CONTENT DISTRIBUTION SUBJECT: MATHEMATICS Class: Senior 4

Number of periods per week: 7periods **Note:** Given that this subject has 7 periods per week, adjust this content distribution according to the number of weeks for the school year's calendar.

Term 1

	FUNDAMENTALS OF TRIGONOMETRY (21 periods instead of 26	
	t Competence: Use trigonometric circle and identities to determine trigonom em to solve related problems	etric ratios and
Week	Content	Number of Periods
1	Angle and its measurements	2
	Unit circle and identification of Trigonometric ratios of acute angles	1
	Trigonometric ratios of special angles $(0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ})$	2
	Introduction to trigonometric identities	2
2	Reduction to functions of Positive acute angles	
	 Equivalent angles 	1
	 Negative/Opposite angles 	1
	 Complementary angles 	2
	– Supplementary angles	1
	Solving a triangle by cosine law	1
	Solving a triangle by Sine law	1
3	Application of trigonometry in bearing and air navigation	3
	Application of trigonometry: Angle of elevation, Angle of depression, Inclined plane	3
	End unit assessment	1
UNIT 2:	PROPOSITIONAL AND PREDICATE LOGIC (14 periods)	
	t Competence: Use mathematical logic to organize scientific knowledge and g and argumentation in daily life	as a tool of
Week	Content	Number of Periods
4	Generalities on propositions	2
	Propositional logic	
	- Truth tables	1
	- Logical connectives	2
	- Tautologies and contradictions	1
5	Predicate Logic: Propositional functions, Quantifiers	4
		2
	Applications of logics to set theory and Electric circuits	

UNIT 3:	BINARY OPERATIONS (14 periods)	
	t Competence: Use mathematical logic to understand and perform operatio	ons using the
propertie	s of algebraic structures.	
Week	Content	Number of Periods
6	Definition and properties	
	- Binary operation, Closure and commutative properties	1
	- Identity and inverse properties	1
	Definition and properties:	
	- Associativity and distributive properties	1
	Cayley table of binary operation	1
	Algebraic structure of a Group	2
7	Algebraic structure of Ring	3
	Algebraic structure of a Field	4
	End unit assessment	1
UNIT 4:	SET OF REAL NUMBERS (21 periods instead of 24)	I
Key Uni	t Competence: Think critically using mathematical logic to understand and	
operation	ns on the set of real numbers and its subsets using the properties of algebraid	e structures.
Week	Content	Number of Periods
8	Absolute value and its properties	2
	Powers and radicals	3
	Operation on radicals	2
9	Rationalization	2
	Decimal logarithms	2
	Properties of decimal logarithms	3
10	Model simple problems about growth, decay, compound interest and magnitude of an earthquake	6
	End unit assessment	1
11	Exams	-

TERM 2:

linear eau	ations or inequalities	
Week	Content	Number of Periods
1	Linear equations in one unknown: Simple equations, equations involving products and quotients, equations involving absolute value	1
	Simultaneous equations in two unknowns	1
	Linear inequality in one unknown: Simple inequalities, Inequalities involving products or quotients, Inequalities involving absolute values	2
	Parametric equations in one unknown	1
	Parametric inequalities in one unknown	1
	Solving problems from real life situations involving equations and inequalities	_
	End unit assessment	1
UNIT 6:	QUADRATIC EQUATIONS AND INEQUALITIES (14 periods instead	1 of 18)
Key Unit	Competence : Model and solve algebraically or graphically daily life proble equations or inequalities.	
Week	Content	Number of Periods
2	Solving quadratic equations by factorizing or completing the square	1
	Solving quadratic equations by discriminant formula	
	Solving equations reducible to quadratic form: bi-quadratic equations,	3
	Nested equations, Irrational equations, Reciprocal equations	
	Quadratic inequalities	2
	Parametric equations in one unknown	1
3	Parametric inequalities in one unknown	2
	Simultaneous quadratic equations in two unknowns	2
	Solving problems from real life situations involving equations and inequalities	2
	End unit assessment	1
UNIT 7:	POLYNOMIAL, RATIONAL AND IRRATIONAL FUNCTIONS (14 p	
	Competence: Use concepts and definitions of functions to determine the do unctions and represent them graphically in simple cases and solve related pro	
Week	Content	Number of
		Periods
4-5	Factorization of polynomials	3
	Definition, domain and range of a function	2
	Determination of domain of definition	3
	Operations of functions	1
	Parity of a function	2
	Application of rational and irrational functions	2

of Perio 6 Neighborhood of a real number and limit of a variable 1 0 Definition and graphical interpretation of limit of a function 1 0 One-sided limits 2 Infinite limits 1 1 1 Limits at infinity 1 1 The Squeeze theorem and Operations on limits 1 7 Indeterminate cases 2 Applications of limits on: Continuity of a function, Asymptotes 4 End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) Veriods Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app this to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Week Content Numl of Perio 8 Concepts of derivative of a function: Definition and Differentiation from first principle 1 8 Concepts of differentiation 4 9 Applications of differentiation 1 1 <	Key Unit problems	Competence: Evaluate correctly limits of functions and apply them to solve rel	ated
Definition and graphical interpretation of limit of a function 1 One-sided limits 2 Infinite limits 1 Limits at infinity 1 The Squeeze theorem and Operations on limits 1 7 Indeterminate cases 2 Applications of limits on: Continuity of a function, Asymptotes 4 End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app this to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Week Concepts of derivative of a function: Definition and Differentiation from first principle Rules of differentiation 1 High order derivatives 1 9 Applications of differentiation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. 9 Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points, Increasing and decreasing function) 10 - Applications of differentiation: Grad	1		Number of Periods
One-sided limits 2 Infinite limits 1 Limits at infinity 1 The Squeeze theorem and Operations on limits 1 7 Indeterminate cases 2 Applications of limits on: Continuity of a function, Asymptotes 4 End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) 4 Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app this to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Week Concepts of derivative of a function: Definition and Differentiation from first principle Numl of Rules of differentiation Rules of differentiation 1 4 Rules of differentiation 1 High order derivatives 1 9 Applications of differentiation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. 4 9 Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10	6	Neighborhood of a real number and limit of a variable	1
Infinite limits 1 Limits at infinity 1 The Squeeze theorem and Operations on limits 1 7 Indeterminate cases 2 Applications of limits on: Continuity of a function, Asymptotes 4 End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app this to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Week Content Numl of Periods 8 Concepts of derivative of a function: Definition and Differentiation from first principle 1 8 Concepts of derivatives 1 9 Applications of differentiation 4 9 Applications of differentiation 4 9 Applications of differentiation 4 9 Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 Applications of differentitation: Gradient as		Definition and graphical interpretation of limit of a function	1
Limits at infinity 1 The Squeeze theorem and Operations on limits 1 The Squeeze theorem and Operations on limits 1 Indeterminate cases 2 Applications of limits on: Continuity of a function, Asymptotes 4 End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app his to line tangent and normal to curves in various contexts and use the concepts of differentiation o solve and interpret related rates and optimization problems in various context Week Content Numl of Perio Rules of differentiation 4 Rules of differentiation 1 1 High order derivatives 1 4 P Applications of differentiation 4 Rules of differentiation 4 4 Rules of differentiation 4 4 P Applications of differentiation: 4 Rules of differentiation 4 4 Rules of differentiation in toreurve.		One-sided limits	2
The Squeeze theorem and Operations on limits 1 Indeterminate cases 2 Applications of limits on: Continuity of a function, Asymptotes 4 End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app this to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Week Content Numl of Perio Rules of differentiation 4 Rules of differentiation 4 Rules of differentiation 1 P Applications of differentiation 4 Rules of differentiation 4 1 P Applications of differentiation 4 Rules of differentiation 4 1 P Applications of differentiation 4 Rules of differentiation 4 1 High order derivatives Equation of the tangent to a curve, Equation of normal to a curve. 4 P Applications of differentiation: Variations of a function (Maximum and minimum values, critical poi		Infinite limits	1
7 Indeterminate cases 2 Applications of limits on: Continuity of a function, Asymptotes 4 End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app hits to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Week Content Numl of Perio 8 Concepts of derivative of a function: Definition and Differentiation from first principle 1 Rules of differentiation 4 4 Rules of differentiation 4 4 9 Applications of differentiation 4 10 Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 -Applications of differentiation: Kinematic meaning of derivatives: 2		Limits at infinity	1
Applications of limits on: Continuity of a function, Asymptotes 4 End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) 1 Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app his to line tangent and normal to curves in various contexts and use the concepts of differentiation os olve and interpret related rates and optimization problems in various context Numl of Perio Week Content Numl of Perio Rules of differentiation 4 Rules of differentiation 4 Rules of differentiation 1 High order derivatives 1 O Applications of differentiation Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. 4 Mean value theorem Hospital's theorem 4 Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 Applications of differentiation: Gradient as a measure of rate of change 2 Applications of differentiation: Cordient as a measure of rate of change 2 Applications of diffe		The Squeeze theorem and Operations on limits	1
End unit Assessment 1 UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app his to line tangent and normal to curves in various contexts and use the concepts of differentiation o solve and interpret related rates and optimization problems in various context Week Content Rules of differentiation 1 Rules of differentiation 1 High order derivatives 1 O Applications of differentiation - Geometric interpretation of derivatives: Equation of the tangent to a curve, 1 Equation of normal to a curve. - - Mean value theorem for derivatives: Lagrange's theorem 3 - Roplications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 - Applications of differentiation: Gradient as a measure of rate of change 2 - Applications of differentiation: Gradient as a measure of rate of change 2 - Applications of differentiation: Gradient as a measure of rate of change 2 - Applications of differentiation: Cortaine curves <td>7</td> <td>Indeterminate cases</td> <td>2</td>	7	Indeterminate cases	2
UNIT 9: Differentiation of Polynomials, Rational and Irrational Functions and their Applications (21 Periods) Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app this to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Week Content Numl of 8 Concepts of derivative of a function: Definition and Differentiation from first principle 1 Rules of differentiation 4 4 Rules of differentiation 1 4 Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. 4 9 Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 - Applications of differentiation: Gradient as a measure of rate of change 2 - Applications of differentiation: Cortainent as a measure of rate of change 2 - Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 - Applications of differentiation: Kinematic meaning of derivatives 2 - Applications of dif		Applications of limits on: Continuity of a function, Asymptotes	4
Applications (21 Periods) Key Unit Competence: Use the gradient of a straight line as a measure of rate of change and app this to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Week Content Numl of Perio 8 Concepts of derivative of a function: Definition and Differentiation from first principle 1 Rules of differentiation 4 Rules of differentiation 1 High order derivatives 1 9 Applications of differentiation 4 - Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. 4 9 Applications of differentiation 3 9 Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 - Applications of differentiation: Cradient as a measure of rate of change 2 - Applications of differentiation: Containt as a measure of rate of change 2 - Applications of differentiation: Containt as a measure of rate of change 2 - Applications of differentiation: Containt as a measure of rate of change 2 - Applications of diffe		End unit Assessment	1
this to line tangent and normal to curves in various contexts and use the concepts of differentiation to solve and interpret related rates and optimization problems in various context Nume Week Content Nume Week Concepts of derivative of a function: Definition and Differentiation from first principle Nume Rules of differentiation 4 Rules of differentiation 1 High order derivatives 1 O Applications of differentiation 4 Concepts interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. 4 Mean value theorem for derivatives: Lagrange's theorem 4 - Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 - Applications of differentiation: Gradient as a measure of rate of change 2 - Applications of differentiation: Coptimization problems 2 - Applications of differentiation: Coptimization problems 2	Applicat	ions (21 Periods)	and annly
WeekContentNuml of Perio8Concepts of derivative of a function: Definition and Differentiation from first principle18Concepts of derivative of a function: Definition and Differentiation from first principle18Rules of differentiation49Applications of differentiation49Applications of differentiation49- Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve.49- Mean value theorem for derivatives: Lagrange's theorem - Rolle's theorem39- Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function)310- Applications of differentiation: Gradient as a measure of rate of change - Applications of differentiation: Kinematic meaning of derivatives - Applications of differentiation: Optimization problems210- Applications of differentiation: Optimization problems2	this to lin	e tangent and normal to curves in various contexts and use the concepts of differ	
8 Concepts of derivative of a function: Definition and Differentiation from first principle 1 Rules of differentiation 4 Rules of differentiation 1 High order derivatives 1 9 Applications of differentiation 4 - Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. 4 - Mean value theorem for derivatives: Lagrange's theorem 4 - Rolle's theorem 3 - Hospital's theorem 3 - Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function) 3 10 - Applications of differentiation: Kinematic meaning of derivatives 2 - Applications of differentiation: Coptimization problems 2 - Applications of differentiation: Image and decreasing of derivatives 2 - Applications of differentiation: Kinematic meaning of derivatives 2 - Applications of differentiation: Optimization problems 2 - Applications of differentiation: Optimization problems 1			Number of Periods
Rules of differentiation1High order derivatives19Applications of differentiation4- Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve.4- Mean value theorem for derivatives: Lagrange's theorem4- Rolle's theorem- Hospital's theorem- Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function)310- Applications of differentiation: Gradient as a measure of rate of change 22- Applications of differentiation: Optimization problems2- Applications of differentiation: 111	8	-	1
High order derivatives19Applications of differentiation4- Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. - Mean value theorem for derivatives: Lagrange's theorem - Rolle's theorem - Hospital's theorem4- Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function)310- Applications of differentiation: Kinematic meaning of derivatives2- Applications of differentiation: Optimization problems2- Applications of differentiation: Optimization problems1		Rules of differentiation	4
9Applications of differentiation4- Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. - Mean value theorem for derivatives: Lagrange's theorem - Rolle's theorem - Hospital's theorem4- Mean value theorem for derivatives: Lagrange's theorem - Rolle's theorem - Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function)310- Applications of differentiation: Gradient as a measure of rate of change - Applications of differentiation: Kinematic meaning of derivatives - Applications of differentiation: Optimization problems2- Applications of differentiation: 111		Rules of differentiation	1
9Applications of differentiation4- Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. - Mean value theorem for derivatives: Lagrange's theorem - Rolle's theorem - Hospital's theorem4- Mean value theorem for derivatives: Lagrange's theorem - Rolle's theorem - Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function)310- Applications of differentiation: Gradient as a measure of rate of change - Applications of differentiation: Kinematic meaning of derivatives - Applications of differentiation: Optimization problems2- Applications of differentiation: 111		High order derivatives	1
- Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary points,, Increasing and decreasing function)310- Applications of differentiation: Gradient as a measure of rate of change - Applications of differentiation: Kinematic meaning of derivatives - Applications of differentiation: Optimization problems22- Applications of differentiation: Optimization problems2)	 Geometric interpretation of derivatives: Equation of the tangent to a curve, Equation of normal to a curve. Mean value theorem for derivatives: Lagrange's theorem Rolle's theorem 	4
10 - Applications of differentiation: Gradient as a measure of rate of change 2 - Applications of differentiation: Kinematic meaning of derivatives 2 - Applications of differentiation: Optimization problems 2 End unit Assessment 1		- Applications of differentiation: Variations of a function (Maximum and minimum values, critical points, inflexion points, concavity, stationary	3
- Applications of differentiation: Kinematic meaning of derivatives2- Applications of differentiation: Optimization problems2End unit Assessment1	10		2
- Applications of differentiation: Optimization problems2End unit Assessment1			2
End unit Assessment 1			2
		** *	
UNIT 10: VECTORS SPACE OF REAL NUMBERS (14 Periods instead of 16)			

Week	Content	Number of
		Periods
11	Definitions and operations on vectors in the Vector spaces ²	1
	Properties of operations on vectors in the Vector spaces ²	2
	Sub-vector spaces of the Vector spaces ²	1
	Linear combination of vectors the Vector spaces ²	1
	Basis and Dimension	2
12	Introduction to Euclidian Vector space ²	1
	Dot product and properties	2
	Modulus or Magnitude of Vectors	1
	Angle between two vectors	2
	End unit Assessment	1
<mark>13</mark>	Exams	7

TERM 3

UNIT 11	: Concepts and Operations on linear transformations in 2D (14 Periods)	
Key Uni	t Competence: Determine whether a transformation of ² is linear or not ,and	Perform
operation	s on linear transformations	
Week	Content	Number of Periods
1	Linear transformation in 2 dimensions	3
	Geometric transformation in 2 dimensions	4
2	Kernel and Range	4
	Operations on transformations	2
	End unit Assessment	1
UNIT 12	: Matrices and Determinants of Order 2 (14 Periods instead of 12)	
	t Competence: Use matrices and determinants of order 2 to solve systems of lirs and to define transformations of 2D	near
Week	Content	Number of Periods
3-4	Matrix of a linear transformation: definition and operations	2
	Matrix of a geometric transformation	2
	Operations on matrices and their properties: Equality of matrices, Addition of matrices, Multiplication by a scalar, Multiplication of matrices, transpose of a matrix, Inverse of a square matrix.	6
	Determinant of a matrix of order 2: Definition and properties	2
	Applications of determinants	1
	End unit Assessment	1

UNIT 13: Points, Straight Lines and Circles in 2D (21 Periods)

Key Unit Competence: Determine algebraic representations of lines, straight lines and circles in the 2D

Week	Content	Number of Periods
5	Points in 2D:Cartesian coordinates of a point, Distance between two points, Mid-points of a line segment	4
	Lines in 2D: Vector equation of a line, Parametric equations of a line, Cartesian equation of a line	3
6	Problems on points and straight lines in 2D: Positions, Angles, Distance	7
7	Definition of a circle	1
	Cartesian equation of a circle	2
	Problems involving position of a circle and a point or position of circle and lines in 2D	3
	End unit assessment	1
UNIT 14	: Measures of Dispersion (7 Periods)	·
	t Competence: Extend understanding, analysis and interpretation of data arising and questions in daily life to include the standard deviation.	g from
Week	Content	Number of Periods
8	- Recall on bivariate data and examples	6
	- Variance	
	- Standard deviation (including combined set of data)	
	- Coefficient of variation	
	- Application of Measures of Dispersion in data interpretation	
	End unit assessment	1
UNIT 15	5: COMBINATORICS (21 periods instead of 18 Periods)	
	t Competence: Use combinations and permutations to determine the number of experiment occurs	f ways a
Week	Content	Number of Periods
9	Counting techniques:	7
	- Venn diagram	
	- Tree diagrams	
	- Contingency table	
	- Multiplication principles	
10	Arrangement and Permutations:	5
	Arrangements with or without repetition	
	Permutations with or without repetition	
	Combinations: Definitions and properties	2
11	Pascal's triangles and Binomial expansion	6
	End unit assessment	1

UNIT 16: ELEMENTARY PROBABILITY (7 Periods)

Key Unit Competence: Use counting techniques and concepts of probability to determine the probability of possible outcomes of events occurring under equally likely assumptions.

Week	Content	Number of Periods
12	Concepts of probability: Event, Random experiment, Sample space	1
	Probability of an event A under equally likely assumptions: Definition and	2
	formula	
	Rules or properties of probability	1
	Determination of probability for different events occurring under equally	2
	likely assumptions	
	End unit assessment and Remediation	1
13	Exams	