probabilities	outcomes	❖ Basic rules of probability	women at random in
❖ Compute		and formulas.	a row. In groups,
expectations and		Examples of events in	discuss the
determine the		medicine and determination	probability that
probability of		of related probability.	either all are men or
events arising			all the women end up
from an			sitting together, and
experiment with a			then give feedback.
number of			
possible outcomes			

Links to other subjects: English, Physics, Biology, Chemistry, Geography, Finance, Economics, Medical sciences...

Assessment criteria: Ability to use combinations and permutations to determine the number of outcomes and the probability for an event.

Materials: Manila papers, Graph Papers, ruler, digital components including calculators ...

6.3 Secondary Five

6.3.1 Key Competences at the end of Secondary Five

After completion of secondary 5, the mathematics syallabus will help the learnerto:

- Solve trigonometric equations and related real-life problems.
- Use arithmetic, geometric and harmonic sequences and their convergence to understand and solve problems in various context.
- Solve equations involving logarithms or exponentials and apply them to model and solve related problems.
- Apply theorems of limits and formulas of derivatives to solve problems involving trigonometric functions.
- Extend the use of matrices and determinants of order 3 to solve problems in various contexts.
- Apply properties of vectors and their operations in R² to solve problems related to angles between vectors.
- Extend the understanding, analysis and interpretation of bivariate data to correlation coefficients and regression lines.
- Apply Bayes theorem in solving problems involving the conditional probability.

6.3.2 Mathematics units for Secondary Five

Topic Area: TRIGON	NOMETRY	Sub-topic Area:	TRIGONOMETRIC	FUNCTIONS AND	
		EQUATIONS			
S5 – MATHEMATICS Unit 1: Trigonometric ed			equations	Number of periods: 24	
Key unit Competence	Key unit Competence: Solve trigonometric equations and related real-life problems.				
Learning Objectives					
Knowledge and understanding	Skills	Attitudes and values	Attitudes and values Contents		
❖ Show how to	❖ Apply the	❖ Appreciate the	❖ Introduction to	❖ In groups,	
use	transformation	relationship	trigonometric	discuss on how	
transformation	formulas to	between	formulae	to simplify	
formula to	simply	trigonometry and	Transformation	trigonometric	
simplify the	trigonometric	other subjects.	formulas:	expressions	
trigonometric	expressions	❖ Show concern on	• Addition and	using	
expressions	❖ Use the	patience, mutual	subtraction	transformation	
❖ Define a	trigonometric	respect, tolerance	formulas	formulas.	

trigonometric	concepts and	and curiosity in the	Double-angle	❖ Solve problems
equation.	their properties	solving and	and half-angle	involving
	to deduce	discussion about	formulas	trigonometric
List the steps	trigonometric	problems	• Sum, Difference	equations.
for solving a	equations.	involving	and Product	
trigonometric	❖ Analyze and	trigonometric	Formulas	
equation.	discuss the	functions and	 Trigonometric 	
	solution of	equations.	equations	
	trigonometric		❖ Application of	
	equation.		trigonometric	
	❖ Use		equations in real	
	trigonometric		life (in physics)	
	functions and			
	equations to			
	model and solve			
	problems			
	involving			
	trigonometric			

	concepts				
Links to other subjects: Physics, Complex numbers,					
Assessment criteria: Ability to solve trigonometric equations and related real-life problems.					
Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital components including calculators					

Topic Area: ALGEBRA	Sub-topic Area: NUMBER PATTERNS	
S5 – MATHEMATICS	Unit 2: Sequences	Number of periods: 16

Key unit Competence: Use arithmetic, geometric and harmonic sequences and their convergence to understand and solve problems arising in various context.

Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Contents	Learning Activities
❖ Define a	Use basic	❖ Appreciate the	❖ Definition of	Group led approach:
sequence and	concepts	use of	sequences.	
understand	and	sequences in	Convergence and	Learners can be
arithmetic	formulas of	other subjects	divergence	given a task of
progressions	sequences	to understand	sequences.	folding a piece of
and their	to find the	occurring	Arithmetic	paper to make them
properties	value "n",	situations (in	sequences	understand the
❖ Determine the	given the	entrepreneursh	❖ Geometric	meaning of
value of "n",	sum ofthe	ip and	sequences	geometric sequences,
given the sum	first "n"	economics:	Applications:	and think what
ofthe first "n"	terms of	Value of	 Problems 	should be the last
terms of	arithmetic	annuity, future	including	term to the infinity
arithmetic	progression	value of	population	

	progressions.	s - the "n th "	money).	growth	
*	Show how to	term and	Show concern on,	 Problems 	1/2 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	apply	the sum of	patience, mutual	involving	$ \begin{array}{c c} \frac{1}{8} & & & \\ \frac{1}{32} & & & \\ \end{array} $
	formulas to	the first	respect, tolerance	compound	
	determine the	"n" terms	and curiosity to	and simple	1 1 1 1
	"n th " term and	of	discuss about	interests	$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots \frac{1}{2^n}$
	the sum of the	arithmetic	sequences and	Half-life and	2 4 0 2
	first "n" terms	progression	their applications.	Decay	- Group investigation:
	of arithmetic	S		problems in	If the bankrates
	progressions	Explore		Radioactivit	increase or decrease
**		the		У	unexpectedly, learners
	explain	converge		Bacteria	discuss or investigate
	geometric	nce and		growth	how in the next n-
	progressions	the		problems in	years:
	and their	divergen		Biology, etc.	- they come out
	properties	ce of			ahead
**		sequence			- the deal stays fair
	value of "n",	S.			
	given the sum	❖ Use basic			
	ofthe first "n"	concepts			
	terms of	and			
	geometric	formulas of			
	progressions	sequences			
*	Show how to	to find the			

apply	value		
formulas to	"n",given		
determine	the sum of		
specific terms,	the first		
the "nth" term	"n" terms		
and the sum of	of		
the first "n"	arithmetic		
terms of	progression		
geometric	s - the "n th "		
progressions.	term and		
	the sum of		
	the first		
	"n"terms of		
	geometric		
	progression		
	S		
	Apply the		
	concepts of		
	sequences		
	to solve		
	problems		
	involving		
	arithmetic		
	and		

	geometric		
	sequences.		

Links to other subjects: Demography in Population growth Problems, Economics in Compound and simple interests, Chemistry in Half-life and Decay...

Assessment criteria: Ability to apply concepts of sequences to solve problems involving arithmetic and geometric sequences.

Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators, manila paper...

Topic Area: ALGEBRA	RA Sub-topic Area: EQUATIONS AND INEQUALITIES		
S5 - MATHEMATICS	Unit 3: Logarithmic and exponential equations	Number of periods:20	

Key unit Competence: Solve equations involving logarithms or exponentials and apply them to model and solve related problems.

I	Learning Objectives					
	Knowledge and understanding	Skills	Attitudes and values	Contents	Learning Activities	
•	Define logarithm	❖ Explain the	❖ Appreciate the use	❖ Introduction to	In group or	
	or exponential	properties of	of logarithmic	Exponential and	individually,	
	equations using	logarithms in	equations to model	logarithmic functions	Once there have	
	properties of	any base	and solve problem	❖ Logarithmic equations,	the shape of a	
	logarithms in any	❖ Solve	involving	including natural	logarithmic graph,	
	base	logarithmic and	logarithms such	logarithms.	they can shift it	
		exponential	radioactive-decay	Exponential equations	vertically or	
*	State and	equations	problems, Carbon	❖ Application of	horizontally,	
	demonstrate	❖ Convert the	dating problems,	logarithm and	stretch it, shrink it,	

	properties of	logarithm to	problems about	exponentials in solving:	reflect it, check
	logarithms and	exponential	alcohol and risk of	• Interest rates	answers with it,
	exponentials	form	car accident, etc.	problems	and the most
		Apply	❖ Show concern on	Mortgage problems	important is to
*	Carry out	logarithms or	patience, mutual	Population growth	interpret the graph.
	operations using	exponential to	respect and	problems	• Given for example
	the change of base	solve rates	tolerance in solving	Radioactive decay	a growth or decay
	of logarithms	problems,	problems involving	problems	situation, learners
		mortgage	logarithmic or	Earthquake	after investigating
		problems,	exponential	problems	the situation, they
		population	equations	• Carbon dating	write an
		growth		problems	exponential
		problems		• Problems about	function and
				alcohol and risk of	evaluate it for a
				car accident	given input.

Links to other subjects: Demography (Population growth Problems), Economics (Interest rates problems, annuity value of money), etc.

Assessment criteria: Ability to apply concepts of logarithmic and exponential equations to solve correctly problems

involving logarithms or exponentials.

Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators, Manila paper...

Topic Area: ANALYSIS	Sub-topic Area: LIMITS, DIFFERENTIATION AND INTEGRATION		
S5 - MATHEMATICS	Unit 4: Trigonometric and inverse trigonometric functions	Number of periods: 20	

Key unit Competence: Apply theorems of limits and formulas of derivatives to solve problems involving trigonometric functions.

Learning Objectives					
Knowledge and understanding	Skills	Attitudes and values Contents		Learning Activities	
❖ Use the	Apply	Appreciate the	* Trigonometric	• In groups,	
concepts	concepts	use of limits	functions:	- Plot the graph of	
of	and	and derivatives	 Generalities 	trigonometric	
function,	definition	of	- Definitions	function of the	
domain,	of limits, to	trigonometric	- Domain and range of a	form:	
range,	calculate	functions to	function	$y = \sin x$ or	
period,	the limits	solve problems	- Parity of a function (odd	$y = a \sin bx$	
inverse	of	related to the	or even)	and investigate	
function,	function, trigonometr periodic motion		- Periodic functions	them. Discuss its	
and limits	ic functions	of bodies.	• Limits of	period, find its	

to define	and remove	trigonometric	domain of definition
the	their	functions, including	and range.
derivative	indetermin	indeterminate cases	
of	ate forms	$\frac{0}{0}$, $0.\infty$	- Generalize
trigonomet	Calculate	0 , 0.55	these
ric	the high	• Differentiation of	activities to
functions.	derivatives.	trigonometric	other
& List the	❖ Derive	functions:	trigonometric
steps to	techniques	-First derivative.	functions.
follow	of	-high derivatives.	- Calculate
when	differentiati	Inverse	high
solving	on to	trigonometric	derivatives of
problems	model and	functions.	these
involving	solve	❖ Application of	trigonometric
the limits	problems	trigonometric	functions.
or	related to	functions in the	• Carry out research on
derivative	trigonometr	periodic motion	techniques of
of	y.		differentiation of

trigonomet	Apply	trigonometric
ric or	technique	functions and apply
inverse	of	them to explain
trigonomet	differentiati	related problem.
ric	on to solve	
functions.	problems	
	involving	
	trigonometr	
	ic	
	functions.	

Links to other subjects: Physics (periodic motion), Medicine.

Assessment criteria: Ability to apply theorems of limits and formulas of derivatives to solve problems involving trigonometric functions.

Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators

Topic Area: LINEAR Sub-topic Area: VECTORS IN 3D

ALGEBRA

S5 - MATHEMATICS Unit 5: Vector space of real numbers Number of periods: 16

Key unit Competence: Apply properties of vectors and their operations in ℝ³ to solve problems related to angles between vectors.

Learning Objectives				
Knowledge and	Skills	Attitudes and	Contents	Learning Activities
understanding	SKIIIS	values		
❖ Define the dot	❖ Determine the	❖ Appreciate the	❖ Introduction on	Learners perform
product and the	dot product and	usefulness of	vector of \mathbb{R}^3 and its	specific tasks in group,
cross product of two	the vector	vectors of \mathbb{R}^3	definition.	patiently, in mutual
vectors in a three-	product of two	in the	❖ Operation of	respect and tolerance
dimensional vector	vectors in a	description of	vectors in 3	such as
space and list their	three-	quantities such	dimensions, Linear	• To draw a three-
properties.	dimensional	as force,	combination of	dimensional
❖ Define the	space and use	velocity of a	vectors	coordinate
magnitude of a	them to solve	body in space.	❖ Introduction to	system and plot

three-dimensional	practical related	Euclidian Vector	some chosen
vector and list its	problems.	space ℝ³	points and
properties	❖ Explain	❖ Vector of ℝ³and	represent the
❖ Distinguish between	geometrically the	examples (e.g:	corresponding
the dot product and	dot product and	gravitational force).	vectors
the cross product.	the cross product	❖ Dot product and	• Choose some
		properties	learners to
		❖ Modulus or	simulate points
		Magnitude of	and vectors in
		vectors	three-
		❖ Angle between two	dimensional
		vectors	space and ask the
		❖ Vector product,	audience to
		mixed product and	describe vectors
		properties	and related
		❖ Application of dot	operations
		and vector product:	• Study vectors in
		work done by the	three-

	force, area of a	dimensional
	parallelogram, etc.	coordinate
		system to
		describe
		quantities such as
		force, velocity,
		acceleration

Links to other subjects: Physics (force, velocity, acceleration), ...

Assessment criteria: Ability to apply properties of vectors and their operations \mathbb{R}^3 to solve problems related to angles between vectors.

Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators

Topic Area: LINEA	R ALGEBRA	Sub-topic Area: LIN	EAR TRANSFORMATION	ON IN 3D
S5 - MATHEMATICS	S	Unit 6: Matrices and o	Number of periods: 20	
Key unit Competence	e: Apply matrix and determina	nt of order 3 to solve re	lated problems.	
Learning Objectives				Learning
Knowledge and understanding	Skills	Attitudes and values	Contents	Activities
 ❖ Define operations on matrices of order 3. ❖ Illustrate the properties of determinants of matrices of order3. 	 Perform operations on matrices of order 3 Calculate the determinants of matrices of order 3 Explain using determinant whether a matrix of order 3 is invertible or not 	Appreciate the importance of matrices of order 3 and their determinants in organising data and solving related problems.	 Matrix of order 3: definition, types, and examples. Operations on matrices of order 3: Equality of matrices Addition of 	Discuss in group, the solutions of a system of three linear equations in three unknowns with respect to a parameter.
Show that a	Determine the		matrices. • Multiplication of	Discuss in

	square matrix of	inverse of a matrix of	matrix by a	group, the
	order 3 is	order 3	scalar	solutions of a
	invertible or not.	Reorganise data into	• Transpose of a	system of three
*	Discuss with	matrices	matrix	linear equations
	respect to a	❖ Apply matrices to	Multiplication of	in three
	parameter the	solve related problems	matrices	unknowns with
	solutions of a	(e.g in physics.)	❖ Determinant of a	respect to a
	system of three	❖ Use Cramer's rule	matrix of order 3	parameter.
	linear equations	to solve a system of three	• Definition and	
	in three	linear equations in three	example.	
	unknowns.	unknowns	• Inverse of square	
		Apply properties of	matrix.	
		determinants to solve	❖ Application of	
		problems related to	matrices in everyday	
		matrices of order 3.	life: Solving a	
			system of 3 linear	
			equations delivered	
			from real life	

			problems			
Links to other subjects: Physics (Expressing force, velocity, acceleration).						
Assessment criteria: Ability to apply matrix and determinant of order 3 to solve related problems successifully.						
Materials: Graph papers, digital technology including calculators						

AND PROBABILITY								
S5 - MATHEMATICS Unit 7: Bivariate			estatistics	Number of periods: 16				
Key unit Compo	Key unit Competence: Extend understanding, analysis and interpretation of bivariate data to correlation coefficients and							
regression lines	regression lines							
Learning Object	tives							
Knowledge and Skills		Attitudes and values	Contents	Learning Activities				
• Define the	❖ Determine	❖ Appreciate	❖ Introduction to	❖ Discuss, in groups, about, the				
covariance,	the	the	bivariate	correlation between class results and				

Topic Area: STATISTICS Sub-topic Area: DESCRIPTIVE STATISTICS

coefficient	coefficient	importance		statisticts.	rank in school for example. Investigate
of	of	of	*	Covariance	them, analyse the relationship between
correlation	correlation,	regression	*	Regression lines	them, and check how the coefficient of
and	covariance	lines and	*	Correlation	correlation reflects the amount of
regression	and	coefficient		coefficient of	variability that is shared between data
lines.	regression	of		bivariate data	and what they have in common. Then,
	lines of	correlation	*	Applications:	infer conclusion.
A A malaya a	bivariate	analyse,		-Data analysis,	❖ Plot data on scatter diagram or scatter
❖ Analyse,	data of	interpret		interpretation and	plot to represent a correlation between
interpret data	dispersion	data to infer		prediction	two variables.
critically	of a given	conclusion -		problems in	
then infer	statistical	Predict		various areas	Analyse the graph, infer conclusion
conclusion.	series.	event e.g		(Biology,	using coefficient of correlation to make
		after		Business,	predictions about the variables studied.
	❖ Apply and	analysing		Engineering,	E.g
	explain the	the		Geography,	
	coefficient	population		Demography)	
	of	growth of a		,	
	correlation	J			

and	given	Scatter Plots of Data with Various Correlation Coefficients
standard	country, we	Year Year
deviation	can make a	
as the more	decision	r=-1 x r=0 x
convenient	about the	
measure of	future	r = +1 x $r = +3$ x $r = 0$ x
the	generation.	
variability		
in the		
interpretati		
on of data.		

Links to other subjects: Geography (spatial statistics research, Air pollution in different year...), Biology (Bio-statistics,), Chemistry, Demography (Population growth, ...), ...

Assessment criteria: Ability to correctly extend understanding, analysis, and interpretation of bivariate data to correlation coefficients and regression lines.

Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators

Topic Area: STATISTICS AND PROBABILITY PROBABILITY Sub-topic Area:							
S5 – MATHEMAT	CS	Unit 8: Conditional probability and Bayes theorem		Number of periods: 12			
		orem in solving real life prob	lems involving the conditiona	al probability.			
Learning Objective Knowledge an understanding		Attitudes and values	Contents	Learning Activities			
* Explain the conditional probability.	* Apply theorem of probability to calculate the number possible outcomes of occurring	probability in solving some problems.	 Tree diagram and probability problems. Independent event, dependent events and multiplication rule. Conditional probability: Probability of 	 Using tree diagram for solving probability problems Discuss in groups about number of possible outcomes of event B occurring 			

	independent events under equally likely assumptions . Compute the probability of an event B occurring when event A has already taken place. Apply Bayes theorem to calculate the		event B occurring when event A has already taken place. Basic formulae and properties and of conditional Probability Bayes theorem and its applications	when even A has already taken place. In a given task, use Bayes theorem to determine the probability of event B occurring when event A has already taken place.
--	---	--	---	--

	number of		
	possible		
	outcomes of		
	occurring		
	independent		
	events under		
	equally		
	likely		
	assumptions		
I inks to other subject	g. Piology Chamistr		

Links to other subjects: Biology, Chemistry, ...

Assessment criteria: Ability to apply Bayes theorem in solving real life problems involving the conditional probability.

Materials: Manila papers, markers, digital technology including calculators

6.4 Secondary Six

6.4.1 Key competences at the end of Secondary Six

After completion of secondary 6, the mathematics syllabus will help the learner to:

- Perform operations on complex numbers and solve related problems in physics, ...
- Extend the use of concepts and definitions of functions to determine the domain of logarithmic and exponential functions.
- Use integrations as the inverse of differentiation and as the limit of a sum and apply them to find area of plane shapes.
- Use ordinary differential equations of first and second order to solve related problems that arise in a variety of practical contexts.

6.4.2 Mathematics Units for Secondary Six

Topic Area: ALGEBRA Sub-topic Area: NUMBERS AND									
OPERATIONS									
S6 - MATHEMA	TICS	Unit 1: COMPLEX NU	MBERS Number of per	riods: 44					
Key unit compete	ence: Perform oper	ations on complex number	rs and solve related problems.						
Learning Object	Learning Objectives								
Knowledge and	Skills	Attitudes and values	Content	Learning Activities					
understanding	51111 5	110000000 unu vuiues							
❖ Identify the	❖ Apply the	❖ Appreciate the	❖ Algebraic form of	❖ Mental work;					
real part and	properties of	importance of	Complex numbers	Use definition of the					
the imaginary	complex	complex numbers to	• Definition and	multiplication of					
part of a	numbers to	solve related	properties of "i"	complex numbers to					
complex	perform	problems such as in	• Operations:	determine the					
number	operations on	Physics (voltage and	- Addition,	complex number					
❖ Convert a	complex	current in	- Subtraction,	whose square is -1					
complex	numbers in	alternating current),	- Multiplication,	and draw conclusion					
number from	algebraic	Computer	- powers,	about the properties					

one form to	form, in polar	Science(fractals),	- Conjugate and	of "i"
another	form or in	Trigonometry	- Division	Derive
❖ Represent a	exponential	(Euler's formula to	• Modulus of a complex	properties of
complex	form	transform	number	operations on
number on	❖ Find the	trigonometric	• Square roots in the set	complex
Argand	modulus and	expressions),	"C" of complex	numbers in
diagram	the square		numbers	trigonometric
❖ State De	roots of a		• Equations in the set	form and apply
Moivre's	complex		"C" of complex	complex
formula and	number.		numbers	numbers to
Euler's	Solve in the		❖ Geometric representation	transform
formula.	set of		of complex numbers	trigonometric
	complex		❖ Polar form of complex	formulas
	numbers a		numbers	❖ Use internet to
	linear or		Definition	determine the
	quadratic		Modulus and argument	generation of fractals
	equation.		of a complex number	by complex numbers
	* Apply De		• Operations	and print the

Moivre's	De Moivre's formula different shapes to
formula and	* Exponential forms of present in class.
Euler's	complex numbers:
formula to	- Definition and
transform	operations.
trigonometric	- Euler's formula of
expressions.	complex numbers.
	❖ Application of complex
	numbers in physics.

Links to other subjects: Physics (alternating current), Computer science(fractals) ...

Assessment criteria: Ability to perform operations on complex numbers and solve related problems in physics, ...

Materials: Geometric instruments (ruler, T-square, compass), IT equipments, ...

Topic Area: ANALYSIS
INTEGRATION

Sub-topic Area: LIMITS, DIFFERENTIATION and EXPONENTIAL

S6 - MATHEMATICS

FUNCTIONS

Sub-topic Area: LIMITS, DIFFERENTIATION and EXPONENTIAL Number of periods:

36

Key unit competence: Extend the use of concepts and definitions of functions to determine the domain of logarithmic and exponential functions and solve related problems.

L	Learning Objectives					
	Knowledge and understanding		tills	Attitudes and values	Content	Learning Activities
*	State the	*	Transform a	❖ Show concern	Logarithmic functions	❖ Use scientific
	restrictions on the		logarithm	on the	Domain of definition	calculators to
	base and the		from a base to	importance of	• Limits of logarithmic	evaluate logarithms
	variable in a		another	logarithmic and	functions and their	and exponentials of
	logarithmic	*	Find the	exponential	applications to	real numbers; they
	function		domain and	functions in	continuity and	conclude about the
*	Extend the		the range of a	solving	asymptotes	domain (the allowed
	concept of		logarithmic or	problems such	• Differentiation and its	input values) and

	functions to		an		as carbon dating	applications the range (the set of
	investigate fully		exponential		in Chemistry,	 Exponential functions possible outputs)
	logarithmic and		function			• Domain of definition
	exponential	*	Calculate	*	Develop	• Limits of logarithmic as Geogebra, to
	functions		limits of		patience,	functions and their graph logarithmic
*	Perform		logarithmic		dedication and	applications to and exponential
	operations on		and		commitment in	continuity and functions and to
	logarithmic and		exponential		solving	asymptotes report to class their
	exponential		functions		problems about	• Differentiation and its findings about the
	functions in any	*	Determine		logarithmic and	applications general trend of the
	base		possible		exponential	❖ Applications of graphs
*	Recall the		asymptotes of		functions	logarithmic and
	differentiation		a logarithmic			exponential functions: about differentiation
	formulas for		or an			• Interest rates of logarithmic and
	logarithmic and		exponential			problems exponential
	exponential		function			Mortgage problems functions
	functions	*	Determine the			• Population growth
			derivative of			problems the applications of

	a logarithmic	•	Radioactive	decay	logarithms	and
	or an		problems		exponentials in	real
	exponential	•	Earthquake pr	oblems	life and report	the
	function	•	Carbon	dating	results.	
	Solve related		problems			
	problems	•	Problems	about		
	involving		alcohol and ris	sk of car		
	logarithms		accident.			

Links to other subjects: Physics (Newton's law of cooling), Economics (Compounded interest), Biology (population growth), Chemistry (carbon dating).

Assessment criteria: Ability to extend the concepts of functions to investigate logarithmic and exponential functions and use them to model and solve problems about interest rates, population growth or decay, magnitude of earthquake, etc.

Materials: Graph Papers, ruler, digital technologies including calculators ...

Topic Area: ANALYSIS	Sub-topic	Area:	LIMITS,	DIFFERENTIATION	and
	INTEGRATION				
S6 - MATHEMATICS	Unit 3: INTEGRATIO	N		Number of periods:	32

Key Unit Competence: Use integration as the inverse of differentiation and as the limit of a sum and apply them to find area of a plane shapes.

Learning Objectives					
Knowledge and understanding	Skills	Attitudes and Content values		Learning Activities	
 ❖ Define the differential of a function ❖ Interpret geometrically the differential of a function ❖ List the 	 Use differentials to approximate a function and to calculate the percentage error in an estimation Calculate integrals. Using 	Appreciate the importance of integral calculus in solving problems from daily life.	 Indefinite integrals Antiderivatives Definition and properties Techniques of integration: Basic Integration Formulas 	❖ Graphical approach: Learners shade the area between a curvethe x-axis and two verticals. Considering consecutive subintervals, calculate the areas of corresponding rectangles, then introduce	

	differentiation		appropriate	- Integration by	the concept of integral as
	formulas		techniques	change of	sum to infinity, when the
*	State and	*	Use properties of	variables	width tends to zero
	clarify the		integrals to	- Integration by	
	relationship		simplify the	Parts	
	between		calculation of	 Definite integrals 	
	derivative and		integrals	 Definition 	
	antiderivative	*	Calculate a limit	 Properties 	
	of a function		of a sum to	• Techniques of	
*	Illustrate the		infinity as a	integration	
	use of basic		definite integral	• Applications of	
	integration	*	Apply definite	definite integrals:	
	formulas		integrals to	Calculation of area	
*	Extend the		calculate the	of a plane surface,	
	concepts of		area, volume, arc	work done by a	
	indefinite		length	constant force	
	integrals to	*	Analyze the	moving an object	
	definite		convergence of	in a given	

integrals.	an improper	direction.	
	integral		
	❖ Use integrals to		
	solve problems		
	in Physics		
	(work),		
	Economics		
	(marginal and		
	total cost),etc.		

Links to other subjects: Physics and chemistry.

Assessment criteria: Ability to use integration as the inverse of differentiation and as the limit of a sum and apply them to find area of a plane shapes.

Materials: Manila papers, Graph Papers, ruler, markers ...

Topic Area: ANALYSIS

Sub-topic Area: LIMITS, DIFFERENTIATION and INTEGRATION

S6 - MATHEMATICS

Unit 4: ORDINARY DIFFERENTIAL
EQUATIONS

Number of periods: 32

Key unit competence: Use ordinary differential equations of first and second to model and solve related problems tin Physics, Economics, Chemistry, Biology, ...

Learning Objective	S				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities	
* Extend the	❖ Determine whether	❖ Appreciate the	❖ Definition and	❖ Mental task: imagine	
concepts of	an ordinary	use of	classification	the motion of a child on	
differentiation	differential	differential	❖ First order	a swing. Express the	
and integration	equation of first	equations in	differential	displacement as	
to ordinary	order is with	solving	equations	function of time.	
differential	separable	problems	• Differential	Differentiate the	
equations	variables,	occurring from	equations with	function to find the	
State the order	homogeneous or	daily life.	separable	velocity and	

	and the degree	linear	variables	acceleration, and then
	of an ordinary	❖ Use appropriate	• Linear	express the relation
	differential	method to solve an	differential	between the function
	equation	ordinary	equations	and its derivatives.
*	Express the	differential	• Applications	Report your results.
	auxiliary	equation of first	❖ Second order	❖ Use graph plotting to
	quadratic	order	differential	illustrate the general
	equation of a	❖ Solve an ordinary	equations	solution of a
	homogeneous	linear differential	• Linear	differential equation
	linear	equation of first	equations with	❖ Discuss in groups the
	differential	order by "variation	constant	solutions of a
	equation of	of constant" and by	coefficients:	differential equation
	second order	"integrating factor"	- The right-hand	with respect to a
	with constant	❖ Solve an ordinary	side is equal	parameter and present
	coefficients	linear differential	to zero	the result to the class,
*	Predict the	equation of second	Applications	show ability to
	form of the	order	of ordinary	communicate your
	particular	❖ Use differential	differential	thinking and reasoning

solution of an	equations to model	equations:	- Use internet to find
ordinary linear	and solve problems	-Physics	the applications of
differential	in Physics (simple	-Economics,	differential equations in
equation of	harmonic	-Chemistry,	sciences and report
second order	motion,),Econo	-Crime	your findings to the
	mics(point	investigation,	class
	elasticity,),etc.	etc.	

Links to other subjects: Physics (simple harmonic motion), Chemistry (radioactive decay), Economics (point elasticity and demand function), etc...

Assessment criteria: Ability to use ordinary differential equations of first to model and solve related problems tin Physics, Economics, Chemistry, Biology, ...

Materials: Geometric instruments, graph papers, calculators, ICT equipments...

4. REFERENCES

- **1.** Alpers, B. (2013). A Framework for Mathematics Curricula in Engineering Education: A Report of the Mathematics Working Group. European Society for Engineering Education (SEFI): Brussels
- 2. Balakrishnan, V.K. (1995). Schaum's Outline, Combinatorics.
- **3.** Bird, J. (2003). *Engineering Mathematics* (4th Edition).
- **4.** Bronson, R. (2003). Schaum's Outline, Differential equation.
- 5. CrashwshaW,J.,& Chambers,J.(2001). Advanced Level Statistics with worked examples (Fourth Edition). Nelson Thornes Ltd:UK
- **6.** Curriculum Planning and Development Division (2006). *Secondary Mathematics Syllabuses*. Ministry of Education: Singapore
- 7. Frank Ayres, F., & Moyer, E.R. (1999). Schaum's Outline Series Trigonometry (3rd Edition).
- **8.** National Curriculum Development Centre (2008). Mathematics teaching syllabus: Uganda Certificate of Education Senior1-4. Ministry of Education and Sports: Uganda.
- **9.** National Curriculum Development Centre (2013). *Uganda Advanced Certificate of Education: Teaching Syllabi for Physics and Mathematics* (Volume 2). Ministry of Education and Sports: Uganda.
- **10.** National Curriculum Development Centre (2013). *Uganda Advanced Certificate of Education: Subsidiary Mathematics teaching syllabus*. Ministry of Education and Sports: Uganda.

- 11. Rich, B. & Thomas, C. (2009). Schaum's Outline, Geometry: Fourth Edition.
- **12.** Rwanda Education Board (2010). Advanced Level Mathematics for Science Combination. Ministry of Education: Rwanda
- **13.** Rwanda Education Board (2014). *Mathematics Curriculum For Physics Chemistry Biology (PCB) Combination (Elective) Advanced Level.* Ministry of Education: Rwanda
- **14.** Sanchez, A.V, & Ruiz, M.P. (2008). Competence-Based Learning: A proposal for the assessment of Generic Competences(Eds).
- 15. Shampiyona, A. (2005). *Mathématiques* 6. Imprimerie de Kigali: Kigali
- 16. Spiegel, M. R.; Schiller, J. & Srinivasan, A. (2009). Schaum's Outline, Probability and Statistics: Third Edition.
- **17.** Stewart, J. (2008). *Calculus* (6th Edition)
- 18. Stewart, J. (2008). Calculus Early Transcendental, sixth edition. McMaster University: US.
- 19. Wrede, R., Murray, D., & Spiegel, R. (2010). Schaum's Outline, Advanced calculus, 3rd Edition.

APPENDIX: SUBJECTS AND WEEKLY TIME ALOCATION

Subjects in Secondary 4-6	Number of perio	ods per week	
	(1 period = 40 m	nin.)	
I. Core subjects/Compulsory: Examinable in National Examinations	S4	S5	S6
1. Physics	7	7	7
2. Chemistry	7	7	7
3. Biology	7	7	7
4. General studies and communication skills	3	3	3
5. English	3	3	3
6. Subsidiary Mathematics	4	4	4
7. Entrepreneurship	3	3	3
Sub-total 1	34	34	34
II. Core subjects examinable at school level			
8. Kinyarwanda	3	3	3
9. ICT	3	3	3
10. Physical Education and Sports	2	2	2
11. French	3	3	3

III. Co-curricular activities (compulsory)	5	5	5	
Total number of contact periods per week	50	50	50	
Total number of contact hours/week	33.3	33.3	33.3	
Total number of contact hours per year (39 weeks)	1300	1300	1300	