

SUBSIDIARY MATHEMATIC SYLLABUS FOR PCB COMBINATION

Second edition

Kigali, 2022

All rights reserved
This syllabus is the property of the Government of Rwanda, Credit must be provided to REB when the content is quoted.

FOREWORD

Rwanda Basic Education Board (REB) is honored to avail the Mathematics Syllabus as one of the subjects for the PCB combination. This syllabus serves as official guide to teaching and learning of Mathematics. Syllabi ensure consistency and coherence in the delivery of quality education across all levels of general education in Rwandan schools.

The Rwandan education philosophy is to ensure that young people at every level of education achieve their full potential in terms of relevant knowledge, skills and appropriate attitudes that prepare them to be well integrated in society and exploit employment opportunities.

In line with efforts to improve the quality of education, the government of Rwanda emphasises the importance of aligning the syllabus, teaching and learning and assessment approaches in order to ensure that the system is producing the kind of citizens the country needs. Many factors influence what children are taught, how well they learn and the competencies they acquire, particularly the relevance of the syllabus, the quality of teachers' pedagogical approaches, the assessment strategies and the instructional materials available. The ambition to develop a knowledge-based society and the growth of regional and global competition in the job markets has necessitated the shift to a competence-based syllabus. With the help of the teachers, whose role is central to the success of the syllabus, learners will gain appropriate skills and be able to apply what they have learned in real life situations. Hence, they will make a difference not only to their own lives but also to the success of the nation.

I wish to sincerely extend my appreciation to the people who contributed towards the development of this document, particularly REB and its staff who organized the whole process from its inception. Special appreciation goes to the
development partners who supported the exercise throughout. Any comment of contribution would be welcome for the improvement of this syllabus.

Dr. MBARUSHIMANA Nelson

Director General of REB

ACKNOWLEDGEMENT

I wish to sincerely extend my special appreciation to the people who played a major role in development of this syllabus. It would not have been successful without the participation of different education stakeholders and financial support from different donors that I would like to express my deep gratitude.

My thanks firstly go to the Rwanda Education leadership who supervised the curriculum review process and the Rwanda Education Board staff who were involved in the conception and writing of the syllabus. I wish to extend my appreciation to teachers from pre-primary to university level for their valuable efforts during the conception of the syllabus.

I owe gratitude to different education partners such as UNICEF, UNFPA, DFID and Access to Finance Rwanda for their financial and technical support. We also value the contribution of other education partner organisations such as CNLG, AEGIS trust, Itorero ry'Igihugu, Center for Gender Studies, Gender Monitoring Office, National Unit and Reconciliation Commission, RBS, REMA, Handicap International, Wellspring Foundation, Right to Play, MEDISAR, EDC/L3, EDC/Akazi Kanoze, Save the Children, Faith Based Organisations, WDA, MINECOFIN and Local and International consultants. Their respective initiative, co- operation and support were basically responsible for the successful production of this syllabus.

MURUNGI Joan

Head of Curriculum Teaching and Learning Resources Department/REB

TABLE OF CONTENTS

FOREWORD iii
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi

1. INTRODUCTION i
1.1 Background to curriculum review i
1.2 Rationale of teaching and learning Mathematics ii
1.2.1 Mathematics and society ii
1.2.2 Mathematics and learners ii
2. Competences iii
3. PEDAGOGICAL APPROACH vii
3.1. Role of the learner vii
3.2. Role of the teacher. ix
3.3 Special needs education and inclusive approach x
4. ASSESSMENT APPROACH. xi
4.1 Types of Assessment xi
4.2 Record keeping. xiii
4.3 Item writing in summative assessment xiii
4.5 Reporting to Parents xv
5. RESOURCES $x v i$
5.1 Materials needed for implementation xvi
5.2 Human Resource. xvi
6. SYLLABUS UNITS xviii
6.1 Presentation of the structure of the Syllabus Units xviii
1.1. Secondary four. 1
1.2. Secondary Five 29
5.4 Secondary Six 54
7. REFERENCES 67
APPENDIX: SUBJECTS AND WEEKLY TIME ALOCATION 69

1. INTRODUCTION

1.1 Background to curriculum review

The Subsidiary Mathematics syllabus is developed to help leaners in combinations where Mathemtics is not core subject and draws on the previous syllabus for Pysics-Chemistry and Biology combianation.
The motive of reviewing the syllabus was to ensure that the syllabus is responsive to the needs of the learner and to shift from objective and knowledge-based learning to competence-based learning. Emphasis in the review is put more on skills and COMPETENCES and the coherence within the existing content by benchmarking with syllabi elsewhere with best practices.

The new Mathematics syllabus guides the interaction between the teacher and the learners in the learning processes and highlights the COMPETENCES a learner should acquire during and at the end of each unit of learning.
Learners will have the opportunity to apply Mathematics in different contexts, and see its importance in daily life.
Teachers help the learners appreciate the relevance and benefits for studying this subject in advanced level.
This syllabus is prepared to be taught in four periods a week in Physics - Chemistry - Biology (PCB) combination.

1.2 Rationale of teaching and learning Mathematics

1.2.1 Mathematics and society

Mathematics plays an important role in society through abstraction and logic, counting, calculation, measurement, systematic study of shapes and motion. It is also used in natural sciences, engineering, medicine, finance and social sciences. The applied mathematics such as statistics and probability play an important role in game of chance, in the national census process, in scientific research, etc. In addition, some cross-cutting issues such as financial awareness are incorporated into some of the mathematics units to improve social and economic welfare of Rwandan society.

Mathematics is key to the Rwandan education ambition of developing a knowledge-based and technology-led economy since it provides to learners all required knowledge and skills to be used in different learning areas. Therefore, Mathematics is an important subject as it supports other subjects. The CBC will address gaps in the Rwanda Education system which lacks of appropriate skills and attitudes provided by the previous education system.

1.2.2 Mathematics and learners

Learners need enough basic Mathematical COMPETENCES to be effective members of Rwandan society including the ability to estimate, analyse, interpret statistics, assess probabilities, and read the commonly used mathematical representations and graphs.

Therefore, Mathematics equips learners with knowledge, skills and attitudes necessary to enable them to succeed in an era of rapid technological growth and socio-economic development. Mastery of basic Mathematical ideas and calculations makes learners being confident in problem-solving. It enables learners to be systematic, creative and self confident in using mathematical language and techniques to reason; think critically; develop imagination, initiative and flexibility of mind. In this regard, learning of Matheamtics needs to include practical problem-solving activities with opportunities for students to plan their own investigations in order to develop their mathematical competence and confidence.
As new technologies have had a dramatic impact on all aspects of life, wherever possible in Mathematics, learners should gain experience of a range of ICT equipment and applications.

2. COMPETENCES

Competence is defined as the ability to perform a particular task successfully, resulting from having gained an appropriate combination of knowledge, skills and attitudes.
The mathematics syllabus gives the opportunity to learners to develop different competences, including the generic competences.

Basic competences are addressed in the stated broad subject competences and in objectives highlighted year on year basis and in each of units of learning. The generic competences, basic competences that must be emphasized and reflected in the learning process are briefly described below and teachers will ensure that learners are exposed to tasks that help the learners acquire the skills.

2.1 Generic Competences and Values

- Critical and problem-solving skills: Learners use different techniques to solve mathematical problems related to real life situations. They are engaged in mathematical thinking; they construct, symbolize, apply and generalize mathematical ideas.

The acquisition of such skills will help learners to think imaginatively and broadly to evaluate and find solutions to problems encountered in all situations.

- Creativity and innovation: The acquisition of such skills will help learners to take initiatives and use imagination beyond knowledge provided to generate new ideas and construct new concepts. Learners improve these skills through Mathematics contest, Mathematics competitions, etc.
- Research: This will help learners to find answers to questions basing on existing information and concepts and to explain phenomena basing on findings from information gathered.
- Communication: Learners communicate effectively their findings through explanations, construction of arguments and drawing relevant conclusions.

Teachers, irrespective of not being teachers of language, will ensure the proper use of the language of instruction by learners which will help them to communicate clearly and confidently and convey ideas effectively through speaking and writing and using the correct language structure and relevant vocabulary.

- Cooperation, interpersonal management and life skills: Learners are engaged in cooperative learning groups to promote higher achievement than do competitive and individual work.
This will help them to cooperate with others as a team in whatever task assigned and to practice positive ethical moral values and respect for the rights, feelings and views of others. Perform practical activities related to environmental conservation and protection. Advocating for personal, family and community health, hygiene and nutrition and responding creatively to the variety of challenges encountered in life.
- Lifelong learning: The acquisition of such skills will help learners to update knowledge and skills with minimum external support and to cope with evolution of knowledge advances for personal fulfillment in areas that need improvement and development

2.2 Broad Mathematics Competences

During and at the end of learning process, the learner can:

1. Develop clear, logical, creative and coherent thinking.
2. Master basic mathematical concepts and to use them correctly in daily life problem solving;
3. Express clearly, comprehensibly, correctly and precisely in verbal and/or in written form all the reasons and calculations leading to the required result whenever finding a solution to any given exercise;
4. Master the presented mathematical models and to identify their applications in the learner's environment.
5. Arouse learner's mathematical interest and research curiosity in theories and their applications.
6. Use the acquired mathematical concepts and skills to follow easily higher studies (Colleges, Higher Institutions and Universities);
7. Use acquired mathematical skills to develop work spirit, team work, self-confidence and time management without supervision;
8. Use ICT tools to explore Mathematics (examples: calculators, computers, mathematical software...).
9. Demonstrate a sense of research, curiosity and creativity in their areas of study.

2.3 Mathematics and Developing Competences

The national policy documents based on national aspirations identify some "basic competences" alongside the "Generic competences" that will develop higher order thinking skills and help student learn subject content and promote application of acquired knowledge and skills.

Through observations, constructions, using symbols, applying and generalizing mathematical ideas, and presentation of information during the learning process, the learner will not only develop deductive and inductive skills but also acquire cooperation and communication, critical thinking and problem-solving skills. This will be realized when learners make presentations leading to inferences and conclusions at the end of learning unit. This will be achieved through learner group work and cooperative learning which in turn will promote interpersonal relations and teamwork.

The acquired knowledge in learning Mathematics should develop a responsible citizen who adapts to scientific reasoning and attitudes and develops confidence in reasoning independently. The learner should show concern of individual attitudes,
environmental protection and comply with the scientific method of reasoning. The scientific method should be applied with the necessary rigor, intellectual honesty to promote critical thinking while systematically pursuing the line of thought.

The selection of types of learning activities must focus on what the learners are able to demonstrate such COMPETENCES throughout and at the end of the learning process.

3. PEDAGOGICAL APPROACH

The change to a competence-based curriculum is about transforming learning, ensuring that learning is deep, enjoyable, and habit-forming.

3.1. Role of the learner

In the competence-based curriculum, the learner is the principal actor of his/her education. $\mathrm{He} /$ she is not an empty bottle to fill. Considering the initial capacities and abilities of the learner the syllabus lists, under each unit, suggested activities of the learner to reflect appropriate engagement of the learner in the learning process.

The teaching- learning processes will be tailored towards creating a learner's friendly environment basing on the capabilities, needs, experience and interests. Therefore, the following are some of the roles or the expectations from the learners:

- Learners construct the knowledge either individually or in groups in an active way. From the learning theory,
learners move in their understanding from concrete through pictorial to abstract. Therefore, the opportunities should be given to learners to manipulate concrete objects and to use models.
- Learners are encouraged to use hand-held calculator. This stimulates mathematics as it is really used, both on job and in scientific applications. Frequent use of calculators can enhance learners' understanding and mastering of arithmetic.
- Learners work on one competence at a time in form of concrete units with specific learning objectives broken down into knowledge, skills, attitudes, and values.
- Learners will be encouraged to do research and present their findings through group work activities.
- A learner is cooperative: learners work in heterogeneous groups to increase tolerance and understanding.
- Learners are responsible for their own participation and ensure the effectiveness of their work.
- Help is sought from within the group and the teacher is asked for help only when the whole group agrees to ask a question. The learners who learn at a faster pace do not the task alone and then the others merely sign off on it.
- Participants ensure the effective contribution of each member, through clear explanation and argumentation to improve the English literacy and to develop sense of responsibility and to increase the self-confidence, the public speech ability, etc.

3.2. Role of the teacher

In the competence-based curriculum, the teacher is a facilitator, organizer, advisor, a conflict solver, etc. $\mathrm{He} /$ she has to ensure that cross-cutting issues are addressed appropriately in teaching and learning process.
The specific duties of the teacher in a competence-based approach are the following:

- He/she is a facilitator, his/her role is to provide opportunities for learners to discuss problems that interest and challenge them and that, with appropriate effort, they can solve. This requires an elaborated preparation to plan the activities, related learning materials and appropriate learning environment.
- $\mathrm{He} /$ she is an organizer: his/her role is to organize the learners in the classroom or outside and engage them through participatory and interactive methods during the learning processes as individuals, in pairs or in groups. To ensure that the learning is personalized, active, participative and co-operative, the teacher must identify the needs of the learners, the nature of the learning to be done, and the means to shape learning experiences accordingly.
- $\mathrm{He} /$ she is an advisor: he/she provides counseling and guidance for learners in need. $\mathrm{He} /$ she comforts and encourageslearners by valuing their contributions in the class activities.
- $\mathrm{He} /$ she is a conflict-solver: most of the competence-based activities are performed in groups. The members of a groupmay have problems such as attribution of tasks; they should find useful and constructive the intervention of the teacher as a unifying element.
- He/she is ethical and preaches by examples, being impartial, being a role-model, and caring for individual needs of learners. Slow learners and learners with physical impairments are provided a special assistance through remedial activities or re-enforcement activities. One should notice that this list is not exhaustive.

3.3 Special needs education and inclusive approach

All Rwandans have the right to access education regardless of their different needs. The underpinnings of this provision would naturally hold that all citizens benefit from the same menu of educational programs. The possibility of this assumption is the focus of special needs education. The critical issue is that we have persons/ learners who are totally different in their ways of living and learning as opposed to the majority. The difference can either be emotional, physical, sensory and intellectual learning challenged traditionally known as mental retardation.

These learners equally have the right to benefit from the free and compulsory basic education in the nearby ordinary/mainstream schools. Therefore, the schools' role is to enrol them and also set strategies to provide relevant education to them. The teacher therefore is requested to consider each learner's needs during teaching and learning process. Assessment strategies and conditions should also be standardised to the needs of these learners. Detailed guidance for each category of learners with special education needs is provided for in the guidance for teachers.

4. ASSESSMENT APPROACH

Assessment is the process of evaluating the teaching and learning processes through collecting and interpreting evidence of individual learner's progress in learning and to make a judgment about a learner's achievements measured against defined standards. Assessment is an integral part of the teaching learning processes. In the new competence-based curriculum assessment must also be competence-based; whereby a learner is given a complex situation related to his/her everyday life and asked to try to overcome the situation by applying what he/she learned.

Assessment will be organized at the following levels: School-based assessment, District examinations, National assessment (LARS) and National examinations.

4.1 Types of Assessment

4.1.1 Formative Assessment

Formative assessment helps to check the efficiency of the process of learning. It is done within the teaching/learning process

Continuous assessment involves formal and informal methods used by schools to check whether learning is taking place. When a teacher is planning his/her lesson, he/she should establish criteria for performance and behavior changes at the beginning of a unit. Then at the end of every unit, the teacher should ensure that all the learners have mastered the stated key unit COMPETENCES basing on the criteria stated, before going to the next unit. The teacher will assess how well each learner masters both the subject and the generic COMPETENCES described in the syllabus and from this, the teacher will
gain a picture of the all-round progress of the learner. The teacher will use one or a combination of the following: (a) observation (b) pen and paper (c) oral questioning.

4.1.2 Summative assessment

When assessment is used to record a judgment of a competence or performance of the learner, it serves a summative purpose. Summative assessment gives a picture of a learner's competence or progress at any specific moment. The main purpose of summative assessment is to evaluate whether learning objectives have been achieved and to use the results for the ranking or grading of learners, for deciding on progression, for selection into the next level of education and for certification. This assessment should have an integrative aspect whereby a student must be able to show mastery of all COMPETENCES.
It can be internal school-based assessment or external assessment in the form of national examinations. School based summative assessment should take place once at the end of each term and once at the end of the year. School summative assessment average scores for each subject will be weighted and included in the final national examinations grade. School based assessment average grade will contribute a certain percentage as teachers gain more experience and confidence in assessment techniques and in the third year of the implementation of the new curriculum it will initially contribute 10% of the final grade, but will be progressively increased. Districts will be supported to continue their initiative to organize a common test per class for all the schools to evaluate the performance and the achievement level of learners in individual schools. External summative assessment will be done at the end of P6, S3 and S6.

4.2 Record keeping

This is gathering facts and evidence from assessment instruments and using them to judge the student's performance by assigning an indicator against the set criteria or standard. Whatever assessment procedures used shall generate data in the form of scores which will be carefully be recorded and stored in a portfolio because they will contribute for remedial actions, for alternative instructional strategy and feed back to the learner and to the parents to check the learning progress and to advice accordingly or to the final assessment of the students.

This portfolio is a folder (or binder or even a digital collection) containing the student's work as well as the student's evaluation of the strengths and weaknesses of the work. Portfolios reflect not only work produced (such as papers and assignments), but also it is a record of the activities undertaken over time as part of student learning. Besides, it will serve as a verification tool for each learner that he/she attended the whole learning before he/she undergoes the summative assessment for the subject.

4.3 Item writing in summative assessment

Before developing a question paper, a plan or specification of what is to be tested or examined must be elaborated to show the units or topics to be tested on, the number of questions in each level of Bloom's taxonomy and the marks allocation for each question. In a competence-based curriculum, questions from higher levels of Bloom's taxonomy should be given more weight than those from knowledge and comprehension level.

Before developing a question paper, the item writer must ensure that the test or examination questions are tailored towards competence-based assessment by doing the following:

- Identify topic areas to be tested on from the subject syllabus.
- Outline subject-matter content to be considered as the basis for the test.
- Identify learning outcomes to be measured by the test.
- Prepare a table of specifications.
- Ensure that the verbs used in the formulation of questions do not require memorization or recall answers only but testing broad COMPETENCES as stated in the syllabus.

4.4 Structure and format of the examination

There will be one paper in Mathematics at the end of Primary 6. The paper will be composed by two sections, where the first section will be composed with short answer items or items with short calculations which include the questions testing for knowledge and understanding, investigation of patterns, quick calculations and applications of Mathematics in real life situations. The second section will be composed with long answer items or answers with constructions, more calculations, investigation of patterns and generalization, analysis, interpratation and drawing conclusions. The items for the second section will emphasize on the mastering of Mathematics facts, the understanding of Mathematics concepts and its applications in real life situations. In this section, the assessment will find out not only what skills and facts have been mastered, but also how well learners understand the process of solving a mathematical problem and whether they can link
the application of what they have learned to the context or to the real-life situation. The Time required for the paper is three hours (3hrs).

The following topic areas have to be assessed: Trigonometry; algebra; analysis; linear algebra; geometry; statistics and probability. Topic areas with more weight will have more emphasis in the second section where learners should have the right to choose to answer 3 items out of 5 .

4.5 Reporting to Parents

The wider range of learning in the new curriculum means that it is necessary to think again about how to share learners' progress with parents. A single mark is not sufficient to convey the different expectations of learning which are in the learning objectives. The most helpful reporting is to share to parents what students are doing well and where they need to improve.

5. RESOURCES

5.1 Materials needed for implementation

The following list shows the main materials/equipments needed in the learning and teaching process:

- Materials to encourage group work activities and presentations: Computers (Desk tops\&lab tops) and projectors; Manila papers and markers
- Materials for drawing \& measuring geometrical figures/shapes and graphs: Geometric instruments, ICT tools such as geogebra, Microsoft student ENCARTA, ...
- Materials for enhancing research skills: Textbooks and internet (the list of the textbooks to consult is given in the reference at the end of the syllabus and those books can be found in printed or digital copies).
- Materials to encourage the development of Mathematical models: scientific calculators, Math type, Matlab, etc

The technology used in teaching and learning of Mathematics has to be regarded as tools to enhance the teaching and learning process and not to replace teachers.

5.2 Human Resource

The effective implementation of this curriculum needs a joint collaboration of educators at all levels. Given the material requirements, teachers are expected to accomplish their noble role as stated above. On the other hand school head teachers and directors of studies are required to make a follow-up and assess the teaching and learning of this subject due to their
profiles in the schools. These combined efforts will ensure bright future careers and lives for learners as well as the contemporary development of the country.

In a special way, the teacher of Mathematics at ordinary level should have a firm understanding of mathematical concepts at the leavel he / she teaches. He/she should be qualified in Mathematics and have a firm ethical conduct. The teacher should possess the qualities of a good facilitator, organizer, problem solver, listener and adviser. $\mathrm{He} /$ she is required to have basic skills and competence of guidance and counseling because students may come to him or her for advice.

Skills required for the Teacher of Mathematics

The teacher of Mathematics should have the following skills, values and qualities:

- Engage learners in a variety of learning activities
- Use multiple teaching and assessment methods, techniques and approaches.
- Adjust instruction to the level of the learners
- Have creativity and innovation in the teaching and learning process.
- Be a good communicator and organizer.
- Be a guide/ facilitator and a counsellor.
- Manifest passion and impartial love for learners in the teaching and learning process.
- Make useful link of Mathematics with other Subjects and real-life situations.

Have a good master of the Mathematics Content.
Have good classroom management skills.

6. SYLLABUS UNITS

6.1 Presentation of the structure of the Syllabus Units

Subsidiary Mathematics is developed to be taught and learnt in advanced level of secondary education, i.e. in S4, S5 and S6 respectively. It means that subsidiary Mathematics syllabus is developed for combinations where Mathematics is not core subject. At every grade, the syllabus is structured in Topic Areas, sub-topic Areas where applicable and then further broken down into Units to promote the uniformity, effectivness and efficiency of teaching and learning Mathematics. The units have the following elements:

1. Unit is aligned with the Number of periods.
2. Each Unit has a Key Unit Competence whose achievement is pursued by all teaching and learning activities undertaken by both the teacher and the learners.
3. Each Unit Key Competence is broken into three types of Learning Objectives as follows:
a. Type I: Learning Objectives relating to Knowledge and Understanding (Type I Learning Objectives are also known as Lower Order Thinking Skills or LOTS)
b. Type II and Type III: These Learning Objectives relate to acquisition of skills, Attitudes and Values (Type II and Type III Learning Objectives are also known as Higher Order Thinking Skills or HOTS). These Learning Objectives are actually considered to be the ones targeted by the present reviewed curriculum.
4. Each Unit has a Content which indicates the scope of coverage of what to be tought and learnt in line with stated learning objectives
5. Each Unit suggests a non exhaustive list of Learning Activities that are expected to engage learners in an interactive learning process as much as possible (learner-centered and participatory approach).
6. Finally, each Unit is linked to other Subjects, its Assessment Criteria and the Materials (or Resources) that are expected to be used in teaching and learning process.

6.2 Secondary four

6.2.1 Key Competences at the end of Secondary Four

After completion of secondary 4, the mathematics syallabus will help the learner to:

- Think critically to understand and perform operations on the set of real numbers.
- Use the trigonometric concepts and formulas to solve related problems in Physics, Air navigation, Water navigation, bearings, Surveying.
- Model and solve algebraically or graphically daily life problems using linear, quadratic equations or inequalities.
- Use concepts and definitions of Polynomial, Rational and Irrational functions to determine their domain, represent and interpret their graphs.
- Evaluate correctly limits of functions and apply them to solve related problems
- Use differentiation to solve and interpret problems in various contexts.
- Use concepts of vectors in 2D to solve related problems such as distance, angles, ...
- Use matrices and determinants of order 2 to solve problems involving the system of 2 linear equations with 2 unknowns.
- Extend understanding, analysis and interpretation of data arising from problems in daily life to the standard deviation
- Use combinations and permutations to determine the number of outcomes and the probability for an event.

6.2.2 Mathematics units for Secondary Four

Topic Area: ALGEBRA			Sub-topic A	NUMBERS AND PERATIONS
S4 - MATHEMATICS	Unit 1: SET OF REAL NUMBERS		Number of periods: 12	
Key Unit Competence: Think critically to understand and perform operations on the set of real numbers				
Learning Objectives			Content	Learning Activities
Knowledge and understanding	Skills	$\begin{aligned} & \hline \text { Attitudes and } \\ & \text { values } \end{aligned}$		
* Match number and the set to which it belongs Define power, an exponential, a radical, a logarithm, the absolute value	* Classify numbers into naturals, integers, rational and irrationals Perform numerical calculations in the set \mathbb{R} of real numbers.	Appreciate the importance and the use of properties of operations on real numbers * Show curiosity for the study of operations on	Set of Real numbers. -Elements of the set \mathbb{R} of real numbers. - Operations on the set of real	* Group investigation - -Make research in advance in the library about Sets of numbers (natural numbers, integers, rational numbers and irrational numbers. - Use a thermometer

$\begin{array}{lr} \hline \text { of } \quad \text { a } \quad \text { real } \\ \text { number } & \end{array}$	Determine the restrictions on the variables in rational and irrational expressions property of a power, an exponential, a radical, a logarithm, the absolute value of a real number Use logarithm and exponentials to model simple problems about growth, compound interest, magnitude of an earthquake...	real numbers	numbers. - Arithmetic of integers and whole numbers. - Rounding and estimating decimal numbers. Equivalent fractions, ratios and proportions, rates. Absolute value and its properties	to explore the use of positive and negative integers in medicine. * Mental task -What are the main facts about set R of real numbers? -Apply operations on set of real numbers to illustrate relation to arithmetic

Topic Area: TRIGONOMETRY IDENTITIES				
S4- MATHEMATICS		Unit 2: Fundamentals of trigonometry		Number of periods: 16
Key unit Competence: Use the trigonometric concepts and formulas to solve related problems in Physics, Air navigation, Water navigation, bearings, Surveying, ...				
Learning Objectives			Contents	Learning Activities
Knowledge and understanding	Skills	Attitudes and values		
* Define sine, cosine, tangent (cosecant, secant and cotangent) of any angle - know special values $\left(30^{\circ}, 45^{\circ}\right.$, 60°) Convert radians to degree and	* Represent graphically sine, cosine and tangent, functions and, together with the unit circle, Use trigonometry, including the sine and	Appreciate the relationship between the trigonometric values for different angles	* Trigonometric concepts: - Angle and its measurements - Unit circle - Trigonometric ratios - Trigonometric identities * Triangles and Applications of	* Mental task - imagine a point on the edge of a wheel - as the wheel turns how high is the point above the centre? - sketch the graph * Practical - on graph paper draw circle radius 10 cm and measure half chord length and distance from centre to chord for angles (say multiples of 15°) - plot the graphs - use calculator to

vice versa. Differentiate between complementary angles, supplementary angles and coterminal angles	cosine rules, to solve problems involving triangles		trigonometry: - Bearing - Air Navigation - Inclined plane,	determine which is sine and cosine. What is the radius of the calculator's circle? - unit circle Use of dynamic geometry (such as GeoGebra) and graph plotting to illustrate relationship between sine, cosine, and sides of the triangle. * In groups use unit circle and graphs to determine the relationship between trigonometric functions of any angle Group investigation -What angle subtends an arc length equal to the radius? - define a radian, make a table of

$\left.\begin{array}{|l|l|c|c|}\hline & & & \begin{array}{c}\text { equivalences between radians } \\ \text { and degrees. }\end{array} \\ & & \begin{array}{c}\text { Derive trigonometric identities, } \\ \text { sine and cosine rules }\end{array} \\ \text { Apply trigonometry to practical } \\ \text { problems involving triangles } \\ \text { and angles. }\end{array}\right]$

Topic Area: ALGEBRA			Sub-topic Area: EQ INEQUALITIES	UATIONS AND
S4 - MATHEMATICS	Unit 3:	inear, Quadratic equ	ations and inequalities \quad Num	r of periods: 12
Key unit Competence: Model and solve algebraically or graphically daily life problems using linear, quadratic equations or inequalities.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
* List the steps to follow in solving a wad problem involving linear or quadratic equations or inequalities.	* Solve graphically and algebraically linear equations and	Appreciate the importance of linear equations and inequalities in solving related word	Equations and inequalities in one unknown Simultaneous equations in two unknowns. Quadratic equations	Group investigation discuss in groups the importance and necessity of linear equations

	inequalities to model a given situation	problems from a given situation * Listen colleagues arguments in solving linear equations and inequalities	in one unknown. * Applications: - Economics (Problems about supply and demand analysis, ...) Physics (Linear motions, Electric circuits, projectile motions, ...) Chemistry (Balancing equations...)	and inequalities and how it takes place in the trade Practical - solve linear equations and simultaneous equations on a graph paper
Links to other subjects: Physics (kinematics), Chemistry, Economics...				
Assessment criteria: Ability to model and solve algebraically or graphically daily life problems using linear or quadratic equations or inequalities.				
Materials: Geometric instruments (ruler-square), Digital technology including calculator, ...				

S4 - MATHEMATICS	Unit 4: Polynomial, Rational and Irrational functions	Number of periods: 12

Key unit Competence: Use concepts and definitions of Polynomial, Rational and Irrational functions to determine their domain and represent and interpret their graphs.

Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
	Perform operations on functions Apply different properties of functions to model and solve related problems in	Increase self- confidence determination appreciate and explain to the importance of functions and how they are related or how are helpful to different occurring in different	* Generalities on numerical functions: - Definition. - Types of functions (Polynomial, rational, irrational functions) - Injective, surjective and bijective functions, - Existence conditions for a	* Study algebraically and graphically polynomial functions. * Practical: discuss in groups patiently in

composition of functions Find the even and odd parts of a function Demonstrate an understanding of operations on, and compositions of, functions.	various practical contexts. Analyse, model and solve problems involving linear or quadratic functions and interpret the results.	domains. * Show concern on patience, mutual respect and tolerance	given function. * Domain of definition and range of a numerical function (Polynomial functions, rational functions, irrational functions). * Parity of a function (odd or even). * Factorization and expansion of polynomials. * Graphical interpretation of linear, quadratic, polynomial, and simple rational functions. * Application of polynomial functions in Physics,	mutual respect and tolerance, different operations on factorizations Model or interpret the problems related to polynomial functions

		chemistry and medicine.		
Links to other subjects: Physics (eg: Use a quadratic function to model the fall of a ball...), Economics (Use of polynomials to				
represent the cost of producing " x " units of a commodity, or marginal cost,), Chemistry (use polynomial to express the rate of				
reaction in chemistry)				Assessment criteria: Use concepts and definitions of Polynomial, Rational and Irrational functions to determine their domain,
:---				
represent and interpret their graphs.				
Materials: Pair of compasses, Graph Papers, ruler, Digital technology (including calculators...)				

pic Area: ANALYSIS Sub-topic Area: LIMITS, DIFFERENTIATION AND INTEGRATION				
S4 - MATHEMATICS	$\begin{aligned} & \text { Unit : } \\ & \text { irration } \end{aligned}$	Limits of polynomia functions	ational and ${ }^{\text {Number of pe }}$	riods: 16
Key unit Competence: Evaluate correctly limits of functions and apply them to solve related problems				
Learning Objectives			Content	Learning Activities
Knowledge and understanding	Skills	Attitudes and values		
Define the concept of limit for realvalued functions of one real variable Evaluate the limit of a function and extend this concept to determine the asymptotes of the	* Calculate limits of certain elementary functions Develop introductory calculus reasoning. Solve	* Show concern on the importance, the use and determination of limit of functions * Appreciate the use of intermediate \square value theorem	Concepts of limits: - Neighborhood of a real number - Limit of a variable - Definition and graphical interpretation of limit of a function - One-sided limits	* Discuss in group how to evaluate the limit of a function at a point both algebraically and graphically, extend this understanding to determine the asymptotes.

given function.	problems involving continuity. * Apply informal methods to explore the concept of a limit including one sided limit. \& Use the concepts of limits to calculate the asymptotes to the rational and		- Squeeze theorem - Limits of functions at infinity. - Operations on limits Indeterminate cases: $\frac{\infty}{\infty}, \frac{0}{0}, \infty-\infty, 0 . \infty$ * Applications: - Continuity of a function at a point or on interval I - Asymptotes		Represent on graph papers limits of some chosen functions and draw the possible asymptotes

	polynomial functions		
Links to other subjects: Physics (Calculation of velocity, acceleration using concepts of limits)			
Assessment criteria: Ability to evaluate correctly limits of functions and apply them to solve related problems.			
Materials: Manila papers, Graph Papers, ruler, markers, Digital technology...			

Sub-topic Area: LIMITS. DIFFERENTIATION AND INTEGRATION				
S4 - MATHEMATICS	Unit 6: functions	entiation of polyno heir applications	rational and irrational	Number of perio
Key unit Competence: Use differentiation to solve and interpret problems in various contexts.				
Learning Objectives			Content	Learning Activities
Knowledge and understanding	Skills	Attitudes and values		
* Define and evaluate from first principles of differentiation the gradient at a point. * Identify techniques	Evaluate derivatives of functions using the definition of derivative. * Perform operations on derivative of rational functions and simple trigonometric	* Appreciate the use of gradient as a measure of rate of change. Appreciate the importance and use of differentiation in Kinematics		\star In group, Determine the gradient of different functions at a point using definition derivatives, from first principles differentiation, chain rule, and interpret the

(rules) of differentiation to any differentiable function.	functions (sine, cosine, tangent and cotangent). Use first principles of differentiation to determine the gradient of a straight line at a point. Use the derivative to find the equation of a line tangent or normal to a curve at a given point. Apply the concepts of and techniques of differentiation to model, analyse and solve rates or	(velocity, acceleration).	differentiation: - Geometric interpretation of derivatives: - Equation of the tangent to a curve - Equation of normal to a curve - Hospital's theorem - Variations of functions - Rates problems	results. * Practical - represent on graph papers the gradient of a straight line and interpret it geometrically various practical problems. In group, use different techniques of differentiation to model, to analyze and solve rates or optimization problems. In group, determine rate of change from practical various

| | optimisation
 problems in different
 situation. | problems and interpret
 the results |
| :--- | :--- | :--- | :--- |
| Links to other subjects: Physics, Economics (in Optimization problems, related rates problems, ...) | | |
| Assessment criteria: Ability to use differentiation to solve and interpret problems in various contexts. | | |
| Materials: Manila paper, graph paper, digital technology including calculators ... | | |

Area: LINEAR ALGEBRA Sub-topic Area: VECTORS				
S4 - MATHEMATIC		Unit 7: Vector	ace of real numbers	Number of periods: 12
Key unit Competence: Use concepts of vectors in 2D to solve related problems such as distance, angles.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
* Define the scalar product of two vectors * Give examples of scalar product * Determine the magnitude or norm (size) of	* Calculate the scalar product of two vectors Analyse a vector in term of size. * Determine the angle between two vectors	Apply and transfer the skills of dot product, magnitude to other area of knowledge	* Euclidian Vector space \mathbb{R}^{2} - Concept of vector in 2D. - Operation and properties	* In group, make research on vectors in 2 D , Operations of vectors and their properties. * Group investigation: - Discuss about the scalar product of two

vector and angle between two vectors	Use concepts of vectors in 2D to solve related problems.		of vectors in 2 D . - Dot product and propertie - Modulus or Magnitude of vectors - Angle between two vectors	vectors, - Determine the magnitude or norm (size) of vector and measure the angle between two vectors.
Links to other subjects: Physics (Dynamics), Geography...				
Assessment criteria: Ability to use concepts of vectors in 2 D to solve related problems such as distance, angles, ...				
Materials: Manila papers, Graph papers, Geometric instruments: rulers, T-square, Protectors, Computers ...				

Topic Area: LINEAR ALGEBRA			Sub-topic Area: LINEAR TRANSFORMATION IN 2D	
S4 - MATHEMA		Unit 8: Matrices of an	terminants of order 2	Number of periods: 12
Key Unit Competence: Use matrices and determinants of order 2 to solve problems involving the system of 2 linear equations with 2 unknowns.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
	* Reorganise data into matrices * Perform operations on matrices of order 2 Determine the inverse of a matrix of order 2 Use matrices to	Appreciate the importance and the use of matrices in organising data Show curiosity for the use and application of matrix concepts in solving problems.	Operations on matrices: - Equality of matrices - Addition - Multiplication by a scalar - Multiplication of matrices - Transpose of a matrix - Inverse of a square	In group: Learners should be given a task to reorganize given data into matrices be asked to perform different operations on matrices by calculating their determinant,

Define operations on matrices of order 2 * Show that a square matrix of order 2 is invertible or not	solve problems such as organisation of data in a shopping, in Cryptography, in Physics (problems about quantum or circuits), ...	matrix Determinant of a matrix of order 2 Applications of matrices in solving daily life problems (physics, buying and selling, medicine).	* Learners in group discuss about to show how a matrix of order 2 is invertible Learners should make research about the importance and use of matrices for example in Physics, Economics, Entrepreneurship, and report the findings
Links to other subjects: Physics (problems about quantum or circuits), Entrepreneurship and in Economics (Organisation of data from sales)			

with 2 unknowns.
Materials: Geometric instruments (ruler, T-square, pair of compasses), graph papers, digital technology including calculators, ...

Topic Area: STATISTICS AND PROBABILITY			Sub-topic Area: DESCRIPTIVE STATISTICS	
S4 - MATHEMAT		Unit 9: Measures of dispersion	ispersion \quad Number of pe	Number of periods: 12
Key Topic Competence: Extend understanding, analysis and interpretation of data arising from problems and questions in daily life to include the standard deviation.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
* Define the variance, standard deviation and the coefficient of variation		* Appreciate the importance of measures of dispersion in the interpretation of data * Show concern	* Variance * Standard deviation (including combined set of data) * Coefficient of variation * Application: - Problems to include measure of dispersion	In group, learners will be given a task and be asked to: * Discuss about the measures of dispersion, interpret them and represent their findings. * Represent data on

interpret critically data and infer conclusion.	more convenient measure of the variability in the interpretation of data Express as a coefficient of variation as a measure of the spread of a set of data as a proportion of its mean.	on how to use the standard deviation as measure of variability of data.	and explain the standard deviation as the more convenient measure of the variability in the interpretation of data - Problems to include measure of dispersion and express the coefficient of variation as a measure of the spread of a set of data as a proportion of its mean.	graph papers, interpret them and infer conclusion. Make a research on given problems arising from various situation in daily life, investigate them to include the standard deviation, nad represent their findings.

Links to other subjects: Physics, Biology, Chemistry, Geography, Finance, Economics...
Assessment criteria: Ability to extend understanding, analysis and interpretation of data arising from problems in daily life to the standard deviation.
Materials: Manila papers, Graph Papers, ruler, digital technology including calculators ...

Topic Area: STATISTICS AND PROBABILITY PROBABILITY				
S4 - MATHEMATICS		Unit 10: Elementary probability		Number of periods: 24
Key unit Competence: Use combinations and permutations to determine probabilities of occurrence of an event				
Learning Objectives			Content	Learning Activities
Knowledge and understanding	Skills	Attitudes and values		
Define the combinatorial analysis Define factorial and recognize that for n different items there are different combinations	Determine the number of permutations and combinations of " n " items, " r " taken at a time. Use counting techniques to solve related	* Appreciate the importance and the use of counting techniques * Appreciate the use of probability as a measure of	* Counting techniques: - Venn diagram - Tree diagrams - Contingency table - Multiplication principles * Arrangement and Permutations: - Arrangements with	Mental task: Imagine you are a photographer who need to take a picture of a group of people who are sitting in a row. You need to determine how many different ways you

Construct Pascal's triangle	problems. * Use and apply	chance * Show concern on	or without repetition - Permutations with	can seat the group. * Solve in group
* Distinguish	elementary	patience, mutual	or without repetition	questions about
between	properties of	respect,	* Combinations:	
permutations and	probability to	tolerance and	- Definitions and	
combinations	calculate the	curiosity of the	properties	for example "In how
* Define notion,	number possible	possible	- Pascal's triangles	many different ways
axioms of	outcomes of	outcomes of	- Binomial expansion	
probability and	occurring event	occurring event	* Concepts of probability:	5 people be chosen from a class of 30
explain	under equally	under equally	Random experiment	
probability as a	likely	likely	Sample space	
measure of chance	assumptions	assumptions	Eve	
* Distinguish	* Determine and		Definition of	MISSISSIPI",
between mutually	explain		probability of an	
exclusive and	expectations		event under equally	
non-exclusive	from an		likely assumptions	
events and	experiment with		* Properties and formulas	* Sit 3 men and 4

6.3 Secondary Five

6.3.1 Key Competences at the end of Secondary Five

After completion of secondary 5 , the mathematics syallabus will help the learnerto:

- Solve trigonometric equations and related real-life problems.
- Use arithmetic, geometric and harmonic sequences and their convergence to understand and solve problems in various context.
- Solve equations involving logarithms or exponentials and apply them to model and solve related problems.
- Apply theorems of limits and formulas of derivatives to solve problems involving trigonometric functions.
- Extend the use of matrices and determinants of order 3 to solve problems in various contexts.
- Apply properties of vectors and their operations in \mathbb{R}^{3} to solve problems related to angles between vectors.
- Extend the understanding, analysis and interpretation of bivariate data to correlation coefficients and regression lines.
- Apply Bayes theorem in solving problems involving the conditional probability.

6.3.2 Mathematics units for Secondary Five

Topic Area: TRIGO	MMETRY	Sub-topic Area: EQUATIONS	TRIGONOMETRIC	FUNCTIONS AND
S5 - MATHEMATICS		Unit 1: Trigonometric	quations	Number of periods: 24
Key unit Competence: Solve trigonometric equations and related real-life problems.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Contents	Learning Activities
*how how tousetransformationformula tosimplify thetrigonometricexpressions*Define \quad a	Apply the transformation formulas to simply trigonometric expressions $*$ Use the trigonometric	* Appreciate the relationship between trigonometry and other subjects. * Show concern on patience, mutual respect, tolerance		In groups, discuss on how to simplify trigonometric expressions using transformation formulas.

trigonometric equation. List the steps for solving a trigonometric equation.	concepts and their properties to \quad deduce trigonometric equations. * Analyze and discuss \quad the solution of trigonometric equation. * Use trigonometric functions and equations \quad to model and solve problems involving trigonometric	and curiosity in the solving and discussion about problems involving trigonometric functions and equations.	- Double-angle and half-angle formulas - Sum, Difference and Product Formulas Trigonometric equations Application of trigonometric equations in real life (in physics)	Solve problems involving trigonometric equations.

	concepts		
Links to other subjects: Physics, Complex numbers, ...			
Assessment criteria: Ability to solve trigonometric equations and related real-life problems.			
Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital components including calculators...			

Sub-topic Area: NUMBER PATTERNS				
S5 - MATHEMATICS	Unit 2: Sequences			Number of periods: 16
Key unit Competence: Use arithmetic, geometric and harmonic sequences and their convergence to understand and solve problems arising in various context.				
Learning Objectives			Contents	Learning Activities
Knowledge and understanding	Skills	Attitudes and values		
* Define a sequence and understand arithmetic progressions and their properties * Determine the value of " n ", given the sum ofthe first " n " terms of arithmetic	* Use basic concepts and formulas of sequences to find the value " n ", given the sum ofthe first "n" terms of arithmetic progression	* Appreciate the use of sequences in other subjects to understand occurring situations (in entrepreneursh ip and economics: Value of annuity, future value of	* Definition sequences. * Convergence and divergence sequences. * Arithmetic sequences * Geometric sequences * Applications: - Problems including population	- Group led approach: Learners can be given a task of folding a piece of paper to make them understand the meaning of geometric sequences, and think what should be the last term to the infinity

progressions. * Show how to apply formulas to determine the " n " th" term and the sum of the first " n " terms of arithmetic progressions Define and explain geometric progressions and their properties Determine the value of " n ", given the sum ofthe first " n " terms of geometric progressions Show how to	s - the " n th" term and the sum of the first "n" terms of arithmetic progression s Explore the converge nce and the divergen ce of sequence s. Use basic concepts and formulas of sequences to find the	money ...). * Show concern on, patience, mutual respect, tolerance and curiosity to discuss about sequences and their applications.	growth - Problems involving compound and simple interests - Half-life and Decay problems in Radioactivit y - Bacteria growth problems in Biology, etc.	$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \frac{1}{2^{n}}$ - Group investigation: If the bankrates increase or decrease unexpectedly, learners discuss or investigate how in the next nyears: - they come out ahead - the deal stays fair

| | geometric
 sequences. | |
| :--- | :---: | :--- | :--- |
| Links to other subjects: Demography in Population growth Problems, Economics in Compound and simple interests,
 Chemistry in Half-life and Decay... | | |
| Assessment criteria: Ability to apply concepts of sequences to solve problems involving arithmetic and geometric
 sequences. | | |
| Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators,
 manila paper... | | |

ic Area: ALGEBRA Sub-topic Area: EQUATIONS AND INEQUALITIES				
S5-MATHEMATICS		Unit 3: Logarithmic	exponential equations	Number of periods: 20
Key unit Competence: Solve equations involving logarithms or exponentials and apply them to model and solve related problems.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Contents	Learning Activities
* Define logarithm or exponential equations using properties of logarithms in any base * State and demonstrate		Appreciate the use of logarithmic equations to model and solve problem involving logarithms such radioactive-decay problems, Carbon dating problems,	* Introduction to Exponential and logarithmic functions * Logarithmic equations, including \quad natural logarithms. *Exponential equations * Application logarithm\quad of	In group or individually, - Once there have the shape of logarithmic graph, they can shift it vertically or horizontally, stretch it, shrink it,

properties of logarithms and exponentials Carry out operations using the change of base of logarithms	logarithm to exponential form Apply logarithms or exponential to solve rates problems, mortgage problems, population growth problems	problems about alcohol and risk of car accident, etc. Show concern on patience, mutual respect and tolerance in solving problems involving logarithmic or exponential equations	exponentials in solving: - Interest rates problems - Mortgage problems - Population growth problems - Radioactive decay problems - Earthquake problems - Carbon dating problems - Problems about alcohol and risk of car accident	reflect it, check answers with it, and the most important is to interpret the graph. - Given for example a growth or decay situation, learners after investigating the situation, they write an exponential function and evaluate it for a given input.

Links to other subjects: Demography (Population growth Problems), Economics (Interest rates problems, annuity value of money), etc.

Assessment criteria: Ability to apply concepts of logarithmic and exponential equations to solve correctly problems
involving logarithms or exponentials.
Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators, Manila paper...

Sub-topic Area: LIMITS, DIFFERENTIATION AND INTEGRATION				
S5 - MATHEMATICS	Unit 4: Trigonometric and inverse trigonometric functions			Number of periods: 20
Key unit Competence: Apply theorems of limits and formulas of derivatives to solve problems involving trigonometric functions.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Contents	Learning Activities
Use the concepts of function, domain, range, period, inverse function, and limits	* Apply concepts and definition of limits, to calculate the limits of trigonometr ic functions	* Appreciate the use of limits and derivatives of trigonometric functions to solve problems related to the periodic motion of bodies.	* Trigonometric functions: - Generalities - Definitions - Domain and range of a function - Parity of a function (odd or even) - Periodic functions - Limits of	- In groups, - Plot the graph of trigonometric function of the form: $\begin{aligned} & y=\sin x \text { or } \\ & y=a \sin b x \end{aligned}$ and investigate them. Discuss its period, find its

to define the derivative of trigonomet ric functions. List the steps to follow when solving problems involving the limits or derivative of	and remove their indetermin ate forms * Calculate the high derivatives. Derive techniques of differentiati on to model and solve problems related to trigonometr y.		trigonometric functions, including indeterminate cases $\frac{0}{0}, 0 . \infty$ - Differentiation of trigonometric functions: -First derivative. -high derivatives. * Inverse trigonometric functions. * Application of trigonometric functions in the periodic motion	domain of definition and range. - Generalize these activities to other trigonometric functions. Calculate high derivatives of these trigonometric functions. - Carry out research on techniques of differentiation of

trigonomet ric or inverse trigonomet ric functions.	Apply technique of differentiati on to solve problems involving trigonometr ic functions.			trigonometric functions and apply them to explain related problem.
Links to other subjects: Physics (periodic motion), Medicine.				
Assessment criteria: Ability to apply theorems of limits and formulas of derivatives to solve problems involving trigonometric functions.				
Materials: Geometric instruments (ruler, T-square, compass), graph papers, digital technology including calculators				

S5 - MATHEMATICS	Unit 5: Vector space of real numbers			Number of periods: 16
Key unit Competence: Apply properties of vectors and their operations in \mathbb{R}^{3} to solve problems related to angles between vectors.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Contents	Learning Activities
\Varangle Define the dot product and the cross product of two vectors in a threedimensional vector space and list their properties. Define the magnitude of a	* Determine the dot product and the vector product of two vectors in a three- dimensional space and use them to solve	* Appreciate the usefulness of vectors of \mathbb{R}^{3} in the description of quantities such as force, velocity of a body in space.	Introduction vector of \mathbb{R}^{3} and its definition. Operation of vectors in 3 dimensions, Linear combination of vectors Introduction	Learners perform specific tasks in group, patiently, in mutual respect and tolerance such as - To draw a threedimensional coordinate system and plot

three-dimensional vector and list its properties Distinguish between the dot product and the cross product.	practical related problems. Explain geometrically the dot product and the cross product			

Topic Area: LINEAR ALGEBRA		Sub-topic Area: LINEAR TRANSFORMATION IN 3D		
S5 - MATHEMATICS		Unit 6: Matrices and	eterminants of order 3	Number periods: 20 periods: 20
Key unit Competence: Apply matrix and determinant of order 3 to solve related problems.				
Learning Objectives			Contents	Learning Activities
Knowledge and understanding	Skills	Attitudes and values		
Define operations on matrices of order 3. * Illustrate the properties of determinants of matrices of order3. Show that a	Perform operations on matrices of order 3 Calculate the determinants of matrices of order 3 Explain using determinant whether a matrix of order 3 is invertible or not Determine the	Appreciate the importance of matrices of order 3 and their determinants in organising data and solving related problems.	* Matrix of order 3: definition, types, and examples. Operations on matrices of order 3: - Equality of matrices - Addition of matrices. - Multiplication of	Discuss in group, the solutions of a system of three linear equations in three unknowns with respect to a parameter. Discuss in

square matrix of order 3 is invertible or not. Discuss with respect to a parameter the solutions of a system of three linear equations in three unknowns.	inverse of a matrix of order 3 Reorganise data into matrices Apply matrices to solve related problems (e.g in physics.) Use Cramer's rule to solve a system of three linear equations in three unknowns * Apply properties of determinants to solve problems related to matrices of order 3.		matrix by a scalar - Transpose of a matrix - Multiplication of matrices Determinant of a matrix of order 3 - Definition and example. - Inverse of square matrix. Application of matrices in everyday life: Solving a system of 3 linear equations delivered from real life	group, the solutions of a system of three linear equations in \quad three unknowns with respect to a parameter.

		problems	
Links to other subjects: Physics (Expressing force, velocity, acceleration).			
Assessment criteria: Ability to apply matrix and determinant of order 3 to solve related problems successifully.			
Materials: Graph papers, digital technology including calculators			

Topic Area: AND PROBAB	STATISTICS LITY	Sub-topic Area: DESCRIPTIVE STATISTICS		
S5-MATHEMA	TICS	Unit 7: Bivariat	statistics	Number of periods: 16
Key unit Competence: Extend understanding, analysis and interpretation of bivariate data to correlation coefficients and regression lines				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Contents	Learning Activities
* Define the covariance,	* Determine the	* Appreciate the	Introduction to bivariate	* Discuss, in groups, about, the correlation between class results and

Topic Area: STATI PROB	$\begin{aligned} & \text { TICS AND } \\ & \text { BILITY } \end{aligned}$	OBABILITY		Sub-topic Area:
S5 - MATHEMATIC		Unit 8: Conditional probability and Bayes theorem		Number of periods: 12
Key unit Competence: Apply Bayes theorem in solving real life problems involving the conditional probability.				
Learning Objectives			Contents	Learning Activities
Knowledge and understanding	Skills	Attitudes and values		
Explain the conditional probability.	* Apply theorem of probability to calculate the number possible outcomes of occurring	* Appreciate the use of conditional probability in solving some problems.	* Tree diagram and probalbilty problems. * Independent event, dependent events and multiplication rule. * Conditional probability: - Probability	* Using tree diagram for solving probability problems * Discuss in groups about number of possible outcomes of event B occurring

	independent events under equally likely assumptions Compute the probability of an event B occurring when event A has already taken place. Apply Bayes theorem to calculate the		event B occurring when event A has already taken place. - Basic formulae and properties and of conditional Probability * Bayes theorem and its applications	when even A has already taken place. In a given task, use Bayes theorem to determine the probability of event B occurring when event A has already taken place.

6.4 Secondary Six

6.4.1 Key competences at the end of Secondary Six

After completion of secondary 6 , the mathematics syllabus will help the learner to:

- Perform operations on complex numbers and solve related problems in physics, ...
- Extend the use of concepts and definitions of functions to determine the domain of logarithmic and exponential functions.
- Use integrations as the inverse of differentiation and as the limit of a sum and apply them to find area of plane shapes.
- Use ordinary differential equations of first and second order to solve related problems that arise in a variety of practical contexts.

6.4.2 Mathematics Units for Secondary Six

Topic Area: ALGEBRA OPERATIONS Sub-topic Area: NUMBERS AND				
S6-MATHEMATICS		Unit 1: COMPLEX NUMBERS		Number of periods: 44
Key unit competence: Perform operations on complex numbers and solve related problems.				
Learning Objectives			Content	Learning Activities
Knowledge and understanding	Skills	Attitudes and values		
\neq Identify the real part and the imaginary part of a complex number * Convert a complex number from	* Apply the properties of complex numbers to perform operations on complex numbers in algebraic	Appreciater the importance \quad of complex numbers to solve r related problems such as in Physics (voltage and current in alternating current), Computer	* Algebraic form of Complex numbers - Definition and properties of "i" - Operations: - Addition, - Subtraction, - Multiplication, - powers,	* Mental work; Use definition of the multiplication of complex numbers to determine the complex number whose square is -1 and draw conclusion about the properties

	Moivre's formula and Euler's formula to transform trigonometric expressions.		- De Moivre's formula Exponential forms of complex numbers: - Definition and operations. - Euler's formula of complex numbers. Application of complex numbers in physics.	different shapes to present in class.
Links to other subjects: Physics (alternating current), Computer science(fractals) ...				
Assessment criteria: Ability to perform operations on complex numbers and solve related problems in physics, ...				
Materials: Geometric instruments (ruler, T-square, compass), IT equipments, ...				

Topic Area: ANALYSIS INTEGRATION				
S6 - MATHEMATICS		LOGARITHMIC NS	AND EXPONENTIAL	Number of periods: 36
Key unit competence: Extend the use of concepts and definitions of functions to determine the domain of logarithmic and exponential findias and solve related problems.				
Learning Objectives				
Knowledge and understanding	Skills	$\begin{aligned} & \hline \text { Attitudes } \begin{array}{l} \text { and } \\ \text { values } \end{array} \\ & \hline 10 \end{aligned}$	Content	Learning Activities
State the restrictions on the base and the variable in a logarithmic function Extend the concept of	* Transform a logarithm from a base to another * Find the domain and the range of a logarithmic or	* Show concern on the importance of logarithmic and exponential functions in solving problems such	* Logarithmic functions - Domain of definition - Limits of logarithmic functions and their applications continuity and asymptotes - Differentiation and its	Use scientific calculators to evaluate logarithms and exponentials of real numbers; they conclude about the domain (the allowed input values) and

	a logarithmic or an exponential function Solve related problems involving logarithms		- Radioactive decay problems - Earthquake problems - Carbon dating problems - Problems about alcohol and risk of car accident.	logarithms and exponentials in real life and report the results.
Links to other subjects: Physics (Newton's law of cooling), Economics (Compounded interest), Biology (population growth), Chemistry (carbon dating).				
Assessment criteria: Ability to extend the concepts of functions to investigate logarithmic and exponential functions and use them to model and solve problems about interest rates, population growth or decay, magnitude of earthquake, etc.				
Materials: Graph Papers, ruler, digital technologies including calculators ...				

INTEGRATION				
S6-MATHEMATIC		Unit 3: INTEGRATION		Number of periods: 32
Key Unit Competence: Use integration as the inverse of differentiation and as the limit of a sum and apply them to find area of a plane shapes.				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
* Define the differential of a function * Interpret geometrically the differential of a function * List the	* Use differentials to approximate a function and to calculate the percentage error in an estimation * Calculate integrals. Using	* Appreciate the importance of integral calculus in solving problems from daily life.	Indefinite integrals - Antiderivatives - Definition and properties - Techniques of integration: - Basic Integration Formulas	* Graphical approach: Learners shade the area between a curvethe x -axis and two verticals. Considering consecutive subintervals, calculate the areas of corresponding rectangles, then introduce

integrals.	an improper integral Use integrals to solve problems in Physics (work...), Economics (marginal and total cost), etc.		direction.	
Links to other subjects: Physics and chemistry.				
Assessment criteria: Ability to use integration as the inverse of differentiation and as the limit of a sum and apply them to find area of a plane shapes.				
Materials: Manila papers, Graph Papers, ruler, markers ...				

Topic Area: ANALYSIS Sub-topic Area: LIMITS, DIFFERENTIATION andINTEGRATION				
S6- MATHEMATI		Unit 4: ORDINARY EQUATIONS	ERENTIAL	Number of periods: 32
Key unit competence: Use ordinary differential equations of first and second to model and solve related problems tin Physics, Economics, Chemistry, Biology, ...				
Learning Objectives				
Knowledge and understanding	Skills	Attitudes and values	Content	Learning Activities
Extend the concepts of differentiation and integration to ordinary differential equations $*$ State the order	* Determine whether an ordinary differential equation of first order is with separable variables, homogeneous or	* Appreciate the use of differential equations in solving problems occurring from daily life.	\nLeftarrow Definition and classification * First order differential equations - Differential equations with separable	* Mental task: imagine the motion of a child on a swing. Express the displacement as function of time. Differentiate the function to find the velocity and

4. REFERENCES

1. Alpers, B. (2013). A Framework for Mathematics Curricula in Engineering Education: A Report of the Mathematics Working Group. European Society for Engineering Education (SEFI): Brussels
2. Balakrishnan, V.K . (1995). Schaum's Outline, Combinatorics.
3. Bird, J. (2003). Engineering Mathematics ($4^{\text {th }}$ Edition).
4. Bronson, R. (2003). Schaum's Outline, Differential equation.
5. CrashwshaW,J.,\& Chambers,J.(2001).Advanced Level Statistics with worked examples (Fourth Edition). Nelson Thornes Ltd:UK
6. Curriculum Planning and Development Division (2006). Secondary Mathematics Syllabuses. Ministry of Education: Singapore
7. Frank Ayres, F., \& Moyer,E.R.(1999). Schaum's Outline Series Trigonometry (${ }^{\text {rd }}$ Edition).
8. National Curriculum Development Centre (2008).Mathematics teaching syllabus: Uganda Certificate of Education Senior1-4. Ministry of Education and Sports: Uganda.
9. National Curriculum Development Centre (2013). Uganda Advanced Certificate of Education: Teaching Syllabi for Physics and Mathematics (Volume 2). Ministry of Education and Sports: Uganda.
10. National Curriculum Development Centre (2013). Uganda Advanced Certificate of Education: Subsidiary Mathematics teaching syllabus. Ministry of Education and Sports: Uganda.
11. Rich, B. \& Thomas, C. (2009). Schaum's Outline, Geometry : Fourth Edition.
12. Rwanda Education Board (2010).Advanced Level Mathematics for Science Combination. Ministry of Education: Rwanda
13. Rwanda Education Board (2014). Mathematics Curriculum For Physics - Chemistry - Biology (PCB) Combination (Elective) Advanced Level. Ministry of Education: Rwanda
14. Sanchez , A.V, \& Ruiz, M.P. (2008). Competence-Based Learning : A proposal for the assessment of Generic Competences(Eds).
15. Shampiyona, A. (2005). Mathématiques 6. Imprimerie de Kigali: Kigali
16. Spiegel,M. R.; Schiller, J. \& Srinivasan, A. (2009). Schaum's Outline, Probability and Statistics: Third Edition.
17. Stewart, J. (2008). Calculus ($6^{\text {th }}$ Edition)
18. Stewart, J. (2008). Calculus Early Transcendental, sixth edition. McMaster University: US.
19. Wrede,R., Murray,D., \& Spiegel, R. (2010). Schaum's Outline, Advanced calculus, $3^{\text {rd }}$ Edition.

APPENDIX: SUBJECTS AND WEEKLY TIME ALOCATION

Subjects in Secondary 4-6	Number of periods per week $(\mathbf{1}$ period = 40 min. $)$		
I. Core subjects/Compulsory: Examinable in National Examinations	S4	S5	S6
1. Physics	7	7	7
2. Chemistry	7	7	7
3. Biology	7	7	7
4. General studies and communication skills	3	3	3
5. English	3	3	3
6. Subsidiary Mathematics	4	4	4
7. Entrepreneurship	3	3	3
Sub-total 1	$\mathbf{3 4}$	$\mathbf{3 4}$	$\mathbf{3 4}$
II. Core subjects examinable at school level			
8. Kinyarwanda	3	3	3
9. ICT	3	3	3
10. Physical Education and Sports	2	2	2
11. French	3	3	3

III. Co-curricular activities (compulsory)	5	5	5
Total number of contact periods per week	50	50	50
Total number of contact hours/week	33.3	33.3	33.3
Total number of contact hours per year (39 weeks)	$\mathbf{1 3 0 0}$	$\mathbf{1 3 0 0}$	$\mathbf{1 3 0 0}$

