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FOREWORD

Dear Student, 

Rwanda Basic Education Board (REB) is honored to present senior 
six Mathematics book for students of advanced level where 
Mathematics is a major subject. This book will serve as a guide to 
competence-based teaching and learning to ensure consistency and 
coherence in the learning of the Mathematics. The Rwandan 
educational philosophy is to ensure that you achieve full potential at 
every level of education which will prepare you to be well 
integrated in society and exploit employment opportunities. 

The government of Rwanda emphasizes the importance of aligning 
teaching and learning materials with the syllabus to facilitate your 
learning process. Many factors influence what you learn, how well you 
learn and the competences you acquire. Those factors include the 
relevance of the specific content, the quality of teachers’ pedagogical 
approaches, the assessment strategies and the instructional materials 
available. In this book, we paid special attention to the activities that 
facilitate the learning process in which you can develop your ideas and 
make new discoveries during concrete activities carried out individually 
or with peers. 

In competence-based curriculum, learning is considered as a process 
of active building and developing knowledge and meanings by the 
learner where concepts are mainly introduced by an activity, situation 
or scenario that helps the learner to construct knowledge, develop 
skills and acquire positive attitudes and values. 

For efficiency use of this textbook, your role is to: 

• Work on given activities which lead to the development of skills;

• Share relevant information with other learners through
presentations, discussions, group work and other active learning 
techniques such as role play, case studies, investigation and
research in the library, on internet or outside;

• Participate and take responsibility for your own learning;

• Draw conclusions based on the findings from the learning
activities.
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To facilitate you in doing activities, the content of this book is self 
explanatory so that you can easily use it yourself, acquire and assess your 
competences. The book is made of units as presented in the syllabus. 
Each unit has the following structure: the key unit competence is given 
and it is followed by the introductory activity before the development 
of mathematical concepts that are connected to real world problems 
or to other sciences. 

The development of each concept has the following points: 

• It starts by a learning activity: it is a hand on well set activity to
be done by students in order to generate the concept to be
learnt;

• Main elements of the content to be emphasized;

• Worked examples; and

• Application activities which are activities to be done by the user
to consolidate competences or to assess the achievement of
objectives.

Even though the book has some worked examples, you will succeed 
on the application activities depending on your ways of reading, 
questioning, thinking and grappling ideas of calculus not by searching 
for similar-looking worked out examples. 

Furthermore, to succeed in Mathematics, you are asked to keep trying; 
sometimes you will find concepts that need to be worked at before you 
completely understand. The only way to really grasp such a concept is 
to think about it and work-related problems found in other reference 
books. 

I wish to sincerely express my appreciation to the people who 
contributed towards the editing of this book, particularly, REB staffs 
and teachers  for their technical support. 

Any comment or contribution would be welcome to the improvement 
of this text book for the next edition. 

Dr. NDAYAMBAJE Irénée 

Director General, REB 
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Icons

To guide you, each activity in the book is marked by a symbol or icon to 
show you what kind of activity it is. The icons are as follows:

Practical Activity icon 

The hand indicates a practical activity such as curve 
sketching, draw figures, to have a selection of objects 
individually or in a group and then present your 
results or comments.

Group Work icon

Group work means that you are expected to discuss 
something in groups and report back on what your 
group discussed. In this way, you learn from each 
other, and how to work together as a group to 
address or solve a problem.

Pairing Activity icon

This means that you are required to do the activity in 
pairs, exchange ideas and write down your results. 

Research Activity icon

Some activities require you to do research either by 
reading textbooks or using the internet.
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Unit
1

1

Solve in the set of real number the following equations: 

1) 2 6 8 0x x

2) 2 4 0x

Does  every quadratic equation have solution in ? 

What happens to the equation 2 4 0x  if we conventionally accept a 

number i  such that 2 1i ? Can now any quadratic equation be solved? 

Introductory activity

The history of complex numbers goes back to the ancient Greeks who 

decided that no number existed that satisfies 2 1 0x  in . Many

mathematicians contributed to the full development of complex numbers. 

The rules for addition, subtraction, multiplication, and division of complex 

numbers were developed by the Italian mathematician Rafael Bombelli. 

By the end of this unit, a student will be able to: 

Identify a real part and imaginary part of a complex number. 
Convert a complex number from one form to another.
Represent a complex number on Argand diagram. 
State De Moivre’s formula and Euler’s formulae. 
Apply the properties of complex numbers to perform operations on 
complex numbers in algebraic form, in polar form or in exponential 
form. 
Find the modulus and the nth roots of a complex number. 
Solve in the set of complex numbers a linear or quadratic equation. 
Use the properties of complex numbers to factorise a polynomial 
and to solve a polynomial equation in the set of complex numbers. 

Objectives

Complex Numbers
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Apply complex numbers in trigonometry and alternating current 
problems.

1.1. Concepts of complex numbers

1. Find two numbers, a and b, whose sum is 6 and product 18. 

2. Considering that 1 i , find again the value of a and b.

3. Are a and b elements of ?

Activity 1.1  

From activity 1.1, we see that there are no real solutions since the square root 

of a negative real number does not exist in set of real numbers, but if you 

assume that 1 i  you can find the solution. The numbers found in activity 

1.1 are called complex numbers.

A complex number is a number that can be put in the form a bi , where 
a and b are real numbers and  1i  (i being the first letter of the word 
“imaginary”).

The set of all complex numbers is denoted by  and is defined as 
2: , 1z a bi a b and i

The real number a  of the complex number z a bi  is 
called the real part of z and denoted by Re z  or z ;  
the real number b  is called the imaginary part of z and denoted by Im z  
or z .

Example 1.1 

Give two examples of complex numbers.

Solution

There are several answers. For example 3.5 2i  and 4 6i , where 2 1i , 
are complex numbers.
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Example 1.2 

Show the real part and imaginary part of the complex number 3 4i .

Solution 

Re 3 4 3i  and Im 3 4 4i  

Remarks

a) It is common to write a  for  0a i  and bi for 0 bi . 

Moreover, when the imaginary part is negative, it is common to write 
a bi  with b> 0 instead of a b i , for example 3 4i  instead of 
3 4 i .

b) A complex number whose real part is zero is said to be purely imaginary 
whereas a complex number whose imaginary part is zero is said to be 
a real number or simply real. 

Therefore, all elements of  are elements of ; and we can simply write 
.

Notice
 We can write a ib  instead of a bi  (scalar multiplication between 

b and i is commutative). Also, we can write bi a  instead of a bi  
(addition is commutative).

 In some disciplines, in particular electromagnetism and electrical 
engineering, j is used instead of i, since i is frequently used for 
electric current. In these cases, complex numbers are written as 
a bj .

 For comparison operations, only equality of complex numbers is 
defined. The comparison using < or > are not defined for complex 
numbers.

Application activity 1.1 

1. Show the real and imaginary parts of the following complex numbers:

a) 45z i  b) 3z
c) 1 3z i  d) 7 10z i
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2. For each of the following, say if the complex number is purely imaginary, 
real or neither.

a) 13z  b) 4z i
c) 7z i  d) 9 18z i

1.2. Algebraic form of a complex number

Recall that the set of all complex numbers is denoted by  and is defined as 
2: , 1z a bi a b and i .

z a bi  is the algebraic (or standard or Cartesian or rectangular) form of 
the complex number z.

1.2.1. i”

Using the fact that 2 1i , find the value of  3 4 5 6 7 8, , , , ,i i i i i i  and 9i .

Find the general formula of calculating ,ki k .

Activity 1.2  

For a complex number z a bi , i is called an imaginary unit. 

From activity 1.2, we get the important remark:

i

The powers of imaginary unit are: 1 2 3 4, 1, , 1i i i i i i .

If we continue, we return to the same results; the imaginary unit, i , “cycles” 

through 4 different values each time we multiply as it is illustrated in figure 

1.1.

Figure 1.1. Rotation of imaginary unit i
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Other exponents may be regarded as 4k m , 0,1,2,3,4,5,...k and 
0,1,2,3m . 

Thus, the following relations may be used:  
4 4 1 4 2 4 31, , 1,k k k ki i i i i i

Example 1.3 

Find the value of  48 801 142,i i i  and 22775i

Solution 
48 4 12 801 4 200 1

142 4 35 2 22775 4 5693 3

1, ,
1,

i i i i i
i i i i i

Application activity 1.2 

Find the value of:

1. 10i  2. 1213i  3. 2244i

4. 46787i  5. 12345i  6. 45687i

1.2.2.

In xy  plane, represent the points 1,2 , 3,2 , 2, 1A B C   and 
2, 3D .

Activity 1.3  

A complex number can be visually represented as a pair of numbers 
,a b  forming a vector from the origin or point on a diagram called 

Argand diagram (or Argand plane), named after Jean-Robert Argand, 
representing the complex plane. This plane is also called Gauss plane. The
x axis  is called the real axis and is denoted by Re while  the y axis  is 
known as the  imaginary axis; denoted Im as illustrated in fig.1.2. 
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Figure 1.2. Geometric representation of a complex number

The Argand diagram fig 1.2 represents complex number z a bi  both as a 
point a,bP  and as a vector OP  .

,z a b  is a geometric form of the complex number z .

Notice
In complex plane, we will no longer talk about coordinates but affixes. The affix 
z a bi  of a point is plotted as a point and position vector on an Argand 
diagram; a bi  is the rectangular expression of the point.

Example 1.4 

Plot  in the same Argand diagram the complex numbers 

1 2 3 41 2 , 2 3 , 3 2 , 3z i z i z i z i  and 5 4z i .

Solution 

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

x

1 1 2z i

2 2 3z i

3 3 2z i

4 3z i

5 4z i

0
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Application activity 1.3 

Represent on the same Argand diagram the complex numbers:

1) 1 2 2z i  2) 2 3z  3) 3 1z i

4) 4 4z i   5) 5 2z i  6) 6 2 3z i

7) 7 5z i  8) 8 3 3z i

1.2.3.

Plot the following complex numbers in the Argand diagram and hence, for 
each, find its distance from origin.

1. 8z  2. 2z i  3. 3 7z i   4. 3 4z i  

Activity 1.4  

The distance from origin to the point ,x y  corresponding to the complex 
number z x yi  is called the modulus (or  magnitude or absolute 
value) of z  and is denoted by z  or :x iy . Thus, modulus of z is given by 

2 2r z x y .

Example 1.5 

Find the modulus of 4 3i  

Solution  

4 3 16 9 5i

Example 1.6 

Find the modulus of i

Solution  

2 20 1 1i

Example 1.7 

Find the modulus of 3  

Solution  

2 23 3 0 3

Example 1.8 

Find the modulus of 1 1 3
2

i  

Solution  
1 11 3 1 3
2 2

1 1 3 1
2

i i
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Let ,z w  be complex numbers different from 0, thus

a) 
2 22 R Iez z m z  b) 

2z z z

c) Re Rez z z   d) Im Imz z z

e) zw z w  f) 
zz

w w

g) z w z w  i) z w z w

Example 1.9 

Find the modulus of 
5

3 4i
 

Solution  

55
3 4 3 4

5 1
9 16

i i

Example 1.10 

Find the modulus of 
2
1 3

i
i

 

Solution  

22
1 3 1 3

5 2
210

ii
i i

B Az z

Consider two complex numbers 1 1Az x iy ,  and 2 2Bz x iy . The points 
A  and B  represent Az  and Bz respectively. 

Then, 2 1 2 1z x x i y y and is represented by the point C . This 
makes OABC a parallelogram. 
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From this, it follows that 
2 2

2 1 2 1B Az z OC x x y y .

That is to say, B Az z  is the length AB  in the Argand diagram. 

If the complex number Az  is represented by the point A , and the 
complex number Bz  is represented by the point B ,

then B Az z AB , 

Example 1.11 

Let A  and B  be the points with affixes 1 , 2 2A Bz i z i . 

Find AB .

Solution 

3 3 9 9 3 2B AAB z z i

Application activity 1.4 

Find the modulus of each of the following complex numbers:

1) 2 i  2) 4 3i  3) 
5

3 4i
4) 

2
1 3

i
i

 5) 
2

1
i

i
 6) 3 4 2i i

A locus is a path traced out by a point subjected to certain restrictions. Paths 
can be traced out by points representing variable complex numbers on an 
Argand diagram just as they can in other coordinate systems.

Sketch the set of points determined by the condition 

1 3 2z i .

Hint: Replace z  by x yi  and perform other operations.

Activity 1.5  

Consider the simplest case first, when the point P represents the complex 
number z  such that z R . This means that the distance of OP  from the 
origin O  is constant and so P will trace out a circle.
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z R  represents a circle with centre at origin and radius R .

If instead 1z z R , where 1z  is a fixed complex number represented by point 
A  on Argand diagram, then

1z z R  represents a circle with centre 1z  and radius R .

Note that if 1z z R , then the point P representing z cannot only lie on the 
circumference of the circle, but also anywhere inside the circle. The locus of P is 
therefore the region on and within the circle with centre A and radius R.
Now, consider the locus of a point P  represented by the complex number z
subjected to the conditions 1 2z z z z , 

where 1z  and 2z  are fixed complex numbers represented by the points A  
and B  on an Argand diagram. Then 

1 2z z z z  represents a straight line which is the perpendicular 
bisector (mediator) of the line segment joining the points 1z  and 2z .

Note also that if 1 2z z z z , the locus of z is not only the perpendicular 
bisector of AB  but also the whole half line in which A  lies, bound by this 
bisector.

Example 1.12 

If 
2 2z

z
 and point P represent z  in the Argand plane, 

show that P lies on a circle and find the centre and radius of this circle.

Solution  

Let z x iy  where ,x y

Then 2 2z
z

 2 2z z

2 2x iy x iy  2 2x iy x iy

2 2 2 22 2x y x y

2 2 2 22 4 4x y x y squaring both sides
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2 2 2 24 4 4 4x x y x y  
2 23 3 4 4x y x

2 23 3 4 4x y x  which is the equation of a circle with centre at 2 ,0
3

  

and with radius of length 
4
3

.

Example 1.13 

Determine, in complex plane, the locus M  of affix z  such that 2 2z i z

Solution

Let z x yi , we have 

2 2x yi i x yi

2 2x i y x yi

2 22 22 2x y x y

2 22 22 2 [ ]x y x y squaring both sides

2 2 2 24 4 4 4x y y x x y

4 4y x
y x

This is a straight line, mediator of the line segment joining the points 1 2z i  
and 2 2z . See the following figure.
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-3 -2 -1 1 2 3

-2

-1

1

2

3

x

y

1 2z i

2 2z

0

y x

Application activity 1.5 

1. If 
2 1 1z

z
 and P  represent z  in the Argand plane, 

show that P  lies on a circle and find the centre and radius of 
this circle.

2. Determine, in complex plane, the set of points M of affix z such that:

a) 2z  b) 2z  c) 2z

d) 1 1z  e) 1 1z z  f) 1 3 2z i

1.2.4. Operations on complex numbers

1. Present in the same Argand diagram the following complex numbers

3 2 1i  and 2 4 2i i .

What is your observations?

From their real and imaginary parts, establish a condition for 
Equality of two complex numbers.

Activity 1.6  
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Equality of two complex numbers.
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2. Find x if 2 2 3x i x xi i .

3. Find x and y if 3 2 4x yi y x i .

If two complex numbers, say a bi  and c di  are equal, then  their 

real parts are equal and their imaginary parts are equal. That is, 

a bi c di a c and b d .

Example 1.14 

Given 4 , 2z a b i w bi . Find the values of a and b if z w .

Solution 

2, 4z w a b b

4 2 6a a

Thus, 6, 4a b

Application activity 1.6 

Find the values of x and y if:

1. 3 4x i yi  2. 1 5x x i yi

3. 3yi x i y  4. 6 9yi x i  

5. 3 7 5x i x y i  6. 1 3xi i y  

7. 4 6 2x i yi  8. 3 6 5x i x y i

 

Let 1 2 3z i  and 2 5 4z i  be two complex numbers. 

1. Evaluate 1 2z z  and 1 2z z .

2. State the real and imaginary parts of  1 2z z  and 1 2z z .

Activity 1.7  
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Consider the vectors OA  and OB  where , , ,A a b B c d  with , , ,a b c d .

In fig. 1.3, OX  is sum of the vectors OA  and OB .

OX OA OB

Figure. 1.3. Addition of two complex numbers

Addition or subtraction of two complex numbers can be done 

geometrically by constructing a parallelogram (see Fig 1.3). 

From activity 1.7, two complex numbers are added (or subtracted)  by adding 

(or subtracting)  separately the two real and the two imaginary parts. That is 

to say,

a bi c di a c b d i

a bi c di a c b d i

Particular element:

, 0,0 ,

0,0 , ,

a b a b

a b a b
 0,0  is an additive identity.

Example 1.15 

Evaluate 1 2z z  if 1 3 4z i  and 2 1 2z i  

Solution 

3 4 1 2 3 1 4 2 4 6i i i i
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Example 1.16 

Evaluate 1 2z z  if 1 1 2z i  and 2 9 3z i  

Solution 

1 2 9 3 1 9 2 3 8 5i i i i

Application activity 1.7 

For each of the following pairs, evaluate 1 2z z   and 1 2z z .

1. 1 23 , 12 3z i z i   2. 1 212 5, 5 4z i z i  

3. 1 23 4 , 2z i z i   4. 1 223 14 , 21 10z i z i

5. 1 2, 32z i z i          6. 1 210 3, 5 2z i z i

7. 1 213 14 , 22z i z i   8. 1 23 , 1 10z i z i

Let 1 24 3 , 4 3z i z i  and 3 4 3z i

1. Plot on Argand diagram complex numbers 1 2,z z  and 3z  and discuss 
their relationship.

2. Evaluate 

a) 1 2
1
2

z z  b) 1 2
1
2

z z
i

3. Comment on your results in 2.

Activity 1.8  

The complex conjugate of the complex number z x yi , denoted by z  
or *z , is obtained by changing the sign of the imaginary part. Hence, the 
complex conjugate of z x yi  is z x yi . 

The complex number z x yi  is the opposite of z x yi , 
symmetric of z with respect to 0.
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complex number

x

y

0

z x yi

z x yi
z x yi

xx

y

y

Figure 1.4. Geometrical presentation of conjugate and opposite of a complex number

Geometrically, figure 1.4 shows that z  is the “reflection” of z about the real 
axis while z  is symmetric to z with respect to 0. In particular, conjugating 
twice gives the original complex number: z z .

The real and imaginary parts of a complex number can be extracted using the 

conjugate:

1 1Re Im
2 2

z z z z z z
i

Moreover, a complex number is real if and only if it equals its conjugate.

Example 1.17 

Consider the complex number 1 2z i  . Show that 
1Re
2

z z z  and 
1Im
2

z z z
i

Solution

1 2 , 1 2z i z i

1 1 11 2 1 2 2 Re
2 2 2

z z i i z

1 1 11 2 1 2 4 Im
2 2 2

z z i i i z
i i i
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Moreover, a complex number is real if and only if it equals its conjugate.

Example 1.17 

Consider the complex number 1 2z i  . Show that 
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2

z z z  and 
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Solution

1 2 , 1 2z i z i

1 1 11 2 1 2 2 Re
2 2 2

z z i i z

1 1 11 2 1 2 4 Im
2 2 2

z z i i i z
i i i
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Notice
• Conjugation distributes over the standard arithmetic operations:

(i) z w z w  (ii) zw z w  (iii) 
z z
w w

(iv) Im Re Rez Im z and z z
• The complex number z x yi  is the opposite of  

z = x+yi, symmetric of z with respect to 0 and 0.z z

• - - -z x yi  is the opposite of z x yi
(- ) 0z z

Example 1.18 

Find the conjugate of z u w , if 6 2u i  and 1 4w i .

Solution 

Conjugate of 6 2 1 4z i i  is  

6 2 1 4 7 2 7 2z i i i i

Or  

6 2 1 4 6 2 1 4 7 2z i i i i i  

Example 1.19 

Find the conjugate of z u w t , if 2 3 , 1u i w i  and 4 3t i .

Solution 

Conjugate of 2 3 1 4 3z i i i  is 

z i i i i i= −( )− − −( )− +( )=− − =− +2 3 1 4 3 1 5 1 5

Or

z i i i i i i i= −( )− − −( )− +( )= +( )− − +( )− −( )=− +2 3 1 4 3 2 3 1 4 3 1 5
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Application activity 1.8 

Find the conjugate of:

1. 76z  2. 9z i

3. 12 4z i  4. 3z i  

5. 9 7 1 3z i i  6. 4 1 2z i i

7. 4 6 1z i i   8. 2 2 1 4 3 2z i i i

Multiplication

Let 1 2 3z i  and 2 3 2z i . 

1. Evaluate 1 2z z .

2. State the real and imaginary parts of 1 2z z .

Activity 1.9  

From activity 1.9, the multiplication of two complex numbers 1z a bi  
and 2z c di  is defined by the following formula: 

1 2z z a bi c di

ac bd bc ad i

Alternatively, if 1 2, , ,z a b z c d  are complex numbers in geometric form, 

thus, 1 2 ,z z ac bd bc ad .

In particular, the square of the imaginary unit is −1; since 2 1i i i  or in 
geometric form 0,1 0,1 1,0 .

The preceding definition of multiplication of general complex numbers 
follows naturally from this fundamental property of the imaginary unit. 

Particular elements:

• 1a bi a bi  and 1 a bi a bi  1  is the multiplicative 
identity.

• a bi i b ai  and i a bi b ai  i   is the imaginary unit.
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• 1i i  2 1i  is the fundamental relation.

Application activity 1.9 

For each of the following pairs, evaluate 1 2z z   

1. 1 23 , 12 3z i z i   2. 1 212 5, 5 4z i z i

3. 1 23 4 , 2z i z i  4. 1 2, 10 3z i z i

5. 1 211 4, 3 2z i z i   6. 1 23 2 , 2z i z i

Consider the complex numbers 1 2z i  and 2 3z i . 

1. Evaluate 1 1z z . What conclusion do you draw from your result?

2. From result obtained in 1), find 
1

1
z

.

3. Using the result obtained in 2), deduce the formula for 1

2

z
z

 supposing 

that  1
1

2 2

1z z
z z

Activity 1.10  

From activity 1.10, the inverse of z a bi  is given by

11 zz
z z z

 where z a bi
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Remark

The product 2 2zz a b  is called the norm of z a bi  and is denoted 

by 
2z or 

2z .

Thus, 

2
1 z
z z

 where z a bi

Hence,

1
2 2

zz
a b  

2 2 2 2

a b i
a b a b

Also from activity 1.10, the division of two complex numbers is achieved by 
multiplying both numerator and denominator by the complex conjugate of 
the denominator.

If 1 2and z a bi z c di , then 

1 1 2
2

2 2

z z z
z z

Or

1
2 2 2 2

2

z a bi ac bd bc adi
z c di c d c d  

Example 1.20 

Find 1
z

 if 4 2z i  

Solution

2 2

1 1 4 2 4 2 1 1
4 2 4 2 20 20 5 10

i i i
z i

Example 1.21 

Evaluate 
1

2
i

i
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Solution

1 21 1 2 1 2 1 3 .
2 2 2 2 1 4 5

i ii i i i i
i i i i

Example 1.22 

Find the real numbers x and y such that 3 2 6 17x iy i i . 

Solution

3 2 6 17x iy i i

6 17 3 26 17 52 39 4 3
3 2 3 2 3 2 13

i ii ix iy i
i i i

Thus, 4x  and 3y  

Alternative method

3 2 6 17x iy i i

3 2 3 2 6 17 3 2 2 3 6 17x ix iy y i x y x y i i  

3 2 6
2 3 17
x y

x y  

Solving this system, we get;

4x  and 3y  

Remarks

1. Three distinct points A , B  and C  with affixes 1 2,z z  and 3z  

respectively are collinear if and only if  
C A

B A

z z IR
z z

2. The non-zero vectors AB  and AC  are perpendicular if and only if 
C A

B A

z z
z z

 is pure imaginary different from zero. 
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Example 1.23 

Let A , B  and C  be the points with affixes 1 , 2 2A Bz i z i  and 
3 3Cz i  respectively. Show that they are collinear points.

Solution 

3 3 1
2 2 1

C A

B A

i iz z
z z i i

4 14 4 4
3 3 3 1 3

ii IR
i i

Thus, ,A Bz z  and Cz  are collinear. 

Example 1.24 

Let A , B  and C  be the points with affixes 2 , 3 2A Bz i z i  and 
1 2Cz i  respectively. 

Show that AB  and AC  are perpendicular.

Solution 

1 1C A B Az z AC i z z AB i
1 11 2

1 1 1 2
c A

B A

i iZ Z i i i
Z Z i i i

This is pure imaginary different from zero. Thus, the vectors AB
� ���

 and AC  are 
perpendicular.

Application activity 1.10 

For each of the following pairs, evaluate 1

1 2 2

1 1, , z
z z z

  

1. 1 23 , 12 3z i z i   2. 1 212 5, 5 4z i z i

3. 1 23 4 , 2z i z i   4. 1 223 14 , 21 10z i z i

5. 1 21 3 , 1 2z i z i    6. 1 22, 5 2z i z i

7. 1 21 , 1z i z i     8. 1 22 12 , 1 10z i z i
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1.2.5.

Consider the complex number 8 6z i . considering that 
2 8 6x yi i

, Determine the values of x and y such that x yi  is the square root of z.

Activity 1.11  

In general, from activity 1.11, if a complex number x yi  is a square root of 

the complex number a bi , thus, 
2 2x iy a bi x iy a bi  and 

then

2 2

2 2

1
2
1
2

x a a b

y a b a

Remark

If 0b , from activity 1.11, the sign cannot be taken arbitrary because the 
product xy  has sign of b . Then, 

• If 0b , we take the same sign.

• If 0b , we interchange signs.

In each case, the complex number has two roots.

Example 1.25 

Find square roots of the complex number 3 4i .

Solution

Thus 
3
4 0

a
b

1 25 3 4 2
2
1 25 3 1 1
2

x

y
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Since b  is greater than zero, we take the same signs.

3 4 2 3 4 2i i or i i . 

We can write 3 4 2i i
Alternative method

Let z x iy  be the square root of 3 4i .

Thus, 
2 3 4x iy i  and 

2 3 4z i

Or  2 2 2 3 4x y ixy i  and 2 2 9 16x y

Or  2 2 2 3 4x y ixy i  and 2 2 5x y .

From the above two equations and equality of complex numbers, we have 
the simultaneous equations

2 2

2 2

3
2 4

5

x y
xy

x y
 

1st and 3rd equations yield 22 8x  and 22 2y

 2 4x  and 2 1y , which gives 2x  and 1y .

Since the product of x  and y  is positive, 2z i  or 2z i ;

Hence, 3 4 2i i  

Example 1.26 

Find square roots of the complex number 3 4i .

Solution

Thus 
3
4 0

a
b

1 25 3 1 1
2
1 25 3 4 2
2

x

y
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Example 1.26 

Find square roots of the complex number 3 4i .

Solution

Thus 
3
4 0

a
b

1 25 3 1 1
2
1 25 3 4 2
2

x

y

25

Since b  is  less than zero, we interchange the signs.

3 4 1 2 3 4 1 2i i or i i . 

We can write 3 4 1 2i i

Example 1.27 

Find square roots of the complex number 2i .

Solution

0
2 0

a
b   

2 1
2
2 1
2

x

y

As b  is less than zero, we take the different signs.

2 1 2 1i i or i i . 

We can write 2 1i i

Example 1.28 

Find square roots of the complex number -2.

Solution

2 0
0

0 2

a
b

x and y

2 2i

Application activity 1.11 

Find square roots of the following complex numbers:

1. 14i  2. 24 10i  3. 20 48i  4. 91 60i
5. 5 12i  6. 32 24i  7. 32 24i  8. 119 120i
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1.2.6.

Linear equations

Find the value of z  in;

1. 3 4 0z i    2. 4 4 3i iz z i    

3. 1 4i i z i   4. 1 2i z i  

Activity 1.12  

Recall that to solve the equation 3 3 8x  is to find the value of x  that 
satisfies the given equation. Here, we do the following:

3 3 8 3 8 3x x

53 5
3

x x  and then the solution set is 
5
3

S .

In complex numbers also, we may need to find the complex number z  that 
satisfies the given equation.

Example 1.29 

Find the value of z  if 4 5 12z i i .

Solution

4 5 12
4 12 5

12 6 33
4 2

z i i
z i i

iz z i

Example 1.30 

Find the value of z  if 1 2i i z .

Solution

1 2i i z
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1 21 2 1 2 1 3
2 2 2 1 4 5

i ii i i iz
i i i

Example 1.31 

Solve 1 3 2z i z i , where z  is the conjugate of z .

Solution

Let z x yi z x yi
1 3 2 3 2

3 2 2 3 2

x yi i x yi i x yi x yi ix y i

yi yi ix y i y i x y i

3 4
2 2 3

y x
x y y

Thus, 4 3z i  and 4 3z i

Application activity 1.12  

Find the value of z in each of the following equations:

1. 2 3i z i    2. 2 3 13i z iz i  

3. 1 1 14zi i i   4. 1 3 2 4i z i i

Solve  the following equations:

1. 2 2 3 0x x  2. 2 2 1 0x x i

Recall that if 2 0ax bx c  then, 2 4b ac  

Activity 1.13  

From activity 1.13, let ,a b  and c  be real numbers ( 0a ), then the equation 
2 0az bz c  has either two real roots, one double real root or two 

conjugate complex roots.
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Remarks

1. If 0 , there are two distinct real roots: 

1 2
bz

a
  and 2 2

bz
a

.

2. If 0 , there is a double real root: 

1 2 2
bz z
a

3. If 0 , there is no real root. In this case, there are two conjugate complex 
roots: 

1 2
b iz

a
 and 2 2

b iz
a

.

Where 
2 4b ac

1 2 1 2,b cz z z z
a a

Example 1.32 

Solve in : 2 1 0z z

Solution

1 2

1 4 3 0

1 3 1 3,
2 2
i iz z

Thus,  

1 3 1 3,
2 2
i iS

Example 1.33 

Solve in : 2 2 cos 1 0,z z IR
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Solution
2 2 2

1 2

1 2

4cos 4 4 cos 1 4sin

2cos 2 sin 2cos 2 sin,
2 2

cos sin , cos sin

i iz z

z i z i
Thus, 

cos sin ,cos sinS i i  

Example 1.34 

Solve in : 2 3 1 0z i z

Solution 
2

3 4 1 1 3 2 3 1 4 2 2 3i i i  

2 2 3

1 3 1 3

i

i or i  

Now,

1

3 1 3 1 3 1 3

2 2

i i i
z

 

2

3 1 3 1 3 1 3

2 2

i i i
z

We could also use 1 3 i :

1

3 1 3 1 3 1 3

2 2

i i i
z

 

2

3 1 3 1 3 1 3

2 2

i i i
z

Example 1.35 

Solve in : 2 4 2z iz i
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Solution 

2

2

4 2
4 2 0

z iz i
z iz i

2 4 1 4 2 1 16 8 15 8i i i i  

4 i  

1 1
4 42 , 2
2 2

i i i iz i z
 

Hence, 2 , 2S i  

Application activity 1.13 

Solve, in complex numbers, the following equations:

1. 23 10 4z z   2. 
2

5 17
2
z z  

3. 
5 3z
z

    4. 2 3 1 0z z  

1.2.7.

1. Expand 

a) 2 3 3z i z i  b) 3 4z i z i z i

2. Show that 3 22 2 2 4P z z i z i z  is divisible by z i  

and hence, by using synthetic division, factorise completely P z .

3. Find the value of z such that 0P z  if 
3 22 7 2 6 2P z z z i z i .

Activity 1.14  

Given any complex number z and coefficients 0 ,..., na a , 
then the equation 1 0.... 0n

na z a z a  has at least one complex solution 
z , provided that at least one of the higher coefficients, 0 ,..., na a , is non-zero. 

The process of finding the roots of a polynomial in set of complex numbers 
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Solution 
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4 2
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31

is similar for the case of real number remembering that the square root of a 
negative real number exist in set of complex numbers considering 1 i . 

We need the important result known as the Fundamental Theorem of Algebra.

Every polynomial of positive degree with coefficients in the system of complex 
numbers has a zero in the system of complex numbers.  Moreover, every such 
polynomial can be factored linearly in the system of complex numbers.

Example 1.36 

Factorise the polynomial 4 3 23 5 5 5 2P z z z z z

Solution

First, we need to find the values of z  satisfying  
4 3 23 5 5 5 2 0z z z z

Fundamental theorem states that a 4th  degree function has 4 roots. 

1z  is zero (one of the roots) of P z  since 1 3 5 5 5 2 0P

4 3 2 3 23 5 5 5 2 1 3 2 3 2z z z z z z z z

Factorising R.H.S further, we get 

4 3 2 2 2 23 5 5 5 2 1 3 1 2 1 1 1 3 2z z z z z z z z z z z

The factor 2 1z  is factorised as follows:

2 2

2

1 0 1 or
1

z z z i z i
z z i z i  

Thus, 1 3 2P z z z i z i z

Example 1.37 

Solve the equation 4 1 0z .

Solution

To solve the equation 4 1 0z  is the same as to find 4th (fourth) roots of 
unity, as we can write 4 1z . 
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Or we can work as follows: 

Factorise 4 1z  in order to find the roots. 

1z  is one root, then 4 3 21 1 1z z z z z . 

Factorising R.H.S further gives

4 2 2 21 1 1 1 1 1 1z z z z z z z z

Thus,
4

2

1 0
1 0 1 or
1 0 or or 1 0 1

z
z z
z z i z i z z

Then, 1,1, ,S i i .

Example 1.38 

Factorise completely 4 3 24 1 12 8 1 5P z z i z iz i i z   and hence 
solve the equation 0P z .

Solution 

Factors of 5  are 1, 5
4 3 21 1 4 1 1 12 1 8 1 1 5

1 4 4 12 8 8 5 0

P i i i i

i i i
Then, 1 is one of the four roots.

Using Synthetic division, we have

1 4 4i 12i 8 8i   -5

1 1 3 4i 3 8i   5

1 3 4i 3 8i  5  0

Now ( )P z  becomes; 

4 3 2

3 2

4 1 12 8 1 5

1 3 4 3 8 5

P z z i z iz i i z

z z i z i z
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Or we can work as follows: 
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4
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Solution 
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P i i i i

i i i
Then, 1 is one of the four roots.

Using Synthetic division, we have
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1 1 3 4i 3 8i   5
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3 2
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i is also a root

Again using synthetic approach we have;

1 3 4i 3 8i  5

i i 3 3i  -5

1 3 3i 5i  0

( )P z  becomes;  

4 3 2

2

4 1 12 8 1 5

1 3 3 5

P z z i z iz i i z

z z i z i z i

Now, 2 3 3 5z i z i  is factorised as follows:

23 3 20 9 18 9 20 2i i i i i 2 1 1i i or i

3 3 1 4 2 2
2 2
i i iz i  or 

3 3 1 2 4 1 2
2 2
i i iz i

Then, 2 3 3 5 1 2 2z i z i z i z i  and 

4 3 24 1 12 8 1 5

1 1 2 2

P z z i z iz i i z

z z i z i z i

Now, 0 1 1 2 2 0P z z z i z i z i  

1 0 1z z

0z i z i

1 2 0 1 2z i z i

2 0 2z i z i
Hence, 1, ,1 2 ,2S i i i  

Application activity 1.14 
1. Factorise the polynomials given below and hence find the zeros of each 

polynomial.

a) 3 6 20P z z z
b) 

3 26 13 10Q z z z z  
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c) 4 2 44 26R z z z z

d) 3 21 10 2 24 8M z z i z i z i  

2. Find the values of the real numbers a  and b  if the complex number 
5 2i  is a zero of the polynomial 4 3 22 22 68f z z z az z b .

3. The polynomial p z  has degree 3. Given that 1 2 0, 2 0p i p  

and 0 20p , write p z  in the form 3 2az bz cz d .

4. Solve the equation 21 3 2 21 7 0i z i z i

1.3. Polar form of a complex number

1.3.1.

Let; 1 1 ,z i 2 1 ,z i 3 1 ,z i 4 1 ,z i 5z i  and 6z i .

Present in Argand diagram, affix of each given complex number and 
determine the value of angle  for which affix of , 1, 2, ,6kz k  makes 
with positive direction of real axis. 

Hint: Use the definition; 
Im

tan k
k

e k

z
R z

.

Activity 1.15  

An alternative way of defining points in the complex plane, other than using 
the x and y coordinates, is to use the distance of a point P from the origin 
together with the angle between the line through P and O and  the positive 
part of the real axis. This idea leads to the polar form of complex numbers.

The argument or phase  (or amplitude) of z is the angle that the radius r 
makes with the positive real axis, as illustrated in figure 1.5, and is written as 
arg z . 

As with the modulus, the argument can be found from the rectangular form 
x yi .
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x

y

z x yi

r

0 x

y

Figure 1.5. Modulus and argument of a complex number

Generally,

arctan , 0

arctan , 0, 0

arctan , 0, 0
arg

, 0, 0
2

, 0, 0
2

0 0

y if x
x

y if x y
x

y if x y
z x

if x y

if x y

Undefined if x and y

The value of arg z  must always be expressed in radians. It can change by 
any multiple of 2  and still give the same angle. Hence, the arg function 
is sometimes considered as multivalued. Normally, as given above, the 
principal argument in the interval ,  is chosen. The polar angle for the 
complex number 0 is undefined.

Example 1.39 

Find the principal argument of the complex number 1z i  
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Solution

1 0x  

1arg arctan
1 4

z
 

Example 1.40 

Find the principal argument of the complex number 1z i  

Solution

1 0x  

1arg arctan
1 4

z

Example 1.41 

Find the principal argument of the complex number 1 3z i  

Solution

1 0, 3 0x y  

3 3 2arg arctan
1 3 3 3

z  

Example 1.42 

Find the principal argument of the complex number 9 3 9z i  

Solution

9 3 0, 9 0x y  

9 6 5arg arctan
6 6 69 3

z
 

Example 1.43 

Find the principal argument of the complex number 2z i  
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Solution

1 0x  

1arg arctan
1 4

z
 

Example 1.40 

Find the principal argument of the complex number 1z i  

Solution

1 0x  

1arg arctan
1 4

z

Example 1.41 

Find the principal argument of the complex number 1 3z i  

Solution

1 0, 3 0x y  

3 3 2arg arctan
1 3 3 3

z  

Example 1.42 

Find the principal argument of the complex number 9 3 9z i  

Solution

9 3 0, 9 0x y  

9 6 5arg arctan
6 6 69 3

z
 

Example 1.43 

Find the principal argument of the complex number 2z i  
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Solution

0, 0x y  

arg
2

z
 

Notice
The following relations are true:

• 
2 2

cos arg xz
x y

• 
2 2

sin arg yz
x y

• tan arg yz
x

Let M be a point different from 0 with affix z . We denote , the argument of 
z .

• The symmetric of M  with respect to the real axis has affix z  with 
argument .

• The argument of the affix of symmetric of M  with respect to 0 is 
.

Application activity 1.15 

Find the principal argument of the following complex numbers:

1. 14 14i   2. 9 3 9i   3. 2 2i  

4. 3 3 9i  5. 6 2 3i  

Let z x yi .  In Argand diagram, sketch the loci satisfying the 
conditions,

1. arg
4

z  2. arg 4
3

z

Activity 1.16  
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The simplest case is the locus of P subject to the condition that arg z , 
where  is a fixed angle.

This condition implies that the angle between OP  and Ox is fixed so that the 
locus of P is a straight line.

arg z  represents the half line through O  inclined at an angle  to 
the positive direction of x axis .

Note that the locus of P  is only a half line; the other half line, shown dotted in 
figure 1.6, would have the equation arg z , possibly add or subtract 
2  if  falls outside the specified range for arg z .

Figure 1.6. Locus as a half line through 0

Similarly, the locus of a point P satisfying 1arg z z , where 1z  is the affix 
of a fixed point A, is a line through A.

1arg z z  represents the half line through the point 1z  inclined at 
an angle  to the positive direction of x axis .

Note again that this locus is only a half line; the other half line would have the 
equation 1arg z z , possibly adding or subtracting 2  if  falls 
outside the specified range for arg z  (as illustrated in the figure 1.7).

Figure 1.7. Locus as a half line through point different from zero
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Finally, consider the locus of any point satisfying 1arg z z . This 
indicates that the angle between AP and the positive x-axis lies between  
and , so that P can lie on or within the two half lines as shown in the figure 
1.8.

Figure 1.8. Locus lies between two half lines

Example 1.44 

Sketch on Argand diagram the region where arg 1
4

z

Solution

At point (1,0), we trace a half-line inclined at an angle 
4

 to the 

positive direction of x-axis. The needed region is given by all points lying on 
that half-line. 

-1 1 2 3 4 5 6

-1

1

2

3

4

5

x

y

4
0
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Example 1.45 

Sketch on Argand diagram the region satisfying both 1 3z i  and 

0 arg
4

z

Solution 

First 1 3z i  is the region on and within the circle of centre 1 i  and 
radius 3. 

0 arg
4

z  represents all points whose arguments are between or equal 

to 0 and 
4

.

The required region is the shaded part.

Application activity 1.16 

1. Sketch the loci satisfying these equations:

a) arg 2
4

z i  b) arg 4
2

z

2. On the same Argand plane, sketch the loci of points satisfying:
33 5; arg 3
4

z i z

a) From your sketch, explain why there is only one complex number 
satisfying both conditions. 

b) Verify that the complex number is 7 4i .
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Example 1.45 

Sketch on Argand diagram the region satisfying both 1 3z i  and 

0 arg
4

z

Solution 

First 1 3z i  is the region on and within the circle of centre 1 i  and 
radius 3. 

0 arg
4

z  represents all points whose arguments are between or equal 

to 0 and 
4
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The required region is the shaded part.
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a) arg 2
4

z i  b) arg 4
2

z

2. On the same Argand plane, sketch the loci of points satisfying:
33 5; arg 3
4

z i z

a) From your sketch, explain why there is only one complex number 
satisfying both conditions. 

b) Verify that the complex number is 7 4i .
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1.2.2.

Given complex number 5z i
1. Plot z in the Argand diagram. 

2. Find modulus, r of z.

3. Find the angle,  the line segment oz  makes with the positive real 
axis. 

4. From trigonometry and using the graph obtained in 1), express z  in 
terms of r  and  .

Activity 1.17  

From activity 1.17, r  and  can be calculated.

Generally, if r  and  are the modulus and principal argument 

of complex number z  respectively, then cos sinz r i .

This form is called polar form or modulus-argument form or trigonometric 
form of a complex number z .

cos sinz r i  is sometimes abbreviated as cisz r .

Where cis  indicates cos sini  (or c for cosine, i for imaginary unit and 
s to denote sine).

Figure 1.9. Change of a complex number from algebraic to polar form

From figure 1.9 and definition of trigonometric ratios, we have
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sin sin
coscos

y
y rr

x x r
r  

And then, cos sinz x iy z r ir  or cos sinz r i .

For brevity, cos sinr i  can be written as ,r  or r .

Properties

1. Two complex numbers are equal if their modulii are equal and the 
difference between their argument is a multiple of 2 .

If cisz r  and ' 'cis 'z r

Then, 
'

'
' 2

r r
z z

k k
2. If cos sinz r i ,  its conjugate is cos sinz r i  and its 

opposite is cos sinz r i .

Example 1.46 

Express the complex number 1z i  in polar form. 

Solution                                                 

2

arg arctan1
4

z

z      

Polar form of z is

2 cos sin
4 4

z i

Or 2cis
4

z  or 2
4

  

Example 1.47 

Express the complex number 2 2w i  in polar form.
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sin sin
coscos

y
y rr

x x r
r  

And then, cos sinz x iy z r ir  or cos sinz r i .

For brevity, cos sinr i  can be written as ,r  or r .

Properties

1. Two complex numbers are equal if their modulii are equal and the 
difference between their argument is a multiple of 2 .

If cisz r  and ' 'cis 'z r

Then, 
'

'
' 2

r r
z z

k k
2. If cos sinz r i ,  its conjugate is cos sinz r i  and its 

opposite is cos sinz r i .

Example 1.46 

Express the complex number 1z i  in polar form. 

Solution                                                 

2

arg arctan1
4

z

z      

Polar form of z is

2 cos sin
4 4

z i

Or 2cis
4

z  or 2
4

  

Example 1.47 

Express the complex number 2 2w i  in polar form.
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Solution

32, arg arctan 1
4 4

z z    

Polar form:     Or

3 32 cos sin
4 4

z i   
32cis
4

z

Notice
Having a polar form of a complex number, you can get its corresponding 
algebraic form.

Example 1.48 

Convert cis
3

 in algebraic form. 

Solution

1 3cis cos sin
3 3 3 2 2

i i
 

Example 1.49 

Convert 2 cis
2

 in algebraic form.

Solution

2 cis 2 cos sin
2 2 2

2 0 2

i

i i
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Application activity 1.17 

1. Express the following complex numbers in polar form.

a) 4   b) 2i   c) 2   d) 5i

e) 3 i  f) 3 3i  g) 3 3i
2. Convert the following complex numbers in cartesian form.

a) 2cis
3

      b) 
34cis
4

     c) 2 cis
4  

d) 3cis
2

     e) 4cis       f) 
5cis
6

     g) 2cis
6

1.2.3.

Given two complex numbers 1 1z i  and 2 3z i ,

1. Express 1 2z z  in algebraic form and hence in polar form.

2. Express 1z  and 2z  in polar form and hence evaluate 1 2z z .

3. What can you say about result in 1) and 2)?

4. Express 1

2

z
z

 in algebraic form and hence in polar form.

5. Using the polar forms of 1z  and 2z  in 2), evaluate 1

2

z
z

.

6. What can you say about the result in 4) and 5)?

Activity 1.18  

Given two complex numbers 1 1 1 1  z r cos isin  and 

2 2 2 2  z r cos isin , from activity 1.18, the formula for 

multiplication is

1 2 1 2 1 2 1 2  z z r r cos isin

Provided that 2  must be added to or subtracted from 1 2  if 1 2  is 
outside the permitted range of the principal argument.
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Similarly, division is given by

1 1
1 2 1 2

2 2

cos sinz r i
z r

With the provision that 2  may have to be added to, or substracted from 

1 2  if 1 2  is outside the permitted range of the principal argument. 

Example 1.50 

Determine the product of the complex numbers 1z i  and 3w i  in 
both cartesian and polar forms.

Solution

Cartesian form:

1 3

3 3 1

3 1 1 3

zw i i

i i

i  

Polar form:

2 cis , 2cis
4 6

z w
 

2 2 cis
4 6

3 2 52 2 cis 2 2 cis
12 12

zw

Alternatively, the polar form of zw can be determined as follows:

3 1 1 3zw i
2 2

3 1 1 3 3 2 3 1 1 2 3 3 8 2 2zw

1 3 5arg arctan
123 1

zw  
Hence,

52 2 cis
12

zw

Example 1.51 

Consider the complex number 

4

3

1 3

1

i
z

i
. 

a) Express z in algebraic form and polar form. 

b) Deduce the exact value of cos
12

 and sin
12

.
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Solution 

a) 

4

3

1 3

1

i
z

i

1 4 3 18 12 3 9
1 3 3

i i
i i

8 8 3 4 4 3
2 2 1

i i
i i

4 4 3 1

2

i i 4 4 4 3 4 3
2

i i

2 2 3 2 2 3i

Thus, the algebraic form of z  is 2 2 3 2 2 3z i

Now, 

2 2
2 2 3 2 2 3 4 2z

       

2 2 3arg arctan
122 2 3

z

Alternatively, z in polar form can be obtained as follows:

Let 
4

1 1 3z i  and 
3

2 1z i

4

1 1 3z i

4

1 1 3 16z

1
4arg 4 arctan 3
3

z

   
3

2 1z i

3

2 1 1 2 2z
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Solution 

a) 

4

3

1 3

1

i
z

i

1 4 3 18 12 3 9
1 3 3

i i
i i

8 8 3 4 4 3
2 2 1

i i
i i

4 4 3 1

2

i i 4 4 4 3 4 3
2

i i

2 2 3 2 2 3i

Thus, the algebraic form of z  is 2 2 3 2 2 3z i

Now, 

2 2
2 2 3 2 2 3 4 2z

       

2 2 3arg arctan
122 2 3

z

Alternatively, z in polar form can be obtained as follows:

Let 
4

1 1 3z i  and 
3

2 1z i

4

1 1 3z i

4

1 1 3 16z

1
4arg 4 arctan 3
3

z

   
3

2 1z i

3

2 1 1 2 2z
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2
3arg 3 arctan 1
4

z

1

2

16 16 2 4 2
42 2

z
z

z   and 

1 2

arg
4 3 16 9 25arg arg
3 4 12 12

z

z z

Since we need the principal argument in the interval , , we take 
25 2
12

 because the value is 

large, negative and is not in the desired interval. 

This gives 25 24
12 12

, thus, arg
12

z .

Then, the polar form of z is 

4 2 cos sin
12 12

4 2 cos sin
12 12

z i

i
                                   

cos cos

sin sin

To deduce the exact value of cos
12

 and sin
12

, we 

equate the polar form of z and algebraic form of z:   

4 2 cos sin 2 2 3 2 2 3
12 12

i i

4 2 cos 2 2 3
12

4 2 sin 2 2 3
12

2 2 3 2 2 2 2 3 2 6cos
12 4 2 44 2

2 2 3 2 2 2 2 3 2 6sin
12 4 2 44 2
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Thus, 

6 2cos
12 4

6 2sin
12 4

Notice
Addition and subtraction in polar form of complex number is not possible 
directly as it is the case in multiplication and division. For addition and 
subtraction of complex numbers to be possible, each complex number has 
to be converted in to Cartesian form first.

Application activity 1.18 

1. In each of the following , express zw  and 
z
w

 in polar form.

a) 1 , 3z i w i  b) 
22 2 3,
3

z i w cis  

c) 1 , 3z i w i     d) 2 2 , 3 3z i w i  

e) 
1 1 3, 1
2 2

z i w i   

f) 1, 1z i w i  

2. Express 
1 3 3

3 3

i i

i
  in polar form.

1.2.4.

Given a complex number 3z i ;

1. Express z in polar form.

2. Given that 2z z z , find the expression for 2z  in algebraic and  in 
polar form.

3. Find the expression for 3 2z z z  in algebraic form and hence in polar 
form. 

Activity 1.19  
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4. Using results from 1 to 3, deduce the expression for nz  in polar form.

From activity 1.19, Power of a complex number z r i= +( )cos sin  is given 
by:

0cos sin cos sin
nn nz r i r n i n n

From the power of a complex number, if 1r  , we have De Moivre’s 
theorem:

cos sin cos sinni n i n , for positive and negative integers 
and fractional values of n .

Application activity 1.19 

1. Express the following in Cartesian form:

a) 
101 1 3

2 2
i    b) 

6
3 i        c) 

101 i

d) 

8
1 3

2
i

 e) 
121

2
i

   f) 
9

1 3i  

g) 
52 2i

2. Find the positive integers m  for which 3 3 0
m m

i i

1.2.5. n

Given z=4

1. Express z in polar form.

2. Let 'cis 'kz r  for 0,1,2,3k  be the four 4th  roots of z. Using result in 

1) and the expression 
4

kz z , find all four 4th  roots of z in polar form.

Activity 1.20  
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From activity 1.20,

If  
n

kz z  for z rcis , then

2 0,1,2,3,......, 1n
k

kz r cis k n
n

Here, n r  is the usual (positive) thn  root of the positive real number r. 

Example 1.52 

Determine the 4th
 roots of -4

Solution 

4 4  and arg 4 arctan 0   

4 24 0,1,2,3
4k

kz cis k
 

0
2 22 cos sin 2 1

4 4 2 2
z i i i

1
3 3 2 22 cos sin 2 1
4 4 2 2

z i i i

2
5 5 2 22 cos sin 2 1
4 4 2 2

z i i i

3
7 7 2 22 cos sin 2 1
4 4 2 2

z i i i

Then, the 4th roots of -4 are 1 , 1 , 1 , and 1i i i i .

Special case: nth roots of unity

Here, 1z  and 1z , arg 0z

Then,

0 2 21 cis cisn
k

k kz
n n

And then, the nth roots of unity are given by  

2cis ; 0,1, 2,3,....., 1k
kz k n
n
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This shows that the first root among the nth roots of unity is always 1.

Notice
1. The nth roots of unity can be used to find the nth roots of any complex 

number if one of these roots is known. 

 If one of the nth roots of a complex number z is known, the other roots 
are found by multiplying that root with nth roots of unity.

2. The sum of nth roots of unity is zero.

Example 1.53 

Find cubic roots of unity

Solution

1, 3z n
2 ; 0,1,2
3k
kz cis k

0 cis0 1z

1
2 1 3cis
3 2 2

z i
 2

4 1 3cis
3 2 2

z i

Example 1.54 

Using cubic roots of unity, find the cubic root of -27, given that -3 is one of the 
roots.

Solution

We have one of the cubic roots of -27, which is -3.

We have seen that the cubic roots of unity are:

0

2

1
0

2

1

1 3 0
2 2
1 3
2 2

k
k

z

z i z

z i

Then, cubic roots of -27 are:



52

0 1 3
3

z

1
1 3 3 3 33
2 2 2 2

z i i
 

2
1 3 3 3 33
2 2 2 2

z i i

Example 1.55 

Using 5th  roots of unity, find the exact value of 
2cos
5

.

Solution 

The 5th  roots of unity are given by 
2 , 0,1,2,3,4.
5k
kz cis k

0 1z

1
2 2 2cis cos sin
5 5 5

z i

2
4 4 4cis cos sin
5 5 5

z i

3
6 6 6cis cos sin
5 5 5

z i

4
8 8 8cis cos sin
5 5 5

z i

The sum of these roots must be zero, then,

2 2 4 4 6 6 8 81 cos sin cos sin cos sin cos sin 0
5 5 5 5 5 5 5 5

i i i i

2 4 6 8 2 4 6 81 cos cos cos cos sin sin sin sin 0
5 5 5 5 5 5 5 5

i

Taking only the real parts, we have;

2 4 6 81 cos cos cos cos 0 1
5 5 5 5  
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0 1 3
3

z
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2 2 2 2

z i i
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z i i
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We know that cos cos 2 , then,

6 6 10 6 4cos cos 2 cos cos
5 5 5 5

8 8 10 8 2cos cos 2 cos cos
5 5 5 5

(1) becomes, 
2 4 4 21 cos cos cos cos 0
5 5 5 5

 and 

we have;

2 41 2cos 2cos 0
5 5  

2 21 2cos 2cos 2 0
5 5

2 22 21 2cos 2 2cos 1 cos 2 2cos 1
5 5

as

22 21 2cos 4cos 2 0
5 5

2 2 24cos 2cos 1 0
5 5

Let 
2cos
5

t , we have;

24 2 1 0t t

4 16 20

1
2 20 2 2 5 5 1
8 8 4

t
   

2
2 20 2 2 5 5 1
8 8 4

t

But 
2
5

 is an angle in the first quadrant. Thus, the cosine of this angle must 

be positive. Thus, 
5 1
4

t  is to be ignored. 

Hence, the exact value of 
2cos
5

 is 
5 1
4

.
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Application activity 1.20 

1. Solve the equation 4z i .

2. Find the five fifth roots of 32.

3. Find five fifth roots of 1.

4. Find four fourth roots of 8 8 3i .

5. Using 5th  roots of unity, find the exact value of 
2sin
5

.

nth

1. Find five fifth roots of 4.

2. Represent the roots obtained in 1) on Argand diagram.

3. Use a ruler to join the obtained points in 2.

Activity 1.21  

The n  roots of a complex number are equally spaced around the circumference 
of a circle of centre 0 in the complex plane. 

If the complex number for which we are computing the thn  roots is z rcis
, the radius of the circle will be nR r  and the first root 0z  corresponding to 

0k  will be at an amplitude of 
n

. This root will be followed by the 1n  
remaining 

roots at equal distances apart.  

The angular amplitude between each root is 
2
n

.

Now, if 1z , the radius of the circle is 1. 

Thus, thn  roots of unity are equally spaced around the circumference of a unit 
circle (circle of centre o and radius 1) in the complex plane.

Example 1.56 

Represent graphically the 4th  roots of 8 1 3z i
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Solution 

8 4 16z

8 3arg arctan arctan 3
8 3

z

The roots are given by:

4
2 6316 cis 2cis where 0,1,2,3.

4 12k

k kz k

This is;

0

1

2 cis
12

52 cis
12

z

z

2

3

112 cis
12
172 cis
12

z

z

In this case, the circle will have radius 2.

-2 -1 1 2

-2

-1

1

2

x
0

0z

1z

2z

3z

Example 1.57 

Represent graphically the thn  roots of unity for 2, 3n n  and 4n .
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Solution

2cis 0,1,2,3k
kz k
n

0 12 : 1, 1n z z

-1 1

-1

1

x

0
0z1z

0 1 2
1 3 1 33 1,
2 2 2 2

n z z i z i

-1 1

-1

1

x

0
0z

1z

2z

0 1 2 34 1, 1n z z i z z i
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Solution

2cis 0,1,2,3k
kz k
n

0 12 : 1, 1n z z

-1 1

-1

1

x

0
0z1z

0 1 2
1 3 1 33 1,
2 2 2 2

n z z i z i

-1 1

-1

1

x

0
0z

1z

2z

0 1 2 34 1, 1n z z i z z i
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-1 1

-1

1

x

0
0z

1z

2z

3z

We can see that the thn  roots of unity for 2n  are the vertices of a regular 
polygon inscribed in a circle of centre 0 and radius 1. 

Application activity 1.21 

On Argand diagram, represent:

1. The three cube roots of -27.

2. The four fourth roots of -4.

3. The cube roots of 8i . 

4. The fourth roots of -1.

A regular polygon is a polygon that is equiangular (all angles are equal in 
measure) and equilateral (all sides have the same length).

As illustrated in figure 1.10, we call apothem, the perpendicular distance 
from the centre (the interior point) to any side. We can draw a line segment 
from the centre to one of the vertices. The length of this segment is called the 
radius of the polygon.
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Figure 1.10. Regular polygon

1. Find cube roots of unity.

2. Represent the roots obtained in 1) on Argand diagram.

3. Using a ruler, join the points obtained in 2).

4. What can you say about the figure obtained in 3)?

Activity 1.22  

Recall that the nth roots of unity are given by:

2cis 0,1,2,....., 1k
kz k n
n

.

The thn  roots of unity for 3n  are the vertices of a regular polygon with n 
sides inscribed in a circle of centre 0 and radius 1. The vertices of a polygon 
are the points where its sides intersect. The angle at the centre is given by 
2
n

.

To draw a regular polygon with n sides, the essential steps are:

• Start by drawing a unit circle in Argand diagram. The radius and 
the centre of this circle will be the radius and centre of the regular 
polygon. 

• Around the circle, place the points with affixes 
2cis 0,1,2,....., 1k

kz k n
n

. Those points are the 

vertices of the polygon.
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• Using a ruler, join the obtained points around the circle.

• The obtained figure is the needed regular polygon.

Example 1.58 

Construct, in Argand diagram, a square.

Solution

A square is a regular polygon with four sides. 

We have four vertices: 
2cis cis 0,1,2,3
4 2k
k kz k

0 cis0 1z , 1 cis
2

z i , 2 cis 1z , 3
3cis
2

z i

-1 1

-1

1

x

0
0z

1z

2z

3z

Example 1.59 

Construct, in Argand diagram, a regular pentagon.

Solution

A regular pentagon has 5 sides. 

We have five vertices: 
2cis 0,1,2,3,4
5k
kz k

0 cis0 1z , 
1

2cis
5

z , 
2

4cis
5

z , 3
6cis
5

z , 4
8cis
5

z
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Application activity 1.22 

In Argand diagram, construct the following polygons:

1. A regular hexagon  2. A regular heptagon 

3. A regular octagon 4. A regular nonagon

1.4. Exponential form of a complex number

Consider the following infinite series expansions:
2 3 4 5 6 7

1 ...
2! 3! 4! 5! 6! 7!

x x x x x x xe x , 

2 4 6

cos 1 ...
2! 4! 6!
x x xx  and 

3 5 7

sin ...
3! 5! 7!
x x xx x

1. In expansion of xe ,  replace x  with i  and write the new expansion.

2. Rearrange the terms obtained in 1) and use expansions of cos x  and 
sin x  to find new the expression of xe  in terms of cos x  and sin x .

3. What can you say about the new expression obtained in 2)?

Activity 1.23  
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From Activity 1.23, we can write;

cos sinie i
Thus, the exponential form of a complex number z   whose modulus is r  and 
argument is , is 

iz re

Example 1.60 

Express the complex number 3 i  in exponential form.

Solution 

3 2, arg 3
6

i i

Thus, 63 2
i

i e

Example 1.61 

Express the complex number 1 3i  in exponential form.

Solution 

21 3 2, arg 1 3
3

i i

Thus,  

2
31 3 2

i
i e

The formulae for product, quotient and power become;

a) ''' ' ii ire r e rr e  b) '
'' '

i
i

i
re r e

r e r
c) 

ni n inre r e
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Notice
From exponential form of a complex number, we can find real part and 
imaginary part as follows:

cos sin 1

cos sin 2

i

i

e i

e i

1 2  gives 
12cos cos
2

i i i ie e e e

1 2  gives 
12 sin sin
2

i i i ie e i e e
i

The formulae 

 

1cos
2
1sin
2

i i

i i

e e

e e
i

are called the Euler’s formulae. 

The Euler’s formulae are used to linearise trigonometric expressions. This 
method is called linearisation. We will see this in applications of complex 
numbers.

Application activity 1.23 

Express the following complex numbers in exponential form.

1. i  2.  1 3i  3. 2 2i    4. 3 3i          

5. -5     6. 3 3i   7. 3 4i   8. 5 12i  
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Notice
From exponential form of a complex number, we can find real part and 
imaginary part as follows:

cos sin 1

cos sin 2

i

i

e i

e i

1 2  gives 
12cos cos
2

i i i ie e e e

1 2  gives 
12 sin sin
2

i i i ie e i e e
i

The formulae 

 

1cos
2
1sin
2

i i

i i

e e

e e
i

are called the Euler’s formulae. 

The Euler’s formulae are used to linearise trigonometric expressions. This 
method is called linearisation. We will see this in applications of complex 
numbers.

Application activity 1.23 

Express the following complex numbers in exponential form.

1. i  2.  1 3i  3. 2 2i    4. 3 3i          

5. -5     6. 3 3i   7. 3 4i   8. 5 12i  
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1.5. Applications 

1.5.1.

We know that De Moivre’s formula is given by 

cos sin cos sinnx i x nx i nx a

1. Use the Newton binomial expansion to expand cos sin nx i x  to 
get expression (b).

2. In relation (a), replace the left hand side with its corresponding 
expression obtained in 1.

3. Rearrange the terms of relation obtained in (b) to obtain the 
expression equivalent to cosnx  and another expression equivalent 
to sin nx . (Recall that two complex numbers are equal if and only 
if their real parts are equal and their imaginary parts are equal).

Activity 1.24  

From Activity 1.24, 

2 2 4 4
0 2 4

1 3 3 5 5
1 3 5

cos cos cos sin cos sin .....

sin cos sin cos sin cos sin ....

n n n n n n

n n n n n n

nx c x c x x c x x

nx c x c x x c x x

In general,

0

1

cos cos sin ;

sin cos sin ;

n k n k k
k

k n
n k n k k

k
k n

nx C i x x for even values of k

i nx C i x x for odd values of k

and 
!

! !
n

k
nC

k n k

Example 1.62 

Express cos3x  and sin 3x  in terms of cos x  and sin x .
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Solution
Method 1 (use of De Moivre’s formula and binomial expansion)

3cos sin cos3 sin 3x i x x i x , by De Moivre’s formula.

By binomial expansion, we have
3 2 33 2

3 2 2 3

3 2 2 3

cos sin cos 3cos sin 3cos sin sin

cos 3 cos sin 3cos sin sin

cos 3cos sin 3cos sin sin

x i x x x i x x i x i x

x i x x x x i x

x x x i x x x

Then, 
3 2 2 3cos3 sin 3 cos 3cos sin 3cos sin sinx i x x x x i x x x

Equating parts, we have:

3 2

2 3

cos3 cos 3cos sin ( )
sin 3 3cos sin sin ( )

x x x x real parts
x x x x imaginary parts          

Simplifying the RHS of each expression, we have:

3 2

3 3
2 2

2 3

3 3

cos3 cos 3cos 1 cos

cos 3cos 3cos
since cos sin 1

sin 3 3 1 sin sin sin

3sin 3sin sin

x x x x

x x x
x x

x x x x

x x x   

Thus, 

3

3

cos3 4cos 3cos
sin 3 3sin 4sin

x x x
x x x

Method 2 (use of the general formulae)

0

0

cos cos sin ;

isin cos sin ;

n k n k k
k

k n
n k n k k

k
k n

nx C i x x for even values of k

nx C i x x for odd values of k

3 0 3 0 3 2 1 2
0 2

3 1 2 1 3 3 0 3
1 3

cos3 cos sin cos sin

isin 3 cos sin cos sin

x C i x x C i x x

x C i x x C i x x
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Solution
Method 1 (use of De Moivre’s formula and binomial expansion)

3cos sin cos3 sin 3x i x x i x , by De Moivre’s formula.

By binomial expansion, we have
3 2 33 2

3 2 2 3

3 2 2 3

cos sin cos 3cos sin 3cos sin sin

cos 3 cos sin 3cos sin sin

cos 3cos sin 3cos sin sin

x i x x x i x x i x i x

x i x x x x i x

x x x i x x x

Then, 
3 2 2 3cos3 sin 3 cos 3cos sin 3cos sin sinx i x x x x i x x x

Equating parts, we have:

3 2

2 3

cos3 cos 3cos sin ( )
sin 3 3cos sin sin ( )

x x x x real parts
x x x x imaginary parts          

Simplifying the RHS of each expression, we have:

3 2

3 3
2 2

2 3

3 3

cos3 cos 3cos 1 cos

cos 3cos 3cos
since cos sin 1

sin 3 3 1 sin sin sin

3sin 3sin sin

x x x x

x x x
x x

x x x x

x x x   

Thus, 

3

3

cos3 4cos 3cos
sin 3 3sin 4sin

x x x
x x x

Method 2 (use of the general formulae)

0

0

cos cos sin ;

isin cos sin ;

n k n k k
k

k n
n k n k k

k
k n

nx C i x x for even values of k

nx C i x x for odd values of k

3 0 3 0 3 2 1 2
0 2

3 1 2 1 3 3 0 3
1 3

cos3 cos sin cos sin

isin 3 cos sin cos sin

x C i x x C i x x

x C i x x C i x x
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From the above, we obtain;

3 2

2 3

cos3 cos 3cos sin
sin 3 3 cos sin sin

x x x x
i x i x x i x

Simplifying the RHS of each expression, we have:

3 2

2 3

cos3 cos 3cos 1 cos

sin 3 3 1 sin sin sin

x x x x

i x i x x x  

3 3

3 3

cos3 cos 3cos 3cos

sin 3 3sin 3sin sin

x x x x

i x i x x x

3

3

cos3 4cos 3cos
sin 3 3sin 4sin .

x x x
x x x as before

Example 1.63 

Express tan 4  in terms of tan .

Solution

sin 4tan 4
cos 4

, so, expressions for sin 4  and cos 4  in terms 

of sin  and cos  must be first established as shown below:

4 0 4 0 4 2 2 2 4 4 0 4
0 2 4

4 1 3 1 4 3 1 3
1 3

cos 4 cos sin cos sin cos sin

isin 4 cos sin cos sin

C i C i C i

C i C i
4 2 2 4

3 3

cos 4 cos 6cos sin sin
sin 4 4 cos sin 4 cos sini i i

4 2 2 4

3 3

cos 4 cos 6cos sin sin
sin 4 4cos sin 4cos sin

Now,

3 3

4 2 2 4

sin 4 4cos sin 4cos sintan 4
cos 4 cos 6cos sin sin

Dividing every term in both numerator and denominator by 4cos  gives;
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3

33

2 4 2 4

2 4

sin sin4 4 4 tan 4 tancos cos
sin sin 1 6 tan tan1 6
cos cos

Thus,

3

2 4

4 tan 4 tantan 4
1 6 tan tan

Application activity 1.24 

1. Express cos 2x  in terms of cos x  only.

2. Determine sin 2x  in terms of cos x  and sin x .

3. Express tan 3x  in term  of cot x  

4. Express cot 3x  in terms of cot x  only.

5. Establish tan 5x  in terms of tan x  only.

6. Evaluate cos6x  in terms of cos x  only.

7. Determine sin 6x  in terms of cos x  and sin x .

1.5.2.

Using Euler’s formulae, find the sum equivalent to the product 2sin cosx x

Activity 1.25  

Recall on page 58 we mentioned that the formulae used in linearisation of 
trigonometric expressions are Euler’s formulae.

Example 1.64 

Linearise 2sin cosx y

Solution

2sin cos 2x y
2 2

ix ix iy iye e e e
i
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i
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1
2

i x y i x y i y x i x ye e e e
i
1
2

i x y i x y i x y i x ye e e e
i
1
2

i x y i x y i x y i x ye e e e
i

2 2

i x y i x y i x y i x ye e e e
i i

sin sinx y x y

Example 1.65 

Linearise 2sin cosx x

Solution

2
2sin cos

2 2

ix ix ix ixe e e ex x
i

2 2 2
2 4

ix ix ix ixe e e e
i

3 32 2
8

ix ix ix ix ix ixe e e e e e
i

3 31
4 2 2

ix ix ix ixe e e e
i i

1 sin 3 sin
4

x x

Application activity 1.25 

Linearise the following expressions:

1) cos cosx y  2) sin sinx y  3) sin cosx x
4) 2sin x  5) 

2cos x  6) 3sin x

7) 3cos x  8) 2 2sin cosx x
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1.5.3. cos sin , , , 0a x b x c a b c a b

Consider the following equation: cos 3 sin 1x x . 

Comparing the given equation to the equation cos sina x b x c ;

1. Form the complex number z a bi .

2. Find the modulus of z, i.e, 
2 2z a b .

3. Find the principal argument of z, i.e, arg z .

4. Rewrite the given equation in the form a b x c2 2+ −( )=cos  and 
hence solve for x.

Activity 1.26  

To solve the equation cos sin , , , 0a x b x c a b c a b , 
we first need the reduction expression for cos sina x b x .

From activity 1.26, to reduce cos sin ,a x b x a b , the steps followed 
are:

1. Form the complex number z a bi .

2. Find the modulus of z, i.e, 2 2z a b .

3. Find the principal argument of z, i.e, arg z .

4. The reduction formula is 2 2cos sin cosa x b x a b x .

Indeed, considering two complex numbers cos sinz x i x and 'z a bi  
and their presentation on Argand plane is in figure 1.11.

Figure 1.11. Reduction form of cos sina x b x  
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To get the expression equivalent to cos sina x b x , we use dot 
product expressed in terms of angle x  that is between two vectors 

cos ,sinOM x x  and ,ON a b , and then 

2 2cos sin cosa x b x a b x .

To solve cos sina x b x c , we use the new equality
2 2cos sin cosa x b x a b x .

2 2 cosa b x c  2 2
cos cx

a b
If 

• 
2 2

1c
a b

 or 
2 2

1c
a b

, the equation has no 

solutions.

• 
2 2

1 1c
a b

, the equation has many solutions in 

set of real numbers.

Example 1.66 

Solve, in , the equation cos 3 sin 3x x

Solution

1 3 2 arg arctan 3
3

z i z z

cos 3 sin 2cos
3

x x x

2cos 3
3

x
 

3cos
3 2

x

2
3 6

x k
 

2
2

2
6

k
x k

k
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Example 1.67 

Solve, in , the equation cos sin 2x x

Solution

1 2 arg arctan1
4

z i z z

cos sin 2 cos
4

x x x
 

2 cos 2
4

x

cos 1 2
4 4

x x k
 

2
4

x k k

Application activity 1.26 

Use complex numbers to solve:

1. cos 3 sin 3x x    2. cos sin 2x x
3. cos sin 1x x      4. 3 cos sin 2x x

5. 2sin 3 cos 1 sinx x x   6. 2 sec tan 1x x      

1.5.4.

In electrical engineering, the imaginary unit is denoted by j to avoid confusion 
with i which is generally in use to denote electric current.

If 
1Z R j L

j C
, express Z  in the form a jb  when 

10, 5, 0.04R L C , 4 and 1j
Where Z denotes impendance, R is resistance, L is inductance, C is 
capacitance and  indicates the phasor for inductance or capacitance.

Activity 1.27  

In electrical engineering, the treatment of resistors, capacitors, and inductors 
can be unified by introducing imaginary frequency-dependent resistances 
for the latter two (capacitor and inductor) and combining all the three in 
a single complex number called the impedance. This approach is called 
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Example 1.67 

Solve, in , the equation cos sin 2x x

Solution

1 2 arg arctan1
4

z i z z

cos sin 2 cos
4

x x x
 

2 cos 2
4

x

cos 1 2
4 4

x x k
 

2
4

x k k
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a single complex number called the impedance. This approach is called 
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phasor calculus. The imaginary unit is denoted by j to avoid confusion with i 
which is generally in use to denote electric current.

Since the voltage in an AC  circuit is oscillating, it can be represented as

0

0 cos sin

jwtV V e
V wt j wt

which denotes Impedance, oV  is peak value of impedance and 2 f  
where f  is the frequence of supply.

To obtain the measurable quantity, the real part is taken:

0Re cosV V wt  and is called Resistance  while imaginary part denotes 
Reactance (inductive or capacitive).

The effect of multiplying a phasor by j  is to rotate it in a positive direction (i.e. 

anticlockwise) on an Argand diagram through 090  without altering its length. 

Similarly, multiplying a phasor by j   rotates phasor in a negative direction 

(i.e. clockwise) on an Argand diagram through 090  without altering its length. 
These facts are used in alternating current theory since certain quantities in 

the phasor diagrams lie at 090  to each other.

Briefly, the current, I (cosine function) leads the applied potential difference 

(p.d.), V (sine function) by one quarter of a cycle i.e. 
2

 radians or 090 .

For example, in the Resistance and Inductance ( R L ) series circuit shown 
in (a), LV  leads above figure, I by 900 (i.e. I lags LV  by 900) and may be 
written as LjV , the vertical axis being regarded as the imaginary axis of an 
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Argand diagram. Thus, R LV jV V  as ,R L LV IR V IX  (where LX  is the 
inductive reactance, 2πf L ohms) and V =IZ (where Z is the impedance), then, 

LR jX Z .

Similarly, for the Resistance and Capacitance ( R C ) circuit shown in above 
figure (b), R C  lags I by 900 (i.e. I leads VC by 900) and R CV jV V , from 

which CR jX Z  (where CX  is the capacitive reactance 
1

2 fC
 ohms).

Example 1.68 

Determine the resistance and series inductance (or capacitance) for each of 
the following impedances, assuming a frequency of 50 Hz:

a) 4 7j  b) 20j   c) 015 60cis  

Solution

a) Impedance, 4 7Z j  hence, Resistance is 4  and Reactance 
7 .

Since the imaginary part is positive, the reactance is inductive, 
i.e. 7LX

  Since 2LX fL , then inductance, 

7 0.0223
2 2 50

LXL H
f

 or 22.3mH

b) Impedance, 20Z j , i.e. 0 20Z j  hence Resistance is 0 
and Reactance 20 . 

Since the imaginary part is negative, the reactance is capacitive,

i.e.  20CX  and since  
1

2CX
fC

, then,

capacitance, 

61 1 10 159.2
2 50 20 2 22 50 0C

F F
X

C
f

c) Impedance, 

0 0 015 60 15 cos 60 sin 60 7.5 7.5 3Z cis j j
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Hence, resistance is 7.5  and capacitive reactance,
7.5 3 12.99CX

Since 
1

2CX
fC

, then, capacitance, 

61 1 10 245
2 50 22 0 2 50 12.99C

C
f

F F
X

Example 1.69 

An alternating voltage of 240V, 50 Hz is connected across an impedance of 
60 100Z j . Determine:

a) The resistance.

b) The capacitance.    

c) The magnitude of the impedance and   its phase angle.            

d) The current flowing.

Solution

a) Impedance 60 100Z j .

Hence, resistance is 60  

b) Capacitive reactance, 100CX ;

as 
1

2CX
fC

, then capacitance, 

61 1 10 31.83
2 50 100 2 50 1002 C

FC
f

F
X

c) Magnitude of impedance;

2 260 100 60 100 116.6Z j

Phase angle, 1 0100arg tan 59.04
60

Z

d) Current flowing;
0

0
0

240 0 2.058 59.04
116.6 59.04

V cisI cis A
Z cis
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Application activity 1.27 

1.  Determine the resistance R and series inductance L (or capacitance 
C) for each of the following impedances assuming the frequency to 
be 50 Hz.

a) 3 8j   b)  2 3j  

c) 14j   d)  
08 60cis

2. Two impedances, 1 3 6Z j  and 2 4 3Z j  are 
connected in series to supply a voltage of 120V. Determine the 
magnitude of the current and its phase angle relative to the voltage.

3. If the two impedances in Problem 2 are connected in parallel, 
determine the current flowing and its phase relative to the 120V 
supply voltage.

Hint: For the n–branch parallel circuit, Impedance Z is given by: 

1

1 1n

k kZ Z
.

4. A 2.0H  inductor of resistance 80  is connected in series with a 
420  resistor and a 240V , 50Hz  supply. Find;

a) The current in the circuit.

b) The phase angle between the applied p.d. and the current.

5. For a transmission line, the characteristic impedance 0Z  and the 
propagation coefficient  are given by:

0
R j LZ
G j C

and

R j L G j C .

Determine, in polar form, 0Z  and , given that 25 ,R
35 10 ,L H 680 10 ,G S 60.04 10C   and 

=2000π rad/s.
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Unit Summary
1. Concepts of complex numbers

A complex number is a number that can be put in the form a bi , 
where a and b are real numbers and  1i .

The set of all complex numbers is denoted by  and is defined as 
2: , 1z a bi a b and i .

The real number a of the complex number z a b is called the real 
part of z , and the real number b  is often called the imaginary part. A 
complex number whose real part is zero is said to be purely imaginary, 
whereas a complex number whose imaginary part is zero is said to be a 
real number or simply real.

2. Algebraic form of a complex number

Powers of i : 4 4 1 4 2 4 31, , 1,k k k ki i i i i i

,z a b  is a geometric form of the complex number z  and 
z a bi  is the algebraic (or standard or Cartesian or rectangular) 

form of the complex number z.

If two complex numbers, say  a bi   and  c di  are equal, 
then, both their real and imaginary parts are equal. That is, 
a bi c di a c and b d .

The addition and subtraction of two complex numbers  a bi  and 
c di  is defined by the formula: a bi c di a c b d i .

The complex conjugate of the complex number z x yi
, denoted by z  or *z , is defined to be z x yi .

The complex number z x y is the opposite of z x y, 
symmetric of z  with respect to 0.

The multiplication of two complex numbers  a bi  and c di  is defined by 
the formula: a bi c di ac bd bc ad i

The inverse of z a bi  is given by 
1

2 2

1 zz
z a b

If 1 2z a bi and z c di  then, 1
2 2 2 2

2

z a bi ac bd bc ad i
z c di c d c d
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If a complex number x yi is a square root of the complex number a bi , 

then 

2 2

2 2

1
2
1
2

x a a b

y a b a

Let a, b and c be real numbers ( 0a ), then the equation 2 0az bz c  has 
either two real roots, one double real root or two conjugate complex roots.

a) If 0 , there are two distinct real roots: 

1 2
bz

a
 and 2 2

bz
a

.

b) If 0 , there is a double real root: 1 2 2
bz z
a

c) If 0 , there is no real roots. In this case, there are two conjugate 
complex roots: 

1 2
b iz

a
 and 2 2

b iz
a

.

Where 2 4b ac

1 2 1 2,b cz z z z
a a

Every polynomial of positive degree with coefficients in the system of 
complex numbers has a zero in the system of complex numbers.

 Moreover, every such polynomial can be factored linearly in the 
system of complex numbers.

3. Polar form of a complex number

The absolute value (or modulus or magnitude) of a complex number 

z x yi  is 2 2r z x y
Principal argument of a complex number z x yi
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arctan , 0

arctan , 0, 0

arctan , 0, 0
arg

, 0, 0
2

, 0, 0
2

0 0

y if x
x

y if x y
x

y if x y
z x

if x y

if x y

Undefined if x and y

Polar (or modulus-argument) form is cos sinz r i  or cisz r
Given two complex numbers 1 1 1 1  z r cos isin  and 

2 2 2 2  z r cos isin , the formulae for multiplication and 

division are 1 2 1 2 1 2 1 2  z z r r cos isin  and 

1 1
1 2 1 2

2 2

cos sinz r i
z r  respectively.

Power of a complex number z is given by 

0cos sin cos sin
nn nz r i r n i n n

De Moivre’s theorem: cos sin cos sinni n i n

If 
n

kz z  for z rcis  , then 

2 0,1,2,3,......, 1n
k

kz r cis k n
n

To draw a regular polygon with n sides, the steps followed are:

 » Start by drawing a unit circle in Argand diagram. The radius and the centre 
of this circle will be the radius and centre of the regular polygon. 

 » Around the circle, place the points with affixes 
2cis , 0,1, 2,..., 1k

kz k n
n

. 

 » Those points are the vertices of the polygon.
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 » Using a ruler, join the obtained points around the circle.

 » The obtained figure is the needed regular polygon.

4. Exponential form of a complex number
The exponential form of a complex number z  whose modulus is r  and 
argument is , is iz re .

Euler’s formulae (these formulae are used to linearise trigonometric 
expressions): 

1cos
2
1sin
2

i i

i i

e e

e e
i

5. Applications 
 » Formulae for trigonometric number of a multiple of an angle

0

0

cos cos sin ,

isin cos sin ,

n k n k k
k

k n
n k n k k

k
k n

nx C i x x with even k values

nx C i x x with odd k values !
! !

n
k

nC
k n k

 » To solve the equation cos sina x b x c , solve the equation

2 2
cos , argcx a bi

a b  

 » Alternating current

Resistance and Capacitance (R-C)

Let a p.d. V be applied across a resistance R and a capacitance C in series. The 
same current I flows through each component and so the reference vector will 
be that representing I. The p.d. RV  across R is in phase with I, and CV  , that 
across C, lags on current I by 090 .
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2
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2

i i

i i

e e

e e
i
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0

0

cos cos sin ,

isin cos sin ,

n k n k k
k

k n
n k n k k

k
k n
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! !

n
k

nC
k n k

 » To solve the equation cos sina x b x c , solve the equation

2 2
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Figure showing Resistance and 
Capacitance in series

Vector sum of RV  and CV  is 
called Impedance and equals 
the applied p.d. V ;

R CZ V jV  where RV  and 

CV  are known as resistance 
and reactance respectively.

But RV IR  and C CV IX  
where CX  is the capacitive 
reactance of C  and equals 
1
C

.

Resistance and inductance (R-L)

Figure showing Resistance  and 
Inductance in series

The analysis is similar but 
here, the p.d. LV  across L  
leads on current I  and the 
p.d. RV  across R  is again in 
phase with I .

R LZ V jV  where RV  and 

LV  are known as resistance 
and reactance respectively.

But RV IR  and L LV IX  where LX  is the inductive reactance of L  and 
equals L

 or 2 f .

For the n–branch parallel circuit, Impedance Z  is given by: 
1

1 1n

k kZ Z
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1. For the complex numbers  3 –z i  and  1 2w i, evaluate;

a) 2 – 3z w  b) zw

c) 
22z w z  d) 

z
w

2. Solve the following equations in a bi  form:

a) 
2   4  0z  b) 

2     1  0z z   

c) 2   6   11  0z z  d) 3  – 1  0z

3. Plot the following complex numbers on the Argand plane and express 
them into polar form. 

a) 1  b) i   c) –3i  

d) 1–         i   e) 2 i  f) –3 – 2i  

g) –3 2i  

4. Convert into Cartesian form;

a) 2 cis 0  b) 3 cis  

c) cis
2

 d) 
33 cis
4

5. By conversion to polar form and use of De Moivres’ theorem, evaluate;

a) 
7i  b) 

51 i  c) 
4

3 i

6. Find in a bi  form and plot on Argand diagram;

a) the three values of 
1
3i .

b) the four values of 
1
41 i .

7. If 1 cis
4

z  and 2 cis
3

z , evaluate 1

2

z
z

 in polar 

and Cartesian form. 

Deduce the exact value of 
7cos
12

 and 
7sin
12

.
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8. Find the modulus of ie  

9. Show that 
1i ie e  

10. Show that the sum of nth roots of unity is zero.

11. Using 10th roots of unity, find the exact value of cos
5

.

12. Determine the set of complex numbers, z, such that  2 3 4z z z  is 
a real number.

13. Solve the equation 3 23 4 12 0z z z

14. Simplify 
2001

1 3
2 2

i

15. Consider the points A and B with affixes 1 i  and 1 i  
respectively. Let  be a real number of interval 0,2 ,

distinct from , and r rotation of centre 0 through angle 
2

. 

Note: if M is the point with affix 1 iie , then 'M  is the image of 
M by rotation r.

a) Show that M is a point circle of diameter AB.

b) Show that the points B, M and 'M  are collinear.

16. Find the values of number x for which 10 2x i x x i  is 
real.

17. In each case, determine the set of points of M of complex plane, with 
affix z such that;

a) 2 1z z  b) 2 2z i z   c) 1 3 2z i

d) 0z z z z   e) 
2Im 2z   f) 

2Re 0z

18. Determine two complex numbers such that their sum is 2 and their 
product is 9.

19. Determine complex number(s) z  different from zero such that 2z  and 
6z  are conjugates.
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20. Determine real part, imaginary part, modulus and argument of 

3

3

1

1

i

i

ez
e

21. Determine the modulus and argument of  
1 cos sin 2
1 cos sin

iz k
i

22. Determine complex number(s) z  such that z i , iz i  and z iz  have 
the same modulus. 

23. Determine complex number(s) z  such that 
4 1
8

z
z

24. In complex plane, the points ,A B  and C are with affixes iz 211 , 

iz 242 , and iz 613  respectively. Show that the triangle ABC  is 
isosceles triangle.

25. a)  Determine  (i) 
9

31
3
i

i    (ii) 
3
3

3
3

2
30

+
−
+

−
+
−

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

i
i

i
i

b) How can you choose a natural number n different from zero 

such that the number 
n

i3  is

(i) real?
(ii) pure imaginary?

b) Show that 
4

cos211 2
2 nii

n
nn    

26. Consider the equation 3 22 2 1 0z z z

a) Show that -1 is a root of equation.

b) Determine real numbers a, b and c such that  
z z z z az bz c3 2 22 2 1 1+ + + = +( ) + +( )

c) Solve the equation E  in .

27. Consider the four points , ,A B C  and D , on a complex plane with 

affixes i32 , 
2
1 , i41  and i24  respectively. 

a) Plot these points on complex plane.
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b) Calculate the affixes of vectors AB  and BC
� ���

.

c) Determine the affix of point E  such that ABCE  is a 
parallelogram.

28. Given two complex numbers 1 1z i  and 2  3 -   ,z i ,

a) Write 1

2

Z
Z

 in algebraic and polar forms.

b) Deduce the exact values of 
5
12

Cos  and
5
12

Sin .

c) What is the lowest positive value of integer n  such that 1

2

n
z
z

 is 
real?

29. Determine the magnitude and direction of the resultant of the three 
coplanar forces given below, when they act at a point.

Force A , 10N acting at 450 from the positive horizontal axis.

Force B , 8N acting at 120 from the positive horizontal axis.

Force C , 15N acts at 210 from the positive horizontal axis. 

30. Determine, using complex numbers, the magnitude and direction of 
the resultant of the coplanar forces given below, which are acting at a 
point. 

Force A , 5N acting horizontally, Force B , 9N acting at an angle of 1350 
to force A,  Force C , 12N acting at an angle of 2400 to force A. 

31. A delta-connected impedance ZA is given by:

1 2 2 3 3 1

2
A

Z Z Z Z Z ZZ
z

Determine ZA in both Cartesian and polar form given 

1 2(10  0) ,  (0 10)Z j Z j  and 3 (10  10)Z j .

32. In the hydrogen atom, the angular momentum, p, of the de Broglie 

wave is given by: 2
jhp jm

Determine an expression for p. 
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33. A series circuit consists of a 12  resistor, a coil of inductance 0.1H and 
a capacitance of 160t F  Calculate the current flowing and its phase 
relative to the supply voltage of 240 ,50V Hz

34. For the circuit shown in the figure below, determine the current I 
flowing and its phase relative to the applied voltage .

35. For the parallel circuit shown in the figure below, determine the value 
of current I, and its phase relative to the 240V supply, using complex 
numbers.
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Unit
2
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Let’s look at the following problem: “The population P of a city increases 

according to the formula 500 atP e  where t  is in years and 0t  
corresponds to 1980. In 1990, the population was 10000. Discuss how to 
find the value of the constant a and approximate your answer to 3 decimal 
places.”

Introductory activity

You must have met many different kinds of functions. You know that each one 
can be used to model some kind of situation in the real world. Exponential 
and logarithmic functions are no exception! Much of the power of logarithms 
is their usefulness in solving exponential equations. Some examples of this 
include sound (decibel measures), population growth, earthquakes (Richter 
scale), the brightness of stars, and in chemistry we have the (pH balance, 
which is a measure of acidity and alkalinity).

By the end of this unit, a student will be able to: 

• Find the domain of a given logarithmic or exponential function.
• Evaluate the limit of a given logarithmic or exponential function.
• Differentiate a given logarithmic or exponential function.
• Find relative asymptotes of a given logarithmic or exponential 

function.
• Apply logarithmic or exponential function in real life problems.

Objectives

From this problem, if 0t  corresponds to 1980, then 1990 corresponds 
to 10t  and this gives the following equation: 10500 1000ae  or 10 2ae
. The calculation of the value of a leads to the introduction of logarithms. The 
question is how can logarithmic function be applied. In this unit, you will see 
how you can solve such kind of problem.

Logarithmic and Exponential 
Functions
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2.1. Logarithmic functions

2.1.1. Natural logarithm
Domain and range of natural logarithmic functions

Use calculator to complete the following tables:

x ln x x ln x x ln x
-0.8 0.2 1.5

-0.6 0.4 2

-0.4 0.6 2.5

-0.2 0.8 3

0 1 3.5

1. Using the tables, give your observation for 

(i) negative x values and zero.

(ii) x  values between 0 and 1.

(iii) x  values greater than 1.

2. Plot a graph of lny x  for 0x .

Activity 2.1  

The Natural logarithm of x  is denoted ln x  or loge x .

From Activity 2.1,

ln x  is defined on positive real numbers, 0,  and its range is all real 
numbers.

Particularly,

• If 1x , then ln 0x . That is, ln1 0

• If 1x , then ln ln1x  or ln 0x

• If 0 1x , then ln ln1x  or ln 0x

It means that: 1,x , ln 0x  and 0,1x , ln 0x

Properties

, 0,x y
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a) ln ln lnxy x y  b) 
1ln ln y
y

c) ln ln lnx x y
y

 d) ln lnrx r x  

Therefore, the range of lnf x x  is ,  or .

Notice
The number e :

The equation ln 1x  has, in interval 0, , a unique 

solution, a rational number 2.718281828459045235360.... . This number 
is denoted by e. 

Thus, 2.718281828459045235360....e  

Hence, if ln 1x  then x e . 

The number e is defined to be the limit of the sequence 11
x

x
 as x 

tends to . That is, 
1lim 1

x

x
e

x
 or 

1

0
lim 1 x
x

x e (it will be 
proved later).

Example 2.1 

Find the domain of definition of ln 2 3f x x  

Solution

Condition: 2 3 0x  

32 3 0
2

x x

Thus, 
3 ,
2

Domf

Example 2.2 

Find the domain of definition of ln 3 2f x x x  
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Solution

Condition: 3 2 0x x  

3 2 0x x  if , 3 2,x  (sign table can be used)

Thus, , 3 2,Domf

Application activity 2.1 

1. Find the domain of definition of:

a) 
1lnf x
x

  b) 2ln 4f x x x

c) 2ln 4f x x x  d) ln 3 ln 4f x x x  

2. The decibel gain n  of an amplifier is given by: 2

1

10 log Pn
P

where 1P  is the power input and 2P  is the power output. Find the 

power gain 2

1

P
P

 when n=25 decibels.

2.1.2. Limit and asymptotes for natural logarithmic functions

Let lny x  

1. From the domain of lny x , does the 
0

lim ln
x

x  exist? If NO explain, 
if YES give its value.

2. If x  takes on values closer to 0 from the right, what can you conclude 
about the values of ln x . Deduce 

0
lim ln
x

x . Deduce asymptote, if 
any.

3. Given that x takes on values of the form 10n n , 
ln10 ln10 2.30n n n  and let n  take on values 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, …, what can you conclude about the values of ln x . Deduce 
lim ln
x

x  and asymptote, if any. 

Activity 2.2  
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From Activity 2.2,

lim ln
x

x  and 
0

lim ln
x

x

From lim ln
x

x , we deduce that there is no horizontal 

asymptote.

Remember that 
1ln ln x
x

 or 
1ln lnx
x

0 0

1lim ln lim ln
x x

x
x  0

1ln lim
x x

0

1since lim
x x

Then, 
0

lim ln
x

x

From this limit, we deduce that there exists a vertical asymptote with 
equation 0VA x .

Keep in mind that 
0

lim ln
x

x  does not exist because the left of 0 

is not included in the domain.

Example 2.3 

Evaluate 
lnlim

x

x
x

Solution

lnlim
x

x
x     

indeterminate form

1

lim
1x

x
      

1from rule, later wewill seehow ln 'Hôpital x
x

1lim 0
x x

Thus, 
lnlim 0

x

x
x
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Example 2.4 

Evaluate 
0

lim ln
x

x x    

Solution

0
lim ln 0
x

x x

0

lnlim 1x

x

x   

indeterminate form
    

0
2

1

lim 1x

x

x   

1from rule, later wewill seehow ln 'Hôpital x
x

0
lim 0
x

x

Hence, 
0

lim ln 0
x

x x

Application activity 2.2 

Evaluate the following limits:

1. 
0

1 2 lnlim
x

x
x

  2. 
1 2lnlim

x

x
x

3. 2lim ln 4 1
x

x x    4. 
2lim ln 4 1

x
x x
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Example 2.4 
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x
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x
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x

x
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x x
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x

x
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x

x
x

3. 2lim ln 4 1
x
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x
x x
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Derivative of natural logarithmic functions

1. Using definition of derivative, find the derivative of ln x .
2. Consider u  a differentiable function of x . Use result in 1) and rule 

of differentiating composite functions to find the derivative of lnu
. Refer to the fact 

0
' lim

h

f x h f x
f x

h
, 

1

0
lim 1 x
x

x e   

' ' 'f g f g g

Activity 2.3  

Form Activity 2.3,

1ln 'x
x  

Also, if u  is a differentiable function of x then,

'ln ' uu
u  

Example 2.5 

Find the derivative of 
2ln 1f x x

Solution 

2' ln 1 'f x x
2

2

1 '

1

x

x

2

2

2
2 1

1

x
x

x
2

2 1

x

x
2 1
x

x                

Thus, 2'
1

xf x
x
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Example 2.6 

Differentiate the function ln cosg x x x

Solution

' ln cos 'g x x x cos '
cos

x x
x x

1 sin
cos

x
x x

Thus, 
1 sin'

cos
xg x

x x

Application activity 2.3 

Find derivative of the following functions:

1. 
2lnf x x   2. ln tang x x  

3. 2ln 1h x x    4. 
1ln
1

xk x
x

 

5. 
ln sin x

f x
x

 6. ln ln cosg x x x

7. 
lntan
3

xh x x
x

 8. 
ln 1

1

x
k x

x

Variation and curve sketching of natural logarithmic functions

Let lnf x x 

1. From the domain of definition of f x , evaluate limits at the 
boundaries of the domain of f x  and hence deduce relative 
asymptotes, if any.

2. Determine the first derivative and variation of f x . Deduce the 
extrema, if any.

3. Determine the second derivative and concavity of f x . Deduce the 
inflection points, if any.

Activity 2.4  
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4. Complete the following table

x 0                              ... 1 ... e  ... 

Sign of 'f x  

Sign of ''f x  

Variation of f x  

Concavity of f x

5. Find the intersection of f x  with axes of co-ordinates. 

6. Find additional points and hence sketch the curve of f x .

From activity 2.4, the curve of the function lnf x x  is given in figure 2.1.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x

lny x

0VA x

0

Figure 2.1. Natural logarithmic function

Example 2.7 

Given the function
1 2ln xf x

x
. Find relative asymptotes 

(if any), study the variation, concavity and sketch the curve. 

Solution
Asymptotes

First, we need domain of definition:

Condition: 0x  0Domf  
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0
lim

0x
f x  0x  is a vertical asymptote

1

H

2lnli

ôpital rule

m lim

2

lim
1

0

x x

x

xf x IF
x

x

 

0y  is horizontal asymptote.

Since there is horizontal asymptote for x , there is no oblique asymptote 
for x .

Variation

First derivative

2 2

2 1 2ln 1 2ln'
x x xxf x

x x
 with 0x

Roots of first derivative  

2

1 2 ln' 0 0xf x
x

1 2ln 0x  21 ln 0x  2ln 1x  2x e x e

As 0x , x e  (is to be rejected).

Thus root of '( ) 0f x   is x e

0 0 e
'f x + 0

f x

2
e

0

For 0,x e , f x  increases while for ,x e , f x  decreases.
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2lnli
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m lim

2

lim
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0

x x

x
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x

x
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Concavity

Second derivative
'' 2

2 4

1 2 ln 2 1 2ln1 2ln''
x x x xxf x

x x

4 4 3

2 2 1 2ln 4 ln 4 4ln 4x x x x x x x
x x x

Roots of second derivative 

3

4 ln 4" 0 0xf x
x

4ln 4 0x ln 1 0x x e

The root of " 0f x  is x e

x 0 e
"f x - 0

f x 3
e         

Variation table

Curve

Intersection with coordinates axes:

Intersection with x axis ;

0 1 2ln 0f x x  
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1
21ln

2
x x e

Thus, 
1
2 ,0f x ox e

Intersection with y axis ;

1 2ln 00
0

f which is impossible

Thus, no intersection with y axis .

Additional points:

x  0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8

f x  -36.05 -2.08 0.40 1.0 1.17 1.21 1.20 1.17 1.13 1.09

x  3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5 5.8

f x  1.05 1.01 0.97 0.94 0.91 0.88 0.85 0.82 0.80 0.77

Thus, the sketch becomes

-2 -1 1 2 3 4 5 6 7 8 9

-4

-3

-2

-1

1

2

3

4

x

y

0

1 2ln xf x
x

0VA x

0HA y
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Application activity 2.4 
For each of the following functions, find relative asymptotes (if any), 
study the variation and concavity of the function and hence sketch the 
curve;

1. 2lnf x x   2. ln 1g x x         

3. 
ln xh x

x
   4. 2ln 3 2k x x x  

2.1.3. Logarithmic function with any base
Domain and range of logarithmic function with any base

For each of the following functions, determine the domain of definition 
and range.

1. 
ln
ln 2

xf x  2.  
ln
1ln
2

xg x

Activity 2.5  

We call logarithm of a real number x  with base a  the number denoted 

loga x , defined by 0 0
lnlog , , \ 1
lna

xx x a
a  

0 , log
y

ax x y x a

Special cases:

• If 10a , we simply write log x  and we call it decimal logarithm.

• If a e , we have 
lnlog ln
lne

xx x
e

 and this is a natural logarithm.

Note that, log 1 0, log 1a a a , loga xa x
Properties

, 0, , 0, \ 1 :x y a

a) log log loga a axy x y  b) 
1log loga a y
y

c) log log loga a a
x x y
y

 d) log logr
a ax r x
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Notice

Recall that ln 0 0,1a for  and ln 0 1,a for .Thus,

logaf x x  is increasing in 1,  and logaf x x  is decreasing 
in 0,1 ;

• If 0,1 , log loga ax x y x y

• If 1, , log loga ax x y x y

• log loga ax y x y .

Example 2.8 

Example 2.9 

Find the domain of 3 2log 1 logf x x x  

Solution

Conditions: 1 0 and 0x x  

1 0 1x x  

Domain is the intersection of 1 and 0x x

Thus, 0,1Domf  

Example 2.10 

Find the domain of 2log
1

xf x
x

 

Solution

Conditions: 0, 1 0 and 0
1

xx x
x

 

1 0 1x x  

x   -1 0               +  

x  
0               +

1x  
_ 0 + +               +
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Notice

Recall that ln 0 0,1a for  and ln 0 1,a for .Thus,

logaf x x  is increasing in 1,  and logaf x x  is decreasing 
in 0,1 ;

• If 0,1 , log loga ax x y x y

• If 1, , log loga ax x y x y

• log loga ax y x y .

Example 2.8 

Example 2.9 

Find the domain of 3 2log 1 logf x x x  

Solution

Conditions: 1 0 and 0x x  

1 0 1x x  

Domain is the intersection of 1 and 0x x

Thus, 0,1Domf  

Example 2.10 

Find the domain of 2log
1

xf x
x

 

Solution

Conditions: 0, 1 0 and 0
1

xx x
x

 

1 0 1x x  

x   -1 0               +  

x  
0               +

1x  
_ 0 + +               +
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1
x

x  

0               +

Thus, 0,Domf  

Example 2.11 

Let logby x , express y  as a function of loga  

Solution 

lnlog
lnb

xy x
b  

ln ln
ln ln

x a
b a  

ln ln
ln ln

x a
a b  

ln 1
lnln
ln

x
ba
a

1log
loga

a

x
b  

log
log

a

a

x
b

Thus, 
loglog
log

a
b

a

xx
b

 (This relation is used to change logarithm 

from one base to another).

Example 2.12 

Change 4log 1x  to base 2

Solution 

2 2 2
4 22

2 2 2

log 1 log 1 log 1 1log 1 log 1
log 4 log 2 2log 2 2

x x x
x x

Application activity 2.5 

Find the domain of definition for each of the following functions:

1. 2logf x x   2. 2
3log 1f x x

3. 1
2

1log
4

xf x
x

  4. 4 2log
7 10
xf x

x x
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Limit of logarithmic function with any base

Let 3
lnlog
ln 3

xf x x  and 1
3

lnlog 1ln
3

xg x x

1. Evaluate limits at the boundaries of the domain of f x . Hence 
deduce the asymptotes, if any.

2. Evaluate limits at the boundaries of the domain of g x . Hence 
deduce the asymptotes, if any.

Activity 2.6  

From activity 2.6 and considering log x
af x

0

1
lim

0 1x

if a
f x

if a

There is a vertical asymptote 0VA x

1
lim

0 1x

if a
f x

if a

There is no horizontal asymptote. In addition, no oblique asymptote.

Example 2.13 

Evaluate 
0

1lim log 1ax
x

x
 

Solution

1

0 0

1lim log 1 lim log 1 x
a ax x

x x
x  

1

0
log lim 1 x

a x
x

We saw that 
1lim 1

x

x
e

x

Let 
1 1y x
x y

. If , 0x y  
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Limit of logarithmic function with any base

Let 3
lnlog
ln 3

xf x x  and 1
3

lnlog 1ln
3

xg x x

1. Evaluate limits at the boundaries of the domain of f x . Hence 
deduce the asymptotes, if any.

2. Evaluate limits at the boundaries of the domain of g x . Hence 
deduce the asymptotes, if any.

Activity 2.6  

From activity 2.6 and considering log x
af x

0

1
lim

0 1x

if a
f x

if a

There is a vertical asymptote 0VA x

1
lim

0 1x

if a
f x

if a

There is no horizontal asymptote. In addition, no oblique asymptote.

Example 2.13 

Evaluate 
0

1lim log 1ax
x

x
 

Solution

1

0 0

1lim log 1 lim log 1 x
a ax x

x x
x  

1

0
log lim 1 x

a x
x

We saw that 
1lim 1

x

x
e

x

Let 
1 1y x
x y

. If , 0x y  
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1

0

1lim 1 lim 1
y

x
x x

x e
y  

Then, 
1

0
log lim 1 logx

a ax
x e

Therefore, 
0

1lim log 1 loga ax
x e

x

Application activity 2.6 

Evaluate the following limits:

1. 2
0

1lim log
x x

  2. 2
2

1lim log
2x

x
x

3. 2
1

1lim log
2x

x
x

   4. 3 22

1lim log
4x x

 

Logarithmic Differentiation 

Let 2logf x x
1. Find the derivative of f x

2. If 2u x  is another differentiable function in x , use the rule for 
differentiating composite functions ' ' 'f g f g g  to find the 
derivative of 2logg x u .

Activity 2.7  

From activity 2.7, as 
lnlog
lna

xx
a

 , if 
ln
ln

xf x
a

 

then 
1'
ln

f x
x a

Therefore, 
1log '
lna x

x a
 

Also, if u is another differentiable function of x, then

'log '
lna
uu

u a
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Example 2.14 

Find the derivative of 2
2log 4 3x x

Solution 

2
2

2 2 2

4 3 ' 8 3log 4 3 '
4 3 ln 2 4 3 ln 2

x x xx x
x x x x

Example 2.15 

Find derivative of log ln sina x

Solution 

ln sin ' cot
log ln sin '

ln sin ln ln sin lna

x x
x

x a x a

Application activity 2.7 

Differentiate each of the following functions:

1. 
2log 2 1f x x x   2. 2

1log
5

xg x
x

3. 
3

1
2

log 2 8h x x x   4. 3log cosk x x

Further Logarithmic Differentiation 

Let 
1
3

xy
x

1. Introduce ln  on both sides and apply the laws of logarithms.

2. Using derivative of logarithmic function, find the derivative of 

expression found in (1) and deduce the value of dy
dx

.

Activity 2.8  
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Example 2.14 

Find the derivative of 2
2log 4 3x x

Solution 

2
2

2 2 2

4 3 ' 8 3log 4 3 '
4 3 ln 2 4 3 ln 2

x x xx x
x x x x

Example 2.15 

Find derivative of log ln sina x

Solution 

ln sin ' cot
log ln sin '

ln sin ln ln sin lna

x x
x

x a x a

Application activity 2.7 

Differentiate each of the following functions:

1. 
2log 2 1f x x x   2. 2

1log
5

xg x
x

3. 
3

1
2

log 2 8h x x x   4. 3log cosk x x

Further Logarithmic Differentiation 

Let 
1
3

xy
x

1. Introduce ln  on both sides and apply the laws of logarithms.

2. Using derivative of logarithmic function, find the derivative of 

expression found in (1) and deduce the value of dy
dx

.

Activity 2.8  

103

For certain functions containing more complicated products or quotients, 
differentiation is often made easier if the natural logarithm of the function is 
taken before differentiating. This technique, called ‘logarithmic differentiation’ 
is achieved with knowledge of the:

a) laws of logarithms,
b) derivative of logarithmic functions, and 
c) differentiation of implicit functions.

Example 2.16 

Find derivative of 
3

2
2

1 2 1
xy

x x
 with respect to x  and 

hence evaluate 
dy
dx

 for 3x .

Solution 

From 
3

2
2

1 2 1
xy

x x
, taking ln  on both sides gives 

3

2
2ln ln

1 2 1
xy

x x

Using logarithms laws, we get 

23ln ln 2 ln 1 ln 2 1y x x x  which gives

1ln ln 2 2ln 1 ln 2 1
3

y x x x

Differentiating with respect to x  yields 

1 1 1 2 2
3 2 1 2 1

dy
y dx x x x

Rearranging gives, 
1 2 2

3 2 1 2 1
dy y
dx x x x

Substituting for y  gives  

3

2
2 1 2 2

3 2 1 2 11 2 1
dy x
dx x x xx x

For 3x , 
3

2
3 2 1 2 2

3 3 2 3 1 6 13 1 6 1
dy
dx
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1 1 1 2 1 10 15 12 17
80 3 2 5 80 30 240

Application activity 2.8 

Use logarithmic differentiation to find the derivative of each of the 
following functions:

1. 
2 1
1 3

x x
y

x x
  2. 3

2 1 2

3 1

x x
y

x x
  

3. 3 sin cosy    4. 
3 ln 2
sinx

x xy
e x

  

5. 
4

2

2 tan
tanx

x xy
e x

   

Variations and curves of logarithmic function of any base

1. Let 2logf x x
a) From the domain of definition of f x , evaluate limits at the 

boundaries of the domain. Hence deduce relative asymptotes, if 
any.

b) Determine the first derivative and variation of f x . Deduce the 
extrema, if any.

c) Determine the second derivative and concavity of f x . Deduce 
the inflection points, if any.

d) Find intersection of f x  with axes of co-ordinates.

e) Find additional points and hence sketch the curve of f x .

2. Repeat procedures in 1) for 1
2

logg x x

Activity 2.9  

From activity 2.9, by letting 2a , we have 2logf x x .

The curve is on figure 2.2.
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1 1 1 2 1 10 15 12 17
80 3 2 5 80 30 240

Application activity 2.8 

Use logarithmic differentiation to find the derivative of each of the 
following functions:

1. 
2 1
1 3

x x
y

x x
  2. 3

2 1 2

3 1

x x
y

x x
  

3. 3 sin cosy    4. 
3 ln 2
sinx

x xy
e x

  

5. 
4

2

2 tan
tanx

x xy
e x

   

Variations and curves of logarithmic function of any base

1. Let 2logf x x
a) From the domain of definition of f x , evaluate limits at the 

boundaries of the domain. Hence deduce relative asymptotes, if 
any.

b) Determine the first derivative and variation of f x . Deduce the 
extrema, if any.

c) Determine the second derivative and concavity of f x . Deduce 
the inflection points, if any.

d) Find intersection of f x  with axes of co-ordinates.

e) Find additional points and hence sketch the curve of f x .

2. Repeat procedures in 1) for 1
2

logg x x

Activity 2.9  

From activity 2.9, by letting 2a , we have 2logf x x .

The curve is on figure 2.2.
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-2 -1 1 2 3 4 5 6 7 8 9 10

-4

-3

-2

-1

1

2

3

4

x

y

0

2logy x
0VA x

Figure 2.2. Logarithmic function with base 2

By letting 
1
2

a , we have 1
2

logf x x .

The curve is given by the figure 2.3.

-2 -1 1 2 3 4 5 6 7 8 9 10

-5

-4

-3

-2

-1

1

2

3

x

y

0

1
2

logy x

0VA x

Figure 2.3. Logarithmic function with base 
1
2
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Example 2.17 

Find relative asymptotes (if any), study the variation, concavity and sketch 

the curve 2log 1f x x .

Solution

Asymptotes

Domain:

1 0 1x x  

1,Domf  

21 1
lim lim log 1
x x

f x x
 

1x  is a vertical asymptote.

2lim lim log 1
x x

f x x

No horizontal asymptote

2log 1lim lim
x x

f x x IF
x x

2 Hôpital rulelog 1 1lim lim
2 1 ln 2

0

x x

x
x x

No oblique asymptote.

Variation

2' log 1 'f x x
 

'

2
1 1log 1
2 2 1 ln 2

x
x

Since , 1 0Domf x  and ln 2 0  then , ' 0x Domf f x  

Hence, x Domf , f x  increases.
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Example 2.17 

Find relative asymptotes (if any), study the variation, concavity and sketch 

the curve 2log 1f x x .

Solution

Asymptotes

Domain:

1 0 1x x  

1,Domf  

21 1
lim lim log 1
x x

f x x
 

1x  is a vertical asymptote.

2lim lim log 1
x x

f x x

No horizontal asymptote

2log 1lim lim
x x

f x x IF
x x

2 Hôpital rulelog 1 1lim lim
2 1 ln 2

0

x x

x
x x

No oblique asymptote.

Variation

2' log 1 'f x x
 

'

2
1 1log 1
2 2 1 ln 2

x
x

Since , 1 0Domf x  and ln 2 0  then , ' 0x Domf f x  

Hence, x Domf , f x  increases.
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Concavity

'

" 1
2 1 ln 2

f
x 2

1 0, 1,
2 1 ln 2

x
x

Thus, 2log 1f x x  is concave down 1,x .

Variation table

x  1                               0                    
'f x
"f x

f x 0

Curve

Intersection with axes:

Intersection with x axis :

20 log 1 0f x x  or 2 2log 1 log 1x  

Or 1 1 0x x  

Thus, 0,0f x ox  

Intersection with y axis :

20 log 0 1 0f

Thus, 0,0f x oy  

Additional points

x -0.6 -0.6 -0.4 -0.2 0 1 2 3 4 5 6
y -1.7 -0.7 -0.4 -0.2 0 0.5 0.8 1 1.2 1.3 1.4
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-2 -1 1 2 3

-2

-1

1

x

y

0

2log 1f x x1VA x

Application activity 2.9 

For each of the following functions, find relative asymptotes (if any), 
study the variation concavity of the function  and hence sketch the curve.

1. 2log 1f x x    2. 3log 2 4g x x

3. 
2

1
2

logh x x   4. 1
2

logk x x

2.2. Exponential functions
2.2.1. Exponential function with base " "e
Domain and range of exponential functions with base " "e

Let lnf x x .

Suppose that g x  is the inverse function of the function.  Using properties 
of inverse functions, find the domain and range of g x .

Activity 2.10  

The function lny x  admits an inverse function called “Exponential 
function with natural base” denoted by expy x  or xy e .

From activity 2.10,
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Application activity 2.9 

For each of the following functions, find relative asymptotes (if any), 
study the variation concavity of the function  and hence sketch the curve.

1. 2log 1f x x    2. 3log 2 4g x x

3. 
2

1
2

logh x x   4. 1
2

logk x x

2.2. Exponential functions
2.2.1. Exponential function with base " "e
Domain and range of exponential functions with base " "e

Let lnf x x .

Suppose that g x  is the inverse function of the function.  Using properties 
of inverse functions, find the domain and range of g x .

Activity 2.10  

The function lny x  admits an inverse function called “Exponential 
function with natural base” denoted by expy x  or xy e .

From activity 2.10,

109

The domain of definition of xy e  is ,  and its range is 0, . 

Then, 0, , , : ln yx y y x x e .

Note that:

• , ln xx e x  and 
ln0, , yy e y

• 
0 1e

• 
1e e

Properties

a) x y x ye e e  b) 
na nae e

c) 
1 a
a e

e
 d) 

a
a b

b

e e
e

Example 2.18 

Find the domain of xf x e

Solution

Condition: 0x

Thus, 0,Domf

Example 2.19 

Find the domain of 
1
2

x
xg x e

Solution

Condition: 2 0 2x x  

Thus, \ 2Domg

Example 2.20 

Find the domain of 
2 1xh x e



110

Solution

Condition: 2 1 0 , 1 1,x x

Thus, , 1 1,Domh  

Application activity 2.10  

Find the domain of the following functions:

1. 
2
2
7 10

x
x xf x e    2. 2

4 7
10

x
x xg x e       

3. 3

3 1
1 x

xh x
e

    4. 
4

1
log

x

x

ek x
e

Limit of exponential functions with base " "e

Let xy e  

1. Complete the following tables:

x  xe  x  xe  
-1 1
-2 2
-5 5

-15 15
-30 30

2. From the tables in 1), deduce lim x

x
e  and lim x

x
e . Also deduce 

relative asymptotes, if any.

3. Plot the graph of xy e .

Activity 2.11  

From activity 2.11,

lim 0x

x
e  and lim x

x
e

There exists horizontal asymptote: . 0H A y

lim 0, lim
x x

x x

e e
x x
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Solution

Condition: 2 1 0 , 1 1,x x

Thus, , 1 1,Domh  

Application activity 2.10  

Find the domain of the following functions:

1. 
2
2
7 10

x
x xf x e    2. 2

4 7
10

x
x xg x e       

3. 3

3 1
1 x

xh x
e

    4. 
4

1
log

x

x

ek x
e

Limit of exponential functions with base " "e

Let xy e  

1. Complete the following tables:

x  xe  x  xe  
-1 1
-2 2
-5 5

-15 15
-30 30

2. From the tables in 1), deduce lim x

x
e  and lim x

x
e . Also deduce 

relative asymptotes, if any.

3. Plot the graph of xy e .

Activity 2.11  

From activity 2.11,

lim 0x

x
e  and lim x

x
e

There exists horizontal asymptote: . 0H A y

lim 0, lim
x x

x x

e e
x x

111

There is no oblique asymptote.

Example 2.21 

Evaluate 
4 2

4 2

6lim
8 3

x x

x x xx

e e
e e e

 

Solution
4 2

4 2

6 0lim
8 3 0

x x

x x xx

e e IF
e e e  

4 64 2

4 2 4 2 5

66lim lim
8 3 8 3

x xx x

x x x x x xx x

e ee e
e e e e e e

 

6

2 5

6lim
8 3

x

x xx

e
e e  

=
−
− +

=
6 0
8 0 0

3
4

Example 2.22 

Evaluate 
4 2

4 2

6lim
8 3

x x

x x xx

e e
e e e

 

Solution
4 2

4 2

6 0lim
8 3 0 0

x x

x x xx

e e IF
e e e

54 2

4 2 5 3

66lim lim
8 3 8 3

x x xx x

x x x x x xx x

e e ee e
e e e e e e  

 

5

5 3

6lim
8 3

x x

x xx

e e
e e

0
0 0 3

Application activity 2.11  

Evaluate:  

1. 

3 1
1

1
lim

x
x

x
e    2. 

6 6

3 9 3

4lim
2 5

t t

t t tt

e e
e e e

  

3. 
11lim

2
x

x
xe  4. 11lim

2
x

x
xe     5. 

1
1

lim
x

x

e
x
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Derivative of exponential functions with base " "e

1. Use the method of logarithmic differentiation to find the derivative 
of xy e .

2. If u  is another differentiable function of x , use the result obtained 
in 1) and the rule for differentiating composite functions to find the 
derivative of uy e .

Remember that this is the following:

1

1'
'

f x
f y

, where y f x  and ' ' 'f g f g g

Activity 2.12  

From activity 2.12,

'x xe e

And if u  is another differentiable function of x ,

' 'u ue u e  

Example 2.23 

Find the derivative of the function 
2 11

2
xf x x e  

Solution

1 2 1 11 1 1' 2 1 2
2 2 2

x x xf x x e x e xe x  

Example 2.24 

Find the second derivative of the function 
1
1xf x e  

Solution

1
1

2
1'
1

xf x e
x  
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Derivative of exponential functions with base " "e

1. Use the method of logarithmic differentiation to find the derivative 
of xy e .

2. If u  is another differentiable function of x , use the result obtained 
in 1) and the rule for differentiating composite functions to find the 
derivative of uy e .

Remember that this is the following:

1

1'
'

f x
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, where y f x  and ' ' 'f g f g g

Activity 2.12  

From activity 2.12,

'x xe e

And if u  is another differentiable function of x ,

' 'u ue u e  

Example 2.23 

Find the derivative of the function 
2 11

2
xf x x e  

Solution

1 2 1 11 1 1' 2 1 2
2 2 2

x x xf x x e x e xe x  

Example 2.24 

Find the second derivative of the function 
1
1xf x e  

Solution

1
1

2
1'
1

xf x e
x  
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1 1
1 1

4 2 2

2 1 1 1''
1 1 1

x x
x

f x e e
x x x  

1
1 1
1

4 4
2 2

1 1

x
xx ee

x x

1
1

4

2 1
1

xx e
x

Application activity 2.12 

Find the derivative of:

1. 
2 1xf x e    2. 

2 2x xg x e e  

3. tan xh x e   4. 
1

xek x
x

Variation and curve of exponential functions with base " "e

From the curve of lnf x x  (see activity 2.4), reflect it about the first 
bisector (the line y x ) to obtain new curve. 

Activity 2.13  

From activity 2.13, since xe  is the inverse of ln x , the curve of 
xg x e  is 

the image of the curve of lnf x x  with respect to the first bisector, y x . 

The coordinates of the points for lnf x x  are reversed to obtain the 
coordinates of the points for xg x e .
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The curve of xg x e  is as follows:

-5 -4 -3 -2 -1 1 2 3 4 5 6

6

-5

-4

-3

-2

-1

1

2

3

4

5

x

y

lnf x x

y x

xg x e
0

Figure 2.4. Exponential function with base e

Example 2.25 

Given that 
2 11

2
xf x x e . Find relative asymptotes (if any), 

study the variation and sketch the curve.

Solution

Asymptotes

First, we need domain of definition: Domf  

2 11lim lim
2

x

x x
f x x e , no horizontal 

asymptote at x  

11lim lim
2

x

x x

f x
xe

x
, no oblique asymptote at x

2 11lim lim 0
2

x

x x
f x x e
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The curve of xg x e  is as follows:
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6

-5
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-1

1

2

3

4
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y x

xg x e
0

Figure 2.4. Exponential function with base e

Example 2.25 

Given that 
2 11

2
xf x x e . Find relative asymptotes (if any), 

study the variation and sketch the curve.

Solution

Asymptotes

First, we need domain of definition: Domf  

2 11lim lim
2

x

x x
f x x e , no horizontal 

asymptote at x  

11lim lim
2

x

x x

f x
xe

x
, no oblique asymptote at x

2 11lim lim 0
2

x

x x
f x x e
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Remove this indeterminate case: 

2 11lim lim
2

x

x x
f x x e

 

2

1

1 lim
2 xx

x
e  

1
2

. .I C

2

1

1lim lim
2 xx x

xf x
e

By Hôpital’s rule

1

1 2lim lim
2 xx x

xf x
e  

1lim xx

x
e  

. .I C

Applying again Hôpital’s rule

1

1lim lim 0xx x
f x

e
There is horizontal asymptote 0y  for x . Hence, no oblique 
asymptote.

Also, there is no vertical asymptote according to the boundaries of the 
domain. 

Variation

1 2 1 1 21 1 1' 2 2
2 2 2

x x xf x xe x e e x x
 

2' 0 2 0f x x x  or , 2 0,x  

2' 0 2 0f x x x  or 2,0x  

Thus, if , 2 0,x , f x  increases and if 2,0x ,

f x  decreases.

Curve

Intersection with axes of coordinate:

Intersection with x axis ;

2 110 0 0
2

xf x x e x

Thus, intersection with x axis  is 0,0 .
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Intersection with y axis ;

2 0 110 0 0
2

f e

Thus, intersection with y axis  is 0,0 .

Additional points

x  -5.00 -4.70 -4.40 -4.10 -3.80 -3.50 -3.20 -2.90 -2.60 -2.30 -2.00

f x  0.23 0.27 0.32 0.38 0.44 0.50 0.57 0.63 0.68 0.72 0.74

x  -1.70 -1.40 -1.10 -0.80 -0.50 -0.20 0.10 0.40 0.70 1.00

f x  0.72 0.66 0.55 0.39 0.21 0.04 0.02 0.32 1.34 3.69

Curve

-5 -4 -3 -2 -1 1

-1

1

2

x

y

2 11
2

xf x x e

0
0HA y

Application activity 2.13 

For each of the following functions, find relative asymptotes (if any), 
study the variation of the function  and sketch the curve:

1. 11
2

xf x e     2. 
xeg x

x

3. 
2 3xh x e    4. 

2

xek x
x
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Intersection with y axis ;

2 0 110 0 0
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f e
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Curve
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2 11
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Application activity 2.13 

For each of the following functions, find relative asymptotes (if any), 
study the variation of the function  and sketch the curve:

1. 11
2

xf x e     2. 
xeg x

x

3. 
2 3xh x e    4. 

2

xek x
x
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2.2.2. Exponential function with any base
Domain and range of exponential functions with any base 

Suppose that g x  is the inverse function of the function 3log x . Using 
properties of inverses functions, find the domain and range of g x .

Activity 2.14  

The logarithmic function with base a  admit a reciprocal function called 
exponential function with base a  denoted by xf x a .

From activity 2.14,

The domain of xf x a  is set of real numbers and its image is the positive 
real numbers.

Note that, logx
ay a x y  and for , log x

ax a x .

Properties

0, , , \ 1x y a b , we have

a) x y x ya a a  b) 
yx xya a  c) 

x x xab a b

d) 
1x

xa
a

 e) y

x
x ya a

a
 f) 

x x

x

a a
b b

Example 2.26 

Find the domain of ln2 xf x  

Solution

Condition: 0x  

Thus, 0,Domf  

Example 2.27 

Find the domain of 
1
23

x
xf x  
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Solution

Condition: 2 0 2x x  

Thus, \ 2Domf  

Example 2.28 

Find the domain of 
2 44 xf x  

Solution

Condition: 2 4 0 , 2 2,x x  

Thus, , 2 2,Domf  

Application activity 2.14 

Find the domain of the following functions:

1. 
2

4
7 103x xf x  2. 

2
3 1

102
x

x xg x         

3. 
1
34

x
xh x   4. 

2log 5 63 x xk x

Limit of exponential functions with any base

Activity 2.15 

1. Let 2xy  

a) Complete the following tables:

x -1 -2 -5 -15 -30
2x

x 1 2 5 15 30
2x

b) From the tables in a), deduce lim 2x

x
 and lim 2x

x
. 

Also, deduce relative asymptotes, if any.
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Solution

Condition: 2 0 2x x  

Thus, \ 2Domf  

Example 2.28 

Find the domain of 
2 44 xf x  

Solution

Condition: 2 4 0 , 2 2,x x  

Thus, , 2 2,Domf  

Application activity 2.14 

Find the domain of the following functions:

1. 
2

4
7 103x xf x  2. 

2
3 1

102
x

x xg x         

3. 
1
34

x
xh x   4. 

2log 5 63 x xk x

Limit of exponential functions with any base

Activity 2.15 

1. Let 2xy  

a) Complete the following tables:

x -1 -2 -5 -15 -30
2x

x 1 2 5 15 30
2x

b) From the tables in a), deduce lim 2x

x
 and lim 2x

x
. 

Also, deduce relative asymptotes, if any.
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2. Let 
1
2

x

y  

a) Complete the following tables:

x -1 -2 -5 -15 -30

1
2

x

 

x 1 2 5 15 30

1
2

x

 

b) From the tables in a), deduce 
1lim
2

x

x
 and  1lim

2

x

x
. Also, 

deduce relative asymptotes, if any.

From activity 2.15,

If 1a , lim 0x

x
a  and lim x

x
a

If 0 1a , lim x

x
a  and lim 0x

x
a

Horizontal asymptote is 0y . 

No vertical asymptote since the domain is the set of real numbers. In addition, 
there is no oblique asymptote.

Example 2.29 

Evaluate 
1

lim 2 x
x

 

Solution

1
0lim 2 2 1x

x

Example 2.30 

Evaluate 
1
1

1
lim3x
x

 



120

Solution

1 1
1 0

1
lim3 3x
x

In this case, we can easily evaluate the limits by use of the table of values 
below:

x  
1
13x  

x  
1
13x  

0 0.33 1.1 59049
0.2 0.25 1.2 243
0.4 0.16 1.4 15
0.6 0.06 1.6 6
0.8 0.004 1.8 3.9
0.9 0.00001 2 3

Now, 
1
1

1
lim 3 0x
x

 and 
1
1

1
lim 3x
x

Hence, 
1
1

1
lim3x
x

 does not exist.

Indeterminate form 0 00 ,1 ,and

These indeterminate forms are found in functions of the form 
g x

y f x .

To remove these indeterminate forms, we change the function in the form 
lng x g x f xy f x e

then, 
lim lnlnlim x k

f x g xf x g x

x k
e e

Example 2.31 

Show that 
1lim 1

x

x
e

x

Solution 

1lim 1 1
x

x
IF

x  
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Solution

1 1
1 0

1
lim3 3x
x

In this case, we can easily evaluate the limits by use of the table of values 
below:

x  
1
13x  

x  
1
13x  

0 0.33 1.1 59049
0.2 0.25 1.2 243
0.4 0.16 1.4 15
0.6 0.06 1.6 6
0.8 0.004 1.8 3.9
0.9 0.00001 2 3

Now, 
1
1

1
lim 3 0x
x

 and 
1
1

1
lim 3x
x

Hence, 
1
1

1
lim3x
x

 does not exist.

Indeterminate form 0 00 ,1 ,and

These indeterminate forms are found in functions of the form 
g x

y f x .

To remove these indeterminate forms, we change the function in the form 
lng x g x f xy f x e

then, 
lim lnlnlim x k

f x g xf x g x

x k
e e

Example 2.31 

Show that 
1lim 1

x

x
e

x

Solution 

1lim 1 1
x

x
IF

x  
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1 1ln 1 lim ln 11lim 1 lim x

x x x
x x

x x
e e

x
But, 

1lim ln 1 0
x

x IF
x  

1ln 1
1 0lim ln 1 lim 1 0x x

xx IF
x

x

2

2

1 1ln 1
lim lim [By rule]1 1 1

Hôpital
1

x x

x x

x x x

1lim 111
x

x  

Thus, 11lim 1
x

x
e e

x

Example 2.32 

Evaluate 
0

lim x

x
x

Solution 

0

0
lim 0x

x
x IF

0
lim lnln 0

0 0 0
lim lim 1 [since lim ln 0]x

x xx x x

x x x
x e e e x x

Alternative method

When finding limits of the function of the form 
g x

y f x , 

the following relation may be used: 

1lim lim
g x f x g x

x k x k
f x e  
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Now lets look at example 2.31 using an alternative method.

Solution 

0

0
lim 0x

x
x IF   

0
lim 11 0

0 0
lim lim 1 .x

x xx xx

x x
x e e e as before

Example 2.33 

Evaluate 

2

lim
1

x

x

x
x  

Solution

2

lim 1
1

x

x

x
x

2 1 2
1lim lim

1

x x x
x

x x

x e
x

1 2
1lim

x x x
x

x
e

2 2lim 11 1 2 1lim since lim 1
1

x

x x
x x

x x

xe e e
x e

Application activity 2.15 

Evaluate:

1. 

1
2 1

2

1lim
1

x
x

x

x
x

 2. 
4

lim
1

x

x

x
x

 3. 
1

2 1
0

lim 1 xe x
x

x

4. 
1

0
lim 1 x
x

x   5. lim 1
x

x

k
x

  6. 
1lim 1

kx

x x
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Now lets look at example 2.31 using an alternative method.

Solution 

0

0
lim 0x

x
x IF   

0
lim 11 0

0 0
lim lim 1 .x

x xx xx

x x
x e e e as before

Example 2.33 

Evaluate 

2

lim
1

x

x

x
x  

Solution

2

lim 1
1

x

x

x
x

2 1 2
1lim lim

1

x x x
x

x x

x e
x

1 2
1lim

x x x
x

x
e

2 2lim 11 1 2 1lim since lim 1
1

x

x x
x x

x x

xe e e
x e

Application activity 2.15 

Evaluate:

1. 

1
2 1

2

1lim
1

x
x

x

x
x

 2. 
4

lim
1

x

x

x
x

 3. 
1

2 1
0

lim 1 xe x
x

x

4. 
1

0
lim 1 x
x

x   5. lim 1
x

x

k
x

  6. 
1lim 1

kx

x x
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Derivative of exponential functions with any base

1. Use the derivative of 3log x  and the rule of differentiating inverses 

functions to find the derivative of 3xy .

2. If cosu x , use the result obtained in 1) and rule for 
differentiation of composite functions to find the derivative of 

cos3 xy .

Hint: 
1

1'
'

f x
f y

, where y f x  and ' ' 'f g f g g

Activity 2.16  

From activity 2.16,

' lnx xa a a

Also, if u  is another differentiable function of x , we have,

' ' lnu ua u a a

Example 2.34 

Find the derivative of 
4 23 xf x

Solution 

4 2 4 2' 4 2 '3 ln 3 4ln3 3x xf x x

Example 2.35 

Find the derivative of ln2 xf x

Solution 

ln
ln 2' ln '2 ln 2 ln 2

x
xf x x

x
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Remarks

1. The functions; exponential of x  and natural logarithm of x  being 
reciprocal, one of another, we have ln0, yy y e . In particular to 

ln xx aa e  means lnx x aa e . 

2. To study the function vy u  is the same as to study the function 
lnv uy e  where u and v are two other functions.

3. Whenever an expression to be differentiated contains a term raised 
to a power which is itself a function of the variable, then logarithmic 
differentiation must be used. For example, the differentiation of 
expressions 

 such as 
21 sin, 1 , 2,x xx xx x x x  can only be achieved using 

logarithmic differentiation.

Example 2.36 

Find the derivative of 
xf x x .

Solution 

We have lnx xf x e
ln ln ln' ' ln ' 1 ln 1 lnx x x x x x xf x e x x e x e x x

Application activity 2.16  

1. Find the derivative of the following functions:

a) 2 0.3 xf x  b) 10 lnxg x x

c) 
1 1 cos 2
2 2

k x x x x  d) 
ln2 4 xk x x  

2. Evaluate:

a) tan2 xd
dx

 at 0x   b) 
xx ee ed e e

dx
 at 0x

c) 2xd x
dx

 at 3x  d) 1xd x
dx

 at 2x
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Remarks

1. The functions; exponential of x  and natural logarithm of x  being 
reciprocal, one of another, we have ln0, yy y e . In particular to 
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differentiation must be used. For example, the differentiation of 
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 such as 
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Example 2.36 

Find the derivative of 
xf x x .

Solution 

We have lnx xf x e
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Application activity 2.16  

1. Find the derivative of the following functions:

a) 2 0.3 xf x  b) 10 lnxg x x

c) 
1 1 cos 2
2 2

k x x x x  d) 
ln2 4 xk x x  

2. Evaluate:

a) tan2 xd
dx

 at 0x   b) 
xx ee ed e e

dx
 at 0x

c) 2xd x
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 at 3x  d) 1xd x
dx

 at 2x
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Variation and curve of exponential functions with any base

1. From the curve of 2logf x x , reflect it about the first bisector (the 
line y x ) to obtain a new curve.

2. From the curve of 1
2

logf x x , reflect it about the 

 first bisector (the line y x ) to obtain a new curve.

Activity 2.17  

From activity 2.17, since xa  is the inverse of loga x , we can obtain a curve of 
xa  by symmetry with respect to the first bisector y x .

Let 2xg x , the inverse of 2logf x x , the curves are as follows;

-5 -4 -3 -2 -1 1 2 3 4 5 6

6

-5

-4

-3

-2

-1

1

2

3

4

5

x

y

2logf x x

y x

2xg x

0

Figure 2.5. Exponential function with base 2

Let 
1
2

x

g x , the inverse of 1
2

logf x x , the curves are as follows;
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-5 -4 -3 -2 -1 1 2 3 4 5 6

6

-5

-4

-3

-2

-1

1

2

3

4

5

x

y

1
2

logf x x

y x

1
2

x

g x

0

Figure 2.6. Exponential function with base 1
2

Example 2.37 

If 5 22 xf x , find the relative asymptotes (if any), study the variation and 
hence sketch the curve.

Solution

Asymptotes

Domain of definition: Domf  

5 2lim lim 2 0x

x x
f x , there is a horizontal asymptote 

0y  and no oblique asymptote at x .

5 2lim lim 2 x

x x
f x , no horizontal asymptote at x

5 22lim lim
x

x x

f x
x x

, no oblique asymptote at x .

Also, there is no vertical asymptote according to the boundaries of the 
domain. 
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6

-5

-4

-3

-2

-1

1

2

3

4

5

x

y

1
2
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y x

1
2

x

g x

0

Figure 2.6. Exponential function with base 1
2

Example 2.37 

If 5 22 xf x , find the relative asymptotes (if any), study the variation and 
hence sketch the curve.

Solution
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Domain of definition: Domf  

5 2lim lim 2 0x

x x
f x , there is a horizontal asymptote 

0y  and no oblique asymptote at x .

5 2lim lim 2 x

x x
f x , no horizontal asymptote at x

5 22lim lim
x

x x

f x
x x

, no oblique asymptote at x .

Also, there is no vertical asymptote according to the boundaries of the 
domain. 

127

Variation

5 2 5 2' 2 ' 5ln 2 2x xf x
 

, 0x Domf f x  since ln 2 0  and 5 22 0x

Thus, x , f x  increases.

Curve

Intersection with axes:

(i) Intersection with x axis ;

5 20 2 0xf x  which is impossible. No intersection 

with x axis

(ii) Intersection with y axis ;

2 10 2
4

f  

Thus, intersection with y axis  is 
10,
4

.

Additional points:

x  -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
y  0.004 0.01 0.02 0.03 0.06 0.13 0.25 0.50 1.00 2.00

-1 1

1

x

y

5 22 xf x

0
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Application activity 2.17  

For each of the following functions, find relative asymptotes (if any), 
study the variation of the function  and sketch the curve:

1. 12xf x   2. 
2 13 xg x

3. 

31
2

x

h x    4. 

2 2 31
2

x x

k x

2.3. Applications 

We have already seen in senior five, that logarithmic and exponential functions 
are useful where complicated calculations are involved. Now lets look at how 
useful they are in solving real life situations.

2.3.1. Compound interest problems

Using the library or internet if available, find out how exponential and 
logarithmic functions are used to solve compound interest problems. 
Hence solve the following problem:

If you deposit 4,000FRW  into an account paying 6% annual interest 
compounded quarterly, how much money will be on the account after 5 
years?

Activity 2.18  

If P  is the principal, n  is the number of years, r  is the interest rate per period, 
k  is the number of periods per year, and A  the total amount at the end of 

periods, then 1
knrA P

k
.

Example 2.38 

A 1,000 FRW deposit is made at a bank that pays 12% compounded annually. 
How much will be on the account at the end of 10 years?
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Application activity 2.17  

For each of the following functions, find relative asymptotes (if any), 
study the variation of the function  and sketch the curve:

1. 12xf x   2. 
2 13 xg x

3. 

31
2

x

h x    4. 

2 2 31
2

x x

k x

2.3. Applications 

We have already seen in senior five, that logarithmic and exponential functions 
are useful where complicated calculations are involved. Now lets look at how 
useful they are in solving real life situations.

2.3.1. Compound interest problems

Using the library or internet if available, find out how exponential and 
logarithmic functions are used to solve compound interest problems. 
Hence solve the following problem:

If you deposit 4,000FRW  into an account paying 6% annual interest 
compounded quarterly, how much money will be on the account after 5 
years?

Activity 2.18  

If P  is the principal, n  is the number of years, r  is the interest rate per period, 
k  is the number of periods per year, and A  the total amount at the end of 

periods, then 1
knrA P

k
.

Example 2.38 

A 1,000 FRW deposit is made at a bank that pays 12% compounded annually. 
How much will be on the account at the end of 10 years?
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Solution

1
knrA P

k

1000, 12%, 1, 10P r k n  
101000 1 0.12 1000 3.1058 3105.8A

Therefore, 3,105.8 FRW will be on the account at the end of 10 years. 

Now if the compound interest is paid monthly for the same number of principle, 
we can compute the sum as follows:

Solution

In this example, the compounded is monthly, so the number of periods is 
12k .

1000, 12%, 12P r n  

12 100.121000 1 1000 3.3004 3300.4
12

A

Therefore, 3,300.4 FRW will be on the account at the end of 10 years.

Application activity 2.18 

1. If you deposit 6,500 FRW into an account paying 8% annual interest 
compounded monthly, how much money will be on the account after 
7 years?

2. How much money would you need to deposit today at 9% annual 
interest compounded monthly to have 12,000 FRW on the account 
after 6 years?

3. If you deposited 5,000 FRW into an account paying 6% annual interest 
compounded monthly, how long  will you wait until there is 8,000 
FRW on the account?

4. If you deposited 8,000 FRW into an account paying 7% annual interest 
compounded quarterly, how long will you wait until there is 12,400 
FRW on the account?

5. At 3% annual interest compounded monthly, how long will it take to 
double the amount of money deposited in question 4?
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2.3.2. Mortgage amount problems

Using the library or internet if available, find out how exponential and 
logarithmic functions are used to solve mortgage amount problems. 
Hence, solve the following problem:

Suppose you wanted to take out a mortgage for 100,000 FRW with monthly 
payments at 9%, but you could only afford 800 FRW per month payments. 
How long would you have to make payments to pay off the mortgage, and 
how much interest would you pay for this payment period?

Activity 2.19  

There is a relationship between the mortgage amount, the number of payments, 
the amount of the payment, how often the payment is made, and the interest 

rate. The following formula illustrates the relationship:  

1 1
nt

rM
nP

r
n

.

Where 

 = the paymentP ,  = the annual rater ,  = the mortgage amountM , 

 = the number of  yearst  and  = the number of  payments per yearn .

The payment P  required to pay off a loan of M  Francs borrowed for n  
payment periods at a rate of interest i  per payment period is 

1 1 n
iP M

i
 where 

ri
n

Example 2.39 

a) What is the monthly payment on a mortgage of 75,000 FRW with an 8% 
interest rate that runs for

(i) 20 years   (ii) 25 years?

b) How much interest is paid in each case?



130

2.3.2. Mortgage amount problems

Using the library or internet if available, find out how exponential and 
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Example 2.39 

a) What is the monthly payment on a mortgage of 75,000 FRW with an 8% 
interest rate that runs for

(i) 20 years   (ii) 25 years?

b) How much interest is paid in each case?
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Solution 

a) (i) 20 years

1 1
nt

rM
nP

r
n

75000, 8%, 20, 12M r t n  
We are solving for P  (the monthly payment for the 20 years) 

12 20

0.08 75000
12 627.33
0.081 1
12

P

 

The monthly payment will be 627.33 FRW 

After 20 years of payments ( 20 12  months), you will have paid 

20 12 627.33 150,559.20

(ii)   25 Years

1 1
nt

rM
nP

r
n

75000, 8%, 25, 12M r t n  

We are solving for P  (the monthly payment for the 25 years) 

12 25

0.08 75000
12 578.86
0.081 1
12

P

 

The monthly payment will be 578.86 FRW.

After 25 years of payments ( 25 12  months), you will have paid 

25 12 578.86 173,658 .

b) (i)    Everything over the initial 75,000 FRW is interest. 
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Therefore, after 20 years, you will have paid 

150,559.20 75,000 75,559.20FRW FRW FRW  in interest.

(ii) Everything over the initial 75000 FRW is interest. 
Therefore, after 25 years, you will have paid 
173,658 75,000 98,658FRW FRW FRW  in interest.

Application activity 2.19 

1. A person borrowed 1,200,000 FRW for the purchase of a car. If his 
monthly payment is 31,000 FRW on a 5-year mortgage, find the total 
amount of interest.

2. If a house is sold for 3,000,000 FRW and the bank requires 20% down 
payment, find the amount of the mortgage.

3. Mr Peter bought a car. After paying the down payment, the amount 
of the loan is 400,000 FRW with an interest rate of 9% compounded 
monthly. The term of the loan is 3 years. How much is the monthly 
payment?

4. Suppose you need to take out a mortgage of 100,000 FRW. All you 
can afford for monthly payments is 800 FRW. You will retire in 25 years; 
therefore, the longest you can make these payments is 25 years. What 
interest rate would you need to take out a mortgage of 100,000 FRW 
and pay it back in 300 monthly payments of 800 FRW.

2.3.3. Population growth problems

Using the library or internet if available, find out how exponential and 
logarithmic functions are used to solve population growth problems. 
Hence, solve the following problem:

Betty is investigating the growth in the population of a certain type of 
bacteria in her flask. At the start of day 1, there are 1,000 bacteria in flask. 
The population of bacteria grows exponentially at the rate of 50% per day. 
Find the population of bacteria in her flask at the start of day 5.

Activity 2.20  

If 0P  is the population at the beginning of a certain period and %r  is the 
constant rate of growth per period, the population for n  periods will be 

0 1 n
nP P r .
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Example 2.40 

The town of Grayrock had a population of 10,000 in 1960  and 12,000 in 1970. 

a) Assuming an exponential growth model, estimate the population in 1980.

b) What is the doubling time for the town’s population?

Solution

a) For exponential growth model 0 1 n
nP P r .

Let in 1960, have 0 10,000P .

Thus, in 1970, we have 10 12,000P  while in 1980, we have 20P .

10
10 012,000 12,000 1P P r

1012,000 10,000 1 r  

1012 1 r

1012 1 r

0.018399376r
20

0 201 10,000 1.01839937 14,406 0n
nP P r P

The population in 1980 is 14,000.

b) The doubling time for the town’s population means the time for which 

02nP P ,

0 0 02 2 1 n
nP P P P r

 
1 2nr

                

ln 2
ln 1

n
r  

38n years

Hence, the doubling time for the town’s population is 38 years.
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Application activity 2.20 

1. The population, P, of an island t years after January 1st 2016 is given 

by this formula 4200 1.04 tP
a) What was the population of the island on January 1st 2016?
b) What is the constant rate?
c) Work out the population of the island on January 1st 2021.

2. The population of a city increased by 5.2% for the year 2014. At the 
beginning of 2015 the population of the city was 1,560,000. Betty 
assumes that the population will continue to increase at a constant 
rate of 5.2% each year. Use Betty’s assumption to;

a) Estimate the population of the city at the beginning of 2017. Give 
your answer corrected to 3 significant figures.

b) Work out the year in which the population of the city will reach 
2,000,000.

2.3.4. Depreciation value problems

Using the library or internet if available, find out how exponential and 
logarithmic functions are used to solve depreciation value problems. 
Hence, solve the following problem:

During an experiment, a scientist notices that the number of bacteria 
halves every second. If there were 302.3 10  bacteria at the start of the 
experiment, how many bacteria were left after 5 seconds. Give your answer 
in standard form corrected to two significant figures.

Activity 2.21  

Depreciation (or decay) is negative growth. If 0V  is the value at a certain time, 
and %r  is the rate of depreciation per period, the value tV  at the end of t  
periods is 

0 1 t
tV V r .

Example 2.41 

If you start a biology experiment with 5,000,000 cells and 45% of the cells are 
dying every minute, how long will it take to have less than 1,000 cells? 
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Solution

Using the equation, 0 1 t
tV V r ;

V V rt o
t

= = =

⇒ = −( )

1 000 5 000 000 0 45

1 000 5 000 000 1 0 45

, , , , , .

, , , .

1,000 1 0.45
5,000,000

t

 

0.0002 0.55 t

 

ln 0.0002 ln 0.55 t

          taking ln sidesboth  

ln 0.0002 ln 0.55t  

ln 0.0002
ln 0.55

t 14.2t
 

It will take about 14.2 minutes for the cell population to drop below a 1,000 
count. 

Application activity 2.21 
1. In a certain experiment, the number of bacteria reduces by a quarter 

each second. If the number of bacteria initially was X, write a formula 
that can be used to calculate the number of bacteria, V, remaining 
after t seconds.

2. The population of a particular town on July 1, 2011 was 20,000. If the 
population decreases at an average annual rate of 1.4%, how long 
will it take for the population to reach 15,300?

2.3.5. Earthquake problems

Using the library or internet if available, find out how exponential and 
logarithmic functions are used to solve earthquake problems. Hence, solve 
the following problem:

How many times stronger is an earthquake with a magnitude of 8 than an 
earthquake with a magnitude of 6?

Activity 2.22  
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In 1935, Charles Richter defined the magnitude of an earthquake to be 

log IM
S

 where I  is the intensity of the 

earthquake (measured by the amplitude of a seismograph reading taken 
100km  from the epicentre of the earthquake) and S  is the intensity of a 
‘’standard earthquake’’ (whose amplitude is 41 10micron cm ). 

The magnitude of a standard earthquake is log log1 0SM
S

. 

Richter studied many earthquakes that occurred between 1900 and 1950. 
The largest had magnitude of 8.9 on the Richter scale, and the smallest had 
magnitude 0. This corresponds to a ratio of intensities of 800,000,000, so the 
Richter scale provides more manageable numbers to work with. 

Example 2.42 

Early in the century, the earthquake in San Francisco registered 8.3 on the 
Richter scale. In the same year, another earthquake was recorded in South 
America that was four times stronger. What was the magnitude of the 
earthquake in South America? 

Solution 

log 8.3San Francisco
San Francisco

I
M

S  

log 8.3San FranciscoI
S

log South America
South America

I
M

S  

4South America San FranciscoI I

4
log San Fransisco

South America

I
M

S
Solve for South AmericaM , 
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4
log

log 4 log

log 4 log log log 4 log

log 4 8.3 8.90205999133
8.9

San Francisco
South America

San Francisco

San Francisco
San Francisco

South America

I
M

S
I S

I
I S

S

M

The intensity of the earthquake in South America was 8.9 on the Richter scale. 

Example 2.43 

A recent earthquake in San Francisco measured 7.1 on the Richter scale. How 
many times more intense was the San Francisco earthquake described in 
Example 2.42?

Solution

The intensity of each earthquake was different. Let 1I  represent the intensity 
of the early earthquake and 2I  represent the latest earthquake. 

1

2

: 8.3 log

: 7.1 log

IFirst
S

ISecond
S  

What you are looking for is the ratio of the intensities: 1

2

I
I

. 

1 2

1 2

1 2

log log 8.3 7.1

log log log log 1.2
log log log log 1.2

I I
S S

I S I S
I S I S

1
1 2

2

log log 1.2 log 1.2II I
I

1.2 1.21 1

2 2

log log10 10I I
I I

1
2 1

2

16 16I I I
I  

The early earthquake was 16 times as intense as the later earthquake.
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Application activity 2.22 
1. An earthquake monitoring station measured the amplitude of the 

waves during a recent tremor as being 100,000 times as large as A0, 
the smallest detectable wave. How high did this earthquake measure 
on the Richter scale?

2. An earthquake is measured with a wave amplitude 392 times as great 
as A0. What is the magnitude of this earthquake using the Richter 
scale, to the nearest tenth?

3. The San Francisco earthquake of 1989 measured 6.9 on the Richter 
scale. The Alaska earthquake of 1964 measured 8.5.

a) How many times as intense as the San Francisco earthquake was 
the Alaska earthquake?

b) Calculate the magnitude of an earthquake that is twice as intense 
as the 1989 San Francisco earthquake.

4. How much intense is an earthquake measuring 6.5 on the Richter 
scale than one measuring 6.4? 

2.3.6. Carbon-14 dating problems

Using library or internet if available, find out how exponential and 
logarithmic functions are used to work out the age of organic material. 
Hence solve the following problem:

If you had a fossil that had 10 percent carbon-14 compared to a living 
sample. How old is that fossil? 

Activity 2.23  

Carbon dating is used to work out the age of organic material — in effect, any 
living thing. The technique hinges on carbon-14, a radioactive isotope of the 
element that, unlike other more stable forms of carbon, decays at a steady rate. 
Organisms capture a certain amount of carbon-14 from the atmosphere when 
they are alive. By measuring the ratio of the radio isotope to non-radioactive 
carbon, the amount of carbon-14 decay can be worked out, thereby giving an 
age for the specimen in question.

The half-life of a substance is the time it takes for half the original amount of 
that substance to decay. It is only a property of substances that decay at a rate 
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proportional to their mass. Through research, scientists have agreed that the 
half-life of Carbon-14 is approximately 5,700 years. 

A formula to calculate how old a sample is by carbon-14 dating is: 

0
1
2

ln

0.693

fN
N

t t

where 
0

fN
N

 is the percent age (fraction) of carbon-14 in the 

sample compared to the amount in living tissue, and 1
2

t  is the half-life of 
carbon-14 which is 5,730 30  years.

Example 2.44 

A scrap of paper taken from the Dead Sea Scrolls was found to have a 
14

12

C
C

 
ratio of 0.795 times that found in plants living 

today. Estimate the age of the scroll.

Solution

ln 0.795
5,700 1,887

0.693
t years old

Example 2.45 

A chemist determines that a sample of petrified wood has a carbon-14 decay 
rate of 6.00 counts per minute per gram. What is the age of the piece of wood 
in years? (The decay rate of carbon-14 in fresh wood today is 13.60 counts per 
minute per gram, and the half life of carbon-14 is 5,730 years). 

Solution 

6.00ln
13.6 5,730 6,766

0.693
t years old

Example 2.46 

Using dendrochronology (a technique that uses tree rings to determine age), 
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tree materials dating back 10,000 years have been identified. Assuming you 
had a sample of such a tree in which the number of Carbon-14 decay events 
was 15.3 decays per minute before decomposition, what would the decays 
per minute be in the present day? 

Solution

0
1
2

ln
Using;

0.693

fN
N

t t
 

0

0

ln
10,000 0.693

10,000 5,730 ln 1.21
0.693 5730

f

f

N
NN
N

0

ln 1.21 ln ; since ln 1fN
e e

N

1.21

0

ln lnfN
e

N  

1.21

0

fN
e

N  
0 1.21

fN
N

e

But 15.3fN

Then, 0 1.21

15.3 4.6N
e

1.21

15.3 51.3oN
e

Application activity 2.23 

1. The carbon-14 decay rate of a sample obtained from a young tree 
is 0.296 disintegration per second per gram of the sample. Another 
wood sample prepared from an object recovered at an archaeological 
excavation gives a decay rate of 0.109 disintegration per second per 
gram of the sample. What is the age of the object? 

2. The Carbon-14 content of an ancient piece of wood was found to have 
three tenths of that in living trees (indicating 70% of the Carbon-14 
had decayed). How old is the piece of wood? 

3. Carbon-14 is used to determine the age of ancient objects. If a sample 
today contains 0.060 mg of carbon-14, how much carbon-14 must 
have been present in the sample 11,430 years ago? 
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4. A living plant contains approximately the same isotopic abundance 
of Carbon-14 as does atmospheric carbon dioxide. The observed 
rate of decay of Carbon-14 from a living plant is 15.3 disintegrations 
per minute per gram of carbon. How much disintegration per minute 
per gram of carbon will be measured from a 12900-year-old sample? 
(The half-life of Carbon-14 is 5730 years.) 

5. All current plants have a Carbon-14 count of 15.3 cpm. How old is a 
wooden artifact if it has a count of 9.58 cpm? 

6. You read that a fossil dinosaur skull has been found in Montana and 
that it has been carbon-14 dated to be 73 million years old. Provide 
two (2) scientifically-based reasons to explain why Carbon-14 dating 
cannot do this. 

The other applications of logarithms are in many scientific contexts. Some of 
which include:

a) Measure of Sound  

Sound is measured in a logarithmic scale using a unit called a decibel. 

The formula looks similar to the Richter scale; 
0

10 log Pd
P

 where 
P  is the power or intensity 

of the sound and 0P  is the weakest sound that the human ear can hear.

Example 2.47 

One hot water pump has a noise rating of 50 decibels. One dishwasher, 
however, has a noise rating of 62 decibels. Determine how many times the 
dish washer more intense than the hot water pump noise.

Solution

5 5
0

0 0

50 10log 10 10h h h P
P P

6.2 6.2
0

0 0 0

62 10log 6.2 log 10 10d d d d P
P P P

Then, 
6.2

1.20
5

0

10 10
10

Pd
h P
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Thus, the dishwasher’s noise is 1.210  (or about 15.85) times as intense as the 
hot water pump. 

b) Measure of acidity 

The measure of acidity of a liquid is called the pH of the 
liquid. This is based on the amount of hydrogen ions,  
H  in the liquid. 

The formula for pH  is logpH H  where H  is the 
concentration of hydrogen ions, given in a unit called mol/L 
(“moles per litre”; Recall that one mole is 236.022 10 molecules 
or atoms).

Liquids with a low pH  (below 7) are more acidic than those with 
a high pH . Water, which is neutral (neither acidic nor alkaline, the 
opposite of acidic) has a pH of 7.0.

Example 2.48 

If lime juice has a pH of 1.7, what is the concentration of hydrogen ions (in 
mol/l-1) in lime juice, to the nearest hundredth?

Solution

logpH H

1.7 log x 1.71.7 log  10 0.02x x x

The concentration of hydrogen ions in lime juice is 0.02.

Unit Summary
1. Logarithmic function

• Domain of definition and range

The Natural logarithm of x  is denoted as ln x or loge x  and defined on 
positive real numbers, 0, , its range is all real numbers.

1,x , ln 0x  and 0,1x , ln 0x

The equation ln 1x  has, in interval 0, ,

a unique solution, a rational number 2.718281828459045235360....
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This number is denoted by e. 

Hence, ln 1x x e . 

Generally 
1lim 1

x

x
e

x
• Limits on boundaries

Logarithmic function lnf x x  being defined on 0, , 
lim ln
x

x  and 
0

lim ln
x

x

From, lim ln
x

x , we deduce that there is no 

horizontal asymptote.

From 
0

lim ln
x

x , we deduce that there exists a 

vertical asymptote with equation 0VA x .

• Derivative of natural logarithmic functions or logarithmic 
derivative

'
0

1, lnx x
x

 and 
'ln 0x

Also, if u  is differentiable function at x  then,

'ln ' uu
u  

With certain functions containing more complicated products and 
quotients, differentiation is often made easier if the logarithm of the 
function is taken before differentiating.

• Domain and limits on boundaries of  a logarithmic function with 
any base

Logarithm function of a real number x  with base a  is 
a function f  denoted logaf x x  and defined by 

0 0
lnlog , , \ 1
lna

xx x a
a

.

0 , log
y

ax x y x a

0

1
lim

0 1x

if a
f x

if a
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There is a vertical asymptote 0VA x

1
lim

0 1x

if a
f x

if a

There is no horizontal asymptote nor oblique asymptote.

• Logarithmic Differentiation 

If logaf x x , then 
1'
ln

f x
x a

Also, if u  is another differentiable function of x, 

then,

'log '
lna
uu

u a

2. Exponential functions

• Exponential function with base " "e  

Domain and range of exponential functions with base " "e ;

The domain of definition of xy e  is  and its range is 
0, . 

Then, 0, , , : ln yx y y x x e .

• Limit of exponential functions with base " "e  

lim 0x

x
e  and lim x

x
e

There exists horizontal asymptote: . 0H A y

• Derivative of exponential functions with base " "e
,x  'x xe e

If u is another differentiable function at x,

' 'u ue u e
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If u is another differentiable function at x,

' 'u ue u e
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Remarks

a) ln0, yy y e

In particular, ln xx aa e  means lnx x aa e . 

Hence, to study the function vy u  is the same as to study the 
function lnv uy e  where u and v are two other functions.

b) Whenever an expression to be differentiated contains a term raised 
to a power which is itself a function of the variable, then, logarithmic 
differentiation must be used. For example, the differentiation of 

expressions such as 
21 sin, 1 , 2,x xx xx x x x  and so on can 

only be achieved using logarithmic differentiation.

c) Population growth

If 0P  is the population at the beginning of a certain period and %r  
is the constant rate of growth per period, the population after n  

periods will be 0 1 n
nP P r .

d) Depreciation value

Depreciation (or decay) is negative growth. If 0V  is the value at  a 
certain time, and %r  is the rate of depreciation per period, the value 

tV  at the end of t  periods is 0 1 t
tV V r .

e) Earthquake

Charles Richter defined the magnitude of an earthquake to be 

log IM
S

 where I  is the 

intensity of the earthquake (measured by the amplitude of a 
seismograph reading taken 100km  from the epicentre of the 
earthquake) and S  is the intensity of a ‘’standard earthquake’’ (whose 
amplitude is 41 10micron cm ).

f) Carbon-14 dating

Carbon dating is used to work out the age of organic material — in 
effect, any living thing. By measuring the ratio of the radio isotope 
to non-radioactive carbon, the amount of carbon-14 decay can be 
worked out, thereby giving an age for the specimen in question.
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Through research, scientists have agreed that the half-life of Carbon-14 
is approximately 5700 years. 

A formula to calculate how old a sample is by carbon-14 dating is: 

0
1
2

ln

0.693

fN
N

t t

where 
0

fN
N

 is the percent of carbon-14 in the sample 

compared to the amount in living tissue, and 1
2

t  is 

the half-life of carbon-14 which is 5,730 30  years.

End of unit assessment
In questions 1-8, find the domain of definition.

1. 2ln 1 4ln 4 1 2ln 2f x x x  

2. 22 log log 2 3xf x x  

3. ln 2 1 ln 2 8f x x x x  

4. 
2ln 4 1f x x x  

5. 5log 5 logxf x x  

6. 
1 1 1

2 14 16 64x x xf x  

7. 
2 11

2
xf x x e  

8. 
1

1xf x e  

In questions 9-22, evaluate the given limits.

9. 
1

1

1
lim x
x

e  10. 
1

lim
1

x

x

e
x

11. lim
1

x

x

e
x

 12. lim ln 1x

x
e  
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e
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x

e
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13.  
ln 1

lim
x

x

e
x

  14. lim ln 1x

x
e x  

15. 
2lim log 9

x
x   16. 

2lim 3x

x

17. 

21lim
3

x

x
 18. 

7 5 3

lim
1
2

xx

x x x
 

19. 10

2lim
3 4

x
x

 20. 

11lim 1
2

x

x x  

21. 
2lim 1
3

x

x x
  22. 

23 2
2 5 32lim

3 1

n
n

n

n
n

In questions 23-30, find the derivative of each function.

23. 2 2 2 xf x x x e   

24. ln tan
2
xf x , 0 2x  

25. ln lnf x x  

26. 
2 2ln ,f x x x a a  

27. 
1
1

x

x

ef x
e  

28. 
2

2

1ln
1

x xf x
x x

 

29. 0,
xxf x a

a
 

30. cos xf x x  

In questions 31-34, find relative asymptotes (if any) , study the variation of 
the function and sketch the curve.

31. xf x xe  32. 
2

2xf x

33. 
1

xef x
x

  34. 
2

4 ln xf x
x
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35. Suppose that you are observing the behavior of cell duplication in a 
laboratory. If in one of the experiments, you started with 1,000,000 
cells and the cell population decreased by ten percent every minute. 

a) Write an equation with base (0.9) to determine the number of cells 
after t minutes.

b) Determine how long it would take the population to reach a size of 
10 cells.

36. A city in Texas had a population of 75,000 in 1970 and a population 
of 200,000 in 1995. The growth between the years 1970 and 1995 
followed an exponential pattern of the form tf t A e . 

a) Find the values of A  and . 

b) Using the given model, estimate the population for the year 2010.

37. An $1000 deposit is made at a bank that pays 12% compounded 
weekly. How much will you have on your account at the end of 10 
years?

38. What is the monthly payment on a mortgage of $75000 with an 8% 
interest rate that runs for 30 years? How much interest is paid over 30 
years?

39. Suppose a bank offers you a 10% interest rate on a 20-year mortgage 
to be paid back with monthly payments. Suppose the most you can 
afford to pay in monthly payments is $700. How much of a mortgage 
could you afford?

40. Suppose that you are observing the behavior of cell duplication in a 
laboratory. If in one of the experiments, you started with one cell and 
the cell population is tripling every minute. 

a) Write an equation with base 3 to determine the number of cells 
after one hour.    

b) Determine the number of cells after one hour.      

41. Suppose that you are observing the behavior of cell duplication in a 
lab. In one experiment, you started with 100,000 cells and observed 
that the cell population decreased by half every minute. 

a) Write an equation (model) with base 1
2

to determine the number of cells (size of population) after t 
minutes.

b) Determine the number of cells after 10 minutes.
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42. In 1946, an earthquake struck Vancouver Island. It had an amplitude 
that was 7.310  times oA .

a) What was the earthquake’s magnitude on the Richter scale?

b) The strongest earthquake in Canada struck Haida Gwaii, off the BC 
coast, in 1949. It had a Richter reading of 8.1. How many times as 
great as oA  was its amplitude?

43. The 2011 Tohoku earthquake, which occurred off the coast of Japan, 
measured 9.03 on the Richter scale. Calculate the magnitude of an 
earthquake that is one-quarter as intense as this earthquake. Round 
off to the nearest hundredth.

44. A common ingredient in cola drinks is phosphoric acid, the same 
ingredient found in many rust removers. 

a) If a cola drink has a pH of 2.5, what is the hydrogen ion 
concentration of the cola drink?

b) Milk has a pH of 6.6.  How many times more acidic than milk is a 
cola drink? Round off to the nearest whole number.

45. Refer to the decibel scale in the figure below, how many times as 
intense as the sound of normal conversation is the sound of a rock 
concert? 

Threshold for human hearing

Whisper

Quiet library

Quiet conversation

Normal conversation

Hair dryer

Lawnmower

Car horn

Rocket concert

0 dB

10 dB

20 dB

30 dB

40 dB

50 dB

60 dB

70 dB

80 dB

90 dB

100 dB

110 dB

120 dB

46. Sounds that are utmost 95,000 times as intense as a whisper are 
considered safe, no matter how long or how often you hear them. The 
sound level of a whisper is about 20 dB. What is the maximum sound 
level that is considered safe? Round off to the nearest decibel.
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Taylor and Maclaurin’s 
Expansions

Suppose that we need to complete the table below.

Angle, x 00 01 02 03 04 05
sin x

For 00x is very easy since this angle is a remarkable angle.  But, what 
about other angles; 0 0 0 0 01 , 2 ,3 , 4 ,5 ? How can we find their sine without 
using sine button on scientific calculator? 

Introductory activity

A series is a summation of the terms of a sequence. Finite series is a 
summation of a finite number of terms and an infinite series has an infinite 
number of terms and an upper limit of infinity.

Taylor series is a representation of a function as an infinite sum of terms 
that are calculated from the values at a single point. The concept of a Taylor 
series was formally introduced by the ENGLISH Mathematician BROOK 
TAYLOR in 1715. The special case of Taylor series is Maclaurin series.

By the end of this unit,  a student will be able to:  
• Find the sum of a given series.
• Find the Taylor series of a given function.
• Find the Maclaurin series of a given function.
• Use Maclaurin series to;

 » calculate limits,
 » approximate the values of some constants,
 » approximate an irrational number,
 » approximate logarithmic number,
 » approximate trigonometric number of an angle,
 » approximate the roots of a given equation.

Objectives
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Maclaurin’s series is used when finding limits of some functions, 
approximate irrational number like 2 , finding trigonometric number of 
an angle, …

3.1. Generalities on series
3.1.1. Finite series

Suppose we want to find the sum, 
1

n

k
k

u , of a series 

1 2 ... nu u u  where the terms follow a certain pattern.

1. If 1ku f k f k , where f k  is some function of k . 

For 1k , 1 1 2u f f  

For 2k , 2 2 3u f f

Continue in this way up to 5k . Find the general relation for 
1k n  and k n .

2. Add the terms obtained in 1) to obtain the sum of the series.

Activity 3.1  

The sum of a number of terms where the terms follow a definite pattern is 
called series. If the terms are finite, then the series is said to be finite and 
if they are infinite the series is said to be infinite. 

A finite series is an expression of the form 1 2 3 ... nu u u u  or in sigma 

notation we write 
1

n

k
k

u , where the index of 

summation, k , takes consecutive integer values from the lower limit, 1, to 
the upper limit, n . The terms 1 2 3, , ,..., nu u u u  are called terms of the series 
and the term nu  is the general term.

We saw, in senior five, how to find the sum of n  terms of an arithmetic 
progression and sum of n  terms of a geometric progression. Arithmetic 
and geometric series are standard series. But now the question is how can 
we find the sum of a series which is not a familiar standard series?  In this 
case, the method of difference is usually used. 

From activity 3.1, we can write:

1
1 1

n

n
k

u f f n
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Example 3.1 

Find the sum of the series 
1 1 1 1...
2 6 12 1n n

Solution

Clearly, this is not a familiar standard series, such as an arithmetic or 
geometric series. Therefore, we apply the method of differences to obtain 
the required sum.

Now, the thk  term, ku , is given by 1
1k k

. We now need to try to split 
up ku . 

The only sensible way to do this is to express 
1
1k k

 in partial fractions. 

Let 
1
1 1

A B
k k k k

. 

The constants A and B are used because k and 1k  are linear factors.

Then,

11
1 1

1
1

A k Bk
k k k k

Ak A Bk
k A B A

Comparing the coefficients of k, 0A B  and comparing the constants, 
1A . 

Hence, 1B  and 
1 1 1
1 1k k k k

From which we see that;

1f k
k

 and 
11
1

f k
k

Now, writing down the series term by term we have;
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1 1 11
2 1 2
1 1 12
6 2 3
1 1 13
12 3 4

1 1 11
1 1 1 1
1 1 1
1 1

k

k

k

k n
n n n n

k n
n n n n

Adding, some terms will be canceled and we remain with 

1

1 11
1 1 1

n

k

n
k k n n

Thus, 
1 1 1 1...
2 6 12 1 1

n
n n n

Example 3.2 

Find the sum of the series 
1 1 1 1...
5 21 45 2 1 2 3n n

Solution

Let 
1

2 1 2 3ku
k k

Now expressing 
1

2 1 2 3k k
 in terms of partial fractions,

we have; 1
2 1 2 3 2 1 2 3

A B
k k k k

2 3 2 11 1 2 3 2 1
2 1 2 3 2 1 2 3

A k B k
A k B k

k k k k

Comparing the coefficients of k, 2 2 0A B , so A B . Comparing the 
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constants terms, 1 3A B . Hence, 
1
4

A  and 

1
4

B . 

Thus, 
1 1 1

2 1 2 3 4 2 1 4 2 3k k k k

Now substituting for 1,2,3,...r ; we obtain

1 1 11
5 4 20
1 1 12
21 12 28

k

k

1 1 13
45 20 36
1 1 14
77 28 44

1 1 12
2 5 2 1 4 2 5 4 2 1

1 1 11
2 3 2 1 4 2 3 4 2 1

1 1 1
2 1 2 3 4 2 1 4 2

k

k

k n
n n n n

k n
n n n n

k n
n n n n 3

Adding, some terms will be canceled:

1 1 1 1 1 1 1 1...
5 21 45 2 2 2 3 4 12 4 2 1 4 2 3n n n n

1 1 1 11
4 3 2 1 2 3n n

1 1 1 11
4 3 2 1 2 3n n  

2 3 2 11 11
4 3 2 1 2 3

n n
n n

4 11 4
4 3 2 1 2 3

n
n n
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n n

4 11 4
4 3 2 1 2 3

n
n n
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1 1
3 2 1 2 3

n
n n

Thus, 1 1 1 1 1 1...
5 21 45 2 2 2 3 3 2 1 2 3

n
n n n n

 

Application activity 3.24 
Find the sums of the following series:

1. 
1

1
1

n

r r r
   2. 2

1

1
4 1

n

r r

3. 
1

1 2
n

r
r r r    4. 

1

1
1

n

r r

3.1.2.

Consider the series 2 3 4

7 7 7 7 7... ...
10 10 10 10 10n nS

1. Multiply both sides of the given series by 
1
10

.

2. Subtract the series obtained in 1) from the given series to find 
the expression of nS  in terms of n .

3. Evaluate limit of the nS  obtained in 2) as n .

Activity 3.2  

The purpose here is to discuss sums 1 2 3 ... ...nu u u u  that contain 
infinitely many terms. The most familiar examples of such sums occur in 
the decimal representation of real numbers. 

For example, when we write 
1
3

 in the decimal form we have; 
1 0.3333...
3

2 3 4

1 0.3 0.03 0.003 0.0003 ...
3

3 3 3 3 ...
10 10 10 10
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Since it is impossible to add up infinitely many numbers, we will deal with 
infinite sums by means of a limiting process involving sequences.

An infinite series is an expression of the form 1 2 3 ... ...nu u u u  or 

in sigma notation 
1

n
n

u . The terms 1 2 3, , ,...u u u  are called terms of the 
series.

To carry out this summation process, we proceed as follows: 

Let ns  denote the sum of the first n terms of the series. Thus, 

1 1

2 1 2

3 1 2 3

1 2 3
1

n

n n k
k

s u
s u u
s u u u

s u u u u u

The number ns  is called the thn  partial sum of the series and the 

sequence 
1n n

s  is called the sequence of partial sums.

Example 3.3 

What are the partial sums of the series 2 3 4

3 3 3 3 ...
10 10 10 10

Solution

The partial sums are

1
3
10

s

2 2

3 3
10 10

s

3 2 3

3 3 3
10 10 10

s

4 2 3 4

3 3 3 3
10 10 10 10

s
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As n  increases, the partial sum 1 2 3 ...n ns u u u u  includes more 
and more terms of the series. Thus, if ns  tends towards a limit as n
, it is reasonable to view this limit as the sum of all the terms in the series. 
This suggests the following definition:

Let ns  be the sequence of partial sums of the series 
1

k
k

u . 

If the sequence ns  converges to a limit S , then the series is said to 
converge and S  is called the sum of the series. We denote this by writing 

1
k

k
S u .

If the sequence of partial sums of a series diverges, then the series is said to 
diverge. A divergent series has no sum.

Geometric interpretation of a convergence series and a divergence 
series: graphical approach.

Consider two series 1
1

1
3k k

k
u  and 

2

1 1k
k

kv
k

. 

• The series 1
1

1
3k k

k
u  converges to 0 since 1

1lim 0
3kk

,

The graph of ku  shows that as k increases, ku  is 0.
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• The series 

2

1 1k
k

kv
k  diverges since 

2

lim
1x

k
k

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13 kv

0

k

The graph shows that as k increases, kv  also increases.

Example 3.4 

Find the sum of the series 2 3 4

3 3 3 3 3... ...
10 10 10 10 10k

Solution

Here, the nth partial sum is 2 3 4

3 3 3 3 3... 1
10 10 10 10 10n ns

The problem of calculating the limit is complicated by the fact that the 
number of terms in (1) changes with n.

First, we multiply both sides of (1) by 
1
10

 to obtain

2 3 4 5 1

1 3 3 3 3 3... 2
10 10 10 10 10 10n ns

And then subtracting (2) from (1) we obtain;

1

1 3 3
10 10 10n n ns s
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or 
9 3 11
10 10 10n ns  or 

1 11
3 10n ns

Now, taking the limit we have;

1 1 1lim lim 1
3 10 3n nn n

S s

Thus, 
2 3 4

3 3 3 3 3 1... ...
10 10 10 10 10 3k

Notice
The series in above example is a geometric series with initial 

term 1
3
10

u  and common ratio 
1
10

r . We can also find 

the sum 2 3 4

3 3 3 3 3...
10 10 10 10 10n ns  using the method 

we saw, in senior five, on the sum of n  terms of a geometric sequence and 
then find the limit there after. 

That is,

1 1
1

3 11
10 10

11
10

n

n

n

u r
s

r

 

3 11
10 10

9
10

n

 

3 1 101
10 10 9n

1 11
3 10n

And then,

1 1 1lim lim 1
3 10 3n nn n

S S

Example 3.5 

Determine whether the series 1 1 1 1 1 1 ...  converges or diverges. 
If it converges, find the sum.
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Solution

The partial sums are 1 2 3 41, 1 1 0, 1 1 1 1, 1 1 1 1 0s s s s  
and so forth.

Thus, the sequence of partial sums is 1,0,1,0,... . 

Since this sequence is divergent, the given series diverges and 
consequently it has no sum.

Example 3.6 

Determine whether the series 
1

1
1k k k

 converges or 

diverges. If it converges, find the sum. 

Solution

First, we find the nth partial sum of the series which is 

1

1 1 1 1 1...
1 2 6 12 1

n

n
k

s
k k n n

From example 3.1, we have seen that 
1

1 11
1 1

n

k k k n
So 

1lim 1 1
1n

S
n

 

And therefore, 
1

1 1
1k k k

Notice

Recall that, in senior five, a geometric series 2 1
1 1 1 1... ...ku u r u r u r

, 1 0u  converges if 1r  and diverges if 1r . 

In case of convergence, the sum is 1

1
u

r
. 

That is, 2 1 1
1 1 1 1... ...

1
k uu u r u r u r

r
 for 1r .
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Example 3.7 

The series 2 1

5 5 55 ... ...
4 4 4k  is a geometric series with 

1 5u  and 
1
4

r . Find the sum of the series.

Solution

Since 
1 1 1
4 4

r , the series converges and the sum is 

1 5 20
11 31
4

u
r

Example 3.8 

Find the rational number represented by the repeating decimal 
0.784784784...

Solution

Here, we can write 0.784784784... 0.784 0.000784 0.000000784 ...

So the given decimal is the sum of geometric series with 1 0.784u  and 
0.001r . 

Thus, 

1 0.784 0.784 7840.784784784... 1
1 1 0.001 0.999 999

u since r
r

Application activity 3.25 

1. Find the sums of the following series:

a) 
1

n

r
r   b) 

2

1

n

r
r  

c) 3

1

n

r
r  d) 

1
1

n

r
r r
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2. Find the rational number represented by each of the following 
repeating decimal:

a) 0.27272727...      b) 0.8333333...  
c) 0.1237373737...  

Tests for convergence of series

1. Evaluate:

a) 1lim n

n
n

u
u

 for 
3 1
5

n

n nu  b) lim n
nn

u  for 
3n n

nu

2. Consider the series 
1

1
2 1n n

. Find a series 
1

n
n

b  such that 
1

2 1 nb
n

.

Activity 3.3  

Comparison test

Let 
1

n
n

a  be a series with positive terms;

a) 
1

n
n

a  converges if there exists a convergent series 
1

n
n

b

such that n na b  for all n N , where N  is some positive 
integer.

b) 
1

n
n

a  diverges if there exists a divergent series 
1

n
n

c

such that n na c  for all n N , where N  is some positive 
integer.

Limit comparison test

If the series 
1

n
n

a  and 
1

n
n

b  are two series with positive 

terms, and lim n

n
n

a
b

 is finite, both series converge or both diverge.
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The ratio test

Let 
1

n
n

u  be a series with positive terms and let 1lim n

n
n

u L
u

, 

then,

a) the series converges if 1L
b) the series diverges if 1L
c) the series may or may not converge if 1L  (i.e. the test is inconclusive).

The thn root test

Let 
1

n
n

u  be a series with positive terms and let lim n
nn

u L , 

then,

a) the series converges if 1L

b) the series diverges if 1L

c) the test is inconclusive 1L .

Example 3.9 

Use the comparison test to show that the series 
1

2 1 1
2

n

n

n
n

is 
convergent.

Solution

2 1 1 13
2 2

n nn
n

 and 
1

13
2

n

n
 is a convergent geometric 

series converging to 3.

Therefore, the series 
1

2 1 1
2

n

n

n
n  converges by comparison.

Example 3.10 

Use the ratio test to determine whether or not the series 
2

1

!
2 !n

n
n

 is 
convergent.
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Solution
2

2

1
2 2

1 !
2 1 ! 1 ! 2 !

2 1 !! !
2 !

n

n

n
n n nu

u nn n
n

1 2 1
2 2 2 1 2 2 1

n n n
n n n

1 1 1lim lim 1
2 2 1 4

n

n n
n

u n
u n

 and so the series converges.

Example 3.11 

Use the thn  root test to determine whether or not the series 2
1

3
2

n

n
n n

 is 
convergent.

Solution

22

3 3 3lim lim 1
2 22

n
n

nn n nn n
 and so the series does not 

converge.

Application activity 3.26 

Use either the ratio or the thn  root test to determine which of the following 
series converges or diverges.

1. 
4

1 3n
n

n
  2. 

5

1 5n
n

n
   3. 

3

2
1

2
3

n

n
n

4. 
1

!
2n

n

n
  5. 

1

!
2 1 !n

n
n

  6. 
1

1 2
!n

n n
n
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Solution
2

2

1
2 2

1 !
2 1 ! 1 ! 2 !

2 1 !! !
2 !

n

n

n
n n nu

u nn n
n

1 2 1
2 2 2 1 2 2 1

n n n
n n n

1 1 1lim lim 1
2 2 1 4

n

n n
n

u n
u n

 and so the series converges.
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1

3
2

n

n
n n
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convergent.

Solution
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3 3 3lim lim 1
2 22

n
n

nn n nn n
 and so the series does not 

converge.

Application activity 3.26 

Use either the ratio or the thn  root test to determine which of the following 
series converges or diverges.

1. 
4

1 3n
n

n
  2. 

5

1 5n
n

n
   3. 

3

2
1

2
3

n

n
n

4. 
1

!
2n

n

n
  5. 

1

!
2 1 !n

n
n

  6. 
1

1 2
!n

n n
n
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3.2. Power series 

1. Use thn  root test to determine the condition for x  for which the 

series 
1

1
1

n
n

n

x
n

 is convergent.

2. Use ratio test to determine whether the series 
0 !

n

n

x
n

 converges 
or not.

Activity 3.4  

Power series is like an infinite polynomial. It has the form 

2
0 1 2

0
... ...n n

n n
n

a x c a a x c a x c a x c
 

Here, c  is any real number and a series of this form is called a power 
series centred at c . 

Let 
0

n
n

n
f x a x c  be the function defined by this power 

series. f x  is only defined if the power series converges, so we will 
consider the domain of the function f  to be the set of x  values for which 
the series converges. There are three possible cases:

• The power series converges at x c . Here the radius of 
convergence is zero.

• The power series converges of all x , i.e , . Here the radius 
of convergence is infinity.

• There is a number R  called the radius of convergence such 
that the series converges for all c R x c R  and the series 
diverges outside this interval. 

Example 3.12 

Find the radius of convergence of 
0 !

n

n

x
n
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Solution

First, note that this is a power series centred at 0c , and the coefficient 
1
!na

n
.

We will use ratio test to find the radius of convergence:

1

1 !
lim lim 0

1
!

n

nn n

x
n x

x n
n  

Since the ratio test implies that the series converges and final answer, i.e. 0 
does not depend on x , we see that the series will converge for all x  and 
thus the radius of convergence is infinite.

Example 3.13 

Find the radius of convergence of 
0

1 2
3

n n

n
n

x
 

Solution

This is a power series centred at 2c , and the coefficient 
1
3

n

n na .

1 1

1

1 2
1 2 23lim lim
3 31 2

3

n n

n

n nn n

n

x
x x

x

The series will converge if 
2 1

3
x

 or if 2 3x . 

From which the radius of convergence 3R  and the series converge to 
x  such that 1 5x  since

2 3 2 3
1 5

c R x c R
x

x  
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1 !
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!

n
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n x
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n
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Solution
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3

n

n na .

1 1

1

1 2
1 2 23lim lim
3 31 2

3

n n

n

n nn n

n

x
x x

x

The series will converge if 
2 1

3
x

 or if 2 3x . 

From which the radius of convergence 3R  and the series converge to 
x  such that 1 5x  since

2 3 2 3
1 5

c R x c R
x
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Application activity 3.27 

For each of the following power series, determine the values of x  for 
which the series converges and the radius of convergence.

1. 
0

2 n

n
x  2. 

0
3 1 n

n
n x   3. 

0
1 2 3n n

n
x

4. 
0

1
2

n

n
n

x
   5. 

0
1

!

n
n

n

x
n

  6. 
2

0 1

n

n

x
n

7. 
2 1

0
1

2 1 !

n
n

n

x
n

  8. 
0

1 5
3

n

n
n

n x
 

9. 
0
! 3 n

n
n x  10. 

1

1

1
1

!

n
n

n

n x
n

3.2.1. Taylor and Maclaurin series 

Suppose that f x  is any function that can be represented by a 

power series: 
0

n
n

n
f x c x a  or 

2 3 4
0 1 2 3 4 ... ... 1n

nf x c c x a c x a c x a c x a c x a  

1. Find f a

2. Find 'f a

3. Find ''f a . Deduce, using factorial notation, the value of  2c

4. Find '''f a . Deduce, using factorial notation, the value of 3c .

5. Find 
ivf a . Deduce, using factorial notation, the value of 4c

6. Find 
ivf a . Deduce, using factorial notation, the value of 4c

7. From results obtained in 1)  to 5), deduce the value of nf a . 
Deduce the value of nc .

Activity 3.5  
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8. Substitute the values of 0 1 2 3 4, , , , ,..., nc c c c c c , obtained in 1) to 
6), in relation 1  to obtain new relation.

From activity 3.5, if f x  is a function defined on the open interval ,a b  
, and which can be differentiated 1n  times on ,a b , then the equality

"
0 0'

0 0 0 0 0 12! !

n
n

n

f x f x
f x f x f x x x x x x x R x

n
, 

x  and 0 ,x a b

is called Taylor’s formula; where !n  denotes the factorial of n , 0
nf x  

denotes the thn   derivative of f x  evaluated at point 0x  and R xn+ ( )1  
denotes remainder function. 

The polynomial 

"
0 0'

0 0 0 0 02! !

n
nf x f x

f x f x f x x x x x x x
n

is called the thn  degree Taylor polynomial of f  at 0x .

If lim
n nR x
→∞ + ( )=1 0  for some terms in x , then the infinite 

series

f x f x
n

x x
n

n

n( ) ( )
!
( )

( )

= −
=

∞

∑ 0

0
0

is called the Taylor series for f x . 

Notice

For special case 0 0x , the Taylor series becomes 

0

2 3

0
!

' 0 '' 0 ''' 0 0
0 ... ...

1! 2! 3! !

n
n

n

n
n

f
f x x

n

f f f f
f x x x x

n

This case arises frequently enough and is given the special name 
Maclaurin series.
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Example 3.14 

Write the power series 4 3 25 3 4x x x x  in terms of 4x .

Solution

Let 
4 3 25 3 4f x x x x x ,

First, we will find the first 4 derivatives at 4x ;
4 3 25 3 4 4 56f x x x x x f

' 3 2 '4 15 2 3 4 21f x x x x f
'' 2 ''12 30 2 4 74f x x x f
''' '''24 30 4 66f x x f

24ivf x

Therefore, power series of f x  is 
2 3 474 66 2456 21 4 4 4 4

2! 3! 4!
x x x x

The power series in terms of 4x  is 
2 3 456 21 4 37 4 11 4 4f x x x x x

Example 3.15 

Find the Taylor series of the function xf x e  at 0 2x

Solution

0 1xf x e f  

4' '' ''' ... n xf x f x f x f x f x e

4 2' 2 '' 2 ''' 2 2 ... 2nf f f f f e
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Then, 

2 3 42 2 2 2
2 2

2

0

2 2 2 2
2 ... ...

2! 3! 4! !
2

!

x

n

n

n

f x e

e x e x x e e x
e e x

n
e x

n

Example 3.16 

Find the Maclaurin series of order n  for the function 1
1

f x
x

.

Solution

Order of 
derivative

Derivative Value at 0x

0
11 1

1
f x x

x
1

1
2' 1 1f x x 1

2
3'' 2 1 1f x x 2 1 2!

3
4''' 3 2 1 1f x x 3 2 1 3!

4
54 4 3 2 1 1f x x 4 3 2 1 4!

n  
11 ...4 3 2 1 1 nnf x n n x 1 ...4 3 2 1 !n n n

2 3 42 3! 4! !1 ...
2! 3! 4! !

nx x x n xf x x
n

2 3 4

0

1 ... n

n
k

k

f x x x x x x

x

Example 3.17 

Find the Maclaurin series of the function 1 mf x x  where m . 
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k

k
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x
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Solution

1 0 1mf x x f

1' 1 ' 0mf x m x f m

2'' 1 1 '' 0 1mf x m m x f m m

3''' 1 2 1 ''' 0 1 2mf x m m m x f m m m

1 2 ... 1 1 0 1 2 ... 1m nn nf x m m m m n x f m m m m n

Then,

2 3 4

1

1 1 2 1 2 3
1

2! 3! 4!
1 2 3 ... 1

... ...
!

m

n

f x x

m m x m m m x m m m m x
mx

m m m m m n x
n  

From which we can write;

 1

1 2 3 ... 1
1 1

!

n
m

n

m m m m m n x
x

n

Example 3.18 

Find the Maclaurin series for the function ln 1f x x .

Solution

ln 1 0 0f x x f
1' ' 0 1

1
f x f

x

2
1'' '' 0 1

1
f x f

x
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3
2!''' ''' 0 2!

1
f x f

x

1
11 1 !

0 1 1 !
1

n
nn n

n

n
f x f n

x

Thus, the required series is

1 2 3 4
1

0

1 1 !
... 1 ...

! 2 3 4

n n
nn

n

n x x x xx x
n n

Application activity 3.28 

Determine the Taylor series for each of the following functions at given 
value of a .

a) 3f x x x   at 2a  

b) 1f x
x

 at 2a  

c) 2xf x e  at 
1
2

a  

d) sinf x x  at 
4

a  

Taylor series by using Maclaurin series

1. Find the Maclaurin series for:

a) sin x  b) cos x   c) ln 1 x

2. From the results in 1) or otherwise, find Maclaurin series for 
sin 2x , cos 2x  and ln 1 2x .

Activity 3.6  

It is possible to find the Taylor series for other functions by using  
Maclaurin series 0 0x  without necessarily using Taylor’s formula. 
These are some important Maclaurin series 
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n
nn n

n
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x
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0
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n n
nn

n
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n n
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1. 
2 3

1
2! 3! !

n
x x x xe x

n

2. 
3 5 2 1

1sin 1
3! 5! 2 1 !

n
nx x xx x

n
 

3. 
2 4 2

cos 1 1
2! 4! 2 !

n
nx x xx

n
4. If 1 1x , then

2 31 1 2 1 2 1
1 1

2! 3! !
m nm m m m m m m m m n

x mx x x x
n

Particularly, if 1x , then we can write;

2 31 1 1
1

n nx x x x
x

Thus if 1 1x , then 

12 3 1
ln 1

2 3

n nxx xx x
n

Example 3.19 

Find the Taylor series for;

(i)  
2xf x e  at 0 0x  (ii) lnf x x  at 0 1x

Solution

(i) Let 2x t , and recall that 0t  as 0x . Using the series   

     for ex, we have

2 3
2 1

2! 3! !

n
x t t t te e t

n
2 32 2 2

1 2
2! 3! !

nx x x
x

n
2

34 8 21 2
2! 3! !

n
nxx x x

n
Therefore, 
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2 2 34 21 2 2
3 !

n
x ne x x x x

n
(ii) ln ln 1 1f x x x  

Let 1x t , since 0t  as 1x

Using the series ln 1 x  for the above, we have

ln ln 1 1x x  ln 1 t  
2

11
2 !

n
nt tt

n

(Since 
12 3 1

ln 1
2 3

n nxx xx x
n

)

2
11 1

1 1
2 !

n
nx x

x
n

Hence, 

2
11 1

ln 1 1
2 !

n
nx x

f x x x
n

Application activity 3.29 

1. Write down Taylor series for each of the following functions at the 
given value of a .

a) 
1f x
x

 at 0 3x   

b) 

1, 0

1, 0

xe xf x x
x

 at 0 0x  

c) 0

sin , 0
, 0

1, 0

x x
f x xx

x

d) sin
4
xf x  at 0 2x

2. Determine the Maclaurin series for each of the following functions:

a) 2cosf x x  b) 2 xf x x e

c) 31f x x  d) 
1

xef x
x
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2 2 34 21 2 2
3 !

n
x ne x x x x

n
(ii) ln ln 1 1f x x x  

Let 1x t , since 0t  as 1x

Using the series ln 1 x  for the above, we have

ln ln 1 1x x  ln 1 t  
2

11
2 !

n
nt tt

n

(Since 
12 3 1

ln 1
2 3

n nxx xx x
n

)

2
11 1

1 1
2 !

n
nx x

x
n

Hence, 

2
11 1

ln 1 1
2 !

n
nx x

f x x x
n
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3.3. Applications 
Maclaurin series has several applications which include:

3.3.1. Calculation of limits

Suppose that we need to evaluate 20

1 cos 4 sin 3lim
x

x x x
x

 

1. Find the Maclaurin series of order 3 for cos 4x  and sin 3x .

2. Replace the series obtained in 1) in the expression 

2

1 cos 4 sin 3x x x
x

 and hence evaluate 

20

1 cos 4 sin 3lim
x

x x x
x

Activity 3.7  

The thn  order Maclaurin polynomial can help us to evaluate limits of 
some functions as illustrated in the following examples.

Example 3.20 

Calculate;  (i) 30

sinlim
x

x x
x

  (ii) 

2

2

30

coslim
sin

x

x

e x
x x

 

Solution

(i)  For 3n , the Maclaurin series of sin x  is 
3

sin
6
xx x  

Then,
3

3 30 0

sin 6lim lim
x x

xx xx x
x x

3

30

6lim
x

x

x

3

30

6lim
x

x

x

3

3

1lim
6 6x

x
x
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(ii)  For 4n  
2 3 4

1
2! 3! 4!

x x x xe x
 

2

2 3 42 2 2

2
2

2 2 2
1

2 2! 3! 4!

x
x x x

xe
 

2 2 4 6 8
2 1

2 4 2! 8 3! 16 4!

x x x x xe

3

sin
6
xx x

2 4

cos 1
2 24
x xx

2
2 4 6 8 2 4

2

3 30 0
3

1 1
2 4 2! 8 3! 16 4! 2 24coslim lim

sin
6

x

x x

x x x x x x
e x

x x xx x

2 4 6 8 2 4

30
3

1 1
2 4 2! 8 3! 16 4! 2 24lim

6
x

x x x x x x

xx x

2 44 6 8 4 4

3 20 0
3 4

1 1
8 48 384 248 48 384 24lim lim

1
6 6

x x

x xx x x x x

x xx x x

2 4

20

1 1
1 1 3 1 18 48 384 24lim
8 24 24 121

6
x

x x

x
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(ii)  For 4n  
2 3 4

1
2! 3! 4!

x x x xe x
 

2

2 3 42 2 2

2
2

2 2 2
1

2 2! 3! 4!

x
x x x

xe
 

2 2 4 6 8
2 1

2 4 2! 8 3! 16 4!

x x x x xe

3

sin
6
xx x

2 4

cos 1
2 24
x xx

2
2 4 6 8 2 4

2

3 30 0
3

1 1
2 4 2! 8 3! 16 4! 2 24coslim lim

sin
6

x

x x

x x x x x x
e x

x x xx x

2 4 6 8 2 4

30
3

1 1
2 4 2! 8 3! 16 4! 2 24lim

6
x

x x x x x x

xx x

2 44 6 8 4 4

3 20 0
3 4

1 1
8 48 384 248 48 384 24lim lim

1
6 6

x x

x xx x x x x

x xx x x

2 4

20

1 1
1 1 3 1 18 48 384 24lim
8 24 24 121

6
x

x x

x
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Application activity 3.30 

Using Maclaurin series, evaluate:

1. 20

ln 1
lim

sinx

x x
x

             2. 0

tanlim
x sinx

x x
x

3. 20

1lim
x

x

e x
x

                        4. 
0

1 1lim
sinx x x

 

3.3.2. Estimation of the number e

In Maclaurin series of order n  for xe , replace x with 1 and hence 
estimate the value of number e  to 8 decimal places.

Activity 3.8  

By putting 1x  in the development of e , we can easily estimate the value 
of the number e  to desired decimal places.

Example 3.21 

Estimate the value of number e to 3 decimal places.

Solution

In series 
1 1 1 11 1 ...
2! 3! 4! !

e
n

, the general term 

is 1
!n

. Since we need number e to 3 decimal places, 

we need to find the smallest value of n first such that 

1 0.001 1 0.001 1 !
1 !

or n
n

Here, 6n  since 1 0.001 7! 1 5.04

Then,

 

1 1 1 1 11 1
2! 3! 4! 5! 6!

2 0.5 0.167 0.042 0.008 0.001
2.718

e
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Example 3.22 

Estimate the value of number e  to 5 decimal places.

Solution

In series 
1 1 1 11 1 ...
2! 3! 4! !

e
n

, the general term is 1
!n

. 

Since we need number e  to 5 decimal places, 

we need first to find the smallest value of n such that 

1 0.00001 1 0.00001 1 !
1 !

or n
n

. 

Here, 8n  since 1 0.00001 9! 1 3.6288

Then,

1 1 1 1 1 1 11 1
2! 3! 4! 5! 6! 7! 8!

2 0.5 0.16667 0.04167 0.00833 0.00139 0.00019 0.00002
2.71827

e

Application activity 3.31 

Estimate the value of number e  to:

1. 2 decimal places 2. 4 decimal places

3. 6 decimal places 4. 10 decimal places

3.3.3. Estimation of the number 

1. Find the Maclaurin series for arctan x .

2. Solve 
3tan , 0
3 2

x x .

Activity 3.9  
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From activity 3.9,
3 5 7 2 1

arctan ... 1 ...
3 5 7 2 1

n
nx x x xx x

n  

Also, 
3arctan

6 3
 

Then by setting 3
3

 in (1) we have; 

3 5 7 2 1
3 3 3 3
3 3 3 33 ... 1 ...

6 3 3 5 7 2 1

n

n

n  

Or
3 5 7 2 1

3 3 3 3
3 3 3 336 6 6 6 ... 1 6 ...

3 3 5 7 2 1

n

n

n

Example 3.23 

Estimate the value of number  to 2 decimal places.

Solution

3 5 7 2 1
3 3 3 3
3 3 3 336 6 6 6 ... 1 6 ...

3 3 5 7 2 1

n

n

n

The general term is 

2 1
3
3

1
2 1

n

n

n
We need n  such that

 

2 1 1 2 3
3 3
3 3

0.01
2 1 1 2 3

n n

n n
  since we need two decimal places.
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Here, 2n  since 

7
3
3

0.003 0.01
7

Then,
3 5

3 3
3 336 6 6

3 3 5
3.46 0.38 0.07
3.15  

Application activity 3.32 

Estimate the value of number e  to:

1. 3 decimal places 2. 5 decimal places

3. 7 decimal places 4. 9 decimal places

3.3.4. Estimation of trigonometric number of an angle

1. Find the Maclaurin series of order n  for sin x .

2. By letting x =
4

 in 1), estimate the value of sin
4

 to 

4 decimal places. 

Activity 3.10  

x  being expressed in radians, we can approximate the value of any 
trigonometric number using the series of trigonometric functions.

Example 3.24 

Estimate the value of cos
6

 to 3 decimal places.

Solution

We first need to obtain Maclaurin series for cosf x x  where 
6

x .

The Maclaurin series of order n  for cosf x x :
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cos 0 1f x x f  

' sin ' 0 0f x x f

'' cos '' 0 1f x x f

''' sin 0 0f x x f

4 4cos 0 1f x x f

2 3 4 20 0cos 1 ... 1
1! 2! 3! 4! 2 !

n
nx x x x xx

n

Or 

2 4 2

cos 1 ... 1
2! 4! 2 !

n
nx x xx

n

Putting 
6

x , we have

2 4 2

6 6 6cos 1 ... 1
6 2! 4! 2 !

n

n

n  

The general term is 

2

61
2 !

n

n

n
. Since we need the value of 

cos
6

 to 3 decimal places, we need the value of n such that 

2 1

6 0.001
2 1 !

n

n

Here, 2n  because 

2 2 1

6 0.00002 0.001
2 2 1 !
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Thus,
2 4

6 6cos 1 1 0.137 0.003 0.866
6 2! 4!

Application activity 3.33 

Using Maclaurin series, estimate:

1. The number 0sin1  to 6 decimal places.

2. The number 
2sin
3

 to 3 decimal places.

3. The number 0cos65  to 4 decimal places.

4. The number 0cos 135  to 5 decimal places.

3.3.5. Estimation of an irrational number

Suppose that we need to estimate the value of 2  to 6 decimal 
places. 

1. Write down the squares of natural numbers (as we need square 
root).

2. Multiply each term in the obtained sequence in 1) by the radicand 
(here radicand is 2).

3. Take two numbers from sequence in 1) and another 
from sequence in 2) such that their ratio is close to 1. 

4. Using the obtained numbers from 3), transform the radicand so 
that it differs a little from 1.

Activity 3.11  

Using the Maclaurin series of 1 mx , we can estimate any irrational 
number like 32, 3, 5, ...  

Example 3.25 

Estimate the value of 2  to 6 decimal places. 
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Solution 

From activity 3.11, we can take the numbers 49 and 50. Note that when 
extending the series, we can find other numbers such that their ratio is 
closed to 1.

Then, 

2 25 49 7 2 252
25 49 5 49

7 50
5 49

7 11
5 49

1
27 11

5 49

Now, recall that the Maclaurin series of 1
mx  is

1

1 2 3 ... 1
1 1

!

n
m

n

m m m m m n x
x

n

Putting 
1
49

x  and 
1
2

m  

1
2

1

1 1 1 1 1 11 2 3 ... 1
1 2 2 2 2 2 491 1
49 !

n

n

n

n

The general term is 

1 1 3 11
2 49 2 49

! !

n n

n n

n n
Since we need the value of 2  to 6 decimal places, we need the value of 
n such that 

13 11
2 49 0.000001

1 !

n

n

n

Here, 3n  because 

43 14
2 49 0.00000002 0.000001

4!

Then, 
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1 2 3

1
2

1 1 1 1 1 1 1 1 11 1 2
7 1 7 2 49 2 2 49 2 2 2 492 1 1
5 49 5 1! 2! 3!

7 1 0.010204 0.000052 0.000005 1.4142198
5

Example 3.26 

Estimate the value of 3 5  to 2 decimal places.

Solution

In this case, write down cube of natural numbers starting from 1 as below:

1; 8; 27; 64; 125; 216; …  (1)

Now, multiplying each term in sequence by 5 we obtain:

5; 40; 135; 320; 625; 1080; …  (2)

Taking two numbers from sequences (1) and (2) such that their ratio is 
close to 1 i.e. 125 and 135

Then, 

3 3
5 27 1255
27 125

3
5 5 27
3 125

3
5 101
3 125

1
35 101

3 125

1
35 21

3 25

Now, using Maclaurin series for 1
mx  i.e.

1

1 2 3 ... 1
1 1

!

n
m

n

m m m m m n x
x

n

Putting 
2
25

x  and 
1
3

m  we have;

1
3

1

1 1 1 1 1 21 2 3 ... 1
2 3 3 3 3 3 251 1
25 !

n

n

n

n
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3 125

1
35 21
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Now, using Maclaurin series for 1
mx  i.e.

1

1 2 3 ... 1
1 1

!

n
m

n

m m m m m n x
x

n

Putting 
2
25

x  and 
1
3

m  we have;

1
3

1

1 1 1 1 1 21 2 3 ... 1
2 3 3 3 3 3 251 1
25 !

n

n

n

n
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The general term is 

1 2 4 21
3 25 3 25

! !

n n

n n

n n
Since we need the value of 3 5  to 2 decimal places, we need the value of 
n such that 

14 21
3 25 0.01

1 !

n

n

n

Here, 1n  because 

24 21
3 25 0.002 0.01

2!
Then,

1

1
33

1 2
5 2 5 53 255 1 1 1 0.03 1.71
3 25 3 1! 3

Application activity 3.34 

Estimate:

1. 3  to 3 decimal places.

2. 5  to 4 decimal places.

3. 3 2  to 6 decimal places.

4. 3 4  to 6 decimal places.
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3.3.6. Estimation of natural logarithm of a number

1. Find the Maclaurin series of order n  for ln 1 x .

2. In the result obtained in 1), replace x  with x  to obtain the 
expansion series for ln 1 x .

3. Subtract the result obtained in 2) from the result obtained in 1) to 

find the expansion for 
1ln
1

x
x

 

Remember that ln ln ln xx y
y

 

Activity 3.12  

From activity 3.12,

3 5 2 1 2 1

0

1ln 2 ... ... 2
1 3 5 2 1 2 1

n n

n

x x x x xx
x n n  

This relation helps us to estimate ln of any positive number.

Example 3.27 

Estimate: (i) ln 2  to 4 decimal places.

   (ii) ln 6  to 3 decimal places.

Solution 

(i) Let 
1 1 1ln ln 2 2
1 1 3

x x x
x x

 

Then, 
3 5 2 11 1 1

1 3 3 3ln 2 2 ... ...
3 3 5 2 1

n

n

 

The general term is 

2 11
3
2 1

n

n
. Since we need the value of 



186

3.3.6. Estimation of natural logarithm of a number

1. Find the Maclaurin series of order n  for ln 1 x .

2. In the result obtained in 1), replace x  with x  to obtain the 
expansion series for ln 1 x .

3. Subtract the result obtained in 2) from the result obtained in 1) to 

find the expansion for 
1ln
1

x
x

 

Remember that ln ln ln xx y
y

 

Activity 3.12  

From activity 3.12,

3 5 2 1 2 1

0

1ln 2 ... ... 2
1 3 5 2 1 2 1

n n

n

x x x x xx
x n n  

This relation helps us to estimate ln of any positive number.

Example 3.27 

Estimate: (i) ln 2  to 4 decimal places.

   (ii) ln 6  to 3 decimal places.

Solution 

(i) Let 
1 1 1ln ln 2 2
1 1 3

x x x
x x

 

Then, 
3 5 2 11 1 1

1 3 3 3ln 2 2 ... ...
3 3 5 2 1

n

n

 

The general term is 

2 11
3
2 1

n

n
. Since we need the value of 

187

ln 2  to 4 decimal places, we need the value of n such that 
2 1 11

3 0.0001
2 1 1

n

n

Thus, 2n  because 

2 2 1 11
3 0.00006 0.0001

2 2 1 1
Then,

3 51 1
1 3 3ln 2 2 2 0.3333 0.0123 0.0008 0.6928
3 3 5

(ii) Let 
1 1 5ln ln 6 6
1 1 7

x x x
x x

 

Then, 

ln 6

3 5 2 15 5 5
1 7 7 72 ... ...
3 3 5 2 1

n

n  

The general term is 

2 15
7
2 1

n

n
. Since we need the value of 

ln 6  to 3 decimal places, we need the value of n such that 

2 1 11
3 0.001

2 1 1

n

n
 

Thus, 5n  because 

2 2 1 15
7 0.0009 0.001

2 2 1 1



188

Then,
3 5 7 9 115 5 5 5 5

5 7 7 7 7 7ln 6 2
7 3 5 7 9 11

2 0.714 0.121 0.037 0.014 0.005 0.002 1.786

Application activity 3.35 

Using Maclaurin series, estimate:

1. ln 3  to 4 decimal places.

2. ln 0.8  to 3 decimal places.

3. ln 7  to 5 decimal places.

4. ln 0.2  to 2 decimal places.

3.3.7. Estimation of roots of equations

Consider the equation ln 1 0x x
1. Find the second order Maclaurin polynomial of ln 1 x .

2. Put the result obtained in 1) in the given equation.

3. Solve for x  in the new equation obtained in 2).

4. Check if the value(s) of x  obtained in 3) satisfies the given equation, 

ln 1 0x x  and hence write down the solution set.

Activity 3.13  

From activity 3.13, the thn  order Maclaurin polynomial can help us to 
estimate the roots of a given equation involving transcendental functions.

Example 3.28 

Solve in , the equation ln 1 1xx e  
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Solution

Maclaurin polynomial of ln 1 x  is 
2 3

ln 1 ...
2 3
x xx x  

Maclaurin polynomial of xe  is 
2 3

1 ...
2 6

x x xe x  

Now,

2 3 2 3

ln 1 1 1 1
2 3 2 6

x x x x xx e x x

3 3

1 1
3 6
x x

 

3 32 0
6

x x
 

3 0 0x x
 

Check if this is a root of the given equation:

LHS= 0ln 1 0 ln1 1 1e  and RHS=1

Since LHS=RHS=1; x=0

Therefore, 0S   

Application activity 3.36  

Using Maclaurin polynomial, estimate the roots of the following 
equation in :

1. 2cos 2 0x x   2. 0xx e  

3. 2ln 3 1x x x   4. 3 5xe x  
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Unit summary
1. Generalities on series
• Definitions 

A finite series is an expression of the form 1 2 3 ... nu u u u  or in 

sigma notation 
1

n

k
k

u , 

where the index of summation, k , takes consecutive integer values 
from the lower limit, 1, to the upper limit, n . The terms 1 2 3, , ,..., nu u u u  

are called terms of the series and the term nu  is the general term.

To obtain un
k

n

=
∑

1

, the method of difference is 

usually used i.e. 

1
1 1

n

n
k

u f f n  where 1ku f k f k , 

with f k  some function of k .

• Convergence and divergence of a series

Let ns  be the sequence of partial sums of the 

series 
1

k
k

u . If the sequence ns  converges to a 

limit S , then the series is said to converge and S is called the sum of 

the series. We denote this by writing 
1

k
k

S u .

If the sequence of partial sums of a series diverges, then the series is 
said to diverge. A divergent series has no sum.

• Comparison test

Let 
1

n
n

a  be a series with positive terms.

a) 
1

n
n

a  converges if there exists a convergent series 

1
n

n
b  such that n na b  for all n N , where N  is 

some positive integer.

b) 
1

n
n

a  diverges if there exists a divergent series 

1
n

n
c  such that n na c  for all n N , where N  is 



190

Unit summary
1. Generalities on series
• Definitions 

A finite series is an expression of the form 1 2 3 ... nu u u u  or in 

sigma notation 
1

n

k
k

u , 

where the index of summation, k , takes consecutive integer values 
from the lower limit, 1, to the upper limit, n . The terms 1 2 3, , ,..., nu u u u  

are called terms of the series and the term nu  is the general term.

To obtain un
k

n

=
∑

1

, the method of difference is 

usually used i.e. 

1
1 1

n

n
k

u f f n  where 1ku f k f k , 

with f k  some function of k .

• Convergence and divergence of a series

Let ns  be the sequence of partial sums of the 

series 
1

k
k

u . If the sequence ns  converges to a 

limit S , then the series is said to converge and S is called the sum of 

the series. We denote this by writing 
1

k
k

S u .

If the sequence of partial sums of a series diverges, then the series is 
said to diverge. A divergent series has no sum.

• Comparison test

Let 
1

n
n

a  be a series with positive terms.

a) 
1

n
n

a  converges if there exists a convergent series 

1
n

n
b  such that n na b  for all n N , where N  is 

some positive integer.

b) 
1

n
n

a  diverges if there exists a divergent series 

1
n

n
c  such that n na c  for all n N , where N  is 
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some positive integer.

• Limit comparison test

If the series 
1

n
n

a  and 
1

n
n

b  are two series with 

positive terms, and lim n

n
n

a
b  is finite, both 

series converges or both diverges.

• The ratio test

Let 
1

n
n

u  be a series with positive terms and let 

1lim n

n
n

u L
u

, then;

a) the series converges if 1L ,

b) the series diverges if 1L ,

c) the series may or may not converge if 1L  (i.e., the test is 
inconclusive).

• The thn  root test

Let 
1

n
n

u  be a series with positive terms and let 

lim n
nn

u L , then,

a) the series converges if 1L
b) the series diverges if 1L
c) the test is inconclusive if 1L .

2. Power series 

Power series is like an infinite polynomial. It has the form 

2
0 1 2

0
... ...n n

n n
n

a x c a a x c a x c a x c
 

Here c  is any real number and a series of this form is called a power 
series centred at c . 

Let 
0

n
n

n
f x a x c  be the function defined by 

this power series. f x  is only defined if the power series converges, 
so we will consider the domain of the function f  to be the set of x  
values for which the series converges. There are three possible cases:
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 » The power series converges at x c. Here the radius of convergence 
is zero.

 » The power series converges for all x , i.e , .

 Here, the radius of convergence is infinity.

 » There is a number R  called the radius of convergence such 
that the series converges for all c R x c R  and the series 
diverges outside this interval. 

3. Taylor and Maclaurin series 

If f(x) is a function defined on the open interval (a, b), 
and which can be differentiated ( )n 1  times on 

(a, b), then the equality

f x f x
n

x x R x
n

n

n
n( ) ( )

!
( ) (

( )

= − +
=

∞

+∑ 0

0
0 1

for any values of x and x0 in (a, b) is called Taylor’s formula. 

R xn+ ( )1  is called the remainder function. 

The resulting function (without R xn+ ( )1 ) is called the Taylor expansion of 
f(x) with respect to x about the point x x0  of order n.

One of the most common forms of the remainder function is the Lagrange 
form:

R x x x
n

f x x xn

n
n

+

+
+=

−
+

+ −( )1
0

1
1

0 01
( ) ( )

( )!
( )( )

where 0 1.

If lim ( )
n nR x
→∞

+ =1 0  for some terms, then the 

infinite series

f x f x f x
n

x x
n

n

n( ) ( ) ( )
!
( )

( )

= + −
=

∞

∑0
0

1
0

is called the Taylor series for f x( ) . 

A Maclaurin series is a Taylor series with x0 0 .
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Note that if f x( )  is a polynomial of degree n, then it will have utmost 
only n non-zero derivatives; all other higher-order derivatives will be 
identically equal to zero.

The following series are very important. All of them are Maclaurin series 

0 0x  and, it is possible to find the Taylor series for other functions by 
using these formulae without necessarily using Taylor’s formula.

a) e x x x x
n

x
n

= + + + +⋅⋅⋅+ +⋅⋅⋅1
2 3

2 3

! ! !
 

b) sin
! !

( )
( )!

x x x x x
n

n
n

= − + +⋅⋅⋅+ −
−

+⋅⋅⋅−
−3 5

1
2 1

3 5
1

2 1

c) cos
! !

( )
( )!

x x x x
n

n
n

= − + +⋅⋅⋅+ −1
2 4

1
2

2 4 2

d) If 1 1x , then
3

21 1 2
1 1

2! 3!
m m m m m m x

x mx x

1 2 1
!

nm m m m n x
n

Particularly, if 1x , then 

2 31 1 1
1

n nx x x x
x

If 1 1x , then 

12 3 1
ln 1

2 3

n nxx xx x
n
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End of unit assessment
1. In questions a-e, sum the given series:

a) 
1

4
n

r
r r  b) 

3

1
2

n

r
r

c) 
1

1
3 6

n

r r r
 d) 

1
2

n

r
r r

e) 
1

1
1 2

n

r r r r
2. In questions a-c find the rational number represented by the 

repeating decimal.

a) 0.235   b) 0.50   c) 0.011  

3. In questions a-f, determine both the radius of convergence and the 
interval of convergence.

a) 
0

2 3
4

n

n
n

x
 b) 3

1

n

n
n x

c) 2
0 2

n

n

x
n

 d) 
2

0 2

n

n
n

n x

e) 
1 2

n

n
n

x
n

 f) 
1

1

2
1

3

n
n

n
n

x
n

4. Write down the first 4 terms of the Taylor series for the following 
functions:

a) ln x  centred at 1a  

b) 
1
x

 centred at 1a  

c) sin x  centred at 
4

a  

5. Determine the first three terms of the Taylor series for the function 

sin x  centred at 
1
2

a . Use your answer 

 to find an approximate value to sin
2 10

.
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6. Determine the Taylor series for the function 4 2x x  centred at 
1a .

7. Obtain the Taylor series for 1 xx e  near 1x .

8. Write down the first three terms in the Maclaurin series for:

a) 
2sin x  b) 

21
x

x
  c) xxe   d) 

21
x
x

 

9. Determine the Maclaurin series for ln 1 x  and hence that for 
1ln
1

x
x

.

10. If function ln 1 x  is approximated by the first three terms of its 
Maclaurin series, estimate the maximum value of x  for which the 
approximation agrees with the exact value to 3 decimal places.

11. By using a suitable Maclaurin series in the text, find the sum to infinity 
of the following series:

a) 
3 5 7

...
3! 5! 7!

  b) 
2 4 6

1 ...
2! 4! 6!
e e e

 

12. Determine the Maclaurin series for sinx x.

13. The kinetic energy of a relativistic particle is given by 21K mc  

where 
2

2

1

1 v
c

. Here, m  is the 

 constant mass of the particle, v  its speed and c  is the constant 

speed of light. Use the Maclaurin series for 
2

1
1 x

 to show that for 
21,

2
v c K mv .

14. Obtain the first three terms in the Maclaurin series for cos sin x . 

Hence or otherwise, evaluate 20

1 cos sin
lim
x

x
x

.

15. Determine the first three terms in the Maclaurin series for 

sin sin x . Hence or otherwise, find 30

sin sin
lim
x

x x
x

.

16. The equation 2 23xe x  has a root near 0x . By using a suitable 
polynomial approximation to 2xe , obtain an approximation to this 
root.
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17. Write down the Maclaurin series for the function ln 1f x x  

and hence, obtain the series for 
ln 1 x

f x
x

.

18. Determine the first 3 terms in the Maclaurin series for 21 x x

19. Write down the Maclaurin series for the function 2

1
1 x

 by using 
partial fractions or otherwise.

20. Determine the Maclaurin series for the function 
2

1
5 6

x
x x

 by first 
finding the partial fraction 

 decomposition of the function.

21. Obtain the first three non-zero terms of the Maclaurin series for 
2

sinxf x e x . Hence or otherwise, 

 evaluate 
30

lim
x

f x x
x

.

22. Determine the Maclaurin series for the functions xe  and sin x , and 
hence expand sin xe  up to the term in 4x .

23. The Maclaurin series for ze  converges for all z  including the 
case when z  is a complex number. Using this fact, write down 
the Maclaurin series for ie  and hence prove Euler’s formula 

cos sinie i . Also, deduce the extraordinary relation 
1 0ie .

24. Consider the infinite series 3 3

1
1

n
n n .

a) Give the first three terms of the Maclaurin expansion of the 
function 3 1f x x .

b) Use your result in a) to show that for a large n , the general term 

of the given infinite series behaves as 2

1
3n

 

c) Hence, show that the given infinite series converges.
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Two groups of students were asked to calculate the area of a quadrilateral 
field BCDA shown in the following figure: 

 

The first group calculated the difference of the area for two triangles EDA 
and ECB

1 ( ) ( )A area EDA area ECB , The second group with high critical 

thinking skills used a function ( )F x  that was differentiated to find ( )f x x  

(which means ( ) ( )F x f x  and the x-coordinate d of D and the x- coordinate 

c of C in the following way: 2 ( ) ( )A F d F c . 

1. Determine the area 1A  found by the first group. 

2. Discuss and determine the function ( )F x  used by the second group. 

What is the name of ( )F x  if you relate it with ( )f x ?

3. Determine 2A  he area found by the second group using ( )F x

4. Compare  and . Discuss if it is possible to find the area bounded by 

a function ( )f x , the x-axis and lines with equation 1x x  and 2x x ? 

Introductory activity

Integration
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By the end of this unit, I will be able to: 

• Define the differential of a function. 

• Interpret geometrically the differential of a function. 

• List the differentiation formulae. 

• Clarify the relationship between derivative and anti-derivative of 
a function. 

• Illustrate the use of basic integration formulae. 

• Extend the concepts of indefinite integrals to definite integrals.

• Use integrals to find area of a plane surfaces, volume of a solid 
of revolution and length of curved lines.

Objectives

4.1. Differentials

Without using scientific calculator, determine; 

a) approximately how much the value of sin x  increases from 
3

 to 

0.006
3

. 

b) to 3 decimal places the value of sin 0.006
3

.

Activity 4.1  

If one quantity, say y , is a function of another quantity x , that is, y f x
, we sometimes want to know how a change in the value of x  by an amount 

x  will affect the value of y . 

The variation in x is x and it is called increment of x  while the corresponding 

variation in y becomes ( ) ( )y f x x f x .

The increment of ( )y f x  is ( ) ( )y f x x f x  . This can be found in 
the other way.



198

By the end of this unit, I will be able to: 

• Define the differential of a function. 

• Interpret geometrically the differential of a function. 

• List the differentiation formulae. 

• Clarify the relationship between derivative and anti-derivative of 
a function. 

• Illustrate the use of basic integration formulae. 

• Extend the concepts of indefinite integrals to definite integrals.

• Use integrals to find area of a plane surfaces, volume of a solid 
of revolution and length of curved lines.

Objectives

4.1. Differentials

Without using scientific calculator, determine; 

a) approximately how much the value of sin x  increases from 
3

 to 

0.006
3

. 

b) to 3 decimal places the value of sin 0.006
3

.

Activity 4.1  

If one quantity, say y , is a function of another quantity x , that is, y f x
, we sometimes want to know how a change in the value of x  by an amount 

x  will affect the value of y . 

The variation in x is x and it is called increment of x  while the corresponding 

variation in y becomes ( ) ( )y f x x f x .

The increment of ( )y f x  is ( ) ( )y f x x f x  . This can be found in 
the other way.

199

The exact change, y  in y , is given by y f x x f x  as it is 
shown in figure 4.1.

But if the change x  is small, then we can get a good 

approximation to y  by using the fact that 
y
x

 is approximately the 

derivative dy
dx

. Thus, we can write

'y dyy x x f x x
x dx

If we denote the change in x  by x  instead of x , then the change, y  
in y , is approximated by the differential y , that is 'y y f x dx .

The differential of a function ( )f x  is the approximated increment of 
that function when the variation in  becomes very small.  It is given by 

( )dy f x dx .

0 x

f x

x x

f x x

f x

dy df x

X

Y

y

y

x

Figure 4.1. Change in the value of x and y

Example 4.1 

Find the differential of 2 1f x x

Solution 

' 2f x x

Then the differential of 2 1f x x  is ' 2d f x f x dx xdx
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Notice
Whenever one makes an approximation, it is wise to try and estimate how 
big the error might be. 

• Relative change in x  is .x
x

• Percentage change in x  is 100 .x
x

Example 4.2 

By approximately what percentage does the area of a circle increase if the 
radius increases by 2% ?

Solution 

The area A of a circle is given in terms of the radius r by 2A r

Now; 2dAA A r r r
dr

Dividing this approximation by 2A r  gives an approximation that links 
the relative changes in A  and r :

2

2 2A A r r r
A A r r

If r  increases by 2% , then 
2
100

r r , so 
2 42
100 100

A
A

Thus, A  increases by approximately 4% .

Example 4.3 

The deflection at the centre of a road of length l and diameter d  supported 
at its ends and loaded at the centre with a weight w  varies as 3 4wl d . 
What is the percentage increase in the deflection corresponding to the 
percentage increase in ,w l  and d  of 3,2  and 1 respectively?

Solution 

Let the deflection of the road at the centre be D.

3

4

wlD k
d
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Introducing natural logarithm on both sides of the expression we have;

3

4ln ln wlD k
d

ln ln ln 3ln 4lnD k w l d  3 4D w l d
D w l d

100 100 3 100 4 100

3 3 2 4 1 5%

D w l d
D w l d

Application activity 4.1 

1. Find the differential of:

a) 
2 3f x x x  b) 

2
2

xf x
x  

c) 
3 2
4

f x x

2. Find the percentage error in the area of a rectangle when an error of 
1 per cent is made in measuring its length and breadth.

3. The period T  of a simple pendulum is 2 lT
g

. 

Find the maximum error in T  due to possible errors up to 1%  
in l  and 2.5%  in g .

4. The diameter and altitude of a can in the shape of a right circular 
cylinder are measured as 40 cm and 64 cm respectively. The possible 
error in each measurement is 5%. Find approximately the maximum 
possible error in the computed value for the volume and the lateral 
surface. Hence obtain the corresponding percentage error in each 
case.
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4.2. Indefinite integrals

4.2.1.

For each of the following functions, find function g x  such that 
'g x f x .

a) 
23f x x  b) f x x

c) 
1f x
x

  d) 2

1f x
x

Activity 4.2  

An integral or an anti-derivative of function f x  is the function F x  
whose derivative is equal to f x . Thus, we  say F x  is an anti-derivative 
of f x  and write

'F x f x .

The process of solving for anti-derivatives is called anti-differentiation 
(or integration) which is the opposite operation of differentiation (process 
of finding derivatives).

Example 4.4 

The function lnF x x  is the primitive of 
1f x
x

 since 1ln 'x
x

.

Also, ln 5F x x  is the primitive of 
1f x
x

 since 

1 1ln 5 ' 0x
x x

.

Recall that the derivative of a constant is zero.

Also, ln 20F x x  is the primitive of 
1f x
x

 since 

1 1ln 20 ' 0x
x x

.

Thus, every correct integral of f x  has the form F x c  where c is an 
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arbitrary constant and 'F x f x

Example 4.5 

The primitive function of cosf x x  is sinF x x c  since 
' sin ' cosF x x c x .

Notation

The anti-derivative of f x  called the indefinite integral of f x  is 
denoted by

f x dx  so that f x dx F x c

where 

 is the integral sign, f x dx  is called the integrand, x  is the variable 
of integration, 'F x f x , c  is the constant of integration as its 
value is not known, unless we have further information. 

Such integrals where we add an arbitrary constant to every correct result 
are called indefinite integrals.

Example 4.6 

Find 21
dx

x

Solution 

2 arctan
1

dx x c
x

. Indeed  2

1arctan '
1

x c
x

Example 4.7 

Find xdx

Solution 

2

2
xxdx c . Indeed 

'2

2
x c x
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Application activity 4.2 

Find each of the following integrals:

1. 4 5x dx   2. 26 4 3x x dx  

3. 
3 2x x x dx  4. 23 4x dx   

5. 5dx   6. 2 3 3 4x x dx

7. 
2 21 2 5x x dx   8. 

222 1x dx   

9. 
32x dx

4.2.2. Properties of integrals

1. For cosf x x , find the derivative of f x dx . Give your 
observation.

2. For sinf x x , find the integral of the differential of f x . Give 
your observation.

3. For 3f x x , find 3x dx . Compare your result with 3 x dx .

4. For 3 3 1f x x x  and 2 2 2g x x x , find 

f x dx g x dx  and f x g x dx . Give your 

observation.

5. Find cos 2 3d x
dx

. Deduce sin 2 3x dx . 

6. Hence, write down the formula that could be used to find 
, , , 0f ax b dx a b a  when F x  is the integral of 

f x .

Activity 4.3  

From activity 4.3, we get the following important properties:

1. The derivative of the indefinite integral is equal to the function to be 
integrated.



204

Application activity 4.2 

Find each of the following integrals:

1. 4 5x dx   2. 26 4 3x x dx  

3. 
3 2x x x dx  4. 23 4x dx   

5. 5dx   6. 2 3 3 4x x dx

7. 
2 21 2 5x x dx   8. 

222 1x dx   

9. 
32x dx

4.2.2. Properties of integrals

1. For cosf x x , find the derivative of f x dx . Give your 
observation.

2. For sinf x x , find the integral of the differential of f x . Give 
your observation.

3. For 3f x x , find 3x dx . Compare your result with 3 x dx .

4. For 3 3 1f x x x  and 2 2 2g x x x , find 

f x dx g x dx  and f x g x dx . Give your 

observation.

5. Find cos 2 3d x
dx

. Deduce sin 2 3x dx . 

6. Hence, write down the formula that could be used to find 
, , , 0f ax b dx a b a  when F x  is the integral of 

f x .

Activity 4.3  

From activity 4.3, we get the following important properties:

1. The derivative of the indefinite integral is equal to the function to be 
integrated.
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d f x dx f x
dx

2. The integral of differential of a function is equal to the sum of that 
function and an arbitrary constant.

df x f x c

3. Each constant function may be pulled out of integral sign.

k f x dx k f x dx

4. The indefinite integral of the algebraic sum of two functions is equal 
to the algebraic sum of the indefinite integrals of those functions.

f x g x dx f x dx g x dx

5. If F x  is an indefinite integral of f x , then, the integral 

1 , , , 0f ax b dx F ax b c a b c a
a

Example 4.8 

Find cos3xdx

Solution 

1cos3 sin 3
3

xdx x c

Example 4.9 

Find 2xe dx

Solution 

2 21
2

x xe dx e c

Example 4.10 

Find 2 3d x dx
dx

Solution 

2 23 3d x dx x
dx

Example 4.11 

Find 2 3d x

Solution 

2 23 3d x x c
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Application activity 4.3 

If 2 2f x dx x x c , 3 23 4g x dx x x x k  find;

1. 4 f x dx     2. 
2 6
5

g x dx

3. 3f x g x dx  4. 2 3d f x g x dx
dx

4.3. Techniques of integration

4.3.1. Integration by substitution#

Consider the integral 5 2xe dx . By letting 5 2u x  and 

differentiating u  with respect to x , find this integral.

Activity 4.4  

Integration by substitution is based on rule for differentiating composite 
functions. The formula for integration by substitution is 

'f x dx f x t x t dt

Basic integrals of exponential functions

From the knowledge of differential calculus, we can give the following 
results:

1. 
1

, 1
1

n
n xx dx c n

n
 2. 

x xe dx e c

3. 
ln

x
x aa dx c

a

Example 4.12 

Find 2xe dx
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Application activity 4.3 

If 2 2f x dx x x c , 3 23 4g x dx x x x k  find;

1. 4 f x dx     2. 
2 6
5

g x dx

3. 3f x g x dx  4. 2 3d f x g x dx
dx

4.3. Techniques of integration

4.3.1. Integration by substitution#

Consider the integral 5 2xe dx . By letting 5 2u x  and 

differentiating u  with respect to x , find this integral.

Activity 4.4  

Integration by substitution is based on rule for differentiating composite 
functions. The formula for integration by substitution is 

'f x dx f x t x t dt

Basic integrals of exponential functions

From the knowledge of differential calculus, we can give the following 
results:

1. 
1

, 1
1

n
n xx dx c n

n
 2. 

x xe dx e c

3. 
ln

x
x aa dx c

a

Example 4.12 

Find 2xe dx
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Solution 

Let 2t x , so 
12
2

dt dx dx dt

We have, 2 21 1
2 2

x t xe dx e dt e c

Example 4.13 

Find 
42 1x dx

Solution

Let 2 1t x , so 
12
2

dt dx dx dt

We have, 

5
4 541 1 12 1 2 1

2 2 5 10
tx dx t dt c x c

Example 4.14 

Find 
3

21
x dx

x

Solution

Let 1 1t x x t , so dt dx dx dt

We have, 

33

2 2

1
1

tx dx dt
tx  

3 2

2

3 3 1t t t dt
t  

2

3 13t dt
t t  2

3 13tdt dt dt dt
t t

2
13 3ln

2
t t t t c  

21 13 1 3ln 1
2 1

x
x x c

x
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Application activity 4.4 

1. Evaluate;

a) 
x ee x dx  b) 

32 xx e dx  c) 
2

1xe dx  

d) 
2
1

3

xe dx
x

  e) cosx xe e dx   f) 3cos2 sin 2xe x dx  

g) 
cos ln x

dx
x

  h) 
23 24 12x x dx

2. A particle moves in a straight line such that its velocity at time t

seconds is given by 1
32

100

1

tv m s
t

.

Find the distance travelled by the particle in the first two seconds of 
motion.

4.2.2. Integration of rational functions

A function 
g x

f x
h x

, where 0g x and h x  are 
polynomials, is called a rational function. When integrating a rational function, 
we need to check if there is a relationship between the numerator and the deriv-
ative of the denominator.
Basic integrals of rational functions

From the knowledge of differential calculus, we can give the following table 
of results:

1. 
1 lndx x c
x

 2. 
2 2

1 arctandx x c
a x a a

3. 
2 2

1 arccotdx x c
a x a a
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Application activity 4.4 

1. Evaluate;

a) 
x ee x dx  b) 

32 xx e dx  c) 
2

1xe dx  

d) 
2
1

3

xe dx
x

  e) cosx xe e dx   f) 3cos2 sin 2xe x dx  

g) 
cos ln x

dx
x

  h) 
23 24 12x x dx

2. A particle moves in a straight line such that its velocity at time t

seconds is given by 1
32

100

1

tv m s
t

.

Find the distance travelled by the particle in the first two seconds of 
motion.

4.2.2. Integration of rational functions

A function 
g x

f x
h x

, where 0g x and h x  are 
polynomials, is called a rational function. When integrating a rational function, 
we need to check if there is a relationship between the numerator and the deriv-
ative of the denominator.
Basic integrals of rational functions

From the knowledge of differential calculus, we can give the following table 
of results:

1. 
1 lndx x c
x

 2. 
2 2

1 arctandx x c
a x a a

3. 
2 2

1 arccotdx x c
a x a a
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Numerator can be expressed in terms of derivative of the denominator

From derivative of reciprocal functions and logarithmic derivative, find;

1. 221

x dx
x

  2. 
2

2 1
3 3 1

x dx
x x

  

Activity 4.5  

Since 
'ln ' uu

u
 and 

'

2

1 'u
u u

, thus,

' ln ' lnu dx u dx u c
u

 and 
2

' 1u dx c
u u

In activity 4.5, the following basic integration formulae are most helpful:

' lnu dx u c
u

, 2

' 1u dx c
u u

 and 2

' arctan
1

u dx u c
u

Example 4.15 

Find 
2

2

1 42 3
1

x dx
x x

Solution 

2 2
2 2

1 4 1 42 3 2 3
1 1

x dx dx x dx dx dx
x x x x

2
2

2

1 12 3 4
1

2 - ln - 4arctan

dx x dx dx
x x

x x x x c

Example 4.16 

Find 2

1
2 3

x dx
x x
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Solution

Here, 2 2 3 ' 2 2 2 1x x x x

We can write

2

2 2 2

2 2

1 2 2 2 3 '1 12
2 3 2 3 2 2 3

1 ln 2 3 ln 2 3
2

x x xx dx dx dx
x x x x x x

x x c x x c

Example 4.17 

Find 2

1
2 1

dx
x x

Solution

Here, 
22 2 1 1x x x . But 1 ' 1x

We can write

2 22

1 '1 1 1
2 1 11 1

x
dx dx dx c

x x xx x

Application activity 4.5 

Evaluate:

1. 22

1

2 3

x
dx

x x
 2. 221

x dx
x

3. 
2

232 5

x dx
x

 4. 32

1

2 5

x dx
x x

Numerator being not expressible in terms of derivative of the 
denominator

An improper rational fraction (where the degree of the numerator is 
greater than or equal to the degree of the denominator) can be expressed 
as a sum of simpler fractions (partial fractions) whose denominators are of 

the form 
nax b  and 2 n

ax bx c , n being a positive integer.
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Solution

Here, 2 2 3 ' 2 2 2 1x x x x

We can write

2

2 2 2

2 2

1 2 2 2 3 '1 12
2 3 2 3 2 2 3

1 ln 2 3 ln 2 3
2

x x xx dx dx dx
x x x x x x

x x c x x c

Example 4.17 

Find 2

1
2 1

dx
x x

Solution

Here, 
22 2 1 1x x x . But 1 ' 1x

We can write

2 22

1 '1 1 1
2 1 11 1

x
dx dx dx c

x x xx x

Application activity 4.5 

Evaluate:

1. 22

1

2 3

x
dx

x x
 2. 221

x dx
x

3. 
2

232 5

x dx
x

 4. 32

1

2 5

x dx
x x

Numerator being not expressible in terms of derivative of the 
denominator

An improper rational fraction (where the degree of the numerator is 
greater than or equal to the degree of the denominator) can be expressed 
as a sum of simpler fractions (partial fractions) whose denominators are of 

the form 
nax b  and 2 n

ax bx c , n being a positive integer.
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Two cases arise:

Case 1: Degree of the numerator is greater than or equal to the 
degree of the denominator

Recall that if quotient of the division 
f x
g x

 is q x  and 

remainder is r x , then, 
f x r x

q x
g x g x

. 

Use long division to write the equivalent expression for

1. 2 4
5 3

x
x

   2. 
2

2

3 2
1

x x
x

3. 
2 1
1

x
x

 4. 
3

2

2 4
2

x x
x

Hence, deduce their anti-derivatives.

Activity 4.6  

To integrate a rational function where the degree of numerator is greater 
than or equal to the degree of denominator, we proceed by long division.

Example 4.18 

Find 
2

1
x dx

x

Solution

1x
1x 2

2

1

1

x
x x

x
x

2 11
1 1

x x
x x

Example 4.19 

Find 
1
1

x dx
x

Solution 

1

1x 1
1

2

x
x

1 21
1 1

x
x x
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Then,

2 11
1 1

x dx x dx
x x

2

1
1

ln 1
2

xdx dx dx
x

x x x c

Then, 

1 21
1 1

x dx dx
x x

2
1

2ln 1

dx dx
x

x x c

Application activity 4.6 

Evaluate the following integrals:

1. 
3

2

2
1

x dx
x

 2. 
2

2

2
2

x dx
x x

 3. 
2

2

1
6 9

x dx
x x

4. 
5

3 3

x dx
x a

 5. 
3

2

1
7 12

x dx
x x

Case 2: Degree of the numerator is less than degree of the 
denominator

In this case, we reduce the fraction in simple fractions. The first step is to 
factorise the denominator.

In this case, the following situations my arise:

A. The denominator is factorised into linear factors

Factorise completely the denominator and then decompose the 
given fraction into partial fractions:

1. 2

2
2

x
x x

   2. 
2 3 2

x
x x

3. 
2

2
1x

    4. 
2

2 3
2

x
x x

Hence or otherwise, find their anti-derivatives.

Activity 4.7  
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Then,

2 11
1 1

x dx x dx
x x

2

1
1

ln 1
2

xdx dx dx
x

x x x c

Then, 

1 21
1 1

x dx dx
x x

2
1

2ln 1

dx dx
x

x x c

Application activity 4.6 

Evaluate the following integrals:

1. 
3

2

2
1

x dx
x

 2. 
2

2

2
2

x dx
x x

 3. 
2

2

1
6 9

x dx
x x

4. 
5

3 3

x dx
x a

 5. 
3

2

1
7 12

x dx
x x

Case 2: Degree of the numerator is less than degree of the 
denominator

In this case, we reduce the fraction in simple fractions. The first step is to 
factorise the denominator.

In this case, the following situations my arise:

A. The denominator is factorised into linear factors

Factorise completely the denominator and then decompose the 
given fraction into partial fractions:

1. 2

2
2

x
x x

   2. 
2 3 2

x
x x

3. 
2

2
1x

    4. 
2

2 3
2

x
x x

Hence or otherwise, find their anti-derivatives.

Activity 4.7  
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To each factor ax b  occurring once in the denominator 
of a proper rational fraction, there is corresponding single 

partial fraction of the form 
A

ax b
; where A is a constant to be 

found. But to each factor ax b  occurring n times in the denominator of a 
proper rational fraction, there corresponds a sum of n partial fractions of 
the form 

1 2
2 ... n

n
AA A

ax b ax b ax b
; 

where nA  are constants to be found.

Example 4.20 

Find 
2

3
5 4

x dx
x x

Solution

We need to factorise 2 5 4x x . That is, 2 5 4 4 1x x x x

Then,

2

3 3
5 4 4 1

x xdx dx
x x x x

Let 
3

4 1 4 1
x A B

x x x x

1 43
4 1 4 1

A x B xx
x x x x

3 1 4x A x B x  3 4x Ax A Bx B

3 4x A B x A B

1
4 3

43 4
3

A B
A B

B B
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4 71 1
3 3

A B

And 

7 4
3 3 3

4 1 4 1
x

x x x x

Now, 

2

7 4
3 3 3

5 4 4 1
x dx dx

x x x x

7 1 4 1
3 4 3 1

dx dx
x x  

7 4ln 4 ln 1
3 3

x x c

7 41 1ln 4 ln 1
3 3

x x c
 

7 43 3ln 4 ln 1x x c

7

3 4

4
ln

1
x

c
x

Example 4.21 

Find 2 4
dx

x

Solution

Since 2 4 2 2x x x ,

1
2 2 2 2

A B
x x x x

1 2 2A x B x

Take 2x , 

1 2 2 2 2
11 4
4

A B

B B
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4 71 1
3 3

A B

And 

7 4
3 3 3

4 1 4 1
x

x x x x

Now, 

2

7 4
3 3 3

5 4 4 1
x dx dx

x x x x

7 1 4 1
3 4 3 1

dx dx
x x  

7 4ln 4 ln 1
3 3

x x c

7 41 1ln 4 ln 1
3 3

x x c
 

7 43 3ln 4 ln 1x x c

7

3 4

4
ln

1
x

c
x

Example 4.21 

Find 2 4
dx

x

Solution

Since 2 4 2 2x x x ,

1
2 2 2 2

A B
x x x x

1 2 2A x B x

Take 2x , 

1 2 2 2 2
11 4
4

A B

B B
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Take 2x , 

1 2 2 2 2
11 4
4

A B

A A

Then, 
1
4

1
4
2

1
4
22x x x−

=
−
+

−

+

2

1 1
4 4

4 2 2
dx dx dx

x x x

1 1ln 2 ln 2
4 4

x x c 4 4ln 2 ln 2x x c
 

4
2ln
2

x c
x

Alternative method

2 4
dx

x

2 2 24 2
dx dx

x x

But, 2 2

1 ln
2

dx x a c
x a a x a

Then, 

4
2 2

1 2 2ln ln
2 4 2 2

dx x xc c
x x x

Example 4.22 

Find 
2

2 2
2 1

x dx
x x

Solution 

Since 
22 2 1 1x x x ,

2 2 2 2

12 2 2 2 2 2 1
11 1 1 1

A x Bx A B x x A x B
xx x x x
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2 2 1x A x B  2 2x Ax A B

2
2 0

A
A B B

Then, 
2 2
2 1

2
12

x
x x x

+
+ +

=
+

2 2
2

2 2 2 2ln 1 ln 1 ln 2 1
2 1 1

x dx dx x c x c x x c
x x x

Alternative method

We see that 2 2 1 ' 2 2x x x

Then,

2
2

2 2

2 1 '2 2 ln 2 1
2 1 2 1

x xx dx dx x x c
x x x x

Example 4.23 

Find 
3

4 2

8 16 1
8 16

x x dx
x x

Solution

2 24 28 16 2 2x x x x
3

2 2 2 2
8 16 1

2 22 2 2 2
x x A B C D

x xx x x x
2 2 2 238 16 1 2 2 2 2 2 2x x A x x B x C x x D x

3 3 2 2 3 2 28 16 1 2 4 8 4 4 2 4 8 4 4x x A x x x B x x C x x x D x x
3 3 28 16 1 2 2 4 4 4 4 8 4 8 4x x A C x A B C D x A B C D x A B C D

8
2 2 0
4 4 4 4 16
8 4 8 4 1

A C
A B C D

A B C D
A B C D
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2 2 1x A x B  2 2x Ax A B

2
2 0

A
A B B

Then, 
2 2
2 1

2
12

x
x x x

+
+ +

=
+

2 2
2

2 2 2 2ln 1 ln 1 ln 2 1
2 1 1

x dx dx x c x c x x c
x x x

Alternative method

We see that 2 2 1 ' 2 2x x x

Then,

2
2

2 2

2 1 '2 2 ln 2 1
2 1 2 1

x xx dx dx x x c
x x x x

Example 4.23 

Find 
3

4 2

8 16 1
8 16

x x dx
x x

Solution

2 24 28 16 2 2x x x x
3

2 2 2 2
8 16 1

2 22 2 2 2
x x A B C D

x xx x x x
2 2 2 238 16 1 2 2 2 2 2 2x x A x x B x C x x D x

3 3 2 2 3 2 28 16 1 2 4 8 4 4 2 4 8 4 4x x A x x x B x x C x x x D x x
3 3 28 16 1 2 2 4 4 4 4 8 4 8 4x x A C x A B C D x A B C D x A B C D

8
2 2 0
4 4 4 4 16
8 4 8 4 1

A C
A B C D

A B C D
A B C D
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From which we get;

127 33 129 31, , ,
32 16 32 16

A B C D

Thus, 

3

2 24 2

127 33 129 31
8 16 1 32 16 32 16

8 16 2 22 2
x x dx dx

x x x xx x

2 2
127 33 129 31
32 2 16 32 2 162 2

dx dx dx dx
x xx x

127 33 1 129 31 1ln 2 ln 2
32 16 2 32 16 2

x x c
x x

127 129 31 1 33 1ln 2 ln 2
32 32 16 2 16 2

x x c
x x

Application activity 4.7 

Find:

1. 
2

2
1

dx
x

 2. 
2 3 2

x dx
x x

3. 
2

3
2

x dx
x x

 4. 
2 2 1

x dx
x x

5. 
2

3
4 4
x dx

x x
 6. 

2

3 2

8 19
3 4

x x dx
x x

B. The denominator is a quadratic factor

Recall (in senior four) that, for 0, ,a b c , 
2 2

2
2

4
2 4
b b acax bx c a x
a a  

Activity 4.8  



218

Using this relation, transform denominator of each of the following 
integrals and then integrate

1. 
2 3 2

dx
x x

 2. 
2 4 4

dx
x x

 3. 
2 6 18

dx
x x

Consider the following :

• In each case, put 
2
bu x
a

From activity 4.8, by taking the integral of the form 
2

dx
ax bx c

, 

• If 2 4 0b ac , then

22

1

2

dx dx
ax bx c a bx

a

 and we let 
2
bu x
a

.

• If 2 4 0b ac , then

22 2

2

1
4

2 4

dx dx
ax bx c a b b acx

a a

.

We let 
2

2
2

4,
2 4
b b acu x k
a a

 and use the standard 

integral 2 2

1 ln
2

dx x k d
x k k x k

• If 2 4 0b ac , then,

22 2

2

1
4

2 4

dx dx
ax bx c a b b acx

a a

. 

We let 
2

2
2

4,
2 4
b b acu x k
a a

 and use the standard 

integral 
2 2

1 arctandx x d
x k k k

.
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Using this relation, transform denominator of each of the following 
integrals and then integrate

1. 
2 3 2

dx
x x

 2. 
2 4 4

dx
x x

 3. 
2 6 18

dx
x x

Consider the following :

• In each case, put 
2
bu x
a

From activity 4.8, by taking the integral of the form 
2

dx
ax bx c

, 

• If 2 4 0b ac , then

22

1

2

dx dx
ax bx c a bx

a

 and we let 
2
bu x
a

.

• If 2 4 0b ac , then

22 2

2

1
4

2 4

dx dx
ax bx c a b b acx

a a

.

We let 
2

2
2

4,
2 4
b b acu x k
a a

 and use the standard 

integral 2 2

1 ln
2

dx x k d
x k k x k

• If 2 4 0b ac , then,

22 2

2

1
4

2 4

dx dx
ax bx c a b b acx

a a

. 

We let 
2

2
2

4,
2 4
b b acu x k
a a

 and use the standard 

integral 
2 2

1 arctandx x d
x k k k

.
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Notice
• If there are other factors, to each irreducible quadratic factor 

2ax bx c occurring once in the denominator of a proper fraction, 

there corresponds a single partial fraction of the form 
2

Ax B
ax bx c

, 

where A  and B  are constants to be found.

• To each irreducible quadratic factor 2ax bx coccurring n times in 
the denominator of a proper fraction, there correspnds a sum of n  
partial fractions of the form

1 1 2 2
22 2 2

... n nA x BA x B A x B
x bx c ax bx c ax bx c
where nA  and nB  are constants to be found.

Example 4.24 

Find 2 1
dx

x x

Solution 

1, 1, 1a b c
21 4 1 1 3 0

1
2 2
bx x
a

Let 2
2

3 3 3
4 4 4 2

k k
a

2

1
1 2 2 12arctan arctan

1 3 3 3 3
2 2

3 2 12 3 arctan
3 3

xdx xc c
x x

x
c

Example 4.25 

Find 
3

4 22 1
x dx

x x
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Solution
24 2 22 1 1x x x

3

2 222 211 1

x Ax B Cx D
xx x

3 2

3 3 2

3 3 2

1x Ax B x Cx D

x Ax Ax Bx B Cx D
x Ax Bx A C x B D
1 1
0 0

0 1
0 0

A A
B B
A C C
B D D

Then, 
3

24 2 2 22 1 1 1

x x xdx dx dx
x x x x

22 2

1 12 2
2 2

1 1

x x
dx dx

x x

2 2

22 2

1 ' 1 '1 1
2 1 2 1

x x
dx dx

x x
 

2
2

1 1 1ln 1
2 2 1

x c
x

2
2

1ln 1
2 1

x c
x

Example 4.26 

Find 
2

3

2
1

x dx
x

Solution
3 21 1 1x x x x

2

22

2
1 11 1

x A Bx C
x x xx x x

2 22 1 1x A x x Bx C x
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Solution
24 2 22 1 1x x x

3

2 222 211 1

x Ax B Cx D
xx x

3 2

3 3 2

3 3 2

1x Ax B x Cx D

x Ax Ax Bx B Cx D
x Ax Bx A C x B D
1 1
0 0

0 1
0 0

A A
B B
A C C
B D D

Then, 
3

24 2 2 22 1 1 1

x x xdx dx dx
x x x x

22 2

1 12 2
2 2

1 1

x x
dx dx

x x

2 2

22 2

1 ' 1 '1 1
2 1 2 1

x x
dx dx

x x
 

2
2

1 1 1ln 1
2 2 1

x c
x

2
2

1ln 1
2 1

x c
x

Example 4.26 

Find 
2

3

2
1

x dx
x

Solution
3 21 1 1x x x x

2

22

2
1 11 1

x A Bx C
x x xx x x

2 22 1 1x A x x Bx C x
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Take 1x , 

3 3 1A A
Take 0x ,

2 1 1
2 2 1
A C

A C C A C
Take 2x ,

6 7 2 1
6 7 2 2 6 7 0
A B C

A B C B A C B

 Then,

2

3 2 2

2 ln 1
1 1 1 1

x dx dx dxdx x
x x x x x x

We need to calculate 2 1
dx

x x
1a b c

21 4 3
1

2 2
bx x
a

Let 2
2

3 3
4 4 2

k k
a

2

1
3 2 11 2 32arctan arctan

1 3 33 3
2 2

x xdx c c
x x

Hence,

2

3

3 2 12 2 3ln 1 arctan
1 3 3

xx dx x c
x

Example 4.27 

Find 26 5 1
dx

x x
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Solution

6, 5, 1a b c
2 4 25 24 1 0b ac

Let 
5

2 12
bu x x du dx
a

, 
2

2
2

4 1
4 144

b ack
a

2
2

1
16 5 1 6
44

dx du
x x u

 

2
2

1
6 1

12

du

u

1
1 1 12ln1 16 2

12 12

u
c

u
 

12 1ln
12 1

u c
u

512 1
12ln
512 1
12

x
c

x
 

12 5 1ln
12 5 1

x c
x

6 2 1
ln

4 3 1
x

c
x  

2 1 6ln
3 1 4

x c
x

2 1 6ln ln
3 1 4

x c
x

2 1 6ln since ln is another constant
3 1 4

x d
x

Application activity 4.8 

Find:

1. 
2

1
2

dx
x x

 2. 
29 6 2

x dx
x x

3. 
2

2

6 5
2 2 1
x x dx

x x
 4. 

2

4
2 1 2

x dx
x x
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Solution

6, 5, 1a b c
2 4 25 24 1 0b ac

Let 
5

2 12
bu x x du dx
a

, 
2

2
2

4 1
4 144

b ack
a

2
2

1
16 5 1 6
44

dx du
x x u

 

2
2

1
6 1

12

du

u

1
1 1 12ln1 16 2

12 12

u
c

u
 

12 1ln
12 1

u c
u

512 1
12ln
512 1
12

x
c

x
 

12 5 1ln
12 5 1

x c
x

6 2 1
ln

4 3 1
x

c
x  

2 1 6ln
3 1 4

x c
x

2 1 6ln ln
3 1 4

x c
x

2 1 6ln since ln is another constant
3 1 4

x d
x

Application activity 4.8 

Find:

1. 
2

1
2

dx
x x

 2. 
29 6 2

x dx
x x

3. 
2

2

6 5
2 2 1
x x dx

x x
 4. 

2

4
2 1 2

x dx
x x
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4.3.3. Integration of trigonometric functions

Basic  integrals of trigonometric functions

From the knowledge of differential calculus, we can give the following table 
of results:

1. sin cosx dx x c  2. cos sinx dx x c

3. 
2sec tanx dx x c  4. 2csc cotx dx x c

5. tan ln cosx dx x c  6. cot ln sinx dx x c

7. sec ln sec tanx dx x x c  8. csc ln csc cotx dx x x c

9. sec tan secx x dx x c  10. csc cot cscx x dx x c

Integrals of the form sin cosmx nxdx  or cos cosmx nxdx
or sin sinmx nxdx ; m and n are constants

For each of the following functions, transform the product into sum and 

hence find the integral f x dx .

1. sin 2 cosf x x x    2. sin sin 5f x x x

3. cos 2 cos3f x x x    4. sin sin 3 sin 4f x x x x

Activity 4.9  

To evaluate the integral of the form sin cosmx nxdx

or cos cosmx nxdx  or sin sinmx nxdx , we use the corresponding 
identities:

1sin cos sin sin
2

A B A B A B

1sin sin cos cos
2

A B A B A B
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1cos cos cos cos
2

A B A B A B

Example 4.28 

Find cos3 sin 5x xdx

Solution 

1 1cos3 sin 5 sin8 sin 2 sin8 sin 2
2 2

x x x x x x

Then, 

1cos3 sin 5 sin8 sin 2
2

x xdx x x dx

1 1sin8 sin 2
2 2

xdx xdx

1 1 1cos8 cos 2
2 8 2

x x
 

1 1cos8 cos 2
16 4

x x c

Example 4.29 

Find sin sin 2 sin 3x x xdx

Solution

1sin sin 2 cos cos3
2

x x x x

1sin sin 2 sin 3 cos cos3 sin 3
2

x x x x x x

1 cos sin 3 cos3 sin 3
2

x x x x

1 1 1sin 4 sin 2 sin 6 sin 0
2 2 2

x x x

1 1 1sin 4 sin 2 sin 6
4 4 4

x x x
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1cos cos cos cos
2

A B A B A B

Example 4.28 

Find cos3 sin 5x xdx

Solution 

1 1cos3 sin 5 sin8 sin 2 sin8 sin 2
2 2

x x x x x x

Then, 

1cos3 sin 5 sin8 sin 2
2

x xdx x x dx

1 1sin8 sin 2
2 2

xdx xdx

1 1 1cos8 cos 2
2 8 2

x x
 

1 1cos8 cos 2
16 4

x x c

Example 4.29 

Find sin sin 2 sin 3x x xdx

Solution

1sin sin 2 cos cos3
2

x x x x

1sin sin 2 sin 3 cos cos3 sin 3
2

x x x x x x

1 cos sin 3 cos3 sin 3
2

x x x x

1 1 1sin 4 sin 2 sin 6 sin 0
2 2 2

x x x

1 1 1sin 4 sin 2 sin 6
4 4 4

x x x
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Then,

sin sin sin sin sin sinx x xdx xdx xdx xdx2 3 1
4

4 1
4

2 1
4

6∫ ∫ ∫ ∫= + −

1 1 1cos 4 cos 2 cos6
16 8 24

x x x c

Example 4.30 

Find 
2cos cosx xdx

Solution 

2 1 cos 2cos cos cos
2

xx x x
 

cos cos 2 cos
2

x x x

1cos cos3 cos
2

2

x x x

 

1 1 1cos cos3 cos
2 4 4

x x x

3 1cos cos3
4 4

x x

Then,

2 3 1cos cos cos cos3
4 4

x xdx xdx xdx 3 1sin sin 3
4 12

x x c

Application activity 4.9 

Find:

1. sin 3 cos 2x x dx  2. sin 2 cos3x x dx

3. sin 3 sin 3x x dx  4. sin cosx x dx

5. cos3 cos3x x dx  6. cos cos7x x dx
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Integrals of the form sin cosm nx xdx  ( ,m n )

1. By letting cosu x , find 2sin cosx xdx

2. Use the identities 2 1sin 1 cos 2
2

x x  and 

2 1cos 1 cos 2
2

x x  to find 2 2sin cosx xdx

Activity 4.10  

If m or n is odd, save one cosine factor (or one sine factor) and 
use the relation 2 2cos 1 sinx x  (or 2 2sin 1 cosx x ). Then let 

sin cosu x du xdx  (or let cos sinu x du xdx ). 

If m and n are both even, we use the identities: 2 1sin 1 cos 2
2

x x  and 
2 1cos 1 cos 2

2
x x . It is sometimes helpful to use the identity 

1sin cos sin 2
2

x x x .

Example 4.31 

Find 
3 2sin cosx xdx

Solution
3 2 2 2sin cos sin cos sinx xdx x x xdx

2 21 cos cos sinx x xdx

Let 
cos sin

sin
u x du xdx

xdx du
Then,

3 2 2 2sin cos 1x xdx u u du

2 4 2 5u u du u du u du
3 5 3 5cos cos
3 5 3 5
u u xc c
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Integrals of the form sin cosm nx xdx  ( ,m n )

1. By letting cosu x , find 2sin cosx xdx

2. Use the identities 2 1sin 1 cos 2
2

x x  and 

2 1cos 1 cos 2
2

x x  to find 2 2sin cosx xdx

Activity 4.10  

If m or n is odd, save one cosine factor (or one sine factor) and 
use the relation 2 2cos 1 sinx x  (or 2 2sin 1 cosx x ). Then let 

sin cosu x du xdx  (or let cos sinu x du xdx ). 

If m and n are both even, we use the identities: 2 1sin 1 cos 2
2

x x  and 
2 1cos 1 cos 2

2
x x . It is sometimes helpful to use the identity 

1sin cos sin 2
2

x x x .

Example 4.31 

Find 
3 2sin cosx xdx

Solution
3 2 2 2sin cos sin cos sinx xdx x x xdx

2 21 cos cos sinx x xdx

Let 
cos sin

sin
u x du xdx

xdx du
Then,

3 2 2 2sin cos 1x xdx u u du

2 4 2 5u u du u du u du
3 5 3 5cos cos
3 5 3 5
u u xc c
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Example 4.32 

Find 5cos xdx  

Solution
5 4

22 2 4

2 4

cos cos cos

1 sin cos 1 2sin sin cos

cos 2 sin cos sin cos

xdx x xdx

x xdx x x xdx

xdx x xdx x xdx

Let sin cosu x du xdx

Then, 

5 2 4

3 5
3 5

cos sin 2 cos

2 1sin 2 sin sin sin
3 5 3 5

xdx x u du u xdx

u ux c x x x c

Example 4.33 

Find 4 2sin cosx xdx

Solution

Both powers are even.
2

4 2 1 1sin cos 1 cos 2 1 cos 2
2 2

x x x x

21 11 2cos 2 cos 2 1 cos 2
4 2

x x x

= − + + − +( )1
8
1 2 2 2 2 2 2 22 2 3cos cos cos cos cosx x x x x

2 31 1 cos 2 cos 2 cos 2
8

x x x

1 1 11 cos 2 1 cos 4 1 cos 4 cos 2
8 2 2

x x x x

1 1 1 1 1 11 cos 2 cos 4 cos 2 cos 2 cos6
8 2 2 2 2 2

x x x x x
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1 1 1 1 1 1cos 2 cos 4 cos 2 cos6
8 2 2 2 4 4

x x x x

1 1 1 1 1cos 2 cos 4 cos6
8 2 4 2 4

x x x

1 1 1 1cos6 cos 4 cos 2
32 16 32 16

x x x

Then,

4 2 1 1 1 1sin cos cos6 cos 4 cos 2
32 16 32 16
1 1 1sin 6 sin 4 sin 2
192 64 64 16

x xdx xdx xdx xdx dx

xx x x c

Alternative method

Linearise the expression 4 2sin cosx x :
4 2

4 2sin cos
2 2

ix ix ix ixe e e ex x
i

4 3 2 2 3 4 2 24 6 4 2
16 4

ix ix ix ix ix ix ix ix ix ix ix ixe e e e e e e e e e e e

4 2 2 4 2 24 6 4 2
16 4

ix ix ix ix ix ixe e e e e e

6 4 2 4 2 0 2

2 0 2 4 2 4 6

2 4 8 4 6 121
64 6 4 8 4 2

ix ix ix ix ix ix

ix ix ix ix ix ix

e e e e e e e
e e e e e e e

6 4 2 2 4 61 2 4 12 4 2
64

ix ix ix ix ix ixe e e e e e

6 6 4 4 2 21 2 4
64

ix ix ix ix ix ixe e e e e e

6 6 4 4 2 21 2 1 4
64 64 64 64

ix ix ix ix ix ixe e e e e e

6 6 4 4 2 21 1 1 1
32 2 16 2 32 2 16

ix ix ix ix ix ixe e e e e e

1 1 1 1cos6 cos 4 cos 2
32 16 32 16

x x x



228

1 1 1 1 1 1cos 2 cos 4 cos 2 cos6
8 2 2 2 4 4

x x x x

1 1 1 1 1cos 2 cos 4 cos6
8 2 4 2 4

x x x

1 1 1 1cos6 cos 4 cos 2
32 16 32 16

x x x

Then,

4 2 1 1 1 1sin cos cos6 cos 4 cos 2
32 16 32 16
1 1 1sin 6 sin 4 sin 2
192 64 64 16

x xdx xdx xdx xdx dx

xx x x c

Alternative method

Linearise the expression 4 2sin cosx x :
4 2

4 2sin cos
2 2

ix ix ix ixe e e ex x
i

4 3 2 2 3 4 2 24 6 4 2
16 4

ix ix ix ix ix ix ix ix ix ix ix ixe e e e e e e e e e e e

4 2 2 4 2 24 6 4 2
16 4

ix ix ix ix ix ixe e e e e e

6 4 2 4 2 0 2

2 0 2 4 2 4 6

2 4 8 4 6 121
64 6 4 8 4 2

ix ix ix ix ix ix

ix ix ix ix ix ix

e e e e e e e
e e e e e e e

6 4 2 2 4 61 2 4 12 4 2
64

ix ix ix ix ix ixe e e e e e

6 6 4 4 2 21 2 4
64

ix ix ix ix ix ixe e e e e e

6 6 4 4 2 21 2 1 4
64 64 64 64

ix ix ix ix ix ixe e e e e e

6 6 4 4 2 21 1 1 1
32 2 16 2 32 2 16

ix ix ix ix ix ixe e e e e e

1 1 1 1cos6 cos 4 cos 2
32 16 32 16

x x x
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Then,

4 2 1 1 1 1sin cos cos6 cos 4 cos 2
32 16 32 16
1 1 1sin 6 sin 4 sin 2
192 64 64 16

x xdx xdx xdx xdx dx

xx x x c

Application activity 4.10 
Find:

1. 3cos sinx x dx  2. 4sin 2 cos 2x x dx

3. 
3sin x dx  4. 3cos 4x dx

5. 
3 3sin cosx x dx  6. 3 5cos 2 sin 2x x dx

Integrals of the form tan secm nx xdx  ( ,m n )

1. By letting tanu x , find 
2tan xdx .

2. By using the identity 2 2tan sec 1x x  and letting secu x , find 
5tan xdx .

Activity 4.11  

If the power of secant is even, save a factor of 2sec x  and use the identity 
2 2sec 1 tanx x  to express the remaining factors of secant in terms of 

tan x  and then use the substitution tanu x .

If the power of tangent is odd, save a factor of sec tanx x  and use the 
identity 2 2tan sec 1x x  to express the remaining factors of tangent in 
terms of sec x  and then use the substitution secu x .

Example 4.34 

Find 5 7tan secx xdx

Solution
5 7 4 6tan sec tan sec sec tanx xdx x x x xdx
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22 6sec 1 sec sec tanx x x xdx
4 2 6sec 2sec 1 sec sec tanx x x x xdx
10 8 6sec 2sec sec sec tanx x x x xdx

Let sec sec tanu x du x xdx
Then,

5 7 10 8 6tan sec 2x xdx u u u du
11 9 7 11 9 7sec 2sec sec2
11 9 7 11 9 7
u u u x x xc c

Example 4.35 

Find 4tan xdx

Solution

Let 

2 2 2
2tan sec 1 tan 1

1
duu x du xdx x dx u du dx

u
Then,

4
4 4

2 2tan
1 1

du uxdx u du
u u

By long division; 
4

2
2 2

11
1 1

u u
u u

4 3
2

2 2

1 arctan
1 1 3

u udu u du du du u u c
u u

Hence,
3 3

4 tan tantan tan arctan tan tan
3 3

x xxdx x x c x x c

Example 4.36 

Find 
3tan xdx
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22 6sec 1 sec sec tanx x x xdx
4 2 6sec 2sec 1 sec sec tanx x x x xdx
10 8 6sec 2sec sec sec tanx x x x xdx

Let sec sec tanu x du x xdx
Then,

5 7 10 8 6tan sec 2x xdx u u u du
11 9 7 11 9 7sec 2sec sec2
11 9 7 11 9 7
u u u x x xc c

Example 4.35 

Find 4tan xdx

Solution

Let 

2 2 2
2tan sec 1 tan 1

1
duu x du xdx x dx u du dx

u
Then,

4
4 4

2 2tan
1 1

du uxdx u du
u u

By long division; 
4

2
2 2

11
1 1

u u
u u

4 3
2

2 2

1 arctan
1 1 3

u udu u du du du u u c
u u

Hence,
3 3

4 tan tantan tan arctan tan tan
3 3

x xxdx x x c x x c

Example 4.36 

Find 
3tan xdx
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Solution

Let secu x
sec tandu x xdx

sec tan tan
du dudx
x x u x

3 2 2tan tan tan sec 1 tanxdx x x dx x x dx

2 1 tan
tan
duu x

u x
2 1u du

u u  

duu du
u  

21 ln
2

u u c

21 sec ln sec
2

x x c

Application activity 4.11 

Find;

1. 
2sec tanx x dx  2. 2sec tanx x dx

3. 3sec tanx x dx  4. 3 3sec tanx x dx

5. 2 2sec tanx x dx  6. 4 2sec tanx x dx

Integrals containing sin ,cos , tanx x x  on denominator

Recall (in senior 5) that: 
2

2 2 2

2 tan 1 tan 2 tan
2 2 2sin , cos , tan

1 tan 1 tan 1 tan
2 2 2

x x x

x x xx x x

By using these identities, find 
sin cos 1

dx
x x

Hint: Using substitution; tan arctan
2 2
x xu u

Activity 4.12  
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From activity 4.12, for integral containing sin ,cos , tanx x x  on denominator, 
we use identities;

2

2 2 2

2 tan 1 tan 2 tan
2 2 2sin , cos , tan

1 tan 1 tan 1 tan
2 2 2

x x x

x x xx x x

and we let tan arctan
2 2
x xu u

Example 4.37 

Find 
sin
dx

x

Solution

2

2

2 tan 1 tan12 2sin
sin1 tan 2 tan

2 2

x x

x x xx
 

And 

21 tan
2

sin 2 tan
2

x
dx dxxx

Let 

2 2

2tan arctan
2 2 1 2 1
x x du dx duu u dx

u u

2
2

2

1 tan 1 22 ln
2 12 tan

2

x
u du dudx u cx u u u

Hence,

ln tan
sin 2
dx x c

x
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From activity 4.12, for integral containing sin ,cos , tanx x x  on denominator, 
we use identities;

2

2 2 2

2 tan 1 tan 2 tan
2 2 2sin , cos , tan

1 tan 1 tan 1 tan
2 2 2

x x x

x x xx x x

and we let tan arctan
2 2
x xu u

Example 4.37 

Find 
sin
dx

x

Solution

2

2

2 tan 1 tan12 2sin
sin1 tan 2 tan

2 2

x x

x x xx
 

And 

21 tan
2

sin 2 tan
2

x
dx dxxx

Let 

2 2

2tan arctan
2 2 1 2 1
x x du dx duu u dx

u u

2
2

2

1 tan 1 22 ln
2 12 tan

2

x
u du dudx u cx u u u

Hence,

ln tan
sin 2
dx x c

x
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Example 4.38 

Find 
sin cos 2

dx
x x

Solution 

2 2 2

2 2 2

2

2

2 tan 1 tan 2 tan 1 tan 2 2 tan
2 2 2 2 2sin cos 2 2

1 tan 1 tan 1 tan
2 2 2

2 tan tan 3
2 2
1 tan

2

x x x x x

x x x x x

x x

x

2

2

1 tan
2

sin cos 2 2 tan tan 3
2 2

x
dx dxx xx x

Let 

2 2

2tan arctan
2 2 1 2 1
x x du dx duu u dx

u u

2
2

2 2
2

1 tan 1 22
2 3 12 tan tan 3

2 2

x
u dudxx x u u u 22

2 3
du

u u
 

2
1 2 22 2 arctan 1 2 arctan tan 1

2 2 221 2
du xu c c

u

Thus,

22 arctan tan 1
sin cos 2 2 2

dx x c
x x
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Application activity 4.12 

Find the following integrals:

1. 
2 cos

dx
x

 2. 
3 2sin

dx
x

3. 
2 sin 2

dx
x

 4. 
5 3cos

dx
x

5. 
3cos 4sin 6

dx
x x

 6. 
3cos 4sin 5

dx
x x

Integrals containing 2 2sin ,cosx x  on denominator

Express cos x  and sin x  in terms of tan x , hence integrate  2

1
cos

dx
x

Hint: 1cos
sec

x
x

 and 
tansin
sec

xx
x

  

Letting tan arctanu x x u

Activity 4.13  

From activity 4.13, for integral containing 2 2sin , cosx x  on denominator, 

we use the identities 
2

1cos
1 tan

x
x

 and 
2

tansin
1 tan

xx
x

and we let tan arctanu x x u

Example 4.39 

Find 
2sin

dx
x

Solution

2

2 2

1 tan
sin tan

dx x dx
x x

Let 2tan arctan
1

duu x x u and dx
u
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Application activity 4.12 

Find the following integrals:

1. 
2 cos

dx
x

 2. 
3 2sin

dx
x

3. 
2 sin 2

dx
x

 4. 
5 3cos

dx
x

5. 
3cos 4sin 6

dx
x x

 6. 
3cos 4sin 5

dx
x x

Integrals containing 2 2sin ,cosx x  on denominator

Express cos x  and sin x  in terms of tan x , hence integrate  2

1
cos

dx
x

Hint: 1cos
sec

x
x

 and 
tansin
sec

xx
x

  

Letting tan arctanu x x u

Activity 4.13  

From activity 4.13, for integral containing 2 2sin , cosx x  on denominator, 

we use the identities 
2

1cos
1 tan

x
x

 and 
2

tansin
1 tan

xx
x

and we let tan arctanu x x u

Example 4.39 

Find 
2sin

dx
x

Solution

2

2 2

1 tan
sin tan

dx x dx
x x

Let 2tan arctan
1

duu x x u and dx
u
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2

2 2 2

1
sin 1

dx u du
x u u  

2

du
u  

2

'u du
u

1 c
u

1 cot
tan

c x c
x

Example 4.40 

Find 4sin
dx

x

Solution

22

4 4

1 tan
sin tan

x dxdx
x x

Let 2tan arctan
1

duu x x u and dx
u

22

4 4 2

1
sin 1

udx du
x u u

2

4

1 u du
u  

2

4 4

du u du
u u  

4 2u du u du

3 1

3 1
u u c

 
3

1 1
3

c
u u  

3

3

1 1
3tan tan
cot cot
3

c
x x

x x c

Application activity 4.13 

Find the following indefinite integrals: 

1) 
4

1
cos

dx
x

 2) 
6

1
cos

dx
x

 3) 
6

1
sin

dx
x

 4) 
8

1
cos

dx
x

Notice
Sometimes it is useful to use trigonometric identities and then use standard 
integrals.
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Example 4.41 

Find 
2

sin cos
2 2
x x dx

Solution 
2

2 2sin cos sin 2sin cos cos
2 2 2 2 2 2
x x x x x xdx dx

2 2sin 2sin cos cos
2 2 2 2
x x x x dx

 
1 2sin cos

2 2
x x dx

2sin cos since 2sin cos sin 2 sin
2 2 2 2 2
x x x x xdx dx x

sin cosdx xdx x x c

Example 4.42 

Find 2tan x dx

Solution 
2

2
2

sintan
cos

xxdx dx
x  

2

2

1 cos
cos

x dx
x

2

2 2

1 cos tan
cos cos

xdx x x c
x x

4.3.4. Integration of irrational functions
Standard integrals of irrational functions
From the knowledge of differential calculus, we can write;

1. 
2 2

arcsindx x c
aa x

2. 
2 2

arccosdx x c
aa x

3. 
2 2

1 arcsecdx x c
a ax x a

4. 
2 2

1 arccscdx x c
a ax x a
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Example 4.41 

Find 
2

sin cos
2 2
x x dx

Solution 
2

2 2sin cos sin 2sin cos cos
2 2 2 2 2 2
x x x x x xdx dx

2 2sin 2sin cos cos
2 2 2 2
x x x x dx

 
1 2sin cos

2 2
x x dx

2sin cos since 2sin cos sin 2 sin
2 2 2 2 2
x x x x xdx dx x

sin cosdx xdx x x c

Example 4.42 

Find 2tan x dx

Solution 
2

2
2

sintan
cos

xxdx dx
x  

2

2

1 cos
cos

x dx
x

2

2 2

1 cos tan
cos cos

xdx x x c
x x

4.3.4. Integration of irrational functions
Standard integrals of irrational functions
From the knowledge of differential calculus, we can write;

1. 
2 2

arcsindx x c
aa x

2. 
2 2

arccosdx x c
aa x

3. 
2 2

1 arcsecdx x c
a ax x a

4. 
2 2

1 arccscdx x c
a ax x a
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Integrals containing , 0n ax b a

By letting 2 3 1u x , find 3 1x dx

Activity 4.14  

When finding integral containing , 0n ax b a , we let nu ax b .

Example 4.43 

Find 3 3 1x dx

Solution

Let 3 33 1 3 1u x u x
23 3u du dx 2u du dx

23 3 1x dx uu du

3u du  
4

4
u c  

3

4
u u c  

33 1 3 1
4

x x
c

Example 4.44 

Find 
2

2 1
x dx
x

Solution 

Let 
2 2 1 2 1u x u x

2 1
2

ux
 

dx udu

22

2

1
2

2 1

u
x dx udu

ux  

4 22 1
4

u u du

4 2

4 2 4
u u dudu du

 

5 3

20 6 4
u u u c
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5 3
2 1 2 1 2 1
20 6 4

x x x c
4 2

2 1 2 1 2 1 2 1 2 1
20 6 4

x x x x x c

24 4 1 2 1 2 1 2 1 2 1
20 6 4

x x x x x x c

212 12 3 20 10 152 1
60

x x xx c

212 8 82 1
60

x xx c
 

23 2 22 1
15

x xx c

Application activity 4.14  
Find:

1. 6 3x dx  2. 
35 2x dx

3. 
3

1
8 1

dx
x

 4. 
3

1

2 3
dx

x

5. 2 5x dx  6. 3 3 8x dx

7. 
4

2 3
dx

x
 8. 

3

2

1 3
dx

x

Integrals containing 2 , 0ax bx c a

Recall (in senior four) that, for 0, ,a b c , 
2 2

2
2

4
2 4
b b acax bx c a x
a a

Using this relation, transform denominator of each of the following 
integrals and then integrate

1. 
2 2 1

dx
x x

 2. 
2 5 6

dx
x x

 3. 
2 6 18

dx
x x

Activity 4.15  
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5 3
2 1 2 1 2 1
20 6 4

x x x c
4 2

2 1 2 1 2 1 2 1 2 1
20 6 4

x x x x x c

24 4 1 2 1 2 1 2 1 2 1
20 6 4

x x x x x x c

212 12 3 20 10 152 1
60

x x xx c

212 8 82 1
60

x xx c
 

23 2 22 1
15

x xx c

Application activity 4.14  
Find:

1. 6 3x dx  2. 
35 2x dx

3. 
3

1
8 1

dx
x

 4. 
3

1

2 3
dx

x

5. 2 5x dx  6. 3 3 8x dx

7. 
4

2 3
dx

x
 8. 

3

2

1 3
dx

x

Integrals containing 2 , 0ax bx c a

Recall (in senior four) that, for 0, ,a b c , 
2 2

2
2

4
2 4
b b acax bx c a x
a a

Using this relation, transform denominator of each of the following 
integrals and then integrate

1. 
2 2 1

dx
x x

 2. 
2 5 6

dx
x x

 3. 
2 6 18

dx
x x

Activity 4.15  
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Recall (in senior four) that, for 0, ,a b c , 
2 2

2
2

4
2 4
b b acax bx c a x
a a

Using this relation, transform denominator of each of the following 
integrals and then integrate

1. 
2 2 1

dx
x x

 2. 
2 5 6

dx
x x

 3. 
2 6 18

dx
x x

Consider the following:

• In each case, let 
2
bu x
a

• Use, where necessary, the formulae 
'

2 2

2 2
ln lnu dxdu u d and x x k d

u x k
 Where d is 

constant.

From activity 4.15, for the integral of the

form 
2

dx
ax bx c

, if 0a

• If 2 4 0b ac , then

2

1

2

dx dx
baax bx c x
a

 and we let 
2
bu x
a

• If 2 4 0b ac , then

2 2 2

2

1

4
2 4

dx dx
aax bx c b b acx

a a  

We let 
2

2
2

4,
2 4
b b acu x k
a a

 and use the integral 

2 2

2 2
lndx x x k d

x k
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• If 2 4 0b ac , then

2 2 2

2

1

4
2 4

dx dx
aax bx c b b acx

a a

We let 
2

2
2

4,
2 4
b b acu x k
a a

 and use the integral  

2 2

2 2
lndx x x k d

x k

Example 4.45 

Find 
2 2 15

dx
x x

Solution 

1
2
bu x x du dx
a

, 
2

2
2

4 64 16
4 4

b ack
a

2 2 22 15
dx du

x x u k

2 2ln u u k c 2ln 1 1 16x x c

2ln 1 2 15x x x c

Example 4.46 

Find 
22 1
dx

x x

Solution

1
2 4
bu x x du dx
a

, 
2

2
2

4 7
4 16

b ack
a
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• If 2 4 0b ac , then

2 2 2

2

1

4
2 4

dx dx
aax bx c b b acx

a a

We let 
2

2
2

4,
2 4
b b acu x k
a a

 and use the integral  

2 2

2 2
lndx x x k d

x k

Example 4.45 

Find 
2 2 15

dx
x x

Solution 

1
2
bu x x du dx
a

, 
2

2
2

4 64 16
4 4

b ack
a

2 2 22 15
dx du

x x u k

2 2ln u u k c 2ln 1 1 16x x c

2ln 1 2 15x x x c

Example 4.46 

Find 
22 1
dx

x x

Solution

1
2 4
bu x x du dx
a

, 
2

2
2

4 7
4 16

b ack
a
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2 2 2

1
22 1

dx du
x x u k

2 21 ln
2

u u k c

21 1ln 2 1
42

x x x c

Notice

Sometimes, we will need trigonometric substitution and we can change 
back to the original variable afterwards.

• For integral containing 2 2k x , we put
sin cosx k dx k d

sin sin xx k
k

From the definition of trigonometric ratios, we 
construct a right angle triangle whose opposite 
side to angled  is x  and hypotenuse is k . 
From Pythagoras rule, the adjacent side will be 

2 2k x . 

xk

2 2

2 2

sin

cos

k x
x k

k x k

For integral containing 2 2x k , we put 2tan secx k dx k d
tan tan xx k

k
From the definition of trigonometric 
ratios, we construct a right angled 
triangle whose opposite side to angle 

 is x and adjacent side is k. From 
Pythagoras rule, the hypotenuse side 

will be 2 2x k . 

x

k

2 2

tan

sec

x k

x k k

2 2x k

• For integral containing 2 2x k , we put

sec tan secx k dx k d

sec sec xx k
k
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From the definition of trigonometric ratios, we construct a right angled 
triangle whose hypothenuse side to angle  is x  and adjacent side is k .

 From Pythagoras rule, the opposite side will be 2 2x k . 

 

x

k
secx k

2 2x k

2 2 tanx k k

Example 4.47 

Show that 2 2

2 2
lndx x x a k

x a
, is a constantk

Solution 

Let 2tan secx a dx a d
2

2 2 2 2 2

sec
tan

dx a d
x a a a  

2

2

sec
tan 1

a d
a

2sec
sec

d
 

sec d

ln sec tan c from standard integrals

Recall that we made the substitution tanx a
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From the definition of trigonometric ratios, we construct a right angled 
triangle whose hypothenuse side to angle  is x  and adjacent side is k .

 From Pythagoras rule, the opposite side will be 2 2x k . 

 

x

k
secx k

2 2x k

2 2 tanx k k

Example 4.47 

Show that 2 2

2 2
lndx x x a k

x a
, is a constantk

Solution 

Let 2tan secx a dx a d
2

2 2 2 2 2

sec
tan

dx a d
x a a a  

2

2

sec
tan 1

a d
a

2sec
sec

d
 

sec d

ln sec tan c from standard integrals

Recall that we made the substitution tanx a
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a

xHypotenuse = 2 2a x

From the left triangle,

2 2

tan , secx a x
a a

Then,

2 2

2 2
lndx a x x c

a ax a

2 2

ln a x x c
a

2 21ln a x x c
a  

2 2 1ln lna x x c
a

2 2ln a x x k

Therefore, 2 2

2 2
lndx x x a k

x a

Example 4.48 

Find 3 2 4x x dx

Solution 

Let 2secx 2 tan secdx d

3 2 3 24 8sec 4sec 4 2 tan secx x dx d

3 232sec sec 1 tan sec d

332 sec tan tan sec d

3 232 sec tan sec d

4 232 sec tan d
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2 2 232 sec sec tan d

2 2 232 sec 1 tan tan d

2 2 4 232 tan sec tan sec d

2 2 4 232 tan sec 32 tan secd d

Let 2tan secu du d
2 2 4 2 2 432 tan sec 32 tan sec 32 32d d u du u du

3 5

3 5

32 32
3 5

32 tan 32 tan
3 5

u u c

c

Since we made the substitution 22sec cosx
x

2

x 2 22x

From the left triangle,

2 2 22 4tan
2 2

x x

Then, 
3 5

2 2
3 5 32 4 32 432 tan 32 tan

3 5 3 8 5 32

x x

22 2 2 24 4 4 4 4
3 5

x x x x

2
2 2 4 44 4

3 5
xx x

2
2 2 20 3 124 4

15
xx x
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2 2 232 sec sec tan d

2 2 232 sec 1 tan tan d

2 2 4 232 tan sec tan sec d

2 2 4 232 tan sec 32 tan secd d

Let 2tan secu du d
2 2 4 2 2 432 tan sec 32 tan sec 32 32d d u du u du

3 5

3 5

32 32
3 5

32 tan 32 tan
3 5

u u c

c

Since we made the substitution 22sec cosx
x

2

x 2 22x

From the left triangle,

2 2 22 4tan
2 2

x x

Then, 
3 5

2 2
3 5 32 4 32 432 tan 32 tan

3 5 3 8 5 32

x x

22 2 2 24 4 4 4 4
3 5

x x x x

2
2 2 4 44 4

3 5
xx x

2
2 2 20 3 124 4

15
xx x
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2 2 2 4 2 24 4 3 8 3 4 32 4
15 15

x x x x x x

Therefore, 

4 2 2
3 2

3 4 32 4
4

15
x x x

x x dx c

Example 4.49 

Find 2 2a x dx

Solution 

Let sin cosx a dx a d
2 2 2 2 2sin cosa x dx a a a d 21 sin cosa a d

2 cos cosa d
 

2 2cosa d

2
2 cos 2 1cos 2 1 , cos

2 2
a d

2 sin 2
2 2
a c

 

2 2sin cos
2 2
a c

2

sin cos
2
a c

But sin sin xx a
a

a x

2 2a x

From the left triangle,

2 2

cos , sin arcsina x x x
a a a

Then, 
2

2 2 sin cos
2
aa x dx c

2 2 2

arcsin
2
a x a x x c

a a a
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2
2 2

2 arcsin
2
a x xa x c

a a

2
2 2 arcsin

2 2
x a xa x c

a

Notice

For integrals of the form 
2

dx
ax bx c

, 0a , we use 

the result 
2 2

arcsindx x d
kk u

Example 4.50 

Find 
2 1
dx

x x

Solution 

2 1
dx

x x
Here,

2 2

2 2

22 2

1 1

1 1 4 1 5
2 4 2 4

5 1 5 1
4 2 2 2

x x x x

x x

x x

Let 
1
2

u x du dx

2 2

2
1 5

2

dx du
x x

u
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2
2 2

2 arcsin
2
a x xa x c

a a

2
2 2 arcsin

2 2
x a xa x c

a

Notice

For integrals of the form 
2

dx
ax bx c

, 0a , we use 

the result 
2 2

arcsindx x d
kk u

Example 4.50 

Find 
2 1
dx

x x

Solution 

2 1
dx

x x
Here,

2 2

2 2

22 2

1 1

1 1 4 1 5
2 4 2 4

5 1 5 1
4 2 2 2

x x x x

x x

x x

Let 
1
2

u x du dx

2 2

2
1 5

2

dx du
x x

u
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Using the result 
2 2

arcsindx x d
kk u

, we have

2 2

2

arcsin
51 5
22

dx du u d
x x

u  

12
2arcsin

5

x
d 2 1arcsin

5
x d

Application activity 4.15 

Find;

1. 
2 2 5

dx
x x

 2. 
24 2

dx
x x

3. 
2 4 2

dx
x x

 4. 
26 5

dx
x x

5. 1x x dx

4.3.5. Integration by parts

Let 1 xf x x e .

1. Differentiate f x  using the product rule.

2. From 1), determine the value of xxe dx .

3. Is it true that ?uvdx udx vdx

Activity 4.16  

From activity 4.16, we see that the integral of a product of two functions 
does not equal the product of the integrals of the two functions. 

To develop a rule, we start with the product rule for differentiation:
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d uv du dvv u
dx dx dx

Integrating both sides with respect to x  yields

du dvuv v dx u dx
dx dx

dv duu dx uv v dx
dx dx

Or 
dv duu dx uv v dx
dx dx

This is the formula for integration by parts.

 To apply the integration by parts to a given integral, we must first factor its 
integrand into two parts. 

An effective strategy is to choose for dv
dx

 the most complicated 

factor that can readily be integrated. Then, we differentiate the other part, 

u, to find du
dx

.

The following table can be used:

u 'v
Logarithmic function Polynomial function

Polynomial function Exponential function

Polynomial function Trigonometric function

Exponential function Trigonometric function

Trigonometric function Exponential function

Inverse trigonometric function Polynomial function

Example 4.51 

Find ln xdx
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d uv du dvv u
dx dx dx

Integrating both sides with respect to x  yields

du dvuv v dx u dx
dx dx

dv duu dx uv v dx
dx dx

Or 
dv duu dx uv v dx
dx dx

This is the formula for integration by parts.

 To apply the integration by parts to a given integral, we must first factor its 
integrand into two parts. 

An effective strategy is to choose for dv
dx

 the most complicated 

factor that can readily be integrated. Then, we differentiate the other part, 

u, to find du
dx

.

The following table can be used:

u 'v
Logarithmic function Polynomial function

Polynomial function Exponential function

Polynomial function Trigonometric function

Exponential function Trigonometric function

Trigonometric function Exponential function

Inverse trigonometric function Polynomial function

Example 4.51 

Find ln xdx
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Solution

Here, we can write ln lnxdx xdx= ⋅∫∫ 1

Let 
1lnu x du dx
x

 and dv dx v x
Then, 

ln ln ln ln .dxx dx x x x x x dx x x x c
x

Example 4.52 

Find xxe dx

Solution

Let u x du dx  and x x xdv e dx v e dx e

Then, 

.x x x x xxe dx xe e dx xe e c

Example 4.53 

Find e sinx x dx

Solution 

Let u x du dx  and 
1sin 2 cos 2
2

dv xdx v x

Then, 

1sin 2 cos 2 cos 2
2 2

1 1cos 2 cos 2 cos 2 sin 2
2 2 2 4

xx xdx x xdx

x xx xdx x x c

Example 4.54 

Find sin 2xe xdx

Solution 

Let sin cosu x du xdx  and x xdv e dx v e
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Then, 

sin sin cosx x xe xdx e x e xdx

We need to calculate cosxe xdx

Let cos sinu x du xdx  and x xdv e dx v e
sin sin cosx x xe xdx e x e xdx

sin cos sin sinx x x xe xdx e x e x e xdx

cos sin cos sinx x x xe xdx e x e x e xdx

Clearly, we see that the original integral has reappeared on the RHS. Thus, 
by collecting like terms we have;

sin sin sin cosx x x xe xdx e xdx e x e x

2 sin sin cosx x xe xdx e x e x

Thus,

1sin sin cos
2

x x xe xdx e x e x c

Example 4.55 
Find arcsin xdx

Solution

We can write arcsin arcsinxdx xdxas 1⋅∫∫
Let 

2
arcsin

1
dxu x du

x
 and dv du v x

2

2

1arcsin arcsin arcsin 1
2 1

xdxxdx x x x x x c
x

Application activity 4.16 
Use the method of integration by parts to find the following:

1. cos 2x x dx  2.  
3xxe dx  3.  sin 4x x dx

4. 
2 lnx x dx  5.  

22 3 xx e dx  6.  
2xxe dx
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Then, 

sin sin cosx x xe xdx e x e xdx

We need to calculate cosxe xdx

Let cos sinu x du xdx  and x xdv e dx v e
sin sin cosx x xe xdx e x e xdx

sin cos sin sinx x x xe xdx e x e x e xdx

cos sin cos sinx x x xe xdx e x e x e xdx

Clearly, we see that the original integral has reappeared on the RHS. Thus, 
by collecting like terms we have;

sin sin sin cosx x x xe xdx e xdx e x e x

2 sin sin cosx x xe xdx e x e x

Thus,

1sin sin cos
2

x x xe xdx e x e x c

Example 4.55 
Find arcsin xdx

Solution

We can write arcsin arcsinxdx xdxas 1⋅∫∫
Let 

2
arcsin

1
dxu x du

x
 and dv du v x

2

2

1arcsin arcsin arcsin 1
2 1

xdxxdx x x x x x c
x

Application activity 4.16 
Use the method of integration by parts to find the following:

1. cos 2x x dx  2.  
3xxe dx  3.  sin 4x x dx

4. 
2 lnx x dx  5.  

22 3 xx e dx  6.  
2xxe dx
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Integration by reduction formulae

Let cos , sinm m
m mI x bx dx J x bx dx . 

Apply the method integration by parts to integral mJ  to show that 

1 cosm
m mbJ mI x bx .

Activity 4.17  

Knowing integral mI , we can establish a general relation, by integration by 
parts, which will help us to find 1 2 3 0, , , ...,m m mI I I I .

Example 4.56 

Let m ax
mI x e dx . Show that 1

m ax
m maI mI x e  and hence 

deduce the value of 2I  and 0I .

Solution

Let 1m mu x du mx  and 
1ax axdv e dx v e
a

 

Then,

11 m ax m ax
m

mI x e x e dx
a a

1
1 m ax

m m
mI x e I

a a  

1
1 m ax

m mI x e mI
a  

Now, 

From the relation 1
1 m ax

m mI x e mI
a

, we can write

2
2 1

1 2axI x e I
a

 and 1 0
1 axI xe I
a

But 0
0

1ax ax axI x e dx e dx e c
a
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1
1 1ax axI xe e c
a a

2
2

2 2
2 2

1 1 12

1 2 2 2 2

ax ax ax

ax
ax ax ax

I x e xe e c
a a a

x e xx e e e c x c
a a a a a a

Example 4.57 

Given that lnm
mI x xdx . Show that 

1 11 ln
1

m
mI m x x

m
 with \ 1m . Deduce the 

value of lnx xdx  and ln xdx .

Solution

Let ln dxu x du
x

 and 
1

1

m
m xdv x dx v

m
 

1 1

ln
1 1

m m

m
x x dxI x
m m x  

1

ln
1 1

m mx x x dxx
m m x

     

1

ln
1 1

m mx xx dx
m m  

1 1

ln
1 1 1

m mx xx
m m m

Thus,

1 1ln
1 1

m

m
xI x
m m

Thus, I m x x
mm

m+( )= −
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

+1 1
1

1 ln ;as required

From Im  expression, we see that;

For 1m , 
2

1
1ln

2 2
xI x  and 1 lnI x xdx  

Then, 
2 1ln ln
2 2
xx xdx x c
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1
1 1ax axI xe e c
a a

2
2

2 2
2 2

1 1 12

1 2 2 2 2

ax ax ax

ax
ax ax ax

I x e xe e c
a a a

x e xx e e e c x c
a a a a a a

Example 4.57 

Given that lnm
mI x xdx . Show that 

1 11 ln
1

m
mI m x x

m
 with \ 1m . Deduce the 

value of lnx xdx  and ln xdx .

Solution

Let ln dxu x du
x

 and 
1

1

m
m xdv x dx v

m
 

1 1

ln
1 1

m m

m
x x dxI x
m m x  

1

ln
1 1

m mx x x dxx
m m x

     

1

ln
1 1

m mx xx dx
m m  

1 1

ln
1 1 1

m mx xx
m m m

Thus,

1 1ln
1 1

m

m
xI x
m m

Thus, I m x x
mm

m+( )= −
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

+1 1
1

1 ln ;as required

From Im  expression, we see that;

For 1m , 
2

1
1ln

2 2
xI x  and 1 lnI x xdx  

Then, 
2 1ln ln
2 2
xx xdx x c
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Also, 

For 0m , 0 ln 1I x x  and 0 lnI xdx  

Then, ln ln 1xdx x x c

Application activity 4.17 

Use the method of integration by parts to derive the reduction formula 
for:

1. n ax
nI x e dx

2. tann
nI x dx  and hence find 

5tan x dx

3. sinn
nI x dx  4. cosn

nI x dx  5. ln n
nI x dx  

4.3.6. Integration by Maclaurin series

Consider the function ln 1f x x . Find the;

1. Maclaurin polynomial for f x .

2. Integral of the polynomial obtained in 1).

Activity 4.18  

For some integrals, we can use Maclaurin series of the function to help in 
their integration.

Example 4.58 

Find by Maclaurin series 3 21 x x dx

Solution

The Maclaurin series of 3 21 x x  is 
2

3 2 21 1 ...
3 9
x xx x

Then,

2 2 3
3 2 2 21 1 ... ...

3 9 6 27
x x x xx x dx dx x c
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Example 4.59 

Find by Maclaurin series ln 1 t dt

Solution

The Maclaurin series of ln 1 t  is 
2 3 4

ln 1 ...
2 3 4
t t tt t

Then,
2 3 4 2 3 4 5

ln 1 ... ...
2 3 4 2 6 12 20
t t t t t t tt dt t dt c

Application activity 4.18 

Use Maclaurin series to find;

1. 
3xe dx  2.  sin xdx  3.  cos xdx

4. tan xdx  5.  1 xdx

4.4. Definite integrals
4.4.1.

Consider the function 2 2 3f x x x .

1. Find the indefinite integrals F x  of f x .

2. Evaluate 1 1F F .

Activity 4.19  

We define the definite integrals of the function f x with respect to x 
from a to b to be  
b

a

f x dx  
b

a
F x F b F a ;

where F x  is the anti-derivative of f x .

We call a and b the lower and upper limits of integration respectively. 
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Example 4.59 

Find by Maclaurin series ln 1 t dt

Solution

The Maclaurin series of ln 1 t  is 
2 3 4

ln 1 ...
2 3 4
t t tt t

Then,
2 3 4 2 3 4 5

ln 1 ... ...
2 3 4 2 6 12 20
t t t t t t tt dt t dt c

Application activity 4.18 

Use Maclaurin series to find;

1. 
3xe dx  2.  sin xdx  3.  cos xdx

4. tan xdx  5.  1 xdx

4.4. Definite integrals
4.4.1.

Consider the function 2 2 3f x x x .

1. Find the indefinite integrals F x  of f x .

2. Evaluate 1 1F F .

Activity 4.19  

We define the definite integrals of the function f x with respect to x 
from a to b to be  
b

a

f x dx  
b

a
F x F b F a ;

where F x  is the anti-derivative of f x .

We call a and b the lower and upper limits of integration respectively. 
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1. The definite integral of a function f x  which lies above the x-axis 
can be interpreted as the area under the curve of f x .

2. Let us find that area enclosed by the curve y f x  and the lines 
x a  and x b  as illustrated in figure 4.2.

Figure 4.2. 

The area iS  of the strip between 1ix  and ix  is approximately equal to 
the area of a rectangle with width l x  and length iL f x  i.e. 

i iS f x x .

The total area A is 
1 1

n n

i i
i i

S f x x  or 
1

lim
n

in i
A f x x ;

this is known as Sum of Riemann.

If f is continuous on ,a b  , then 
b

a

A f x dx .

Notice
Integration constants are not written in definite integrals since they always 
cancel out.

Consider; ( ) ( )
b b

aa
f x dx F x

   F b c F a c   F b c F a c
F b F a

Remark: ( ) 0
a

a
f x dx  and 0 0

a

a
dx

IIIIIIIIIIIIII
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Example 4.60 

Determine the value of the definite integral 
2 3

1
x dx

Solution

First, we calculate 
4

3

4
xx dx

Then, 
242 3

1
14

xx dx = 
4 42 1 16 1 15
4 4 4 4 4

Therefore, 
2 3

1

15
4

x dx

Example 4.61 

Evaluate 
1 2

0
x dx

Solution

3
2

3
xx dx

Then, 

131 2

0
0

1 10
3 3 3
xx dx

Example 4.62 

Work out 
2

2
1x dx

Solution 

Since 1 1 1x x for x  and 1 1 1x x for x , then

2 1 2

2 2 1
1 1 1x dx x dx x dx

1 22 2

2 12 2
x xx x

1 11 2 2 2 2 1 5
2 2
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Determine the value of the definite integral 
2 3

1
x dx

Solution

First, we calculate 
4

3

4
xx dx

Then, 
242 3

1
14

xx dx = 
4 42 1 16 1 15
4 4 4 4 4
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Work out 
2

2
1x dx

Solution 
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2 1 2

2 2 1
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1 22 2

2 12 2
x xx x

1 11 2 2 2 2 1 5
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Example 4.63 

Evaluate 
3

0

3 5x dx

Solution 

As 

53 5,
33 5

53 5,
3

x x
x

x x
 , we split the integral into parts 

at the point where 3 5x  changes from 3 5x  to 3 5x , namely at 
5
3

x , then

5
3 33

50 0
3

3 5 3 5 3 5x dx x dx x dx

5 3
32 2

50
3

3 35 5
2 2

x x x x

2 2
23 5 5 3 3 5 55 0 3 5 3 5

2 3 3 2 2 3 3
25 3 25
6 2 6  

25 3
3 2  

41
6

Example 4.64 

Evaluate 
4

3 2

0

5 6x x x dx

Solution 

We split up our integral depending on where 3 25 6x x x  is non-
negative

3 2 25 6 5 6 2 3x x x x x x x x x
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Table of sign:

x 0 2 3
x + + + +

2 3x x + 0 0 +

3 25 6 2 3x x x x x x + 0 0 +

From the table of sign, we get

3 2
3 2

3 2

5 6 , ,0 2,3
5 6

5 6 , 0,2 3,

x x x if x
x x x

x x x if x
Now, we can integrate, using definition of absolute value

4
3 2

0

5 6x x x dx

2 3 4
3 2 3 2 3 2

0 2 3

6 5 6 5 6 5 6x dx x x x dx x x x dx x x x dx

3 424 4 4
3 2 3 2 3 2

0 2 3

5 5 53 3 3
4 3 4 3 4 3
x x xx x x x x x

8 9 8 320 90 112
3 4 3 3 4

8 5 16 9
3 12 3 4  

8 5 37
3 12 12  

74
12  

37
6

Application activity 4.19 

Evaluate the integrals;

1. 
3

0
xdx   2. 

2 2

1
( )dxx x  3. 

2 2

1
(3 6 )x x dx  

4. 
2 3 2

1
3 4x x dx  5. 

3 2

0
2 8x dx  6. 

2

0
sin x dx              

7. 
10

0
5x dx  8. 

5 3

1
2 24x x dx
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Evaluate the integrals;
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3

0
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2 2

1
( )dxx x  3. 

2 2
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(3 6 )x x dx  

4. 
2 3 2

1
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3 2

0
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2

0
sin x dx              
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10

0
5x dx  8. 

5 3

1
2 24x x dx
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4.4.2.

Consider the function 2f x x . 

1. Determine 
0

3
f x dx  and 

3

0
f x dx . Give your observation.

2. Also, obtain 
2 2

2
x dx  and 

0 22 2

2 0
x dx x dx . Give your 

observation.

Activity 4.20  

From activity 4.20, we remark the following:

1. Permutation of bounds: If f x  is defined on ,a b  except may 

be at a finite number of points, then ( ) ( )
b a

a b
f x dx f x dx .

2. Chasles relation: For any arbitrary numbers a  and b , and any 
,c a b

( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx

3. Positivity: Let f  be a continuous function on interval ,I a b ; the 
elements of I

If 0f  on I and if a b , then ( ) 0
b

a
f x dx

Also, if ( ) ( )f x g x  on ,a b , then ( ) ( )
b b

a a
f x dx g x dx .

Theorem 4.1: Mean value theorem

Let f  be a continuous function on interval ,a b , there exists a number 

,c a b  such that 
1( ) ( )

b

a
f c f x dx

b a
.

This value ( )f c  is called the average value of ( )f x  on ,a b  and is 
denoted as ( )f x .

Example 4.65 

Find the average value of sinf x x  on 0,
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Solution 

0 00

1 1 1 1 1 2( ) sin cos cos 1 1 2
0

f x xdx x x

Example 4.66 

Show that: 
4 2 4

1 1 12 2 2
x x xdx dx dx

LHS=
424

1
1

16 1 15
2 4 4 4 4
x xdx

RHS=

2 42 22 4

1 1
1 22 2 4 4

x x x xdx dx 4 1 16 4 16 1 15
4 4 4 4 4 4 4

Since RHS=LHS=  15
4

 as required

Notice
Techniques of integration

The methods of integration of definite integrals are the same as for indefinite 
integrals but in changing the variable remember to change the bounds.

Example 4.67 

Evaluate: 
4

20 1 3
xdxI

x
Solution

Let 2 21 3x t 6 2
3
txdx tdt xdx dt

If 4, 7x t  also if 0, 1x t
4 7 7 7

120 1 1

1 1 1 7 1 2
3 3 3 31 3

xdx t dtI dt t
tx

Or we can say, without changing the bounds,

7 7

11

1 1
3 3

I dt t
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Solution 

0 00

1 1 1 1 1 2( ) sin cos cos 1 1 2
0

f x xdx x x
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Show that: 
4 2 4

1 1 12 2 2
x x xdx dx dx

LHS=
424

1
1

16 1 15
2 4 4 4 4
x xdx

RHS=
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1 1
1 22 2 4 4

x x x xdx dx 4 1 16 4 16 1 15
4 4 4 4 4 4 4

Since RHS=LHS=  15
4

 as required

Notice
Techniques of integration

The methods of integration of definite integrals are the same as for indefinite 
integrals but in changing the variable remember to change the bounds.

Example 4.67 

Evaluate: 
4

20 1 3
xdxI

x
Solution

Let 2 21 3x t 6 2
3
txdx tdt xdx dt

If 4, 7x t  also if 0, 1x t
4 7 7 7

120 1 1

1 1 1 7 1 2
3 3 3 31 3

xdx t dtI dt t
tx

Or we can say, without changing the bounds,

7 7

11

1 1
3 3

I dt t
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But 21 3t x
4

2

0

1 1Therefore, 1 3 7 1 2
3 3

I x

Application activity 4.20 
Evaluate:

1. 
2

0
cos x dx   2. 

2

1
x x dx

3. 
1

20

arctan
1

x dx
x

   4. 
1

0
arcsin x dx

4.4.3. Improper integrals

The definite integral ( )
b

a
f x dx  is called an improper integral 

if one of two situations occurs: 

• The limit a  or b  ( or both the bounds) are infinites.

• The function ( )f x  has one or more points of discontinuity in the 
interval ,a b .

Evaluate the integrals:

1. 20
lim

4
n

n

dx
x

  2. 
4

2
lim

1 3nn

xdx
x

Activity 4.21  

Let ( )f x  be a continuous function on the interval ,a . 

Then, we define the improper integral as ( ) lim ( )
n

a an
f x dx f x dx  

considering the case when ( )f x  is a continuous function on the interval 
,b ; then, we define the improper integral 

as ( ) lim ( )
b b

nn
f x dx f x dx .
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If these limits exist and are finite, then we say that the improper integrals 
are convergent; otherwise the integrals are divergent.

Let ( )f x  be a continuous function for all real numbers. By Chasles 

theorem, we can write ( ) ( ) ( )
c

c
f x dx f x dx f x dx .

If for real number c , both of the integrals in the right hand side are 

convergent, then we say that the integral ( )f x dx  is also convergent; 
otherwise it is divergent.

Theorem 4.2. Comparison theorems

Let ( )f x  and ( )g x  be continuous on the interval ,a
. Suppose that 0 ( ) ( )g x f x  for all x  in the interval ,a ,

• If ( )
a

f x dx  is convergent, then, ( )
a

g x dx  is also convergent.

• If ( )
a

g x dx  is divergent, then, ( )
a

f x dx  is also divergent.

• If ( )
a

f x dx  is convergent, then, ( )
a

f x dx  is also convergent. 

In this case, we say that the integral ( )
a

f x dx  is absolutely 
convergent.

Example 4.68 

Evaluate 
20 16
dx

x

Solution

2 20 0
lim

16 16
n

n

dx dx
x x

0

1 1 1lim arctan lim arctan arctan 0 lim arctan
4 4 4 4 4 4

n

n n n

x n n

1
4 2 8

Hence, the integral converges to 
8

.

Example 4.69 

Determine whether the integral 21 x

dx
x e

 converges or diverges.
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If these limits exist and are finite, then we say that the improper integrals 
are convergent; otherwise the integrals are divergent.

Let ( )f x  be a continuous function for all real numbers. By Chasles 
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c
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convergent, then we say that the integral ( )f x dx  is also convergent; 
otherwise it is divergent.

Theorem 4.2. Comparison theorems

Let ( )f x  and ( )g x  be continuous on the interval ,a
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a

f x dx  is also divergent.

• If ( )
a

f x dx  is convergent, then, ( )
a

f x dx  is also convergent. 

In this case, we say that the integral ( )
a

f x dx  is absolutely 
convergent.

Example 4.68 

Evaluate 
20 16
dx

x

Solution

2 20 0
lim

16 16
n

n

dx dx
x x

0

1 1 1lim arctan lim arctan arctan 0 lim arctan
4 4 4 4 4 4

n

n n n

x n n

1
4 2 8

Hence, the integral converges to 
8

.

Example 4.69 

Determine whether the integral 21 x

dx
x e

 converges or diverges.
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Solution

Note that 2 2

1 1
xx e x

 for all values 1x

Since the improper integral 21

dx
x

 is convergent as

2 21 1
lim

n

n

dx dx
x x

1
2

1
11

1 1lim lim lim lim 1 1
1

n n
n

n n n n

xx dx
x n

then, the given integral 21 x

dx
x e

 is also convergent by comparison 
theorems.

Application activity 4.21 

Determine whether each of the following improper integral converges 
or diverges.

1. 
21

dx
x

 2. 2

0

xe dx  3. 
1

2 1
dx

x

4. 32 1
dx

x
 5. 23

32 1

dx

x
 6. 22

2

1

x dx
x

Discontinuous integrand

Determine the points of discontinuity of the following functions in the 
given interval I .

1. , 0, 4
1

xf x I
x

2. 2

2 , 10,0
3 10

f x I
x x

3. 
3 1 1, ,3
ln 2
xf x I

x

Activity 4.22  
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Let ( )f x  be a function which is continuous on the interval ,a b  and 
discontinuous at x b . Then we define the improper integral as 

( ) lim ( )
b t

a at b
f x dx f x dx .

Similarly, if the function ( )f x  is continuous on the interval ,a b  and 
discontinuous at x a , then we can write

 ( ) lim ( )
b b

a tt a
f x dx f x dx .

If these limits exist and are finite, then we say that the integrals are 
convergent; otherwise the integrals are divergent.

Let ( )f x  be a continuous function for all real numbers x in the interval 
,a b , except for some point ,c a b , then,

( ) ( ) ( ) lim ( ) lim ( )
b c b t b

a a c a tt c t c
f x dx f x dx f x dx f x dx f x dx

We say that the integral ( )
b

a
f x dx  is convergent if both of the 

integrals in the right hand side are also convergent. Otherwise the 
improper integral is divergent.

Example 4.70 

Evaluate 
2

32

dx
x

Solution

Since there is a discontinuity at 0x , we must consider two improper 
integrals;
2 0 2

3 3 3
2 2 0

dx dx dx
x x x

2 2

3 3 32 20 0
lim lim

t

tt t

dx dx dx
x x x  

22 2

0 0
2

lim lim
2 2

t

t t
t

x x

2

2 20 0
2

1 1lim lim
2 2

t

t t
tx x
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Example 4.70 

Evaluate 
2

32

dx
x

Solution

Since there is a discontinuity at 0x , we must consider two improper 
integrals;
2 0 2

3 3 3
2 2 0

dx dx dx
x x x

2 2

3 3 32 20 0
lim lim

t

tt t

dx dx dx
x x x  

22 2

0 0
2

lim lim
2 2

t

t t
t

x x

2

2 20 0
2

1 1lim lim
2 2

t

t t
tx x
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Now considering the term

2 2 20 0 0
2 2

1 1 1 1 1 1lim lim lim
2 2 2 4

t t

t t tx x t

Since it is divergent, the initial integral also diverges.

Application activity 4.22 

1. Determine whether the integral 
4

30 2
dx

x
 converges or diverges. 

2. Evaluate and comment on your answer in each case.

a) 

2
1 3

0
1 x dx  b) 

2

0

dx
x

c) 
4

21 2
dx

x
  d) 

1

42
5

dx

x

4.5. Applications
4.5.1. Calculation of area of a plane surface

Consider the function f x x .

1. Sketch the curve of f x  on the xy plane .

2. Shade the region enclosed by the curve of the given function and 
the x axis  for 0 4x .

3. Using the formula for finding the area of plane figures, find the 
area of the region you shaded in 2).

4. Find the definite integral of the given function  for 0 4x .

5. Comment on your results in 3) and 4).

Activity 4.23  

The definite integral of a function ( )f x  which lies above the x -axis denotes 
the area under the curve of ( )f x  as shown in figure 4.3.
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Figure 4.3. x

Given function f x  which lies above the x-axis, the area enclosed by the 
curve of f x  and the x-axis in interval ,a b  is given by 

b

a
A f x dx

The area between two curves 

x

y

g x

f x

0a b

Figure 4.4. 

The area between two functions ( )f x  and ( )g x  where ( ) ( )f x g x  in 
,a b  is given by

( ) ( ) ( ) ( )
b b b

a a a
g x f x dx g x dx f x dx  
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Figure 4.3. x

Given function f x  which lies above the x-axis, the area enclosed by the 
curve of f x  and the x-axis in interval ,a b  is given by 

b

a
A f x dx
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x

y

g x

f x

0a b
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The area between two functions ( )f x  and ( )g x  where ( ) ( )f x g x  in 
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( ) ( ) ( ) ( )
b b b

a a a
g x f x dx g x dx f x dx  
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as illustrated in figure 4.4.

Example 4.71 

Find the area enclosed by x axis  and the first bisector.

Solution 

x axis  is represented by the function 0g x  and the first bisector is 
represented by f x x .

-2 -1 1 2 3

-1

1

2

3

x

y

0

f x x

The area is given by

33 2 2

0 0

3 0 90 . .
2 2 2 2
xA x dx sq units

Alternative method

From the figure, the shaded area is a triangle with base 3 units and height 
3 units. So, the area is 

1 9 . .
2 2

A base height sq units

Example 4.72 

Find the area of a sinusoid in 0,2 .
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Solution 

The sketch of the two curves is as shown below:

��2 � ���2 2�

-1

1

x

y

0

1A

2A

For 1A , we have two functions ( ) sing x x  and ( ) 0f x .

Then, 1
0

sin 0A x dx  
0

sin x dx

0
cos x

 
cos cos 0

 
. 2 sq units

For 2A , we have ( ) 0g x  and ( ) sinf x x .

Then, 
2

2 0 sinA x dx

2 2sin cos cos 2 cos 2 .xdx x sq units

The total area is 4 .sq units .
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Solution 

The sketch of the two curves is as shown below:

��2 � ���2 2�

-1

1

x

y

0

1A

2A

For 1A , we have two functions ( ) sing x x  and ( ) 0f x .

Then, 1
0

sin 0A x dx  
0

sin x dx

0
cos x

 
cos cos 0

 
. 2 sq units

For 2A , we have ( ) 0g x  and ( ) sinf x x .

Then, 
2

2 0 sinA x dx

2 2sin cos cos 2 cos 2 .xdx x sq units

The total area is 4 .sq units .
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Example 4.73 

Find the area enclosed by the curves 3y x  and 2y x

Solution 

The sketch of the two curves is as shown below:

1

1

x

y

0

2y x

3y x

We now need to know the intersection points of the two curves.

To do this, we solve for 2 3x x  or 2 3 0x x

0 1x or x

The area is given by 

13 41 2 3

0
0

1 1 1 .
3 4 3 4 12
x xA x x dx sq units

Notice

If u and v are continuous functions and if u y v y  for all y on ,c d
, then the area of the region bound on the left and right by the curves 

,x u y x v y , above and below by the lines ,y d y c  is
d

c

A v y u y dy
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Example 4.74 

Find the area of the region enclosed by the curves 2 12x y and x y .

Solution 

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1

1
2
3
4
5
6
7
8
9
10

x

y

0

2 12x y

y x

For the intersections of the curves

2 12y x y  
2 12 0y y

4 3 0y y  so 4y  or 3y .

Observe that 2 12y y  for 3 4y . Thus, the area is 

4
2

3

12A y y dy
 

42 3

3

12
2 3
y y y

64 98 48 9 36
3 2  

104 45
3 2  

343 .
6

sq units

We would have to split the region into two parts because the equation of 
the lower boundary changes at 3x . Then,

3 4

12 3

12 12 12A x x dx x x dx

However, if we integrate with respect to y, no splitting is necessary.
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Example 4.74 

Find the area of the region enclosed by the curves 2 12x y and x y .

Solution 
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9
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x

y

0

2 12x y

y x

For the intersections of the curves

2 12y x y  
2 12 0y y

4 3 0y y  so 4y  or 3y .

Observe that 2 12y y  for 3 4y . Thus, the area is 

4
2

3

12A y y dy
 

42 3

3

12
2 3
y y y

64 98 48 9 36
3 2  

104 45
3 2  

343 .
6

sq units

We would have to split the region into two parts because the equation of 
the lower boundary changes at 3x . Then,

3 4

12 3

12 12 12A x x dx x x dx

However, if we integrate with respect to y, no splitting is necessary.
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Application activity 4.23 

1. Calculate the area enclosed by the curve and the straight line in 
each of the following:

a) 2 1 2 1y x x  and x axis

b) 1 2y x x x  and x axis

c) 2 3 4y x x  and 1y x

d) 
2 1,

2
y x y x

e) 2 4 , 2 4y x y x
2. Find the area enclosed between the curve 2 2 42 , 0y a x x a , 

and the line joining its local maxima.

3. Find the area enclosed between the curves 
3 26 2 3y x x x  and 

23y x

4. Find the area bound by the curve 2

1 ,y
x

 the lines y x=−27  and 
1
8

y x .

5. Determine the total area enclosed between the curves siny x  
and cosy x  from 0x  to 2x .

6. Sketch the region enclosed by the curves and find its area.

a) 2 4 , 0, 0, 4x y y x y y
b) 2 , 6, 1, 4y x y x y y

4.5.2. Calculation of volume of a solid of revolution

1. Consider the line 2y  for 0 3x .

a) Plot the line and shade the region enclosed by the curve 2y  
for0 3x  and x axis.

b) If the line 2y  is rotated about the x axis we obtain a solid 
of revolution.

Activity 4.24  
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Shade the region for which the area in (a) is rotated 0360  (one 
revolution) about the x-axis.

c) Identify the type (nature) of solid of revolution obtained in (b) 
and hence determine its volume. 

d) Let the area shown in (a) be divided into a number of strips 
parallel to y-axis and length y. 

When the area is rotated 0360  about the x-axis, each strip 
produces a solid of revolution approximating to a circular disc 
of radius y and thickness .

Since the volume of each disc is given by
2   circular cross sectional area thicknessV y x, 

then the total volume, V, between 0 and 3x x  is given by:

Volume, 
33

2 2

0 0 0

lim
x

x x
V y x y dx

Using the above formula, determine the total volume of the 
solid of revolution formed when the line 2y  is rotated 0360  
about the x-axis between the limits 0x  to 3x .

e) Compare the results obtained in (c) and (d).

2. Repeat steps a) to d) in 1) when 2y x  for 0 5x .

From activity 4.24, by considering function f x , the volume of the solid 
of revolution bound by the curve of the function f x  about the x axis  

calculated from x a  to x b , is given by 2b

a
V f x dx .

This method is called disc method. 

Consider a region of f x  between x b  and x b  revolving around 
x axis  as illustrated in figure 4.5. The volume of the solid of revolution 
is obtained by considering the area A x  of the disc of radius y f x  
such that

2A x y  and

2 2 2
b b b

a a a

V y dx f x dx f x dx .
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Shade the region for which the area in (a) is rotated 0360  (one 
revolution) about the x-axis.

c) Identify the type (nature) of solid of revolution obtained in (b) 
and hence determine its volume. 

d) Let the area shown in (a) be divided into a number of strips 
parallel to y-axis and length y. 

When the area is rotated 0360  about the x-axis, each strip 
produces a solid of revolution approximating to a circular disc 
of radius y and thickness .

Since the volume of each disc is given by
2   circular cross sectional area thicknessV y x, 

then the total volume, V, between 0 and 3x x  is given by:

Volume, 
33

2 2

0 0 0

lim
x

x x
V y x y dx

Using the above formula, determine the total volume of the 
solid of revolution formed when the line 2y  is rotated 0360  
about the x-axis between the limits 0x  to 3x .

e) Compare the results obtained in (c) and (d).

2. Repeat steps a) to d) in 1) when 2y x  for 0 5x .

From activity 4.24, by considering function f x , the volume of the solid 
of revolution bound by the curve of the function f x  about the x axis  

calculated from x a  to x b , is given by 2b

a
V f x dx .

This method is called disc method. 

Consider a region of f x  between x b  and x b  revolving around 
x axis  as illustrated in figure 4.5. The volume of the solid of revolution 
is obtained by considering the area A x  of the disc of radius y f x  
such that

2A x y  and

2 2 2
b b b

a a a

V y dx f x dx f x dx .
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Figure 4.5. 

When using this method, it is necessary to integrate along the axis of 
revolution. 

If the region is rotated about a horizontal line, integrate with respect to x, 
and if the region is revolved about a vertical line, integrate with respect to 
y.

Example 4.75 

Use integration to find the volume of the solid generated when the line 
y x  for 0 3x  is rotated through one revolution (360˚) about the 
x axis .

Solution
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33 33 32 2

0 0
0

3 9
3 3
xV y dx x dx cubicunits

Note that the above figure shows a cone with radius 3 and height 3. Thus, 

we could find the volume of the cone formed using the formula 2

3
r h . 

So, 23 3 9
3

V cubic units  (as before).

Example 4.76 
Use integration to find the volume of the solid generated when the line 

3y  for 0 6x  is revolved around the x axis .

Solution

6 6 622
00 0

3 9 54 54 .V y dx dx x cubicunits

Note that the above figure is a cylinder with radius 3 and height 6. Then, 
we could find the volume of the cylinder using the formula 2r h . 

So, 23 6V 54 .cubic units

Example 4.77 

Use integration to find the volume of the solid generated when a half circle 
with centre 0,0  and radius 4 is revolved around the x axis .
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33 33 32 2

0 0
0

3 9
3 3
xV y dx x dx cubicunits

Note that the above figure shows a cone with radius 3 and height 3. Thus, 

we could find the volume of the cone formed using the formula 2

3
r h . 

So, 23 3 9
3

V cubic units  (as before).

Example 4.76 
Use integration to find the volume of the solid generated when the line 

3y  for 0 6x  is revolved around the x axis .

Solution

6 6 622
00 0

3 9 54 54 .V y dx dx x cubicunits

Note that the above figure is a cylinder with radius 3 and height 6. Then, 
we could find the volume of the cylinder using the formula 2r h . 

So, 23 6V 54 .cubic units

Example 4.77 

Use integration to find the volume of the solid generated when a half circle 
with centre 0,0  and radius 4 is revolved around the x axis .
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Solution

Recall that the circle with centre 0,0  and radius 4 is given by 2 2 16x y .

Using the equation, we can write 216y x

We need to use the positive part; 216y x  as shown in the following 
figure.

-5 -4 -3 -2 -1 1 2 3 4 5

-4

-3

-2

-1

1

2

3

4

x

y

0

216y x

From the above figure, we will integrate from 4  to 4
24 42 2

4 4
16V y dx x dx

43

4

64 64 192 64 192 6416 64 64
3 3 3 3

256 .
3

xx

cubic units
 

Note that the above figure is a sphere with radius 4. Then, we may find 

the volume of the sphere formed using the formula 34
3

r . 

So, 34 2564
3 3

V cubic units .

Example 4.78 

Use integration to find the volume of the solid generated when the line 
y x  for 1 4x  is revolved around the x axis .
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Solution

Let us consider the figure below;

1 2 3 4

-4

-3

-2

-1

1

2

3

4

x

y

0

y x

2

4 2

1

b

a
V y dx

x dx

43

13

64 1
3 3

21

x

cubic units

Example 4.79 

Find the volume of the solid revolution formed when the area closed by 
the curve 2y x  for 0 5x  is revolved about the x-axis.

Solution

Consider the figure below;

1 2 3 4 5

-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2

2
4
6
8
10
12
14
16
18
20
22
24

x

y

0

2y x

Volume is

2

25 2

0

b

a
V f dx

x dx

5 4

0
55

05

x dx

x

625 0
625 cubic units
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Solution

Let us consider the figure below;

1 2 3 4

-4

-3

-2

-1

1

2

3

4

x

y

0

y x

2

4 2

1

b

a
V y dx

x dx

43

13

64 1
3 3

21

x

cubic units

Example 4.79 

Find the volume of the solid revolution formed when the area closed by 
the curve 2y x  for 0 5x  is revolved about the x-axis.

Solution

Consider the figure below;

1 2 3 4 5

-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2

2
4
6
8
10
12
14
16
18
20
22
24

x

y

0

2y x

Volume is

2

25 2

0

b

a
V f dx

x dx

5 4

0
55

05

x dx

x

625 0
625 cubic units
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Example 4.80 

Suppose one arch of siny x  is rotated about the x-axis. What is the 
volume of the solid revolution formed?

Solution

Consider the figure below;

2

2

0
sin

b

a
V y dx

xdx  0

1 1 cos 2
2

x dx 2 1sin 1 cos 2
2

x x

0
1 cos 2

2
x dx

 0

1 sin 2
2 2

x x
 

1 1sin 2 0 sin 0
2 2 2

2

2 2
cubic units

Notice

Since f x  is continuous and strictly increasing over the interval ,a b , 
then the inverse function 1x f y  is strictly increasing over the interval 

,f a f b . Hence, the volume generated by rotating the region R  
about the y axis  is

2f b

f a
V x dy

Volume for two defining functions (Washer method)

The inner radius of the solid formed is the distance from the axis of revolution 
to the edge of the region closest to the axis of revolution, and the outer
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radius of the solid formed is the distance from the axis of revolution to the 
edge of the region farthest from the axis of revolution.

If the region bound by outer radius ( )Uy g x  (on top) and inner radius 
( )Ly f x  and the lines x a , x b  is revolved about x axis , the the 

volume of the solid of revolution is given by:

2 2( ) ( )
b

a
V g x f x dx

This method is called washer method.

Example 4.81 

Find the volume of the solid of revolution generated by revolving the 
region enclosed by  and y = x2 about the x-axis.  

Solution

First, sketch the two functions

1

1

x

y

0

2y x

y x

  

Points of intersection are (0,0)  and (1,1) , then we take the integral between 
0 and1. The function y x  is above the function 2y x .

21 22

0
V x x dx

1 4

0
12 5

02 5

x x dx

x x

 

1 1 0 0
2 5  

3
10

cubic units
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radius of the solid formed is the distance from the axis of revolution to the 
edge of the region farthest from the axis of revolution.

If the region bound by outer radius ( )Uy g x  (on top) and inner radius 
( )Ly f x  and the lines x a , x b  is revolved about x axis , the the 

volume of the solid of revolution is given by:

2 2( ) ( )
b

a
V g x f x dx

This method is called washer method.

Example 4.81 

Find the volume of the solid of revolution generated by revolving the 
region enclosed by  and y = x2 about the x-axis.  

Solution

First, sketch the two functions

1

1

x

y

0

2y x

y x

  

Points of intersection are (0,0)  and (1,1) , then we take the integral between 
0 and1. The function y x  is above the function 2y x .

21 22

0
V x x dx

1 4

0
12 5

02 5

x x dx

x x

 

1 1 0 0
2 5  

3
10

cubic units
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Example 4.82 

Find the volume of the solid of revolution generated when the region 
enclosed by , 2y x y  and 0x  is revolved about the y axis .  

Solution

Here, 2y x x y

The volume is 
252 222 4

0 0
0

32
5 5
yV y dy y dy cubic units

 

Application activity 4.24 
1. Find the volume of the solid formed when the region enclosed by the 

given curves is revolved about the x axis ;

a) 2 , 0, 2, 0y x x x y
b) 31 , 1, 2, 0y x x x y
c) 29 , 0y x y

2. Find the volume of the solid formed when the region enclosed by the 
given curves and the lines is revolved about the y axis ;

a) 
3, 0, 1y x x y

b) 1 , 0, 3x y x y

c) 
3csc , , , 0

4 4
x y y y x

Notice
We can find the volume using an alternative method called “The shell 
method”.

When using this method, it is necessary to integrate perpendicular to 
the axis of revolution (unlike the disc or washer method). If the region 
is revolved about a horizontal line, integrate with respect to y, and if the 
region is revolved about a vertical line, integrate with respect to x.

As always, the radius is the distance to the axis or revolution. For every 
radius R, it is necessary to find the corresponding height of the shell H . 
The values of R and H need to be expressed in terms of the variable of 
integration.
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Figure. 4.6. 

line

Figure. 4.7. 

Basing on figure 4.6 and figure 4.7, the volume will equal 2
b

a

V RHdx  

if integrating by x  and 2
d

c

V RHdy  

if integrating by y .

Example 4.83 

Determine the volume of the solid obtained by rotating the region 
bounded by 2 1y x  and 1y x  about the line 6x .

Solution

Here, a graph of the bound region and solid are:

The figure formed is a typical cylinder.  Again, the sketch on the left is here 
to provide some context for the sketch on the right.
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Figure. 4.6. 

line

Figure. 4.7. 

Basing on figure 4.6 and figure 4.7, the volume will equal 2
b

a

V RHdx  

if integrating by x  and 2
d

c

V RHdy  

if integrating by y .

Example 4.83 

Determine the volume of the solid obtained by rotating the region 
bounded by 2 1y x  and 1y x  about the line 6x .

Solution

Here, a graph of the bound region and solid are:

The figure formed is a typical cylinder.  Again, the sketch on the left is here 
to provide some context for the sketch on the right.
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The cross sectional area of the solid is

2A x radius height

          
2 6 2 1 1x x x

          
22 12 1 6 6 2 1x x x x x x

          
22 7 6 12 1 2 1x x x x x

Now, the first cylinder will cut into the solid at x=1 and the final cylinder will 
cut into the solid at x=5; so they are our limits.

The volume of the solid formed is given by:

5
2

1

2 7 12 1 2 1V x x x x x dx
      

53 3 3 5
2 2 2 2

1

7 4 42 6 8 1 1 1
3 2 3 5
x x x x x x

1362
15

272
15

cubicunits

Example 4.84 

Determine the volume of the solid obtained by rotating the region 

bounded by 
22x y  and y x about the line 1y .

Solution

We should first get the points of intersection.

2 22 4 4y y y y y

2 4 4y y y
2 5 4 0y y

4 1 0y y
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So, the two curves will intersect at 1y  and 4y .

Thus, the sketches of the bound region and the solid are:

The cross sectional area for this cylinder is 

2A y radius width  
22 1 2y y y

3 22 4 4y y y

The first cylinder will cut into the solid at 1y  and the final cylinder will 
cut in at 4y .

The volume of the solid formed is given by:

4
3 2

1

2 4 4V y y y dy
44 2

3

1

42 4
4 3 2
y yy y

    
63
2

cubicunits

Example 4.85 

Use the shell method to find the volume of the solid generated when the 
region bound by the lines 0, 1y x  and y x is revolved about the;

a) x axis  b) line 1y  c) line 3y

Solution

In this example, the axis of revolution in each case is a horizontal line, and 
therefore it will be necessary to integrate by y. 



282

So, the two curves will intersect at 1y  and 4y .

Thus, the sketches of the bound region and the solid are:

The cross sectional area for this cylinder is 

2A y radius width  
22 1 2y y y

3 22 4 4y y y

The first cylinder will cut into the solid at 1y  and the final cylinder will 
cut in at 4y .

The volume of the solid formed is given by:

4
3 2

1

2 4 4V y y y dy
44 2

3

1

42 4
4 3 2
y yy y

    
63
2

cubicunits

Example 4.85 

Use the shell method to find the volume of the solid generated when the 
region bound by the lines 0, 1y x  and y x is revolved about the;

a) x axis  b) line 1y  c) line 3y

Solution

In this example, the axis of revolution in each case is a horizontal line, and 
therefore it will be necessary to integrate by y. 
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a) 

The radius is the distance between the axis of revolution and the current 
value of : 0y R y y . The height of the shell is the horizontal distance 
between the line y x  and the line 1x  i.e. 1H y .

Therefore, the volume of the solid formed is

2
d

c

V RHdy

1

1

0
0

2 3
22 1 2
6 32 3

y y dy
y y

b) 

The radius is again the distance between the axis of revolution 1y  and 
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the current value of . . 1 1y i e R y y .

The height of the shell will be 1H y , exactly as in a). 

Hence, the volume is 
1

1 1
2

0 0
0

3
42 1 1 2 1 2
33

V y y dy y dy
yy

c) 

Here, 3R y  while the height again remains the same. 1H y

Therefore, the volume of the solid formed is
131 1 2 2

0 0
0

82 3 1 2 3 4 2 3 2
3 3
yV y y dy y y dy y y

Application activity 4.25 

1. Use the shell method to find the volume of the solid generated when 
the region bound by the lines 0, 1x x  and y x  is revolved 
about the;

a) line 1x  b) y axis
c) line 4x

2. Use cylindrical shells to find the volume of solid generated when the 
region enclosed between ,y x x axis , and the line 4x , is 
revolved about the x axis.
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the current value of . . 1 1y i e R y y .

The height of the shell will be 1H y , exactly as in a). 

Hence, the volume is 
1

1 1
2

0 0
0

3
42 1 1 2 1 2
33

V y y dy y dy
yy

c) 

Here, 3R y  while the height again remains the same. 1H y

Therefore, the volume of the solid formed is
131 1 2 2

0 0
0

82 3 1 2 3 4 2 3 2
3 3
yV y y dy y y dy y y

Application activity 4.25 

1. Use the shell method to find the volume of the solid generated when 
the region bound by the lines 0, 1x x  and y x  is revolved 
about the;

a) line 1x  b) y axis
c) line 4x

2. Use cylindrical shells to find the volume of solid generated when the 
region enclosed between ,y x x axis , and the line 4x , is 
revolved about the x axis.
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3. The region bound by the curve ,y x x the lines 1, 4x x  and 
the x axis  is revolved about y axis  to generate a solid. Find the 
volume of the solid by the shell method.

4. Use cylindrical shells to find the volume of the solid generated when 
the region R in the first quadrant enclosed between y x  and 2y x  
is revolved about the y axis .

4.5.3. Calculation of the arc length of a curved line

Consider a curve given by the function 
3
21y f x x

Figure 4.6. 
In the triangle shown (shaded region), 

1. By Pythagorean Theorem, find l .

2. As the step size is made smaller and smaller, ,x dx y dy  
and l dl .  
From the result obtained in 1), write expression equivalent to dl  

using 'f x  where 
3
21f x x .

3. Take definite integral on both sides of the relation obtained in 2), for 
2 5x , to find l .

Activity 4.25  

From activity 4.25, we get the arch length of the curve of the function 
f x , from x a  to x b  by the formula 
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2'1
b

a

l f x dx

Example 4.86 
Find the length of a line whose slope is -2 given that line extends from 

1x  to 5x .

Solution

We need the equation of the line in order to find '( )f x  but for the purpose 
of this example, we are given that the slope is -2 and we know that the 
slope is given by the derivative of the function, then '( ) 2f x
Hence,

5 5 5 52 2

1 1 1 1
1 '( ) 1 2 5 5L f x dx dx dx dx

5

1
5 5 5 1 4 5x units of length

Example 4.87 

Find the length of the circle of radius R and centre 0,0 .

Solution

The circle of radius R and centre 0,0  has equation:

2 2 2 2 2 2 2 2x y R y R x y R x  

2 2
' xy

R x

2
2

2 2' xy
R x

21 ( ')
b

a
L y dx  But a R  and b R

2

2 2
2 1

R

R

xL dx
R x

We multiply the above result by 2 because we have two parts; one above
x axis  and another below x axis .

2 2 2

2 22
R

R

R x xL dx
R x  

2

2 22
R

R

R dx
R x  

2 2
2

R

R

R dx
R x

2 2
2

R

R

Rdx
R x  

2 2
2

R

R

dxR
R x  

2 arcsin
R

R

xR
R



286

2'1
b

a

l f x dx

Example 4.86 
Find the length of a line whose slope is -2 given that line extends from 

1x  to 5x .

Solution

We need the equation of the line in order to find '( )f x  but for the purpose 
of this example, we are given that the slope is -2 and we know that the 
slope is given by the derivative of the function, then '( ) 2f x
Hence,

5 5 5 52 2

1 1 1 1
1 '( ) 1 2 5 5L f x dx dx dx dx

5

1
5 5 5 1 4 5x units of length

Example 4.87 

Find the length of the circle of radius R and centre 0,0 .

Solution

The circle of radius R and centre 0,0  has equation:

2 2 2 2 2 2 2 2x y R y R x y R x  

2 2
' xy

R x

2
2

2 2' xy
R x

21 ( ')
b

a
L y dx  But a R  and b R

2

2 2
2 1

R

R

xL dx
R x

We multiply the above result by 2 because we have two parts; one above
x axis  and another below x axis .

2 2 2

2 22
R

R

R x xL dx
R x  

2

2 22
R

R

R dx
R x  

2 2
2

R

R

R dx
R x

2 2
2

R

R

Rdx
R x  

2 2
2

R

R

dxR
R x  

2 arcsin
R

R

xR
R
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2 arcsin arcsinR RR
R R

2 arcsin1 arcsin 1R

2 ( )
2 2

R
 

2R 2 R units of length

Notice

For a curve expressed in the form x g y  where 'g  is continuous on ,c d
, the arc length from y c  to y d  is given by 

2
1 '

d

c
L g y dy

Example 4.88 

Find the arc length of the curve 
3
2y x  from 1,1  to 2,2 2

Solution

23
32y x x y . Hence, 

2
3g y y  and 

1
32'

3
g y y

The arc length is;

212 2
3

1

21
3

L y dy
 

2
32 2

21
3

9 4

9

y dy
y  

22 2
3

1

41
9

y dy
22 2
3

11
3

1 9 4
3

y dy
y

1 22 2
3 3

1

1 9 4
3

y y dy

Let 
2 1
3 3

1
3

9 4 6
6

dtt y dt y dy dy
y

If 1, 12y t  and if 2 2, 22y t
22

3
1 1 222 22 22
3 2

113 13 13
3

13

1 1 1 1
33 18 18 186 2

dt tL y t tdt t dt
y
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223 2 2
2 3 3

13

1 2 1 22 13
18 3 27

t
 
22 22 13 13

27
 units of length

Application activity 4.26 

1. Find the arc length of the curve 
3
23 1y x  from 0x  to 1x .

2. Find the arc length of the curve 
2
3y x  from 1x  to 8x .

3. Determine the arc length of the curve ln secy x   from 0x  to 

4
x .

4. Find the arc length of the curve 
3
2

2 1
3

x y  for 1 4y .

Notice

Further applications in physics

1. Work done

Work is defined as the amount of energy required to perform a physical 
task. When force is constant, work can simply be calculated using the 
equation W F d  where W is work, F is a constant force, and d is the 
distance through which the force acts. The units of work are commonly

, , .Newton metres Nm Joules J Foot pound ft lb Frequently, 
the force is not constant and will change over time. In order to obtain 
the amount of work done with a variable force, the following integral 

equation must be used 
b

a
W f x dx

where W is work, f x  is force as a function of distance, and x is 
distance.

Remark
In physics, the kinetic energy of an object is the energy which it possesses 
due to its motion. It is defined as the work needed to accelerate a body of 
a given mass from rest to its stated velocity. 

Having gained this energy during its acceleration, the body maintains this 
kinetic energy unless its speed changes. The same amount of work is done 
by the body in decelerating from its current speed to a state of rest.
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223 2 2
2 3 3
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22 22 13 13
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Application activity 4.26 

1. Find the arc length of the curve 
3
23 1y x  from 0x  to 1x .

2. Find the arc length of the curve 
2
3y x  from 1x  to 8x .

3. Determine the arc length of the curve ln secy x   from 0x  to 

4
x .

4. Find the arc length of the curve 
3
2

2 1
3

x y  for 1 4y .

Notice

Further applications in physics

1. Work done

Work is defined as the amount of energy required to perform a physical 
task. When force is constant, work can simply be calculated using the 
equation W F d  where W is work, F is a constant force, and d is the 
distance through which the force acts. The units of work are commonly

, , .Newton metres Nm Joules J Foot pound ft lb Frequently, 
the force is not constant and will change over time. In order to obtain 
the amount of work done with a variable force, the following integral 

equation must be used 
b

a
W f x dx

where W is work, f x  is force as a function of distance, and x is 
distance.

Remark
In physics, the kinetic energy of an object is the energy which it possesses 
due to its motion. It is defined as the work needed to accelerate a body of 
a given mass from rest to its stated velocity. 

Having gained this energy during its acceleration, the body maintains this 
kinetic energy unless its speed changes. The same amount of work is done 
by the body in decelerating from its current speed to a state of rest.

289

Example 4.89 

A spring has a natural length of 1meter . A force of 25NN stretches the string 

by 
1
4

 of a metre. Determine how much work is

done by  stretching the spring

a) 2meters  beyond its natural length

b) from a length of 1.5meters  to 2.5meters

Solution

We first determine the string constant, k . Because the force is 25 N when 
1 0.25
4

x m m , we can use Hooke’s law to determine k .

125 100
4

f x kx

NN k m k
m

And 100f x x

Hence,

a) 
2

2 2

0
0

100100
2

W x dx x

50 4 0
200 200Nm or J

b) Here, we need to pay attention to boundaries. If the spring is not 
stretched, no matter what its length is, the lower boundary must be 
zero. If the string is stretched to a certain length, then we need to 
subtract the natural length from that value to obtain the lower limit of 
integration. So, here

1.5
1.5 2 22

0.5
0.5

100100 50 1.5 0.5 100 100
2

W x dx x Nm or J

Example 4.90 

A force of 40 N is required to hold a spring that has been stretched from 
10 cm to 15 cm.

How much work is done in stretching the spring from 15 cm to 18 cm?
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Solution 

According to Hooke’s law, the force required to hold the spring stretched 
x metres beyond its natural length is f x kx . When the spring is 
stretched from 10cm  to 15cm , the amount by which it has been stretched 
is 5 0.05cm m . This means that 0.05 40f , 

so, 
400.05 40, 800
0.05

k k

Thus, 800f x x  and the work done in stretching the spring from 

15cm  to 18cm  is
0.0820.08 2 2

0.05
0.05

800 800 400 0.08 0.05 1.56
2
xW xdx J

2. Motion problems

Recall that for some displacement function s t ,

the velocity is given by 
d s t

v t
dt

 and

the acceleration is 
2

2

d s t d v t
a t

dt dt
.

So, given a velocity function, we can determine the displacement 
function by the integration s t v t dt . 
Using the displacement function, we can determine the 
displacement in a time interval a t b . 

Thus, 
b

a
S v t dt

Also, given an acceleration function, we can determine 
the velocity function by the integration v t a t dt . 
Using the velocity function, we can determine the velocity in a time 

interval a t b ; 
b

a
V a t dt

Example 4.91 

The velocity of a body t seconds after a certain instant is given by 
2 12 5v t t ms . How far does it travel in the first 4 seconds of motion?
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Solution 
4 334 2

0
0

2 42 1882 5 5 5 4 0
3 3 3
tS t dt t m

Thus, the distance travelled is 
188
3

m

Example 4.92 

An object starts from rest and has an acceleration of 2a t t . What is its;

a) velocity after 3 seconds?

b) position after 3 seconds?

Solution

We will take the initial position of our object to be the origin of our 
coordinate system. Thus, 0 0s . Since the object started at rest, we have 
0 0v . This data will be useful in the determination of the constants in 

the integrations.

a) 2 31
3

v t a t dt t dt t c

310 0 0 0
3

v c c

Then, 31
3

v t t

After 3 seconds, we have

313 3 9
3

v  units of velocity.

b) 3 41 1
3 12

s t v t dt t dxt t c

410 0 0 0
12

s c c

Then, 41
12

s t t

After 3 seconds, we have

41 273 3
12 4

s  units of length.
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Unit summary
1. Differentials 

The exact change y  in y  is given by y f x x f x .

But if the change x  is small, then we can get a good approximation to 

y  by using the fact that 
y
x

 is approximately the derivative 
dy
dx

. Thus,

'y dyy x x f x x
x dx

If we denote the change of x  by dx  instead of x ,

then the change y  in y  is approximated by the differential dy , that is, 
'y dy f x dx

Whenever one makes an approximation, it is wise to try and estimate how 
big the error might be. 

Relative change in x  is 
x

x

Percentage change in x  is 100 x
x

2. Indefinite integrals

Integration can be defined as the inverse process of differentiation.

If y f x  then

'dy dyf x dx f x c
dx dx

Or equivalently

dy dx y c
dx

This is called indefinite integration and c is the constant of integration.

3. Basic integration formula

Exponential functions

a) 
1

, 1
1

n
n xx dx c n

n
 b)  x xe dx e c

c) 
ln

x
x aa dx c

a
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Rational functions

a) 
1 lndx x c
x

       b) 2 2

1 arctandx x c
a x a a

c) 2 2

1 arccotdx x c
a x a a

d) 2 2

1 ln
2

dx x a c
x a a x a

e) 
2 2

1 ln
2

dx a x c
a x a a x

Irrational functions

a) 
2 2

arcsindx x c
aa x

b) 
2 2

arccosdx x c
aa x

c) 
2 2

2 2
lndx x x a c

ax a

d) 
2 2

2 2
lndx x x a c

ax a

e) 
2 2

1 arcsecdx x c
a ax x a

f) 
2 2

1 arccscdx x c
a ax x a

Trigonometric functions

a) sin cosx dx x c  b) cos sinx dx x c

c) 2sec tanx dx x c  d) 
2csc cotx dx x c

e) tan ln cosx dx x c  f) cot ln sinx dx x c
g) sec ln sec tanx dx x x c

h) csc ln csc cotx dx x x c

i) sec tan secx x dx x c

j) csc cot cscx x dx x c
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4. Non basic integration 

I. Integration by substitution

In evaluating f x dx  when f x  is not a basic function:

if 'f x g x g x  or 
'g x

f x
g x

 or 

'f x h g x g x , you let u g x .

II. Integration by parts 

To integrate a product of functions, try the formula for integration by parts 
dv duu dx uv v dx
dx dx

 or udv uv vdu

An effective strategy is to choose for dv
dx

 the most 

complicated factor that can readily be integrated. Then we differentiate 

the other part, u, to find 
du
dx

.

The following table can be used:

u 'v
Logarithmic function Polynomial function

Polynomial function Exponential function

Polynomial function Trigonometric function

Exponential function Trigonometric function

Trigonometric function Exponential function

Inverse trigonometric function Polynomial function

Applying  the method of integration by parts, the power of integrand is 
reduced and the process is continued till we get a power whose integral is 
known or which can be easily integrated. This process is called Reduction 
formula.

III. Integration by partial fractions

Remember that: 

A rational function is a function of the form 

P x
f x

Q x
, where P x  and Q x  are polynomials.



294

4. Non basic integration 

I. Integration by substitution

In evaluating f x dx  when f x  is not a basic function:

if 'f x g x g x  or 
'g x

f x
g x

 or 

'f x h g x g x , you let u g x .

II. Integration by parts 

To integrate a product of functions, try the formula for integration by parts 
dv duu dx uv v dx
dx dx

 or udv uv vdu

An effective strategy is to choose for dv
dx

 the most 

complicated factor that can readily be integrated. Then we differentiate 

the other part, u, to find 
du
dx

.

The following table can be used:

u 'v
Logarithmic function Polynomial function

Polynomial function Exponential function

Polynomial function Trigonometric function

Exponential function Trigonometric function

Trigonometric function Exponential function

Inverse trigonometric function Polynomial function

Applying  the method of integration by parts, the power of integrand is 
reduced and the process is continued till we get a power whose integral is 
known or which can be easily integrated. This process is called Reduction 
formula.

III. Integration by partial fractions

Remember that: 

A rational function is a function of the form 

P x
f x

Q x
, where P x  and Q x  are polynomials.

295

A proper rational function is a rational function in which the degree of 
P x  is strictly less than the degree of Q x .

The problem of integrating rational functions is really the problem of 
integrating proper rational functions since improper rational functions 
(i.e. those in which the degree of P x  is greater than or equal to the 
degree of Q x ) and can always be rewritten as the sum of a polynomial 
and a proper rational function.

The integrals of proper rational functions are found by partial fraction 
expansion of the integrand into simple fractions.

There are 4 types of simple fractions:

a) Fractions of the type 
A

x a
The integrals of such fractions are easily found:

lnA dx A x a c
x a

b) Fractions of the type n
A

x a
, where n  is a natural 

number greater than 1.

The integrals of such fractions are easily found:

1

1
n n

n
A Adx A x a dx x a c

nx a

c) Fractions of the type 
2

Ax B
x px q

, where 2 4 0p q

The integrals of such fractions are found by completing the square in the 
denominator and subsequent substitution which leads to rational integrals 

of the form 
2 2 2 2 2 2

du du duor or
u k u k k u

.

d) Fractions of the type 
2 n

Ax B

x px q
, 

where 2 4 0p q  and n  is a natural number greater than 1.

Integration of this type of fraction will not be considered in this course.
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Expansion of proper rational functions in partial fractions is achieved by 
first factoring the denominator and then writing the type of partial fraction 
(with unknown coefficients in the numerator) that corresponds to each term 
in the denominator:

(i) if the denominator contains x a , then the partial fraction 

expansion will contain 
A

x a
.

(ii) if the denominator contains 
nx a  , then the partial fraction 

expansion will contain

1 2n n n
A B C Z

x ax a x a x a
.

(iii) if the denominator contains 2x px q  where 2 4 0p q , then 

the partial fraction expansion will contain 
2

Ax B
x px q

.

The unknown coefficients (A, B, etc.) are then found by one of the 
two ways:

by inserting concrete values of the variable or by using the method 
of undetermined coefficients.

5. Integration of irrational functions

• Integrals of the form 
2

dx
ax bx c

The integrals of such fractions are found by completing the square in the 
denominator and subsequent substitution which lead to irrational integrals 
of the form

2 2 2 2 2 2

du du duor or
u k u k k u

• Integrals of the form 
2

px q dx
ax bx c

The numerator is written as the sum of two parts. One part is the 
derivative of radicand and the other part is a constant only, i.e.

2

1 22 2 2

d ax bx cpx q dxdxdx k dx k
ax bx c ax bx c ax bx c
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• Integrals of the form 
2

2

px qx r dx
ax bx c

The numerator is written as the sum of three parts. One part is the 
same as radicand, the second part is derivative of radicand and the 
last part is a constant only, i.e.

2

2

px qx r ax bx cdx
ax bx c

2
2

1 2 32 2 2

d ax bx cax bx c dxdxk dx k dx k
ax bx c ax bx c ax bx c

6. Integration of trigonometric functions

• Integrals of the form 
sin cos

dx
a x b x c

You can use t-formulae by letting tan
2
xt .

• Integrals of the form 
2cos

dx
a b x

 or 2sin
dx

a b x

Here also you can use t-formulae.

In integrating the trigonometric functions containing product or 
power, transforming product or power into sum (or difference) 
leads to basic integration.

7. Definite integration

Remember that integrals containing an arbitrary constant c in their 
results are called indefinite integrals since their precise value 
cannot be determined without further information

a) Definite integrals are those in which limits are applied.

If an expression is written as 
b

a
F x , ‘b’ is called the upper limit 

and ‘a’ the lower limit.

The operation of applying the limits is defined as:
b

a
F x F b F a
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For example, the increase in the value of the integral f x  as x 
increases from 1 to 3 is written

as 
3

1

f x dx .

The definite integral from x = a to x = b is defined as the area 
under the curve between 

those two values. This is written as 
b

a

f x dx

b) The mean value of a function y f x  over the range ,a b  is the 
value the functions would have if it were constant over the range but 
with the same area under the graph. The mean value of y f x

over the range ,a b  is 
1 b

a

f x f x dx
b a

.

c) The root mean square value (R.M.S. value) is the square root of the 
mean value of the square of y. The r.m.s. value from x = a to x = b is 
given by;

2

. . .

b

a

f x dx
R M S

b a
8. Improper integral 

The definite integral ( )
b

a
f x dx  is called an 

improper integral if one of two situations occurs: 

• The limit a or b (or both bounds) are infinites.
• The function ( )f x  has one or more points of discontinuity in the 

interval ,a b .

Let ( )f x  be a continuous function on the interval ,a  or 
,b .

We define the improper integral as ( ) lim ( )
n

a an
f x dx f x dx

Or ( ) lim ( )
b b

nn
f x dx f x dx  respectively.

If these limits exist and are finite, then, we say that the improper integrals 
are convergent otherwise the integrals are divergent.

Let ( )f x  be a continuous function for all real numbers. By Chasles 
theorem
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 ( ) ( ) ( )
c

c
f x dx f x dx f x dx   

If for real number, c, both integrals on the right 
side are convergent, then we say that the integral 

( )f x dx  is also convergent; otherwise it is divergent.

9. Applications

Integration has many applications, some of which are listed below:

a) The area between two functions ( )f x  and ( )g x  where 
( ) ( )f x g x  in ,a b  is given by

( ) ( ) ( ) ( )
b b b

a a a
g x f x dx g x dx f x dx

b) Volume

The volume of a solid of revolution can be found using one of the 
following methods:

the disc, washer method and the shell method.

In any of the methods, when finding volume, it is necessary to integrate 
along the axis of revolution; if the region is revolved about a horizontal 
line, integrate with respect to x, and if the region is revolved about a 
vertical line, integrate with respect to y.

(i) Disc method
The volume of the solid of revolution bound by the curve f x  about 

the x axis  calculated from x a  to x b , is given by 2
b

a

y dx .

Volume of the solid generated by revolution of the area bound by the 
curve y f x  about the 

y axis  is given by 2
b

a

x dy .

If the axis of revolution is the line parallel to x axis  (say y k ) , the 
volume will be 

2
b

a

y k dx .
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(ii) Washer method
If the region bound by outer radius ( )Uy g x  (on top) and inner 
radius ( )Ly f x  and the lines x a ,

x b  is revolved about x axis , then the volume of revolution is given 

by: 
2 2( ) ( )

b

a
V g x f x dx

(iii) Shell method
The volume of the solid generated by revolving the region between 
the curve , 0,x axis y f x L a x b , about a vertical line 
x L  is 

2
b

a

shell shell
V dx

radius height
HINT for shell method:
Regardness of the position of the axis of revolution (horizontal 
or vertical), the steps for implementing the shell method are the 
following:

 » Draw the region and sketch a line segment across it, parallel to 
the axis of revolution. Label the segment’s height or length (shell 
height) and distance from the axis of revolution (shell radius).

 » Find the limits of integration for the thickness variable.

 » Integrate the product 2
shell shell
radius height

 with respect 

to the thickness variable x or y  to find the volume.

 » Length of arc of the curve y f x  between the points whose

 absissas are a and b is  

2

1
b

a

dys dx
dx

 » The work done by a variable force F x in the direction of motion 

along the x axis   over the interval ,a b  is 
b

a

W F x dx .

10. Hook’s law says that the force required to hold a stretched or 
compressed spring x units beyond its equilibrium position pulls 
back with a force F x kx  where k is constant called spring 
constant(or force constant).
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End of unit assessment
1. Find indefinite integrals for question a-l.

a) 
3

2 9 20
x dx

x x
 b) 

3 23 11 3
3

x x x dx
x

c) 
2

2
10 24
2 1

x x dx
x x

 d) 
2

2
1 1

x dx
x x

e) 
2

2

4
2 2 1
x dx

x x x
 f) 

2

22

4 2
1 1
x dx

x x

g) cosx xdx  h) 45 xxe dx

i) lnx xdx  j) 2 sin 3x xdx

k) cosaxe bxdx  l) sinaxe bxdx

2. Evaluate;

a) 
1

2 3

1

2x x dx  b) 
1

2 3
3

1 1 dx
x x

 

c) 
10

6 2
dx

x
 d) 

2

2
2 4

dx
x

 

e) 

3
4

2

sin xdx  f) 
1

ln
e

xdx

3. Given that 
1 cosna x nx dx  and 

1 sinnb x nx dx  

 where n is a positive integer. Show by using integration by parts that 

0na  and 
2 cosnb n
n

.

4. Determine the area enclosed between the curves 2 1y x  and 
7y x .

5. Evaluate by integration the area bound by the three straight lines 
4 , 3y x y x  and 3y x .
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6. Find the area of the region bound by the curves 2 2 1y x  and 
1 0x y .

7. Determine the volume of the solid generated when the region bound 
by the lines 3 , 2, 4y x y y  and 0x  is revolved about the 
y axis .

8. Determine the volume of the solid generated when the region bound 
by the curve 2 4y x  and line y x  is revolved about the x axis .

9. Find the volume of the solid generated when the region bound by the 
curve 2 4y x  and the line y x  is revolved about the line 1x .

10. Find the volume of the solid generated when the region bound by the 
curves 2y x x  and the line 0y  is revolved about the:

a) the x axis  b) the y axis  

c) line 2x  d) line 2x  

e) line 1y    f) line 2y .

11. 
quadrant bound by the curve 2 1 0y x  and the lines x=2 , y=0 is 
revolved about

a) the x axis   b) the y axis

12. In reaction between ethylene bromide and potassium iodide in 99%  
methanol, 2 4 2 2 4 3C 3 2H Br KI C H KBr KI  it is found that the 
amount of iodine 3

2 ,I x mol dm  is related to the time, t  minutes, after 

the reaction began by:  
0 3

x dckt
a c a c

 

where 3 1 1k 0.3 mindm mol  is the reaction rate constant and a is 
the initial concentration of the chemicals.

a) Evaluate the integral to form t as a function of x.
b) By rearranging the formula in a) write x in terms of t.

c) Find the value of x when t becomes very large.

13. The number of atoms, N, remaining in a mass of material during 
radioactive decay after time t seconds is given by: t

oN N e , where 

oN  and are constants. Determine the mean number of atoms in the 

mass of material for the time period 0t  and 1t .
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the initial concentration of the chemicals.

a) Evaluate the integral to form t as a function of x.
b) By rearranging the formula in a) write x in terms of t.

c) Find the value of x when t becomes very large.

13. The number of atoms, N, remaining in a mass of material during 
radioactive decay after time t seconds is given by: t

oN N e , where 

oN  and are constants. Determine the mean number of atoms in the 

mass of material for the time period 0t  and 1t .
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14. The average value of a complex voltage wave form is given by: 

0

1 10sin 3sin 3 2sin 5AVV t t t dt . 

Evaluate AVV  correct to 2 decimal places.

15. Find the work required to compress a spring from its equilibrium 
length of 0.3m  to 0.2m  if the force constant is 234���k .

16. A spring exerts a force of a ton when stretched 5m 
beyond its natural length.  How much work is required to stretch the 
spring 6m beyond its natural length?

17. A spring has a natural length of 1m . A force of 24N holds the spring 
stretched to a total length of 1.8m .

a) Find the force constant.

b) How much work will it take to stretch the spring to 2m beyond its 
natural length?

c) How far will a 45N  force stretch the spring?

18. A swimming pool is built in the shape of rectangular parallelepiped 
10m deep, 15m wide, and 20m long.

a) If the pool is filled 1m below the top, how much work will be required 
to pump all the water into a drain at the top edge of the pool?

b) If a one horsepower motor can do 550m of work per second, what 
size motor is required to empty the pool in one hour?
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A quantity y y t  is said to have an exponential growth model if it 
increases at a rate that is proportional to the amount of the quantity 
present, and it is said to have an exponential decay model if it decreases 
at a rate that is proportional to the amount of the quantity present. 

Thus, for an exponential growth model, the quantity y y t  satisfies 

an equation of the form .dy k y t
dt

 (k is a non-negative constant called 

annual growth rate). Given that .dy k y t
dt

 can be written as .dy k dt
y

, 

solve this equation and apply the answer y y t  obtained 

in the following problem:

The size of the resident Rwandan population in 2018 is estimated to 
12,089,721 with a growth rate of about 2.37% comparatively to year 
2017 (www.statistics.gov.rw/publication/demographic-dividend). 

Assuming an exponential growth model and constant growth rate, 

1. Estimate the national population at the beginning of the year 
2020 and  2030

2. Does this population continue to increasing or to decrease? 

3. What are pieces of advice would you provide to policy makers? 

Introductory activity

A differential equation is an equation that involves a function and its 
derivatives. We can also say, a differential equation makes a statement 
connecting the value of a quantity to the rate at which that quantity is 
changing. Differential equations can describe exponential growth and 
decay, the population growth of species or the change in investment 
return over time.

Differential Equations
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By the end of this unit, I will be able to: 

• Extend the concepts of differentiation and integration to ordinary 
differential equations. 

• State the order and the degree of an ordinary differential equation. 

• Express the auxiliary quadratic equation of a homogeneous linear 
differential equation of second order with constant coefficients. 

• Predict the form of the particular solution of an ordinary linear 
differential equation of second order.

Objectives

5.1. Definition and classification

In each of the following cases, form another equation by eliminating 
arbitrary constants. Also, write down the order of the highest derivative 
that is obtained in the equation.

1. 2y Ax A  2. cos siny A x B x

3. 
2 2y Ax Bx C

Activity 5.1  

An equation involving a differential coefficient i.e. 
dy
dx

d y
dx

dr
dt

, ,
2

2
 e.t.c. is 

called a differential equation. 

Order of the highest derivative of function that appears in a differential 
equation is said to be the order of differential equation. 

First order differential equation; contains only first derivatives apart 
from dependent variable.

Second order differential equation; contains second derivatives (and 
with maybe first derivatives).

Degree of a differential equation refers to the highest power of the 
highest derivative which occurs in the differential equation.

Differential equations are classified according to the highest derivative 
which occurs in them. 
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Consider the following equations:

1. 
2

1xdy e
dx

 2. 
2

2 sind q dq qL R E t
dt dt C

3. 
32

2 sin 8 tand y dyx y x
dx dx

 4. 

3
2 22 2

2 1d y dy
dx dx

Equation 1) above is a first order differential equation (the highest 
derivative appearing is the first derivative) and degree 2 (the power of the 
highest derivative is 2).

Equation 2) is a second order differential equation (the highest derivative 
appearing is the second derivative) and degree 1 (the power of the highest 
derivative is 1).

Equation 3) is a second order differential equation (the highest derivative 
appearing is the second derivative) and degree 1 (the power of the highest 
derivative is 1).

Equation 4) is a second order differential equation (the highest derivative 
appearing is the second derivative) and degree 2 (the power of the highest 
derivative is 2).

By a solution of differential equation, we mean a continuous function 
y t  or y x  that satisfies the differential equation.

The solution to a given differential equation is obtained by integration.

Given a function with arbitrary constants, you form differential equation by 
eliminating its arbitrary constants using differentiation process.

A differential equation in which there is only one independent variable, 
so that all the derivatives occurring in it are ordinary derivatives is said 
to be an ordinary differential equation. The general ordinary differential 
equation of the 

thn  order is 
2

2, , , ,......., 0
n

n

dy d y d yF x y
dx dx dx

, or

( ), , ', '',......, 0nF x y y y y .

Example 5.1 

23 sindy y t y
dt

 is a differential equation of order one.
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Example 5.2 

2

2 cos 2d y y t
dt

 is a differential equation of order two.

Example 5.3 

3 2

3 2
yd y d ye x

dx dx
 is a differential equation of order three.

Example 5.4 

Given the equation y Ax2 . Find the differential equation and hence 
state its order.

Solution

y Ax A y
x

= ⇒ =2
2

Now, 
dy
dx

Ax2

Since A y
x

dy
dx

y
x

= ⇒ ⇒2

2
 as the required differential equation,

the equation is a first order differential equation.

Application activity 5.1 

1. Obtain the differential equation for which the given function is a 
solution;

a) 2 4y a x a  b) 2 2 1Ax By

c) 
3x xy ae be  d) cos sinxy e A x B x

e) cos 3y a x
2. State the order and degree of the following differential equations:

a) 
2

2 3 2sind y x coy x
dx

 b) 
4

3 cos 2sindy x y x
dx

c) 
3 5 4" ' 2y y y x  d) 

2

2 cos 0d yy x
dx
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e) 
2

2 9 0d y y
dx

 f) 
3

2
3 2 1dy d y y

dx dx
     

g) 
2

2 4 3 3 2d y dy y x
dx dx

 h) 

3 42
2 4

2 0d y dyx y y
dx dx

5.2. First order differential equations
5.2.1. Differential equations with separable variables

Express each of the following equations in the form f y dy g x dx  
and integrate both sides.

1. dy x
dx y

 2. 2 3dy x y
dx

Activity 5.2  

A general differential equation of the 1st order can be written in the form; 

, , 0dyF x y
dx

 or ,dy f x y
dx

The simplest is that in which the variables are separable: 

dy g x h y
dx

To solve the differential equation, we write it in the separated form; 
dy g x dx

h y
 and integrate both sides 

dy g x dx
h y

.

Example 5.5 

Solve 
2 1
4

dy x
dx

Solution

2
21 4 1

4
dy x dy x dx
dx
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e) 
2

2 9 0d y y
dx

 f) 
3

2
3 2 1dy d y y

dx dx
     

g) 
2

2 4 3 3 2d y dy y x
dx dx

 h) 

3 42
2 4

2 0d y dyx y y
dx dx

5.2. First order differential equations
5.2.1. Differential equations with separable variables

Express each of the following equations in the form f y dy g x dx  
and integrate both sides.

1. dy x
dx y

 2. 2 3dy x y
dx

Activity 5.2  

A general differential equation of the 1st order can be written in the form; 

, , 0dyF x y
dx

 or ,dy f x y
dx

The simplest is that in which the variables are separable: 

dy g x h y
dx

To solve the differential equation, we write it in the separated form; 
dy g x dx

h y
 and integrate both sides 

dy g x dx
h y

.

Example 5.5 

Solve 
2 1
4

dy x
dx

Solution

2
21 4 1

4
dy x dy x dx
dx
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24 1dy x dx

3 3

4 2 ;
3 12 2
x x xy x c y c general solution

Example 5.6 

Solve the differential equation, 
6

dy y
dx x

Solution

6 6
dy y dy dx
dx x y x

6
dy dx
y x

ln ln 6y x c

ln ln 6 ln , lny x k k c

ln ln 6y k x

6y k x , k  is a constant; general solution.

Application activity 5.2 

Solve the following differential equations:

1. 
2

dy y
dx x

 2. 
2

2

dy x
dx y

3. 21dy y
dx

 4. 21 1dyx x y
dx
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5.2.2. Simple homogeneous equations

1. Given the relation 2( , )f x y x xy , replace x  with tx and y  with 
ty  and re-write the given relation in the form ( , )nt f x y . Deduce the 
value of n .

2. Consider the differential equation ( , )dy f x y
dx

. By letting 
yz
x

, 

write equivalent relation to the given equation in function of x and 
z.

3. Suppose that , ,f tx ty f x y , by letting 
1t
x

 and using 

relation obtained in 2), write a new relation such that the variables 
x and z are separated.

Activity 5.3  

A function ( , )f x y  is called homogeneous of degree n  if 

( , ) ( , )nf tx ty t f x y  for all suitably restricted ,x y  and t .

This means that if x and y are replaced with  tx  and ty, tn factors out of the 
resulting function.

Example 5.7 

Show that 2 2x y  is homogeneous of degree 1.

Solution 

2 2 2 2 2( )tx ty t x y

1 2 2t x y ; where n=1 as required

Example 5.8 

Show that sin x
y

 is homogeneous of degree 0.



310

5.2.2. Simple homogeneous equations

1. Given the relation 2( , )f x y x xy , replace x  with tx and y  with 
ty  and re-write the given relation in the form ( , )nt f x y . Deduce the 
value of n .

2. Consider the differential equation ( , )dy f x y
dx

. By letting 
yz
x

, 

write equivalent relation to the given equation in function of x and 
z.

3. Suppose that , ,f tx ty f x y , by letting 
1t
x

 and using 

relation obtained in 2), write a new relation such that the variables 
x and z are separated.

Activity 5.3  

A function ( , )f x y  is called homogeneous of degree n  if 

( , ) ( , )nf tx ty t f x y  for all suitably restricted ,x y  and t .

This means that if x and y are replaced with  tx  and ty, tn factors out of the 
resulting function.

Example 5.7 

Show that 2 2x y  is homogeneous of degree 1.

Solution 

2 2 2 2 2( )tx ty t x y

1 2 2t x y ; where n=1 as required

Example 5.8 

Show that sin x
y

 is homogeneous of degree 0.

311

Solution 

1sin sintx xt t
ty y  

0 0sin sinx xt t
y y

Since t0 then the degree is 0.

Notice

The differential equation; , , 0M x y dx N x y dy  is said to be 
homogeneous if M and N are homogeneous functions of the same degree.

This equation can then be written in the form ( , )dy f x y
dx

where 
( , )( , )
( , )

M x yf x y
N x y

 is clearly homogeneous of degree 0.

We solve this equation by letting 
yz
x

. Which reduces the equation to 
variable separable.

Example 5.9 

Solve ( ) ( ) 0x y dx x y dy

Solution

We write the equation in the form ( , )dy f x y
dx

dy x y
dx x y

Since, this equation is homogeneous of degree 0, we know that it can be 

expressed as a function of 
yz
x

, this comes by dividing the 

numerator and the denominator by x; 
1

1

y
dy x

ydx
x

But y zx   
dy dzz x
dx dx

Separating the variables gives:

2

1
1

z dxdz
z x 2 2

1
1 1

z dxdz
z z x  

2 2

1
1 1

z dxdz dz
z z x

SSSSSSSSSSiSSSSS nc
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On integration, we get 
21arctan ln 1 ln

2
z z x c

Replacing z with y
x

, we obtain 
2

2

1arctan ln 1 ln
2

y y x c
x x

 

or 2 2arctan lny x y c
x

 as the general solution.

Example 5.10 

Solve: 2 2' xyy
x y

Solution

We have 2 2( , ) xyf x y
x y

2
0

2 2 2 2 2 2 2 22 2 2
( , ) ( , )txty t xy xy xyf tx ty t f x y

t x t y x y x yt x y  

Then, ,( )f x y  is a homogeneous function of degree 0.

To solve, let y z y zx
x

dy dzz x
dx dx 2 2( )

dz xzxz x
dx x zx

2

2 2(1 z )
dz x zz x
dx x

21
dz zz x
dx z 2 0

1
dz zz x
dx z 2 0

1
dz zx z
dx z

0
1

zxdz z dx
z

3

2 0
1

z z zxdz dx
z

3

2 0
1

zxdz dx
z

3

23 3

2 2

0
1

1 1

xdz z dx
zz zx x

z z

3

2

0

1

dz dx
z x

z
3

2 0
1

z dxdz
z x

2

3

1 z dxdz c
z x

2

3 3

dz z dxdz c
z z x 2

1 ln ln .
2

z x c
z
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2
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2
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x x
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0

2 2 2 2 2 2 2 22 2 2
( , ) ( , )txty t xy xy xyf tx ty t f x y

t x t y x y x yt x y  
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x

dy dzz x
dx dx 2 2( )

dz xzxz x
dx x zx

2

2 2(1 z )
dz x zz x
dx x

21
dz zz x
dx z 2 0

1
dz zz x
dx z 2 0

1
dz zx z
dx z

0
1

zxdz z dx
z

3

2 0
1

z z zxdz dx
z

3

2 0
1

zxdz dx
z

3

23 3

2 2

0
1

1 1

xdz z dx
zz zx x

z z

3

2

0

1

dz dx
z x

z
3

2 0
1

z dxdz
z x

2

3

1 z dxdz c
z x

2

3 3

dz z dxdz c
z z x 2

1 ln ln .
2

z x c
z
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But 
yz
x

; then,

2
1 ln ln

2

y x c
xy

x  

2

2 ln ln
2
x y x c
y x

2

2 ln ln ln
2
x y x x c
y
2

2 ln ln
2
x y k
y

 [where c = ln k ]

2

2 ln ln
2
x k y
y  

2

2 ln
2
x ky
y  

2 22 lnx y ky

2 22 ln ,x y ky  k = constant as the general solution.

Application activity 5.3 

Solve the following differential equations.

1) 
2

2

dy x xy
dx xy y

 2) 2 22 dyxy y x
dx

3) 2 22 4dyxy y x
dx

 4) 2
1

dy y x
dx y x

5.2.3. Linear equations

Consider the equation 1dy py q
dx

 where p and q

are functions in x or constants. Suppose that the general solution of this 
equation has the form y uv  where u and v are functions in x.

1. Differentiate y.

2. Substitute the expression obtained in 1) and value of y into equation 
(1).

Activity 5.4  
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3. In relation obtained in 2) by factoring out u and letting 0dv pv
dx, solve for v. Give the value of v by 

taking the constant of integration to be 1.

4. Substitute this value of v, obtained in 3) into equation obtained in 2) 

(knowing that 0dv pv
dx

) and hence solve for u.

The most important type of differential equation is linear equation in 
which the derivative of highest order is a linear function of the lower order 
derivatives.

Thus, the general first order linear equation is 
dy py q
dx

 where p  and 
q  are functions in x  or constants.

From activity 5.4, the general solution to the differential equation 
dy py q
dx

 where p and q are functions in x or 

constants, is y uv  where 
pdxu q e dx  and 

pdxv e .

Example 5.11 

Solve: 
32' ( 1)

1
y y x

x

Solution

Let the solution be y uv
dy udv vdu
dx dx dx

Now, the given differential equations becomes;

32 ( 1)
1

udv vdu uv x
dx dx x

32 ( 1)
1

dv vduu uv x
dx x dx

32 ( 1)
1

dv v vduu x
dx x dx
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Taking 
2 0
1

dv v
dx x

2
1

dv v
dx x

 and 
2

1
dv dx
v x

ln 2 ln 1v x  
2ln ln( 1)v x
 

2( 1)v x

Now, 32 ( 1)
1

dv v vduu x
dx x dx

 becomes 2 3( 1) ( 1)dux x
dx

 

as 
2 0
1

dv v
dx x

 1du x
dx

( 1)du x dx ( 1)u x dx

2( 1)
2

xu c  or 
2

2
xu x c

Then,
2

2 ( 1)( 1)
2

xy x c
 

4
2( 1) ( 1)

2
x c x

Application activity 5.4 

Solve:

1. 1, 0dy y x
dx x

 2. 3dy xy x
dx

3. 
21 1xdyx y e x

dx
 4. 2 tan sindy y x x

dx

5.2.4. Particular solution

Consider the differential equation 4dy x
dx

1. Find the general solution of this equation.
2. Find the value of the constant of integration if y=4 when 2x . Write 

down the new solution by replacing the constant of integration 
with its value.

Activity 5.5  

We have already mentioned that the solution to a given differential 
equation is obtained by integration. If the solution contains one or more 
constant(s) of integration, then it is called a general (primitive) solution.
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When more information is provided, the value of the constant can be 
determined and hence a particular solution can be written. Differential 
equations with more information are reffered to as initial value problem. 
In fact, in application, particular solutions are much more useful than 
general solutions.

Example 5.12 

Solve: 32' ( 1)
1

y y x
x

 0| 3xy

Solution
We have seen that, in Example 5.11, the general solution for the equation 

is 

4
21

1
2

x
y c x

Now, 0| 3xy  means that 3y  for 0x

Then,
4

20 1
3 0 1

2
c

 

13
2

c
 

1 53
2 2

c

Then, the particular solution for the given equation is
4

21 5 1
2 2

x
y x

Notice
There exists one and only one solution of the initial value problem 
dy p x y
dx

, 0 0y x y  within a given interval.

Application activity 5.5 

Find the solution satisfying the given conditions:

1. 2 tan sin , 0
3

dy y x x y
dx

2. 
2

2

1 , 0 1
1

dy y y
dx x

3. 21 , 0 1dyxy x y
dx

TTTTTTThTTTTTTT
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TTTTTTThTTTTTTT
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4. 2 1, 1 2dyxy x y
dx

5. 2 , 0 0x ydy e y
dx

5.3. Second order differential equations

Give two examples of second order differential equations with;

1. degree greater than 1

2. degree 1

Activity 5.6  

The general second order linear differential equation is of the form

2

2

d y dyp x q x y r x
dx dx

Or more simply, '' 'y p x y q x y r x          (1)

where ( )p x , ( )q x  and ( )r x  are functions of x  alone (or perhaps 
constants).

If r x  is identically zero, the differential equation reduces to the 
homogeneous equation;

'' ' 0y p x y q x y

If r x  is not identically zero, then the differential equation is said to be 
non-homogeneous.

If a second order differential equation cannot be written in the form (1), it 
is said to be non-linear.

For second order homogeneous linear equation '' ' 0y py qy , a 

general solution will be of the form 1 1 2 2y c y c y ; a linear combination 

of two solutions involving two arbitrary constant 1c  and 2c . In this 

solution, 1y  and 2y  are called a basis of '' ' 0y py qy , where 1y  

and 2y  are linearly independent.
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An initial-value problem non-homogeneous consists of 

'' ' 0y py qy  and two initial conditions 0 0y x k  and 0 1'y x k
, prescribing values 0k  and 1k of the solution and its derivatives at the 

same given x . 

5.3.1. Homogeneous linear equations with constant 

1. Find the solution of the equation ' 0, is a constanty ky k
2. Substitute the solution obtained in 1) into the equation 

'' ' 0y py qy  and give the condition so that the solution 
obtained in 1) is a solution of '' ' 0y py qy . What can you say 
about the solution of '' ' 0y py qy ?

Activity 5.7  

Let '' ' 0y py qy  (1) be a homogeneous linear equation of second 
order (right hand side is equal to zero) where p and q are constants.

From Activity 5.7, the solution of the equation ' 0y ky  is a solution of 
'' ' 0y py qy  if the equation of the form 2 0m pm q  called the 

characteristic auxiliary equation is satisfied. The two roots 1m  and 2m  
of this equation, i.e. the values of m  are given by the quadratic formula 

2

1 2
4

,
2

p p q
m m .

Depending on the sign of the discriminant, 2 4p q , we obtain:

Case 1: Two real roots if 2  04p q .

Case 2: A real double roots if 2 4  0p q .

Case 3: Complex conjugate roots if 2  04p q .

Case 1: Characteristic equation has two distinct real roots

It is clear that the roots 1m  and 2m  are distinct real numbers if and only if 
0 . In this case, we get the two solutions 1m xe and 2m xe .

Since the ratio 
1

1 2

2

m x
m m x

m x
e e
e

 is not constant, these solutions 
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obtained in 1) is a solution of '' ' 0y py qy . What can you say 
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'' ' 0y py qy  if the equation of the form 2 0m pm q  called the 
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of this equation, i.e. the values of m  are given by the quadratic formula 

2

1 2
4

,
2

p p q
m m .

Depending on the sign of the discriminant, 2 4p q , we obtain:

Case 1: Two real roots if 2  04p q .

Case 2: A real double roots if 2 4  0p q .

Case 3: Complex conjugate roots if 2  04p q .

Case 1: Characteristic equation has two distinct real roots

It is clear that the roots 1m  and 2m  are distinct real numbers if and only if 
0 . In this case, we get the two solutions 1m xe and 2m xe .

Since the ratio 
1

1 2

2

m x
m m x

m x
e e
e

 is not constant, these solutions 
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are linearly independent and 1 2
1 2

m x m xy c e c e  is the general solution of 
(1) ( 1c  and 2c  are arbitrary constants).

In this solution, 1
1 1

m xy c e  and 2
2 2

m xy c e  are called basis of 
2

2 0d y dyp qy
dx dx

.

Example 5.13 

Solve: '' ' 2 0y y y

Solution

The characteristic equation is 2 2 0m m
1 8 09

1 2
1 3 1 32, 1
2 2

m m
 

Then the general solution is 2
1 2

x xy c e c e .

Application activity 5.6 
Solve the differential equations;

1. 
2

2 8 15 0d y dy y
dx dx

 2. '' ' 2 0y y y

3. 
2

2 30 0d y dy y
dx dx

 4. 
2

2 10 21 0d y dy y
dx dx

Case 2: Characteristic equation has a real double root

Consider the differential equation:
2

2 2 0d y dy y
dx dx

1. Determine one of its solutions.

Activity 5.8  
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2. Let 2 1y xy  where 1y  is a solution of 
2

2 2 0d y dy y
dx dx

.

a) Substitute y  by 2 1y xy  in the given differential equation; what 
can you conclude?

b) Verify if 1y  is linearly independent and deduce the general solution 

of 
2

2 2 0d y dy y
dx dx

.

Hint:

General solution is a combination of two linearly independent solutions.

In characteristic equation 2 0m pm q , we know  that the roots 1m  and 

2m  are equal real numbers if and only if 0 .

Here, we obtain only one solution 1
mxy e . However, from activity 5.8, 

the second linearly independent solution is 2
mxy xe  and the general 

solution of equation '' ' 0y py qy  

is 1 2 1 2
mx mx mxy c e c xe c c x e .

Example 5.14 

Solve: '' 4 ' 4 0y y y

Solution 

Characteristic equation is 2 4 4 0m m

16 16 0
4 2
2

m

The general solution is 2 2
1 2

x xy c e c xe

Application activity 5.7 
Solve:

1. 
2

2 6 9 0d y dy y
dx dx

 2. '' 6 ' 9 0y y y

3. 
2

2 8 16 0d y dy y
dx dx

 4. 
2

2

1 1 0
3 36

d y dy y
dx dx
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2. Let 2 1y xy  where 1y  is a solution of 
2

2 2 0d y dy y
dx dx

.

a) Substitute y  by 2 1y xy  in the given differential equation; what 
can you conclude?

b) Verify if 1y  is linearly independent and deduce the general solution 

of 
2

2 2 0d y dy y
dx dx

.

Hint:

General solution is a combination of two linearly independent solutions.

In characteristic equation 2 0m pm q , we know  that the roots 1m  and 

2m  are equal real numbers if and only if 0 .

Here, we obtain only one solution 1
mxy e . However, from activity 5.8, 

the second linearly independent solution is 2
mxy xe  and the general 

solution of equation '' ' 0y py qy  

is 1 2 1 2
mx mx mxy c e c xe c c x e .

Example 5.14 

Solve: '' 4 ' 4 0y y y

Solution 

Characteristic equation is 2 4 4 0m m

16 16 0
4 2
2

m

The general solution is 2 2
1 2

x xy c e c xe

Application activity 5.7 
Solve:

1. 
2

2 6 9 0d y dy y
dx dx

 2. '' 6 ' 9 0y y y

3. 
2

2 8 16 0d y dy y
dx dx

 4. 
2

2

1 1 0
3 36

d y dy y
dx dx
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Case 3: Characteristic equation has complex roots

Given the differential equation 
2

2 4 25 0d y dy y
dx dx

,

1. a)   Write down the basis solution. 

b) Write its general solution.

2. Use Euler’s formula to write the solution in two parts; one in function 
of cosine only and another in function of sine only. 

3. Since the obtained solution is not real valued function, find the 
two real valued functions that are solutions of the given differential 
equation (real basis).

4. Hence, give the general solution of the differential equation 
'' ' 0y py qy .

Activity 5.9  

When the characteristic equation has complex roots, the bases are 

1
i xy e  and 2

i xy e  giving a general solution

1 2
i x i xy c e c e  1 2

x i x i xe c e c e

The imaginary i  is not always welcome here, so we use Euler’s formula to 
put the solution into real form i.e.

cos sini xe x i x  and cos sini xe x i x

Hence, 1 2 1 2c cos c sinxy e c x c i x

From activity 5.9, the basis of real solution can be written as 

1 cosxy e x  and 2 sinxy e x  and hence general solution is 
Acos sinxy e x B x  

Example 5.15 

Find the general solution of '' 2 ' 5 0y y y .

Solution

Characteristic equation is 2 2 5 0m m
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4 2 00 16 4i

1 2
2 4 2 41 2 , 1 2
2 2

i im i m i

1, 2a b

The general solution is 1 2cos 2 sin 2xy e c x c x .

Example 5.16 

Solve the initial value problem

'' 2 ' 2 0
0 2

' 0 3

y y y
y

y

Solution

Characteristic equation is 2 2 2 0m m

4 8 4 0 2i

1 2
2 2 2 21 , 1
2 2

i im i m i

1, 1a b

The general solution is 1 2cos sinxy e c x c x .

Also,

1 2 1 2' cos sin sin cosx xy e c x c x e c x c x
0

1 2

1

0 2 2 cos0 sin 0
2

y e c c
c

0 0
1 2 1 2

1 2

' 0 3 3 cos0 sin 0 sin 0 cos0
3

y e c c e c c
c c

2 13 3 2 1c c
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4 2 00 16 4i

1 2
2 4 2 41 2 , 1 2
2 2

i im i m i

1, 2a b

The general solution is 1 2cos 2 sin 2xy e c x c x .

Example 5.16 

Solve the initial value problem

'' 2 ' 2 0
0 2

' 0 3

y y y
y

y

Solution

Characteristic equation is 2 2 2 0m m

4 8 4 0 2i

1 2
2 2 2 21 , 1
2 2

i im i m i

1, 1a b

The general solution is 1 2cos sinxy e c x c x .

Also,

1 2 1 2' cos sin sin cosx xy e c x c x e c x c x
0

1 2

1

0 2 2 cos0 sin 0
2

y e c c
c

0 0
1 2 1 2

1 2

' 0 3 3 cos0 sin 0 sin 0 cos0
3

y e c c e c c
c c

2 13 3 2 1c c
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The particular solution is 2cos sinxy e x x .

Application activity 5.8 
Solve the following differential equations.

1. '' 4 ' 13 0y y y

2. '' 4 ' 5 0y y y

3. 
2

2 2 2 0d y dy y
dx dx

4. " 4 ' 13 0, 0 0 and 1
2

y y y y y

5. 2 " ' 10 0, 0 0 and 1 1y y y y y

5.3.2. Non-homogeneous linear equations with constant 

State the type of the following differential equations and solve if possible.

1. 1
1

xdy y e x
dx x

 2. 
2

2 4 5d y dy y
dx dx

3. 
2

2 4 5d y dy y x
dx dx

Activity 5.10  

The general solution of the second order non-homogeneous linear 
equation '' ' ( )y py qy r x  can be expressed in the form *y y y  
where y  is any specific function that satisfies the non-homogeneous 
equation, and 1 1 1 1y c y c y  is a general solution of the corresponding 
homogeneous equation 0y py qy .

The term 1 1 1 1y c y c y  is called the complementary solution (or the 
homogeneous solution) of the non-homogeneous equation. 

The term *y  is called the particular solution (or the non-homogeneous 
solution) of the same equation and its form depends on the type of r x .
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The right hand side is a product of the form ( ) xr x Pe

Consider the equation '' 2 ' xy y y e .

1. Find the general solution, say y , of '' 2 ' 0y y y .

2. Express the right hand side of the given equation in the form 
( ) xr x Pe . Suppose that the given equation has particular 

solution * ( ) xky x Q x e
where;

 is the coefficient of x  in xe  in the right hand side of the given 
equation, k  is the number of roots of the characteristic equation 
obtained in 1) equals to , and ( )Q x  is the polynomial with the 
same degree as the degree of the  polynomial found in right hand side 
of the given equation.

Write down *y .

3. Substitute the value of 
*y  in the given equation to find the new 

expression for 
*y .

Activity 5.11  

If the right hand side of the equation '' ' ( )y py qy r x  is ( ) xr x Pe  
where P  is a polynomial, we take the particular solution to be

* 1 2
0 1 2( ) , .....k n n n

n n
x

ny x Q x e Q a x a x a x a

Here, k - is the number of roots of the associated homogeneous equation 
equals to .

n  - degree of ( )Q x , the same as degree of ( )P x  on the right hand side.

 - coefficient of x  in xe  in the right hand side.

Three cases arise

• If  is not a root of characteristic equation 0k .

• If  is a simple root of characteristic equation 1k .

• If  is a double root of characteristic equation 2k .
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where P  is a polynomial, we take the particular solution to be

* 1 2
0 1 2( ) , .....k n n n

n n
x

ny x Q x e Q a x a x a x a
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Note that the simple root or double root in the last 2 cases must be real 
numbers.

Example 5.17 

Find the general solution of '' xy y e .

Solution 

Characteristic equation:

2 0 1 0m m  
0 4 4  

1 2
0 2 0 2,
2 2

i im i m i

1 2cos siny c x c x , which is the general solution of the homogeneous 
equation.

1  is not a solution of the characteristic equation, so 0k ;

Taking * xy Ae  and ( )Q x A  as ( ) 1P x .

* '' xy Ae

Substituting the expression into the given equation gives

2 x xAe e . Thus 2 1A

Or 
1
2

A   
* 1

2
xy e .

The general solution of the given equation is

*y y y
1 2

1c cos sin
2

xy x c x e .

Example 5.18 

Find the general solution of '' 7 ' 6 2 xy y y x e

Solution 

Characteristic equation: 2 7 6 0m m
49 24 25
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1 2
7 5 7 51, 6
2 2

m m

We see that 1  which is one of the roots of characteristic equation, so 
1k

Then * ( ) xy x Ax B e , 

( )Q x Ax B  as ( ) 2P x x

But 
6

1 2
x xy c e c e

* 2x xy x Ax B e Ax Bx e

*� 22 x xy Ax B e Ax Bx e

*� � 22 2 2x x x xy Ae Ax B e Ax B e Ax Bx e

Substituting these expressions into the given equation gives;

2

2 2

2 2 2

7 2 7 2 6 2

x x x x

x x x x

Ae Ax B e Ax B e Ax Bx e

Ax B e Ax Bx e Ax Bx e x e

2

2 2

2 2 2 14
7 7 7 6 6 2

A Ax B Ax B Ax Bx Ax
B Ax Bx Ax Bx x

2 0 10 0 2 5 2x A x A B A B x

10 2 5 2Ax A B x

10 1
2 5 2

A
A B

1 9,
10 25

A B

* 9
10 25

xxy x e  and 
6

1 2
9

10 25
x x xxy c e c e x e
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1 2
7 5 7 51, 6
2 2

m m

We see that 1  which is one of the roots of characteristic equation, so 
1k

Then * ( ) xy x Ax B e , 

( )Q x Ax B  as ( ) 2P x x

But 
6

1 2
x xy c e c e

* 2x xy x Ax B e Ax Bx e

*� 22 x xy Ax B e Ax Bx e

*� � 22 2 2x x x xy Ae Ax B e Ax B e Ax Bx e

Substituting these expressions into the given equation gives;

2

2 2

2 2 2

7 2 7 2 6 2

x x x x

x x x x

Ae Ax B e Ax B e Ax Bx e

Ax B e Ax Bx e Ax Bx e x e

2

2 2

2 2 2 14
7 7 7 6 6 2

A Ax B Ax B Ax Bx Ax
B Ax Bx Ax Bx x

2 0 10 0 2 5 2x A x A B A B x

10 2 5 2Ax A B x

10 1
2 5 2

A
A B

1 9,
10 25

A B

* 9
10 25

xxy x e  and 
6

1 2
9

10 25
x x xxy c e c e x e
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Application activity 5.9 
Solve the following differential equations.

1. 3'' 6 ' 9 5 xy y y e  2. 3" 3 ' 2 xy y y e

3. 2" 3 2 3 xy y y e  4. 
2

3
2 3 2 xd y dy y e

dx dx
5. 

2
3

2 6 9 xd y dy y e
dx dx

The right hand side is of the form ( ) cos sinx xr x Pe x Qe x

Consider the equation '' 4 cos 2y y x
1. Find the general solution, say y , of '' 4 0y y .

2. Write the right hand side of the given equation in the form 
cos sinx xPe x Qe x  where P  and Q  are polynomials. 

Suppose that the given equation has particular solution 
* cos sinr x xy x ue x ve x

where;

a) 0r  if i  is not a root of characteristic equation,

b) 1r  if i  is a root of characteristic equation,

c) u and v are polynomials in x of degree equal to the highest 
degree of P and Q.

Write down *y
3. Substitute the value of *y  into the given equation to find the new 

expression for *y .

Activity 5.12  

If the right hand side of the equation '' ' ( )y py qy r x is 
( ) cos sinx xr x Pe x Qe x  where P  and Q  are polynomials, two 

cases arise:

• If i  is not a root of characteristic equation, the particular solution 
is

* cos sinx xy Ue x Ve x
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• If i  is a root of characteristic equation, the particular solution 
becomes

* cos sinx xy x Ue x Ve x

In all cases, U and V are polynomial of degree which is equal to the highest 
degree of P and Q.

Example 5.19 

Find the general solution of '' 2 ' 5 2cosy y y x .

Solution

Characteristic equation: 2 2 5m m
4 20 16

1 2
2 4 2 41 2 , 1 2
2 2

i im i m i

1 2cos 2 sin 2xy e c x c x

Here, 0, 1 because the right hand side can be written as 02 cosxe x
.

We see that 0i i  is not a solution of characteristic equation, then,

* cos siny A x B x

cos sinA x B x

*� sin cosy A x B x

*� � cos siny A x B x

cos sin 2 sin cos 5 cos sin 2cosA x B x A x B x A x B x x

cos sin 2 sin 2 cos 5 cos 5 sin 2cosA x B x A x B x A x B x x

cos 2 5 sin 2 5 2cosx A B A x B A B x

2 5 2
2 5 0

A B A
B A B
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• If i  is a root of characteristic equation, the particular solution 
becomes

* cos sinx xy x Ue x Ve x

In all cases, U and V are polynomial of degree which is equal to the highest 
degree of P and Q.

Example 5.19 

Find the general solution of '' 2 ' 5 2cosy y y x .

Solution

Characteristic equation: 2 2 5m m
4 20 16

1 2
2 4 2 41 2 , 1 2
2 2

i im i m i

1 2cos 2 sin 2xy e c x c x

Here, 0, 1 because the right hand side can be written as 02 cosxe x
.

We see that 0i i  is not a solution of characteristic equation, then,

* cos siny A x B x

cos sinA x B x

*� sin cosy A x B x

*� � cos siny A x B x

cos sin 2 sin cos 5 cos sin 2cosA x B x A x B x A x B x x

cos sin 2 sin 2 cos 5 cos 5 sin 2cosA x B x A x B x A x B x x

cos 2 5 sin 2 5 2cosx A B A x B A B x

2 5 2
2 5 0

A B A
B A B
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4 2 2
2 4 0
A B

A B   

2 1
2 4 0

5 1

A B
A B

B

1
5

B , and 
2
5

A

* 2 1cos sin
5 5

y x x

Thus; 1 2
2 1cos 2 sin 2 cos sin
5 5

xy e c x c x x x

Alternative method: Variation of parameters

We know that the general solution of the characteristic equation 
associated to the equation '' ' ( )y py qy r x  is found to be 

1 1 2 2( ) ( )y c y x c y x .

From 1 1 2 2y c y x c y x , we can get particular solution y  as follows:

• We determine 1 2,W y y  known as Wronskian of two functions 1y  
and 2y  defined by

1 2
1 2 ' '

1 2

, 0
y y

W y y
y y

,since y1  and 2y  are linearly 

independent.

• We determine 2
1

1 2

( )
( , )
y r xv

W y y
, and 1

2
1 2

( )
( , )
y r xv

W y y

where ( )r x  is the right hand side of the given equation.

Then the particular solution y  is given by *
1 1 2 2( ) ( ) ( ) ( )y v x y x v x y x .

Therefore, the general solution is y y y

1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )y c y x c y x v x y x v x y x

Example 5.20 

Find the general solution of 2" 2 ' 3 xy y y e  
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Solution 

Characteristic equation:

2 5 6 0m m

4 12 16

1 2
2 4 2 41, 3
2 2

m m

The complementary solution for this differential equation is
3

1 2
x xy c e c e

So, we have

3
1 2 1, 'x x xy e y e y e  and ' 3

2 3 xy e .

The Wronskian of these two functions is

3
3 3 2

1 2 3, 3 4
3

x x
x x x x x

x x

e e
W y y e e e e e

e e

Now; 
2

3 3 3
1 2

e 1 1
4 4 12

x
x x x

xv e dx e dx e
e

Also; 
2

2 2

e 1 1
4 4 4

x
x x x

xv e dx e dx e
e

Particular solution is,

1 1 2 2y v y v y  3 31 1
12 4

x x x xe e e e  21
3

xe

Thus the general solution is

2
3

1 2 3

x
x x ey c e c e

Example 5.21 

Find the general solution of " '5 6 sinxy y y e x .

Solution 
Characteristic equation:

2 5 6 0m m           25 24 1
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Solution 

Characteristic equation:

2 5 6 0m m

4 12 16

1 2
2 4 2 41, 3
2 2

m m

The complementary solution for this differential equation is
3

1 2
x xy c e c e

So, we have

3
1 2 1, 'x x xy e y e y e  and ' 3

2 3 xy e .

The Wronskian of these two functions is

3
3 3 2

1 2 3, 3 4
3

x x
x x x x x

x x

e e
W y y e e e e e

e e

Now; 
2

3 3 3
1 2

e 1 1
4 4 12

x
x x x

xv e dx e dx e
e

Also; 
2

2 2

e 1 1
4 4 4

x
x x x

xv e dx e dx e
e

Particular solution is,

1 1 2 2y v y v y  3 31 1
12 4

x x x xe e e e  21
3

xe

Thus the general solution is

2
3

1 2 3

x
x x ey c e c e

Example 5.21 

Find the general solution of " '5 6 sinxy y y e x .

Solution 
Characteristic equation:

2 5 6 0m m           25 24 1
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1 2
5 1 5 12, 3
2 2

m m

The complementary solution for this differential equation is
2 3

1 2
x xy c e c e

So, we have

2 3 2
1 2 1, ' 2x x xy e y e y e  and 3

2' 3 xy e .

The Wronskian of these two functions is

2 3
2 3 2 3 5

1 2 2 3, 3 2
2 3

x x
x x x x x

x x

e e
W y y e e e e e

e e

Now, 3
1 5

e sin sin
x

x x
x

xv e dx e xdx
e

Integrating by parts, gives 

1
1 1 1sin cos sin cos
2 2 2

x x xv e x e x e x x

Also, 2 2
2 5

e sin sin
x

x x
x

xv e dx e xdx
e

 

Integrating by parts, gives 

2 2 2 2
2

2 1 2 1sin sin cos sin cos
5 5 5 5

x x x xv e xdx e x e x e x x

Particular solution becomes,

1 1 2 2y v y v y

     
1 2 1sin cos sin cos
2 5 5

x xe x x e x x 3cos sin
10

xe x x

Thus the general solution is

2 3
1 2 3cos sin

10

x
x x ey c e c e x x

Example 5.22 
Find a general solution to the following differential equation

2

2 22
1

xd y dy ey
dx dx x  
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Solution 

We first need the complementary solution for this differential equation. 

Characteristic equation:

22 2 1 0 1 0,m m m  then 1m .

The complementary solution for this differential equation is 1 2
x xy c e c xe

So, we have

1 2,x xy e y xe  and ' '
1 2,x x xy e y e xe

Thus, 

2
1 2,

x x
x x x x x x

x x x

e xe
W y y e e xe e xe e

e e xe
;

2
1 22 2

1 ln 1
1 21

x
x

x

e xv xe dx dx x
xe x

; 

1
2 22 2

tan
11

x
x

x

e dxv e dx x
xe x

The particular solution is 2 11 ln 1 tan
2

x xy e x xe x
The general solution is,

2 1
1 2

1 ln 1 tan
2

x x x xy c e c xe e x xe x

Example 5.23 

Find the general solution of '' xy y e

Solution 

Characteristic equation: 2 1 0m m i

1 2cos siny c x c x

Let 1 2* cos siny v x v x , 

1 2cos , sin , ( ) xy x y x r x e �
1 siny x , �

2 cosy x
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2 2
1 2

cos sin
( , ) cos sin 1

sin cos
x x

W y y x x
x x

1 sin sin cos
2

x
x ev xe dx x x

2 cos cos sin
2

x
x ev xe dx x x

* 1sin cos cos cos sin sin
2 2 2

x x
xe ey x x x x x x e

Thus; 1 2
1cos sin
2

xy c x c x e

Application activity 5.10 

Find the general solution of:

1. '' 2 ' siny y y x x  2. '' 2 ' sinxy y y xe x
3. '' sin 3 cosy y x x x  4. '' cscy y x
5. '' tany y x

5.4. Applications

There are a number of well-known applications of first order equations 
which provide classic prototypes for mathematical modeling. These mainly 

rely on the interpretation of dy
dt

 as 

a rate of change of a function y with respect to time t. 

In everyday life, there are many examples of situations that involve rates 
of change. These include; speed of moving particles, growth and decay 
of populations and materials, heat flow, fluid flow, and so on. In each case, 
we can construct models of varying degrees of sophistication to describe 
given situations.
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5.4.1. Newton’s law of cooling

Using the library or internet if available, show how differential equations 
are used in Newton’s law of cooling and hence solve the following 
problem:

Suppose that you are in hurry to go out but you want to drink a cup of 
hot coffee before you go. The initial temperature of the coffee is 090 C  
and you can start to drink the coffee when its temperature is 045 C . The 
temperature of the room (ambient air) is 020 C . 

Formulate a model and find out how long you will have to wait.

What assumptions and simplifications have you made?

Activity 5.13  

Newton’s law of cooling states that the rate at which an object cools is 
proportional to the difference between the temperature at the surface of 
the body, and the ambient air temperature.  

Thus, if T˚C is the surface temperature at time t and Ta˚C is the ambient 

temperature, then, we can write; 
a

dT T T
dt

 

where 0  is some experimentally determined constant of proportionality, 
and 0T  is the initial temperature of the body of interest.  

Example 5.24 

Solve the following equation

a
dT T T
dt

where 0  to give the temperature at 0t .

Solution 

a
dT T T
dt a

dT dt
T T

Integrating both sides yields
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ln aT T t c  

ln ln t
aT T e c

ln a
t

T T c
e  

ca
t

T T e
e

t
aT T ke  where ce k  t

aT T ke

5.4.2. Electrical Circuits

Using the library or internet if available, show how differential equation 
are used in electric circuit and hence solve the following problem:

The current i in an electric circuit having a resistance R and inductance L in 
series with a constant voltage source E is given by the differential equation 

diE L Ri
dt

.

a) Solve the equation and find i in terms of time t given that when 
0, 0t i .

b) Find the value of i  that corresponds to 3 Lt
R

 and 

 show that it is about 95%  of the steady state value EI
R

.

c) Determine approximately the percentage of the steady state 
current that will be flowing in the circuit 2 times constants after 

the switch is closed (i.e., when 2 Lt
R

)

Activity 5.14  

In the R−L series circuit shown in figure 5.1, the supply p.d., E, is given by

R LE V V

RV iR  and L
diV L
dt

Hence, 
diE iR L
dt

 from which 
diE L iR
dt
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Figure 5.1. R-L series circuit

The corresponding solution is 1
Rt
LEi e

R
 which 

represents the law of growth of current in an inductive circuit as shown in 
figure 5.2

1
Rt
LEi e

R

Time t0

i
E
R

Figure 5.2. Law of growth of current

The growth of the current in the RL circuit, is the current’s steady-state 

value. The number 
Lt
R

 is the time constant of 

the circuit. The current gets to within 5%  of its steady-state value in 3 
times constant.

Example 5.25 

The p.d., V, between the plates of a capacitor C charged by a steady 
voltage E through a resistor R is given by the equation

dVCR V E
dt

.

a) Solve the equation for V given that at 0,t  0.V
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b) Calculate V, correct to 3 significant figures, when
625 , 20 10 ,E V C F  3200 10R  and 3.t s .

Solution

dVCR V E
dt

1dV dVCR E V dt
dt E V CR  

1dV dt
E V CR

Integrating yields;

ln tE V k
CR  

But 1ln ,when 0; 0k t V
E

1ln lntE V
CR E

1 1ln ln t
E V E CR

ln
t

CRE t E V e
E V CR E

t t
CR CRE V Ee V E Ee
t

CRV E Ee  or 1
t

CRV E e

Application activity 5.11 
1. The population of a colony of rabbits in a park increases at a rate 

proportional to the population. Initially, there were ten rabbits in the 
park. When the population is 100 rabbits, the colony is increasing at 
a rate of seven rabbits per month. Form a differential equation for 
the population increase and solve it.

2. The current in an electric circuit is given by the equation

0diRi L
dt

, where R and L are constants.

Show that 
Rt
Li Ie  given that i I  when 0t .
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3. The body of a murder victim was discovered in the early hours of 
the morning at 2:00 a.m. The police surgeon arrived at 2:30 a.m. 
and immediately took the temperature of the body, which was 

034.8 C . One hour later the temperature of the body was 034.1 C . 
Surrounding temperature was constant at 032.2 C . If the normal 
body temperature is 037 C ,

a) Formulate a differential equation model for the temperature of the 
body as a function of time. 

b) Solve the differential equation.

c) Use your solution in b) to estimate the time of death. 

4. Charge, Q (coulombs) at time, t (seconds) is given by 

the differential equation; 0dQ QR
dt C

, where C is the 

capacitance in farads and R the resistance in ohms. 

a) Solve the equation for Q given that oQ Q  when 0t .

b) A circuit possesses a resistance of 3250 10  and a capacitance 
of 68.5 10 F , and after 0.32 seconds the charge falls to 8.0C . 
Determine the initial charge and the charge after 1 second, in each 
case correct to  3 significant figures.

5. A differential equation relating the difference in tension T, pulley 

contact angle  and coefficient of friction μ is dT T
d

.

When  =0, T =150 N, and 0.30 as slipping starts.

Determine the tension at the point of slipping when  =2 radians. 
Also, determine the value of  when T is 300 N.
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Unit summary
1. Definition and classification

An equation involving one or more differential coefficient(s) i.e. 
dy
dx

d y
dx

dr
dt

, ,
2

2
 etc. is called  

a differential equation.

Order of the highest derivative of function y that appears in a differential 
equation is said to be the order of differential equation. 

The general ordinary differential equation of the thn order is 
2

2, , , ,......., 0
n

n

dy d y d yF x y
dx dx dx

, for derivatives

( ), , ', ',......., 0nF x y y y y

2. First order differential equations

The general differential equation of the 1st order is , , 0dyF x y
dx

 or 

,dy f x y
dx

The simplest is that in which the variables are separable: 
dy g x h y
dx

.

A homogeneous equation of degree 0 can be expressed as a function of 
yz
x

The general solution to the equation 
dy py q
dx

 

where p and x are functions in x or constants, is y uv where 
pdxu q e dx  and 

pdxv e .

3. Second order differential equations

The general second order linear differential equation is of the form

2

2

d y dyp x q x y r x
dx dx

Let '' ' 0y py qy  be a homogeneous linear equation of second order 
(right hand side is equal to  zero) where p  and q  are constants.
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The equation 2 0m pm q  is called the characteristic auxiliary 
equation

• If characteristic equation has two distinct real roots, then, 
1 2

1 2
m x m xy c e c e  is the general solution of '' ' 0y py qy .

• If characteristic equation has a real double root then, 

1 2
mx mxy c e c xe  is the general solution of '' ' 0y py qy .

• If characteristic equation has complex roots then, 

1 2c cos sinaxy e bx c bx  is the general solution of 
'' ' 0y py qy .

Let '' ' (y py qy r x (1) be a non-homogeneous linear equation of 
second order (right hand side is different from zero) where p  and q  are 
real numbers.

If the right hand side of the equation '' ' ( )y py qy r x  is ( ) xr x Pe  
where p is a polynomial, we take the particular solution to be

1 2
0 1 2( ) , .....k n n n

n n
xx Q x e Q a x a x a x

Here: k - is the number of roots of the associated homogeneous equation 
equals to .

n  - degree of ( )Q x , the same as degree of ( )P x  in right hand side.

 - coefficient of x  in xe  in the right hand side 

• If  is not a root of characteristic equation 0k

• If  is a simple root of characteristic equation 1k .

• If  is a double root of characteristic equation 2k .

Note that the simple root or double root in the last 2 cases must be real 
numbers.

If the right hand side of the equation '' ' ( )y py qy r x is 
( ) cos sinx xr x Pe x Qe x  where P and Q are polynomials, two 

cases arise:

• If i  is not a root of characteristic equation, the particular 
solution is * cos sinx xy Ue x Ve x
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• If i  is a root of characteristic equation, the particular solution 

becomes
* cos sinx xy x Ue x Ve x

In all cases, U and V are polynomial of degree which is equal to the 
highest degree of P and Q.

Alternative method: Variation of parameters

Assume that the general solution of the characteristic equation 
associated with the equation '' ' ( )y py qy r x  is found to be 

1 1 2 2( ) ( )y c y x c y x

To get particular solution:

From 1 1 2 2y c y x c y x , we determine 1 2,W y y  known as 

Wronskian of two linearly independent functions 1y  and 2y  defined by

1 2
1 2 ' '

1 2

, 0
y y

W y y
y y

Find out 2
1

1 2

( )
( , )
y r xv

W y y
, and 1

2
1 2

( )
( , )
y r xv

W y y
where ( )r x  is the right hand side of the given equation.

Here, 1 2,W y y  must be different from zero as 1y  and 2y  are linearly 
independent.

Hence, the particular solution is 1 1 2 2* ( ) ( ) ( ) ( )y v x y x v x y x

The general solution is y y y
4. Applications

There are a number of well-known applications of first order equations 
which provide classic prototypes for mathematical modeling. These 

mainly rely on the interpretation of 
dy
dt

 as a rate of change of a function y

with respect to time t. In everyday life, there are many examples of the 
importance of rates of change – speed of moving particles, growth and 
decay of populations and materials, heat flow, fluid flow, and so on. In 
each case we can construct models of varying degrees of sophistication to 
describe given situations.
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End of unit assessment
1. Solve the following differential equations.

a) ' , 0 1y x y

b) 2' 1xy x , 1 0, 2 1y y

c) " cos , 0 0, 1y x y y

d) 2' xy e y  e) 21 ' 3x y x y

f) 21 ' 3x y x y  g) 3 2' 2 xxy y x e  

2. Solve the following equations.

a)  2 3x ydy e
dx

 b) lndy y x
dx

 

c)  24 1dyxy y
dx

 d) 3 2dyx x y
dx

e)  2 22 dyxy y x
dx

 f) 
2

3
dy x y
dx x y

g)  2 23 1xdy y e x
dx

 h) 22 1dy xy x x
dx

3. Find the particular solutions of the following initial value problems.

a) 2 1 1 0,dyy x x y
dx

 given 1x  when 1y

b) , 1 2dyy x x y
dx  

c) 
2 2

1

3 2 , 3
x

dyx y xy y
dx  

d) 
1

, 0x
x

dy y e y
dx

    1xy e x

e) 0
tan 1, 2

x

dy y x y
dx

   tan 2secy x x

f) 2 1 , 0 0dy y x y
dx

  
2 1 xy x e
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4. Solve the following differential equations.

a) 
2

2 2 0d y dy y
dx dx

 b) 
2

2 4 5 0d y dy y
dx dx

c) 
2

2 4 4 0d y dy y
dx dx

 d) 
2

2 4 0d y y
dx

e) 
2

2 9 0d y y
dx

5. Obtain the general solution of the following in homogeneous 
equations.

a) 
2

2 5 4 3 2d y dy y x
dx dx

           

b) 
2

2
2 4 xd y y xe

dx
       

c) 
2

2 2 2 2cos3d y dy y x
dx dx

       

d) 

2

2 4 cosxd y y e x
dx

e) 
2

2 4 sin 2xd y y e x
dx

f) 
2

3 3
2 4 3 2 cos 2x xd y dy y xe e x

dx dx
6. For each of the following equations, determine  the  particular 

solutions for initial value problem.

a) 
" '2 10 0, 0 0, ' 0 1y y y y y        

b) 
" '4 13 0, 0 0, ' 1

2
y y y y y

7. Workout the solution for  each of the following second order 
equations, with the specified     conditions.

a) " 2 y' 2, 0 0, ' 0 0y y x y y

b) 
1" 4 y 1, 0 0,

4 4
y x y y

c) " sin 2 , 0 0, ' 0 0y y x y y

d) " 4 ' 3 3 , 0 0, ' 0 0y y y x y y
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e) 
2

2
2 7 10 20;xd y dy y e

dx dx
 when 0, 0x y

and 
1
3

dy
dx

f) 
2

22 6 6 cos ;xd y dy y e x
dx dx

 when 
210,
29

x y     

and 
206
29

dy
dx

     

g) " 2 ' 2 3 cos 2 , 0 2, ' 0 3xy y y e x y y     

8. As a radioactive substance decays it loses its mass at a rate proportional 
to its mass at the present time. Write down a differential equation to 
model this statement.

9. An individual in a population of 1,500 people working in a company 
becomes infected with a virus. It is assumed that the rate at which the 
virus spreads throughout the company is proportional to the number 
of people infected, P, and to the number of people not infected. Form 
a differential equation to model the number of people infected as a 
function of time.  

10. The rate of growth of sunflower after germination is initially proportional 
to its height. The growth rate is 2.5 m per day when its height is 10 
m. In modeling the growth, it is assumed that the initial height is  
2 cm. Formulate a problem consisting of the differential equation and 
initial condition to find the height of the sunflower at any time.

11. The charge q t  in an RC circuit satisfies the linear differential 

equation 
1 1'q q E t

RC R
a) Solve for the charge in the case that 0 oq q , constant.  Evaluate 

the constant of integration by using the condition 0 oq q .

b) Determine lim
x

q t  and show that this limit is 

independent of oq
c) Determine at what time q t  is within 1%  of its steady-state value 

(the limiting value requested in b)).
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12. The rate at which a body cools is proportional to the difference 
between the temperature of the body and that of surrounding air. If 
a body in air at 025 C  will cool from 0100 C  to 075 C  in one minute, 
find its temperature at the end of a further two minutes.

13. Water at temperature 0100 C  cools in 10 minutes to 088 C  in a 
room of temperature 025 C . Find the temperature of water after 
20 minutes.



Unit
6

The mathematical concepts of vector spaces are formed according to 
the following natural rules:

a) Each vector can be magnified or shrank by a factor by simply changing 
the size but not the direction. 

b) Vectors can be added. Two forces, for example, applied at the same 
time and at the same spot will have the same effect of a certain single 
force. 

c) Two identical vectors added together would be a vector in the same 
direction, but twice the size.

Refer to what you studied in previous levels and give 2 examples in a), 
b) and in c). 

Introductory activity

Likewise, different vector spaces can be added to make a new vector 
space. For example, from 2 ,3 ,2 : ,H a b a b a b a b  and 

3 , , 2 :K b b b b , you can find the sum and intersection of H and 
K. In this unit, we shall see such kind of operations.

By the end of this unit, a student will be able to: 

• Define the intersection and the sum of subspaces of a vector 
space.

• State the dimension formula.

• List the conditions for a vector space to be qualified as direct 
sum of its subspaces.

Objectives

Intersection and Sum of 
Subspaces
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6.1. Definition 

A vector space (also called a linear space) is a collection of objects called 
vectors, which may be added together and multiplied by numbers. 

Consider  2 ,0,5 ,V x x x
1. What would be the value of x so that 0,0,0 V  ?

2. Let 2 ,0,5 , 2 ,0,5u a a v b b V , ,a b . Show that for any 
real number , , u v V .

3. From 1) and 2) indicate whether V is a sub-vector space.

Activity 6.1  

A subset V  of n  is called a sub-vector space, or just a subspace of 
n  if it has the following properties:

• The null vector belongs to V .

• V  is closed under vector addition, i.e if ,u v V  then u v V .

• V  is closed under scalar multiplication, i.e if , u V , 
u V .

Generally, 

If , ,F  is a subspace of , ,E , then

• F E

• 0 F

• , , , ;u v F u v F

Notice
Let V be a vector space. Then,

• V is a subspace of V

• Also, 0  is a subspace of V

• V and 0  are called the trivial (or improper) subspaces of V. 
Other subspaces are called proper subspaces.
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Example 6.1 

Consider 3 ,0,4 ,A x x x , show that , ,A is a sub-vector 
space of 3 .

Solution 

• 3A

• If we take 0x , we see that 0,0,0 A

• Consider 3 ,0,4k k k , 3 ,0,4t t t A , , IR

3 ,0,4 3 ,0,4

3 ,0,4 3 ,0,4

3 3 ,0,4 4

3 ,0,4 3 ,0,4

k t k k t t

k k t t

k t k t

k t k t y y for y k t

Then k t A ; therefore, A is a subspace of 3 .

Example 6.2 

Consider the subset 1 1 1 1, : 0U x y x y . Is U a subspace of 2 ?

Solution 

We can check that for 1 0x  and 1 0y ; we have 0 U .

However, notice that 1,0 U  and 0,1 U . Yet 

1,0 0,1 1,1 U . Therefore, U is not a subspace of 2 .

Application activity 6.1 

1. Is  a)  : 0, 0
x

S x y
y

 a subspace of 2 ? Why?

      b)  Is : ,
0

a
S b a b  a subspace of 3 ? Why?
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2. Which of the following are subspaces of 3 ? For each which is not 
subspace, explain why. Otherwise, write down two distinct non-zero 
vectors 1 2,v v , of the subspace or show that the subspace is just the 
zero vector.

a) 
3, , : 0x y z z

b) 
3, , : 2 3 0x y z x y z

c) 3, , : 2 3 4 0x y z x y z
3. From 1) and 2) indicate whether v is a sub vector space.

6.2. Intersection and sum of two vector spaces 
6.2.1. Intersection of subspaces

Let , , : 2 3 0H x y z x y z  and  

, , : 0K x y z x y z  be the subspaces of 3 . 

The intersection H K  is found by solving the system

2 3 0
0

x y z
x y z

Solve this system and hence deduce H K .

Verify whether H K  is a subspace of 3 .

Activity 6.2  

From activity 6.2, let U and W be subspaces of a vector space V . The 
intersection of U  and W , written U W , consists of all vectors u  where 

u U  and u W .

Theorem 6.1
Any intersection of subspaces of a vector space V is a subspace of V.

Example 6.3 

Describe the intersection H K  if ,3 , 2 : ,H a b a b a b a b  
and 3 , , 2 :K c c c c .
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Solution 

The intersection consists of vectors that can be written in the form 
,3 , 2a b a b a b  and in the form 3 , , 2c c c  for some , ,a b c . 

Thus, they are obtained by solving the following system:

3
3
2 2

a b c
a b c
a b c  

3 0
3 0
2 2 0

a b c
a b c
a b c  

3 3 0
3

2 2 3 0

a b a b
c a b

a b a b

By solving this system, we obtain 0,0,0 . Hence 0,0,0H K

Example 6.4 

Consider ,0, , ,F x z x z  and , ,0 , ,G x y x y . Find 
F G

Solution 

We need to solve  
the system

0
0

x x
y

z

Then

,0,0 ,F G x x

1,0,0 ,x x  

which is generated by 1,0,0

Application activity 6.2 

1. Let V be the vector space of 2 by 2 matrices over . Let U consists 
of those matrices in V whose second row is zero, and let W consist of 
those matrices in V whose second column is zero. Find the intersection 
U W .

2. Let : 2 0H function f on f  and  
: 1 0K function f on f . Find H K

3. Take U to be the x axis  and V to be the y axis , both subspaces 
of 2 . Find their intersection.

4. Let 1 , ,0 : ,U x y x y  and 2 0, , :U y y y . Find their 
intersection.
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Solution 
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1. Let V be the vector space of 2 by 2 matrices over . Let U consists 
of those matrices in V whose second row is zero, and let W consist of 
those matrices in V whose second column is zero. Find the intersection 
U W .

2. Let : 2 0H function f on f  and  
: 1 0K function f on f . Find H K

3. Take U to be the x axis  and V to be the y axis , both subspaces 
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5. Let 1 , , : 0, 2 3 0U x y z x y z x y z  

and 2 , , : 0, 2 3 0U x y z x y z x y z  be subspaces of 
3 . Find their intersection.

Dimension of intersection of subspaces

Let , ,0 : ,U x y x y  and , , : , ,W x y z x y z  be 
subspaces of 3 . 

Find the  a) intersection U W .

 b) Find the basis of U W  and hence     
     deduce the dimension of U W .

Hint:
Recall from Senior Five that, a set S of linearly independent vectors which 
is a spanning set of vector space V is called a basis and number of vectors 
in S is the dimension of the vector space V.

Activity 6.3  

We recall from Senior Five, that

A finite set S of vectors in a vector space V is called a basis for V provided 
that:

• The vectors in S are linearly independent.

• The vector in S span V (or V is a generating set of V).

The unique number of vectors in each basis for V is called the dimension 
of V and is denoted by dim V .

Example 6.5 

Let , ,0 : ,U x y x y  and 0, , : ,V x y x y  be subspaces of 
3 . Find the dimension of their intersection.

Solution

First we need the intersection:
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0

0

x
y x

y

Be careful!

At this point for this problem, extra care is needed for correct deductions 
to be made.

Here, first entry is fixed to zero, second entry cannot be fixed to zero even 
if y x . 

The reason is that we can write 0, , : ,V x y x y  as 
0, , : ,V a b a b  and the system becomes

0

0

x
y a

b

So, only first and third entries are fixed to zero.

Then, 0, ,0 :U V y y

But, 0, ,0 0,1,0y y . So, the basis is 0,1,0  and hence 
dim 1U V .

Example 6.6 

Let ,3 , 2 : ,H a b a b a b a b  and 
, , : 0, 2 3 0K x y z x y z x y z  be subspaces of 3 . 

Find the dimension of their intersection.

Solution

First, we need the intersection:

The intersection consists of the vectors of the form ,3 , 2a b a b a b  
satisfying the system

0
2 3 0

x y z
x y z
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0

0

x
y x

y

Be careful!

At this point for this problem, extra care is needed for correct deductions 
to be made.

Here, first entry is fixed to zero, second entry cannot be fixed to zero even 
if y x . 

The reason is that we can write 0, , : ,V x y x y  as 
0, , : ,V a b a b  and the system becomes

0

0

x
y a

b

So, only first and third entries are fixed to zero.

Then, 0, ,0 :U V y y

But, 0, ,0 0,1,0y y . So, the basis is 0,1,0  and hence 
dim 1U V .

Example 6.6 

Let ,3 , 2 : ,H a b a b a b a b  and 
, , : 0, 2 3 0K x y z x y z x y z  be subspaces of 3 . 

Find the dimension of their intersection.

Solution

First, we need the intersection:

The intersection consists of the vectors of the form ,3 , 2a b a b a b  
satisfying the system

0
2 3 0

x y z
x y z
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Substituting the form ,3 , 2a b a b a b  into the system gives

3 2 0
6 2 6 3 0

a b a b b b
a b a b a b

 or 
2 0 0

6 0 0
a b a

a b b

Then, 0H K  and dim 0H K

Example 6.7 

Let , , : 2 0U a b c a b c  and , , : 0V a b c a b c  be 
subspaces of 3 . Find the dimension of their intersection.

Solution

First, we need the intersection by solving the system 

2 0
0

a b c
a b c

  

2 0
0

2 0 2

a b c
a b c

a b b a

2 0 4 0 3a b c a a c c a

Then, , 2 ,3 :U V a a a a

But, , 2 ,3 1,2,3a a a a . So, the basis is 1,2,3  and hence 
dim 1U V

Application activity 6.3 

1. Let U and W be the following subspaces of 4 : 
, , , : 0U a b c d b c d , , , , : 0, 2W a b c d a b c d

.  
Find the dimension of U W .

2. Let ,0, : ,U a c a c  and 0, , : ,W b c b c  be 
subspaces of 3 . Find the dim U W .

3. Let ,3 , : ,H a b a b b a b  and 
2 ,3 , : ,K a b a b b a b  be subspaces of 3 . Find the 

dimension of their intersection.
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6.2.2. Sum of subspaces

Let ,0, : ,U a c a c  and 0, , :W b b b  be subspaces

 of 3 . Find the sum U W . Verify whether U W  is a subspace

 of 3 .

Activity 6.4  

Let U  and W  be subspaces of a vector space V . The sum of U  and W
, written U W , consists of all sums x y  where x U  and y W  or 

:U W x y x U and y W .

Theorem 6.2

• The sum U W  of the subspaces U and V  is also a subspace of V .

• 1W  and 2W  are subspaces of V , then 1 2W W  is the smallest 
subspace that contains both 1W  and 2W .

Example 6.8 

Let ,3 , 2 : ,U a b a b a b a b  and  3 , , 2 :V a a a a  be 
subspaces of 3 . Find their sum.

Solution

Since there is a in U and in V, we take another unknown c. The sum is

,3 , 2 3 , , 2 : , ,

3 ,3 , 2 2 : , ,

U V a b a b a b c c c a b c

a b c a b c a b c a b c

Example 6.9 

Let , , : 2 0, 3U a b c a b c a c  and  
, , : 0,V a b c a b c a b  be subspaces of 3 . 

Find their sum.

Solution

First, we solve simultaneously two equations for each subspace:
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Let ,0, : ,U a c a c  and 0, , :W b b b  be subspaces
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For , , : 2 0, 3U a b c a b c a c

2 0
3

3 2 0 2 4 2

a b c
a c

c b c b c b c

Then, we can write 3 ,2 , :U c c c c

, b,c : 0, }For V a a b c a b

0a b c
a b

0b b c
2b c

Then, we can write , , 2 :V b b b b

Now, the sum is

3 ,2 , , , 2b : ,U V c c c b b b c

3 ,2 , 2 : ,c b c b c b b c

Application activity 6.4 

1. Suppose that U and W are subspaces of a vector space V, and that 

iu  generates U and jw  generates W. Show that ,i ju w , i.e, 

i ju w , generates U V .

2. Let V be the vector space of 2 by 2 matrices over .  
Let U consists of those matrices in V whose second row is zero, and let 
W consist of those matrices in V whose second column is zero. Find 
the sum U W .

3. Let 1 , , : 0, 2 3 0U x y z x y z x y z  and 

2 , , : 0, 2 3 0U x y z x y z x y z be subspaces of 3 . 

Find their sum. 
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Dimension of sum of subspaces

Let ,0,0 :U a a  and 0, ,0 :W b b  be subspaces of 
3 . 

1. Find the sum U W .

2. Find the basis of U W  and hence deduce the dimension of 
U W .

Hint:

Recall (from Senior Five) that, a set S of linearly independent vectors 
which is a spanning set of vector space V is called a basis and the number 
of vectors in S is the dimension of the vector space V.

Activity 6.5  

We recall from Senior Five, that;

A finite set S of vectors in a vector space V is called a basis for V provided 
that:

• The vectors in S are linearly independent.

• The vector in S span V (or S is a generating set of V).

The unique number of vectors in each basis for V is called the dimension 
of V and is denoted by dim V .

Example 6.10 

Let , 2 ,3 : ,U a a b a b a b  and ,3 , 2 :V a a a a  be 
subspaces of 3 . Find their sum and dimension of U V .

Solution

Since there is a in U and in V, we take another unknown c. The sum is

, 2 ,3 ,3 , 2 : , ,

, 2 3 ,3 2 : , ,

U V a a b a b c c c a b c

a c a b c a b c a b c

Now,

, 2 3 ,3 2 ,2 ,3 0, , ,3 , 2

1,2,3 0, 1, 1 1,3,2

a c a b c a b c a a a b b c c c

a b c
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We need to check if 1,2,3 , 0, 1, 1  and 1,3,2  are linearly 
independent.

We solve 

1,2,3 0, 1, 1 1,3,2 0,0,0

0
2 3 0
3 2 0

The only solution is 0,0,0 . So, vectors 1,2,3 , 0, 1, 1  and 1,3,2  
are linearly independent.

Then, the basis for U V  is 1,2,3 , 0, 1, 1 , 1,3,2S  and hence 
dim 3U V .

Example 6.11 
2,a b , we have , 1,0 0,1a b a b . Thus, 1,0 , 0,1  is the 

basis of 2  and 2dim 2 .

Example 6.12 
3, ,a b c , we have 

, , ,0,0 0, ,0 0,0, 1,0,0 0,1,0 0,0,1a b c a b c a b c

Thus, 1,0,0 , 0,1,0 , 0,0,1  is the basis of 3  and 3dim 3 .

Application activity 6.5 

1. Consider two subspaces 
2 0

:
3 0

a
H a

a
 and 

0
:

3
b

K b
b b

. Find the dimension of H K .

2. Let , , : 2 0, 3U a b c a b c a c and  

, , : 0,V a b c a b c a c  be subspaces of 3 . Find the 
dimension of their sum.

3. Let 1 , , : 0, 2 3 0U x y z x y z x y z  and 

2 , , : 0, 2 3 0U x y z x y z x y z be subspaces of 3 . 
Find the dimension of their sum.
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Grassmann’s formula of dimensions

 

Let ,0, : ,F x z x z  and 0, , : ,G y z y z . 

1. Find  a)  dim F  and dim G

b) dim dimF G

c) F G  and dim F G

d) dim dim dimF G F G

e) F G  and dim F G

2. Compare your results from d) and e).

Activity 6.6  

From activity 6.6,

If , ,F  and , ,G  are two sub-vector spaces of , ,E , 
we have, dim dim dim dimF G F G F G . This formula is 
called Grassmann’s formula of dimensions. 

Example 6.13 

Consider ,0, , ,F x z x z  and , ,0 , ,G x y x y . Verify 
Grassmann’s formula.

Solution 

• For F

,0, ,0,0 0,0,
dim 2

1,0,0 0,0,1

x z x z
F

x z

• For G

, ,0 ,0,0 0, ,0
dim 2

1,0,0 0,1,0

x y x y
G

x y

• 2 , , , , ,F G x y z x y z
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2 , , 2 ,0,0 0, ,0 0,0,
dim 3

2,0,0 0,1,0 0,0,1

x y z x y z
F G

x y z

• ,0,0 ,F G x x

,0,0 ,0,0
dim 1

1,0,0

x x
F G

x

Then, 

dim 3

dim dim dim
2 2 1 3 hence verified.

F G

F G F G

Notice

If dim 0F G , then dim dim dimF G F G . In this case, 
F and G are said to be complementary and the sum F G  is said to be a 
direct sum; and it is denoted by F G . Otherwise, F and G are said to be 
supplementary.

Theorem 6.3

• The vector space V  is the direct sum of its subspaces 1W  and 2W  
(i.e, 1 2V W W ) if and only if 1 2 1 2and 0V W W W W .

• Let 1W  and 2W  be two subspaces of a vector space V  over F , and 
then 1 2 1 1 2 2, ! , !V W W x V x W x W   
such that 1 2x x x .

As, if we suppose 1 2 1 2x x x y y , 1 1 1 2 2 2, , , ,x y W x y W  then, 

1 1 2 2x y y x  and 1 1x y W1, 2 2y x W2.

Therefore, 1 1 2 2 1 2 0x y y x W W

1 1 2 2,  x y x y .

Example 6.14 

Let 1W , 2W , and 3W  denote the x-axis, the y-axis, and the z axis  
respectively. Show that 3  is uniquely represented as a direct sum of 1W
, 2W , and 3W .
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Solution 
3

1 2 3W W W , 0 ,i jW W i j .

3, ,a b c , , , ,0,0 0, ,0 0,0,a b c a b c

where 1 2 3,0,0 ,  0, ,0 ,  0,0,a W b W c W

Therefore, 
3
 is uniquely represented as a direct sum of 1W , 

2W , and 3W .

Example 6.15 

Let , ,0 : ,U a b a b  be the xy plane  and let 
0,0, :W c c  be the z axis . Show that 3  is a direct sum of U  

and W .

Solution 

Any vector 3, ,a b c  can be written as the sum of a vector in U and a 
vector in V in one and only one way: , , , ,0 0,0,a b c a b c . 

Accordingly, 3  is a direct sum of U  and W , that is, 3 U W .

Application activity 6.6 

1. Given V  and W , the sub-vector spaces of 
4

 

such that , , , : 2 0V a b c d b c d  and 
, , , : , 2W a b c d a d b c . Find the dimension of  V , W  and 

V W . Deduce dim V W .

2. Let 1W  and 2W  denote the xy  and the 3  planes, respectively. Can 
3  be uniquely represented as a direct sum of 1W  and 2W ? Show 

your working steps.

3. If 1W  and 2W  are the set of all even functions and the set of all odd 
functions respectively. Is 

1 2F W W  a direct sum? Show your 
working steps.

4. Let , ,0 : ,F x y x y  and 0, , : ,G w z w z Is the 
sum of F and G  a direct sum? Show your working steps.     

5. Assume that U  and W  are distinct subspaces U W of a four-

dimensional vector space V and dim dim 3U W . Prove that 
dim 2U W .
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Solution 
3

1 2 3W W W , 0 ,i jW W i j .

3, ,a b c , , , ,0,0 0, ,0 0,0,a b c a b c

where 1 2 3,0,0 ,  0, ,0 ,  0,0,a W b W c W

Therefore, 
3
 is uniquely represented as a direct sum of 1W , 

2W , and 3W .

Example 6.15 
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4
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dimensional vector space V and dim dim 3U W . Prove that 
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Unit summary
1. Definition

If , ,F  is a subspace of , ,E , then

• F E

• 0 F

• , , , ;u v F u v F

2. Intersection and sum of two vector spaces

Let U  and W  be subspaces of a vector space V . The intersection of 
U and W , written U W , consists of all vectors u  where u U  and 

u W .

Any intersection of subspaces of a vector space V is a subspace of V. 

If F and G are two subspaces of E, then, the sum of F and G is also a 
subspace of E. It is denoted as , ,F G x y x F y G

Grassmann’s formula of dimensions. 

If , ,F  and , ,G  are two sub-vector spaces of

, ,E , we have, dim dim dim dimF G F G F G .

Remark

If dim 0F G , then, dim dim dimF G F G . In this case, 
F and G are said to be complementary and the sum F G  is said to be a 
direct sum; and it is denoted by F G . 

Otherwise, F and G are said to be supplementary.
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End of unit assessment

1. In Exercise a-d, which one is a subspace of 3 ? 

a) The plane x y
b) The line 1 ,2 ,3t t t     

c) The locus 2 2 2 0x y z      

d) The locus 2 2 2 0x y z    

2. Find the dimension of subspaces E  and F if

, : 0E x y x y

, , : 2 0F x y z x y z

3. For 5
1 2 3 4 5 1 3 5 2 4{ , , , , : 0, }W a a a a a a a a a a , find 

dim W .

4. Suppose U and W are distinct 4-dimensional subspaces of a 
vector space V  of dimension 6. Find the possible dimensions of 
U W .

5. Let U and W be the subspaces of 4 generated by 
1,1,0, 1 , 1,2,3,0 , 2,3,3, 1  and 

 1,2,2, 2 , 2,3,2, 3 , 1,3,4, 3  respectively. Find 

a) dim U W  b) dim U W

6. Show that the set of all square matrices can be decomposed into 
the direct sum of the set of the symmetric matrices and that of the 
skew-symmetric ones.

7. Let ,0,0 :F x x  and 0, ,0 :G y x . Is W F G  
a direct sum? Show your working steps. 
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Given a matrix 
3 4
1 2

A  and a point P with coordinates ,x y  of the 
Cartesian plane.

a) Find the coordinate of the point 'P  which are ( ', ')x y  such that

' 3 4
' 1 2

x x
y y

b) If f is a transformation by which P’ is the image of P, find the image of the 
point O(0,0) and A (1,2). Present each point and its image in the same 
Cartesian plan. 

c) Is the point and its image the same? 
d) Does the matrix have an effect on the position of an object or the object 

remains in its position? Explain your answer.  

Introductory activity

Matrices are used in Cryptogram where a message is written according to 
a secret code. This code uses matrices to encode and decode messages 
for example when sending money in the telephone.

By the end of this unit, I will be able to: 
• Define the kernel, the image, the nullity and the rank of a linear 

transformation.
• State the dimension formula for linear transformations. 
• Carry out the elementary row operations on matrices. 
• Define and find eigenvalues and eigenvectors of a square matrix. 
• Discuss the diagonalisation of square matrices.

Objectives

Matrices and their inverse are used by programmers for coding or 
encrypting a message. Matrices are applied in the study of electrical 
circuits, quantum mechanics and optics. A message is made as a sequence 

Transformation of 
Matrices
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of numbers in a binary format for communication and it follows code 
theory for solving.

7.1. Kernel and range of a transformation

Consider the following relation:
2 2:
, 3 2,3 1

f
f x y x y x y

Find all vectors ,x y  such that , 0,0f x y .

Activity 7.1  

• The kernel of a linear mapping :f E F  denoted Ker f  
is a subset of E  whose image by f  is 0-vector of F . i.e, 

: 0Ker f v E f v .

• The nullity of f denoted n f  is the dimension of Ker f . 
i.e, dimn f Ker f .

• The image or range of a linear mapping :f E F  is the 
set of points in F  to which points in E  are mapped on. i.e, 
Im : ,f u F f v u u E  and Im f  is a 

vector subspace of F.

• The rank of f denoted rank f  or r f  is the dimension of image 
of f .

i.e, dim Imrank f f .

Notice
A linear transformation f  is called singular if there exists a non-zero vector 
whose image is zero vector. Thus, it is non-singular if the only zero vector 
has zero vector as 

image, or equivalently, if its kernel consists only of the zero vector: 
0Ker f .
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Theorems

• A linear transformation :f E F  is one-to-one (1-1) if and only 
if 0Ker f . 

• A linear transformation :f E F  is onto if the range is equal to 
F .

• Consider the linear transformation :f E F , the following is 
true: dim dim dimKer f range f E .

• Consider the linear transformation :f E F ,  If 
dim dimE F , then,

a) f  is one-to-one.

b) f  is onto.

In this case, :f E F  is called an isomorphism. And we say that E  
and F  are isomorphic, and we write E F .

Example 7.1 

Let f  be the linear transformation from 2  to 3  defined by f v Av  

with 

1 3
2 6
3 9

A

a) Find a basis for Ker f .

b) Determine if f  is one to one.

c) Find a basis for the range of f .

d) Determine if f  is onto.

Solution

Let 
a

v
b

, then 

1 3 3
2 6 2 6
3 9 3 9

a b
a

Av a b
b

a b

a) To find the kernel of f , we set 

3 0
2 6 0
3 9 0

a b
a b
a b

, then
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3 0
2 6 0 3 0 3

3
3 9 0

a b
aa b a b a b or b

a b

The kernel of f is the set of all vectors of the form 

3
,

b
b

b

To find the basis: 
3 3

1
b

b
b

, then the basis is 

3,1 . 

Therefore, the basis for Ker f  is 3,  1 .

b) f  is not one to one since the 0Ker f

c) Range of f  has the form

3
2 6 , ,
3 9

a b
a b a b
a b

To find basis
3 3 1 3

2 6 2 6 2 6
3 9 3 9 3 9

a b a b
a b a b a b
a b a b

The basis for the range would be 1,2,3 , 3,6,9  but we 
see that the vector 3,6,9  is a multiple of the vector 1,2,3
. This means that the two vectors are linearly dependent. 
Then, the vector 3,6,9  must be removed. Hence, the 
basis is 1,2,3 .

d) Since the dimension of the range of A  is 1 and the dimension of 
3  is 3, f  is not onto.

Example 7.2 
Consider the linear mapping 

3 3:
, , 2 , , 2

t
t x y z x y z y z x y z
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3 0
2 6 0 3 0 3

3
3 9 0

a b
aa b a b a b or b

a b

The kernel of f is the set of all vectors of the form 

3
,

b
b

b

To find the basis: 
3 3

1
b

b
b

, then the basis is 

3,1 . 

Therefore, the basis for Ker f  is 3,  1 .

b) f  is not one to one since the 0Ker f

c) Range of f  has the form

3
2 6 , ,
3 9

a b
a b a b
a b

To find basis
3 3 1 3

2 6 2 6 2 6
3 9 3 9 3 9

a b a b
a b a b a b
a b a b

The basis for the range would be 1,2,3 , 3,6,9  but we 
see that the vector 3,6,9  is a multiple of the vector 1,2,3
. This means that the two vectors are linearly dependent. 
Then, the vector 3,6,9  must be removed. Hence, the 
basis is 1,2,3 .

d) Since the dimension of the range of A  is 1 and the dimension of 
3  is 3, f  is not onto.

Example 7.2 
Consider the linear mapping 

3 3:
, , 2 , , 2

t
t x y z x y z y z x y z
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Find:

a) Ker t   b) Range of t and rank t

Solution 

a)  Ker t  

We have 

2 0 1

0 2

2 0 3

x y z

y z

x y z

  

From (2), 4y z

4  in 1  and 3  gives 
2 0

2 0
x z z
x z z

 or 3x z .

Then, the vector , ,x y z  becomes 3 , ,z z z

Hence, kernel of t is 3 , ,Ker t z z z z IR .

Basis and dimension:

3 , , 3, 1,1z z z z

The basis is 3, 1,1  and 1n t
b)     Range of t

The range of t is 2 , , 2 , , ,x y z y z x y z x y z
Basis and dimension:

2 2 1 2 1
0 0 1 1

2 2 1 1 2

x y z x y z
y z y z x y z

x y z x y z

Next, we check if the vector, 1,0,1 , 2,1,1 , 1,1, 2  are linearly 
independent. It can be seen that 2,1,1 3 1,0,1 1,1, 2 , 
means that the three 

vectors are linearly dependent. Then, we remove the second vector, 
2,1,1 , and the basis of image of t is 1,0,1 , 1,1, 2 . 

Hence, 2rank t .
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Application activity 7.7 

1. Let :F V U  be the projection mapping into the x y  plane: 
, , , ,0F x y z x y . Find:

a) ImF  b) KerF
2. Let 3 3:T  be  the linear mapping defined by 

, , 2 , , 2T x y z x y z y z x y z. Find a basis and the 
dimension of the:

a) Image U of T b) Kernel W of T

3. Let 4 3:F  be  the linear mapping defined by 
, , , , 2 , 3 3F x y s t x y s t x s t x y s t.  

Find a basis and the dimension of the:
a) Image U of F b) Kernel W of F

7.2. Elementary row/column operations 

Consider matrix 

1 0 2
1 1 1
3 2 1

A

Perform the following operations on matrix A :

1. New 2 2 1row row row
2. New 3 3 3 1row row row , use matrix obtained in 1).
3. New 2 3column column , use matrix obtained in 2).

4. New 
13 3 2
3

column column column , use matrix obtained in 
3).

Activity 7.2  

Elementary matrix operations are of three kinds:

a) Interchanging two lines.
b) Multiplying each element in a line by a non-zero number.
c) Multiplying a line by a non-zero number and adding the result to 

another line.
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Note that here the term line is used to mean either a row or a column of 
the matrix.

When these operations are performed on rows, they are called elementary 
row operations; and when they are performed on columns, they are 
called elementary column operations.

Notation
In many references, you will encounter a compact notation to describe 
elementary operations. That notation is shown below:

  Op   erat   

Ro

ion desc

w operat

ription         

ions 

1. Int

                 

er

        Not

change row and

2.Mult

ation     

iply 
i ji j r r

row by 0
3. Add times row to row  

1. Interchange column

Column 

and

2.Multiply c

operation

olumn

s

i i

j j i

i j

i s new r sr
s i j new r r sr

i j c c
i by 0

3. Add times column to column
i i

j j i

s new c sc
s i j new c c sc

Example 7.3 

1 2 3
2 3 1
5 0 2

A

• The operation 2 3r r  performed to A  gives

1 2 3
5 0 2
2 3 1

B

• The operation 3 32c c  performed to B  gives

1 2 6
5 0 4
2 3 2

C
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• The operation 2 2 14r r r  performed to C gives

1 2 6
9 8 20
2 3 2

D

Then, matrix D is obtained from matrix A by a sequence of elementary 
operations.

• Two matrices are said to be row equivalent (or column equivalent) 
if one can be changed to the other by a sequence of elementary row 
(or column) operations.

The concept of equivalence should not be confused with that 
of similarity, which is only defined for square matrices, and it is 
much more restrictive (similar matrices are certainly equivalent, but 
equivalent square matrices need not be similar).

• Two matrices A and B are said to be similar if 1B P AP  for some 
invertible matrix P. If A and B are similar, we write A B . Similar 
matrices represent the same linear transformation under two different 
bases.

Example 7.4 

Show that the matrices 
4 2
2 1

A  and 
3 2
1 2

B are 

similar given invertible matrix 
1 1
1 0

P .

Solution

4 2
2 1

A  and 
3 2
1 2

B  are similar because for 

1 1
1 0

P  we have

1 0 1 4 2 1 1 3 2
1 1 2 1 1 0 1 2

B P AP

Since B P AP= =
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−1 3 2
1 2

, then A and B are similar.
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⎟⎟⎟⎟
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Application activity 7.8 

1. Consider matrix 

1 2 3 0
2 4 2 2
3 6 4 3

A .

Perform the following operations on matrix A :

a) 2 1 22r r r   b) 3 1 33r r r

c) 3 2 35 4r r r

2. Consider matrix 

2 3 2 4 6
0 0 3 2 5
0 0 0 0 2

A . 

Perform the following operations on matrix A :

a) 1 2 14 3r r r   b) 1 3 1r r r  c) 2 3 25 2r r r

7.3. Diagonalisation of matrices 

7.3.1. Eigenvalues and eigenvectors

Consider matrix 
4 2
3 1

A

1. Find the determinant, det A I  where I  is identity matrix of 
order 2 and .

2. Equate the determinant obtained in 1)  to zero. Hence, find the 
value(s) of  by solving equation formed.

3. Using the value(s) of  obtained in 2), find the vector(s) 

1

2

u
u

u
 if 0A I u .

Activity 7.3  
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Definition 1:  Given any vector space, E  and any linear map :f E E
, a scalar K  is called an eigenvalue, or proper value, 
or characteristic value of f  if there is some non-zero 

vector u E  such that f u u .

Equivalently,  is an eigenvalue of f  if Ker f I  is non-trivial.

i.e, 0Ker f I ; where I is identity matrix.

Definition 2:  A vector u E  is called an eigenvector, or proper vector, 
or characteristic vector of f  if there is some K  such 

that f u u  and 0u .

The scalar  is then an eigenvalue, and we say that u  is an 
eigenvector associated with K .

Definition 3: Given any eigenvalue K , the non-trivial subspace 
Ker f I  consists of all the eigenvectors associated 
with  together with the zero vector; this subspace 
is denoted by E f , or even E , and is called the 
eigenspace associated with , or proper subspace 
associated with .

Note that distinct eigenvectors may correspond to the same 
eigenvalue, but distinct eigenvalues correspond to disjoint set of 
eigenvectors.

Definition 4: The eigenvalues of f  are the roots (in K ) of the polynomial 
equation: det 0f I .

This polynomial is a polynomial associated with f  and is called 
characteristic polynomial.

For any square matrix A , the polynomial det A I is its characteristic 
polynomial.

The homogeneous system 0f I u  gives the eigenvector u  
associated with eigenvalue .

For any square matrix A , the solution of homogeneous system 
0A I u , for the value of , is an eigenvector associated with .



372

Definition 1:  Given any vector space, E  and any linear map :f E E
, a scalar K  is called an eigenvalue, or proper value, 
or characteristic value of f  if there is some non-zero 

vector u E  such that f u u .

Equivalently,  is an eigenvalue of f  if Ker f I  is non-trivial.

i.e, 0Ker f I ; where I is identity matrix.

Definition 2:  A vector u E  is called an eigenvector, or proper vector, 
or characteristic vector of f  if there is some K  such 

that f u u  and 0u .

The scalar  is then an eigenvalue, and we say that u  is an 
eigenvector associated with K .

Definition 3: Given any eigenvalue K , the non-trivial subspace 
Ker f I  consists of all the eigenvectors associated 
with  together with the zero vector; this subspace 
is denoted by E f , or even E , and is called the 
eigenspace associated with , or proper subspace 
associated with .

Note that distinct eigenvectors may correspond to the same 
eigenvalue, but distinct eigenvalues correspond to disjoint set of 
eigenvectors.

Definition 4: The eigenvalues of f  are the roots (in K ) of the polynomial 
equation: det 0f I .

This polynomial is a polynomial associated with f  and is called 
characteristic polynomial.

For any square matrix A , the polynomial det A I is its characteristic 
polynomial.

The homogeneous system 0f I u  gives the eigenvector u  
associated with eigenvalue .

For any square matrix A , the solution of homogeneous system 
0A I u , for the value of , is an eigenvector associated with .

373

Note that to have an eigenvector, it must be a non-trivial solution of the 
system.

Example 7.5 

Find eigenvalues and eigenvectors if 
0 1
1 0

A

Solution 

det 0A I

0 1 1 0
det 0

1 0 0 1

21
0 1 0 1 1

1
or

The eigenvalues are -1 and 1.

Eigenvectors

For 1 ,

0 1 1 0
0

1 0 0 1
u

1

2

1 1 0
1 1 0

u
u

1 2
2 1 1 2

1 2

0
0

u u
u u or u u

u u

It doesn’t matter the substitution we will make ( i.e, we can take 

2 1 1 2u u or u u ) .

Taking  2 1u u , eigenvectors associated with 1  have the form 

1 1 0

1
,

1
u u . We can take  

1
1

u .

For 1 ,
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1

2

1 2
2 1

1 2

0 1 1 0
0

1 0 0 1

1 1 0
1 1 0

0
0

v

v
v

v v
v v

v v

Each vector of the form 1 1 0

1
,

1
v v  is an eigenvector associated 

with 1 . We can take 
1
1

v .

Example 7.6 

Find the eigenvalues and associated eigenvectors for matrix 
3 1
1 1

B
as matrix over .

Solution

We have

3 1 1 0
det 0

1 1 0 1  

22 0
2

Hence, only 2 is an eigenvalue.

Now, 

1

2

3 1 1 0
2 0

1 1 0 1
u
u

1

2

1 1 0
1 1 0

u
u  

1 2
1 2 1 2

1 2

0
0

0
u u

u u u u
u u

Each vector of the form 1 1 0

1
,

1
u u  is an eigenvector 

associated with 2 . We can take 
1
1

u .
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with 1 . We can take 
1
1

v .

Example 7.6 

Find the eigenvalues and associated eigenvectors for matrix 
3 1
1 1

B
as matrix over .

Solution

We have

3 1 1 0
det 0

1 1 0 1  

22 0
2

Hence, only 2 is an eigenvalue.

Now, 

1

2

3 1 1 0
2 0

1 1 0 1
u
u

1

2

1 1 0
1 1 0

u
u  

1 2
1 2 1 2

1 2

0
0

0
u u

u u u u
u u

Each vector of the form 1 1 0

1
,

1
u u  is an eigenvector 

associated with 2 . We can take 
1
1

u .
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Example 7.7 

Find the eigenvalues and associated eigenvectors for the following 
matrix over ;

1 1
2 1

C

Solution

We have

1 1 1 0
det 0

2 1 0 1  

2 1 0

Since 2 1 0  has no solution in , C  has no eigenvalue as matrix over 
.

Notice

• The characteristic polynomial det A I  is sometimes written as 
det I A .

• Eigenvalue relationships:

If 1,....., n  are the eigenvalues of matrix A, then i
i

tr A  

and det i
i

A  ( summation , product ).

Example 7.8 

From Example 7.6, 
3 1
1 1

B , 

3 1 4tr B  and 3 1 1 1 4B . 

But we have seen that the eigenvalue is 2 which is a double root of the 
characteristic polynomial, then 1 2 2 . 

Thus, 2 2 4tr B  and det 2 2 4B . 

Some important properties of Eigenvalues

• Any square matrix A and its transpose tA  have the same eigenvalues.
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• For triangular matrix 

11

21 22

1 2

0 0
0 0

n n nn

a
a a

A

a a a

, the 

eigenvalues are the elements of diagonal entries 11 22, , nna a a , as 

11 22det nnA I a a a .

• If 0  is one of Eigenvalues of matrix A, thus A is singular i.e. 1A  
does not exist.

• Cayley-Hamilton states that “Every square matrix satisfies its own 
characteristic equation”.

That is to say, if 
1

1 2
2

n n n
nA a a a  is 

characteristic polynomial of matrix n nA A , then, matrix equation 

1

1 2
2 0n n n

nX a X a X a I  is satisfied by X A  i.e. 

1

1 2
2 0n n n

nA a A a A a I .

Example 7.9 

Determine the characteristic equation of the matrix 

1 2 2
1 1 1
1 3 1

A  and 
verify that it is satisfied by A and hence 

obtain 1A .

Solution

Characteristic equation is 0A I

1 2 2
1 1 1 0
1 3 1

1 1 1 3 2 1 1 2 3 1 0

21 1 3 2 2 2 2 0

1 2 2 2 2 2 0
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• For triangular matrix 

11

21 22

1 2

0 0
0 0

n n nn

a
a a

A

a a a

, the 

eigenvalues are the elements of diagonal entries 11 22, , nna a a , as 

11 22det nnA I a a a .

• If 0  is one of Eigenvalues of matrix A, thus A is singular i.e. 1A  
does not exist.

• Cayley-Hamilton states that “Every square matrix satisfies its own 
characteristic equation”.

That is to say, if 
1

1 2
2

n n n
nA a a a  is 

characteristic polynomial of matrix n nA A , then, matrix equation 

1

1 2
2 0n n n

nX a X a X a I  is satisfied by X A  i.e. 

1

1 2
2 0n n n

nA a A a A a I .

Example 7.9 

Determine the characteristic equation of the matrix 

1 2 2
1 1 1
1 3 1

A  and 
verify that it is satisfied by A and hence 

obtain 1A .

Solution

Characteristic equation is 0A I

1 2 2
1 1 1 0
1 3 1

1 1 1 3 2 1 1 2 3 1 0

21 1 3 2 2 2 2 0

1 2 2 2 2 2 0
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2 1 2 2 0

1 2 0
21 4 0

3 2 4 4 0
Thus, Characteristic equation is 3 2 4 4 0 .

By Cayley-Hamilton theorem, 3 2 4 4 0A A A I .

Let us verify whether 3 2 4 4 0A A A I .

2

1 2 2 1 2 2 1 2 2
1 1 1 1 1 1 3 6 2
1 3 1 1 3 1 3 2 2

A

3

1 2 2 1 2 2 1 6 6
3 6 2 1 1 1 7 6 2
3 2 2 1 3 1 7 14 6

A

3 2

1 6 6 1 2 2 1 2 2 1 0 0
4 4 7 6 2 3 6 2 4 1 1 1 4 0 1 0

7 14 6 3 2 2 1 3 1 0 0 1
A A A I

1 1 4 4 6 2 8 6 2 8 0 0 0
7 3 4 6 6 4 4 2 2 4 0 0 0
7 3 4 14 2 12 6 2 4 4 0 0 0

Thus, it is verified that the characteristic equation is satisfied by A.

Inverse of matrix A

From 3 2 4 4 0A A A I , multiplying on both sides by 1A  yields

2 14 4 0A A I A  or 1 24 4A A A I

1

1 2 2 1 2 2 1 0 0
4 3 6 2 1 1 1 4 0 1 0

3 2 2 1 3 1 0 0 1
A
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1

1 1 4 2 2 0 2 2 0
4 3 1 0 6 1 4 2 1 0

3 1 2 3 0 2 1 4
A

1

4 4 4
1 2 1 3
4

2 1 1
A

Application activity 7.9 

1. Determine eigenvalues and eigenvectors for each of the 
following matrices:

a) 
5 6
3 2

A    b) 
1 1
2 1

B     c) 
5 1
1 3

C

2. For each matrix, find all eigenvalues and a basis for each eigen
space.

a) 

3 1 1
2 4 2
1 1 3

A  b) 

1 2 2
1 2 1
1 1 4

B  c) 

1 1 0
0 1 0
0 0 1

C

3. Prove that a matrix A and its transpose tA  have the same 
eigenvalues.

4. Show that for triangular matrix 

11

21 22

1 2

0 0
0 0

n n nn

a
a a

A

a a a

,

the eigenvalues are the elements of diagonal entries 

11 22, , nna a a .

5. Use Cayley-Hamilton theorem to find the inverse of matrix 
1 2 2
1 2 3
0 1 2

A .

6. If 
1 4
2 3

A , then express 5 4 3 24 7 11 10A A A A A I

in terms of A.
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1

1 1 4 2 2 0 2 2 0
4 3 1 0 6 1 4 2 1 0

3 1 2 3 0 2 1 4
A

1

4 4 4
1 2 1 3
4

2 1 1
A

Application activity 7.9 

1. Determine eigenvalues and eigenvectors for each of the 
following matrices:

a) 
5 6
3 2

A    b) 
1 1
2 1

B     c) 
5 1
1 3

C

2. For each matrix, find all eigenvalues and a basis for each eigen
space.

a) 

3 1 1
2 4 2
1 1 3

A  b) 

1 2 2
1 2 1
1 1 4

B  c) 

1 1 0
0 1 0
0 0 1

C

3. Prove that a matrix A and its transpose tA  have the same 
eigenvalues.

4. Show that for triangular matrix 

11

21 22

1 2

0 0
0 0

n n nn

a
a a

A

a a a

,

the eigenvalues are the elements of diagonal entries 

11 22, , nna a a .

5. Use Cayley-Hamilton theorem to find the inverse of matrix 
1 2 2
1 2 3
0 1 2

A .

6. If 
1 4
2 3

A , then express 5 4 3 24 7 11 10A A A A A I

in terms of A.
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7.3.2. Diagonalisation

Consider matrix 
4 6
3 5

A

1. Find the eigenvalues and their associated eigenvectors (they must 
be linearly independent).

2. Form matrix P  whose columns are elements of eigenvectors 
obtained in 1).

3. Find the inverse of matrix P  obtained in 2).

4. Find matrix D by relation 1D P AP . What can you say about 
matrix D?

Activity 7.4  

Diagonalising a square matrix A  is to find a diagonal matrix D such that 
for an invertible matrix P :

1A PDP  or 1D P AP
When this happens, we say that A  is diagonalisable.

Every symmetric matrix can be diagonalised, however, not every matrix 
can be diagonalised.

To diagonalise matrix A
1. Find the eigenvalues.

2. If there is a non-real eigenvalue, the matrix cannot be diagonalised.

3. If all eigenvalues are real, find their associated eigenvectors (they must 
be linearly independent).

4. If the number of eigenvectors is not equal to the order of matrix A , 
then this matrix cannot be diagonalised.

5. If the number of eigenvectors is equal to the order of matrix A , form 
matrix P  whose columns are elements of eigenvectors.

6. Find the inverse of P .

7. Find D, diagonal matrix of A  by relation  1D P AP .
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Theorem

A n n  matrix is diagonalisable if and only if it has n  linearly 
independent eigenvectors. 

Example 7.10 

Diagonalise the matrix

0 1 1
1 0 1
1 1 0

A

Solution

Eigenvalues and eigenvectors:

2
1 1

1 1 0 1 2 0
1 1

 

1

2

1 )
2

double root

For 1

1

2

3

1 1 1 0
1 1 1 0
1 1 1 0

u
u
u   

1 2 3

1 2 3 1 2 3

1 2 3

0
0 0
0

u u u
u u u u u u
u u u

Since we have used an eigenvalue which is a double root, we would get 
two eigenvectors and they must be linearly independent. 

As 1 2 3 0u u u  is a plane, it is possible to find two linearly independent 
vectors on this plane. 

Thus, we can take;

1
1
0

u  and  

1
0
1

v .

For 2
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Theorem

A n n  matrix is diagonalisable if and only if it has n  linearly 
independent eigenvectors. 

Example 7.10 

Diagonalise the matrix

0 1 1
1 0 1
1 1 0

A

Solution

Eigenvalues and eigenvectors:

2
1 1

1 1 0 1 2 0
1 1

 

1

2

1 )
2

double root

For 1

1

2

3

1 1 1 0
1 1 1 0
1 1 1 0

u
u
u   

1 2 3

1 2 3 1 2 3

1 2 3

0
0 0
0

u u u
u u u u u u
u u u

Since we have used an eigenvalue which is a double root, we would get 
two eigenvectors and they must be linearly independent. 

As 1 2 3 0u u u  is a plane, it is possible to find two linearly independent 
vectors on this plane. 

Thus, we can take;

1
1
0

u  and  

1
0
1

v .

For 2
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1

2

3

2 1 1 0
1 2 1 0
1 1 2 0

w
w
w  

1 2 3

1 2 3

1 2 3

2 0
2 0

2 0

w w w
w w w
w w w

1 2 3w w w
 

Thus, 

1
1
1

w

Now, the eigenvectors are  

1
1
0

, 

1
0
1

and 

1
1
1

and are linearly 

independent. The number of eigenvectors is equal to the order of the 
given matrix. 

1 1 1
1 0 1
0 1 1

P

After calculation, 

1 0 0
0 1 0
0 0 2

D , in the basis   

1 1 1
1 , 0 , 1
0 1 1

Example 7.11 

Diagonalise the matrix

5 3
3 1

A

Solution

Eigenvalues and eigenvectors

2

1 2

5 3
0

3 1

2 0
2   

1

2

1 2

1 2

1 2

2 3 0
3 3 0

3 3 0
3 3 0

u
u

u u
u u
u u



382

Eigenvectors associated with 1 2 2  have the form  1

1
1

u . 

As we have two equal eigenvalues, we would have two independent 
eigenvectors. But we see that it is not possible because all eigenvectors 

are spanned by 
1
1

. 

Therefore, the given matrix cannot be diagonalised.

Remarks

• To form matrix P , we start with the eigenvector of our choice. 
Then, it doesn’t matter the vector we start with. 

• Note that in the diagonal matrix of A , the diagonal entries are 
just the eigenvalues corresponding to the eigenvectors.

Application activity 7.10 

1. Diagonalise each of the following matrices:

a) 
7 3
3 1

A  b) 
2 1
2 3

B   c) 
5 4
4 1

C

d) 
5 6
2 2

D  e) 

11 8 4
8 1 2
4 2 4

E

2. Consider matrix 

3 1 1
7 5 1
6 6 2

A

a) Find all eigenvalues of A .

b) Find a maximum set S  of linearly independent eigenvectors of 
A .

c) Is A  diagonalisable? If yes, find matrix P such that 1D P AP  is 
diagonal.
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Eigenvectors associated with 1 2 2  have the form  1

1
1

u . 

As we have two equal eigenvalues, we would have two independent 
eigenvectors. But we see that it is not possible because all eigenvectors 

are spanned by 
1
1

. 

Therefore, the given matrix cannot be diagonalised.

Remarks

• To form matrix P , we start with the eigenvector of our choice. 
Then, it doesn’t matter the vector we start with. 

• Note that in the diagonal matrix of A , the diagonal entries are 
just the eigenvalues corresponding to the eigenvectors.

Application activity 7.10 

1. Diagonalise each of the following matrices:

a) 
7 3
3 1

A  b) 
2 1
2 3

B   c) 
5 4
4 1

C

d) 
5 6
2 2

D  e) 

11 8 4
8 1 2
4 2 4

E

2. Consider matrix 

3 1 1
7 5 1
6 6 2

A

a) Find all eigenvalues of A .

b) Find a maximum set S  of linearly independent eigenvectors of 
A .

c) Is A  diagonalisable? If yes, find matrix P such that 1D P AP  is 
diagonal.
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7.4. Applications 

7.4.1. Echelon Matrix

Consider the following matrix 
8 3
1 2

A

Use elementary row operations to transform this matrix such that:

1. The first non-zero element in each row is 1 and is in a column to the 
right of the other in the previous row.

2. Rows with all zero elements, if any, are below rows having a non-zero 
element.

3. The first non-zero element in each row is the only non-zero entry in 
its column.

Activity 7.5  

A matrix is in row echelon form (ref) when it satisfies the following 
conditions:

• The first non-zero element in each row, called the leading entry, is 1.

• Each leading entry is in a column to the right of the leading entry in 
the previous row.

• Rows with all zero elements, if any, are below rows having a non-zero 
element.

A matrix is in reduced row echelon form (rref) when it satisfies the 
following conditions:

• The matrix is in row echelon form (i.e., it satisfies the three conditions 
listed above).

• The leading entry in each row is the only non-zero entry in its column.

A matrix in echelon form is called an echelon matrix. Matrices A  and B   
below are some examples of echelon matrices.

1 2 3 3 4
0 0 0 1 3
0 0 0 0 1
0 0 0 0 0

A ,   

1 2 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

B
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Matrix A  is in row echelon form, and matrix B  is in reduced row echelon 
form.

How to transform a matrix into its Echelon Forms

Any matrix can be transformed into its echelon forms, using a series of 
elementary row operations. Here is how.

a) Pivot the matrix 

• Identify the pivot; the first non-zero entry in the first column of the 
matrix.

• If the pivot identified is not in the first row and first column, 
interchange rows by moving the pivot row to the first row.

• Multiply each element in the pivot row by the inverse of the pivot, 
so the pivot equals 1.

• Add or subtract multiples of the pivot row to each of the lower 
rows, so every element in the pivot column of the lower rows 
equals 0.

b) To get the matrix in row echelon form,

• Repeat the procedures above, ignoring previous pivot rows.

• Continue until there are no more pivots to be processed.

c) To get the matrix in reduced row echelon form, process non-zero 
entries above each pivot. 

• Identify the last row having a pivot equal to 1, and let this be the 
pivot row.

• Add multiples of the pivot row to each of the upper rows, until 
every element above the pivot equals 0.

• Moving up the matrix, repeat this process for each row.

The matrix in reduced row echelon form obtained from matrix A  is called 
its row canonical form.

Example 7.12 

Transform the following matrix in its echelon form

0 1 2
1 2 1
2 7 8

A



384

Matrix A  is in row echelon form, and matrix B  is in reduced row echelon 
form.
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0 1 2
1 2 1
2 7 8

A
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Solution

1 2

0 1 2 1 2 1
1 2 1 0 1 2
2 7 8 2 7 8

A r r B

3 3 1

1 2 1
2 0 1 2

0 3 6
r r r C

       

3 3 2

1 2 1
3 0 1 2

0 0 0
r r r D

1 1 2

1 0 3
2 0 1 2

0 0 0
r r r F

Matrix D  is the row echelon form of matrix A.

Matrix F  is the reduced row echelon form of matrix A . F is the row 
canonical form of A .

Application activity 7.11 

Transform the following matrices in their echelon form and row reduced 
form:

1. 

0 2 8 7
2 2 4 0
3 4 2 5

   2. 

1 2 3 9
1 3 0 4
2 5 5 17

 

3. 

2 2 4 2
2 1 10 7
4 4 8 4
4 1 14 6

 4. 

3 2 4 7
2 1 0 3
2 8 8 2

 

5. 

3 1 2 4 1
2 1 3 1 2
1 2 3 2 3

  6. 
cos sin
sin cos
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7.4.2. Matrix inverse

Consider matrix 

1 1 1
0 1 2
1 2 4

A  written in the form

 |M A I  that is 

1 1 1 1 0 0
0 1 2 0 1 0
1 2 4 0 0 1

M ;

1. Perform elementary row operations on matrix A such that the matrix 
A  in M  becomes a unit matrix.

2. Multiply the new matrix A obtained in 1) by matrix A and give your 
observation.

Activity 7.6  

The elementary operations can be used to find the inverse of matrix A. The 
method used here is called the Gaussian elimination method.

Steps to follow

For a square matrix A of order n, to compute  the inverse of A, denoted as 
1A , we follow the steps below:

1. Construct a matrix of type |M A I , that is to say, A is in the left half 
of M and the identity matrix I is on the right.

2. Using the Gaussian elimination method, transform the left half, A, to 
an identity matrix and the matrix that results in the right side will be 
the inverse of matrix A.

Example 7.13 

Using elementary row operations on the matrix A, determine its matrix 
inverse where

1 1 0
1 0 1
0 1 0

A
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Solution

Place the identity matrix of order 3 to the right of matrix A.

1 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1

M

Perform elementary row operations on matrix A so that the matrix A in M
becomes a unit matrix.

new 2 2 1 r r r  

1 1 0 1 0 0
0 1 1 1 1 0
0 1 0 0 0 1

new 3 3 2 r r r  

1 1 0 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1

new 2 2 3 r r r  
1 1 0 1 0 0
0 1 0 0 0 1
0 0 1 1 1 1

new 1 1 2 r r r  
1 0 0 1 0 1
0 1 0 0 0 1
0 0 1 1 1 1

new 2 21  · r r  

1 0 0 1 0 1
0 1 0 0 0 1
0 0 1 1 1 1

Therefore, the inverse matrix is 1

1 0 1
0 0 1
1 1 1

A
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Application activity 7.12 

Use Gaussian elimination method to find the inverse of the following 
matrices:

1. 

1 2 2
1 1 1
0 0 1

   2. 

1 3 1
1 2 0
2 11 3

   

3. 

1 2 3
2 4 5
3 5 6

  4. 

1 2 1
2 1 8
1 2 7

7.4.3. Rank of matrix

Consider matrix 

4 6 0
6 0 1
0 9 1
0 1 4

A

1. Transform matrix A  in its row echelon form using elementary 
row operations.

2. How many non-zero rows are there in the matrix obtained in 1)?

Activity 7.7  

The rank of matrix is the number of linearly independent rows or columns. 
Using this definition, the Gaussian elimination method is used to find the 
rank.

To compute the rank of a matrix, remember two key points: 

a) The rank does not change under elementary row operations.
b) The rank of a row-echelon matrix is easy to acquire. 

Recall that we can convert a given matrix into row echelon form using 
elementary row operations.

A line can be discarded if:

• All the coefficients are zeros.

• There are two equal lines.
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• A line is proportional to another.

• A line is a linear combination of others.

Example 7.14 

Find the rank of the matrix

1 2 1 3 2
2 1 0 1 1
2 4 2 6 4
0 0 0 0 0
5 4 1 5 0

Solution 

3 1 2·r r

4r  is zero 

5 2 12  r r r

The remaining two rows are linearly independent and are non-zero.

Then,   2r A . 

In general, eliminate the maximum possible number of lines, and the 
rank is the number of non-zero rows.

Example 7.15 

Find the rank of the matrix

1 4 2 1
3 12 6 3
2 1 0 1
0 1 3 1

A

Solution 

Transform matrix A to echelon matrix:
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new 2 2 1  3r r r  

1 4 2 1
0 0 0 0
2 1 0 1
0 1 3 1

new 3 3 1  2r r r  

1 4 2 1
0 0 0 0
0 7 4 3
0 1 3 1

new 3 3 47r r r   

1 4 2 1
0 0 0 0
0 0 25 10
0 1 3 1

2 4r r   

1 4 2 1
0 1 3 1
0 0 25 10
0 0 0 0

We see that there are 3 non-zero rows.

Then,   3r A . 

Example 7.16 
Calculate the rank of the following matrix:

2 1 0 7
1 0 1 3
3 2 7 7

Solution

Transform the matrix to echelon matrix:

new 1 1 2 2 r r r  

0 1 2 1
1 0 1 3
3 2 7 7
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new 2 2 1  3r r r  

1 4 2 1
0 0 0 0
2 1 0 1
0 1 3 1

new 3 3 1  2r r r  

1 4 2 1
0 0 0 0
0 7 4 3
0 1 3 1

new 3 3 47r r r   

1 4 2 1
0 0 0 0
0 0 25 10
0 1 3 1

2 4r r   

1 4 2 1
0 1 3 1
0 0 25 10
0 0 0 0

We see that there are 3 non-zero rows.

Then,   3r A . 

Example 7.16 
Calculate the rank of the following matrix:

2 1 0 7
1 0 1 3
3 2 7 7

Solution

Transform the matrix to echelon matrix:

new 1 1 2 2 r r r  

0 1 2 1
1 0 1 3
3 2 7 7
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new 3 3 2 3 r r r  

0 1 2 1
1 0 1 3
0 2 4 2

new 3 3 1 2 r r r  

0 1 2 1
1 0 1 3
0 0 0 0

new 1 2r r  

1 0 1 3
0 1 2 1
0 0 0 0

Then,  2r A  since there are two non-zero rows.

Application activity 7.13 

Use elementary row operations to find the rank of the following matrices:

1. 

0 16 8 4
2 4 8 16

16 8 4 2
4 8 16 2

  2. 

3 0 1 2
6 1 0 0

12 1 2 4
9 0 1 2

          

3. 

1 0 2 1
0 2 4 2
0 2 2 1

    4. 

1 2 1 1
9 5 2 2
7 1 0 4

7.4.4. Solving system of linear equations

Consider the following system of linear equations

6
2 1
3 2 10

x y z
x y z
x y z

Activity 7.8  
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1. Determine the matrix A such that 

6
1
10

x
A y

z
2. Make A in 1), the larger matrix 3 4   (called augmented matrix) 

where the fourth column is formed by the independent terms of 
the given system.

3. Transform the matrix obtained in 2) to its row echelon form.

4. Use the result obtained in 3) to find the value of ,x y  and z.

Consider the following system

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...
...

...

n n

n n

m m mn n m

a x a x a x c
a x a x a x c

a x a x a x c

   
1

Where 1 2, ,..., nx x x  are unknowns;

ija  and ic  are real constants.

The Gauss elimination method is used to transform a system of equations 
into an equivalent system, that is, in row echelon form.

For easy calculation, transform the system into a matrix and place the 
coefficients of the variables and the independent terms into the matrix as 
follows:

11 12 1 1

21 22 2 2

1 2

... :
...

:
...
... :

n

n

m m mn m

a a a c
a a a c

A C

a a a c

where;

11 12 1 1

21 22 2 2

1 2

... :
...
...
... :

n

n

m m mn m

a a a c
a a a c

A

a a a c

  and  

1

2

n

c
c

C

c
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The matrix :A C  is called augmented matrix.

Remarks

• If :rank A rank A C , the system is said to be inconsistent and 
there is no solution.

• If :rank A rank A C r , the system is said to be consistent and 
there is solution.

 » If r n , as there are n unknowns, then the system has a unique 
solution.

 » If r n , the system has infinite solutions. (It is undetermined 
system).

Example 7.17 

Solve the following system

3
3 2 2
2 4 7 7

x y z
x y z
x y z

Solution

The augmented matrix is 

1 1 1
3 1 2
2 4 7

Performing the row reductions, we have;

2 2 1
3 3 2

3 3 1

1 1 1 1 1 1
3

0 2 5 0 2
2

0 2 5

r r r
r r r

r r r
5

0 0 0

We see that

2, : 3 :rank A rank A C rank A rank A C

Then, the system is inconsistent. Therefore, there is no solution. (This is 
because for the third row, we have 0 20z  which is not possible).
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Example 7.18 
Solve the following system

4
2 1

2 2

x y z
x y z

x y z

Solution

2 2 1

3 3 1

1 1 1
2 1 1
1 1 2

1 1 1
2

0 1 3
0 2 1

r r r
r r r 3 3 2

1 1 1
2 0 1 3

0 0 7
r r r

We see that  : 3rank A rank A C , then, the system has solution.

The reduced system is

3
74
133 7
7

7 12 12
7

x
x y z

y z y
z

z

Therefore, 
3 13 12, ,
7 7 7

S

Notice
It is also possible to transform the system in the form where the elements 
above and below the leading diagonal of matrix A  become zeros. The 
system is now reduced to the simplest system.

Example 7.19 
Solve the following system
2 10
3 2 3 18

4 9 16

x y z
x y z

x y z

IIIIIIIIIIIIII i
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Solution

2 1 1
3 2 3
1 4 9

    

2 2 1

3 3 1

3 1 13
1 312 0

1 2 2
2 0

r r r

r r r 7 17
2 2

Now, the reduced system is

2 14
1 9 7, 9 5
2 2
2 10

x

y x y z

z
Then,

7, 9,5S

Application activity 7.14 

Use Gaussian elimination method to solve the following systems:

1. 

2 8
2 3 0

2 3

y z
x y z

x y z
    2. 

2 6 12
2 4 12 17

4 12 22

x y z
x y z

x y z

3. 

2 3 9
2 2 2
3 2 7

x y z
x z
x y z

  4. 
2 3 9

3 2 7
x y z
x y z
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7.4.5. Power of matrix

Let A be a diagonalisable matrix.

From equality 1A PDP , where D is a diagonal matrix, P, an invertible 
matrix, compute

1. 2A  2. 3A  3. 4A  4. 5A
Deduce  the general rule for computing nA
Hint: 2 1 1A AA PDP PDP  and 1n nA A A

Activity 7.9  

From Activity 7.9, one can deduce the following:

a) The power of matrix A  is given by 1n nA PD P  for an invertible 
matrix P  whose columns are elements of eigenvectors of matrix A .

Where,

1

2

0 0
0 0

0 0

n

n
n

n
k

D

k  are eigenvalues.

b) The inverse of matrix A is given by 1 1 1A PD P .

In fact, since 1A A I , we have

1 1 1 1 1 1 1 1 1 1A PD P PDP PD P PDP PD P PDID P

1 1PDD P 1 1PIP PP I

Therefore, 1 1 1A PD P .

Example 7.20 

Let 
4 6
3 5

A . Find the non-singular matrix P  and the 

diagonal matrix D  such that 1D P AP  and hence find nA ; n  is any 
positive integer.
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7.4.5. Power of matrix

Let A be a diagonalisable matrix.
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n

n
n

n
k

D
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4 6
3 5

A . Find the non-singular matrix P  and the 
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positive integer.
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Solution

We need to find the eigenvalues and eigenvectors of A  first. The 
characteristic equation of A  is 

4 6
det( ) 1 2 0

3 5
A I

 
2or    1  

For 2 , 
1
1

u , for 1, 
2

1
v

Let 
1 2

1 1
P  then, 

2 0
0 1

D  

To find nA , 

2 0

0 1

n
n

nD

Now,
1

1 1 1

1 11

1 11

2 01 2 1 2
1 1 1 10 1

2 2 1 2 2 1
              

2 1 2 1

n
n n n

n

n nn n

n nn n

PD P PP A PP A

Application activity 7.15 

For each of the following matrices, find a non-singular matrix P and a 
diagonal matrix D such that A PDP= −1  and hence evaluate the given 
power.

1. 
4 12
12 11

A , 
3A   2. 

5 8
4 7

A , 
5A  

3. 
1 2
0 1

A , 20A   4. 

2 0 3
0 3 0
0 0 3

A , 
5A  
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Unit summary
1. Kernel and range

• The kernel of a linear mapping :f E F  denoted Ker f  is a subset 
of E  whose image f  is 0-vector of F . i.e, : 0Ker f v E f v
.

A linear transformation f  is called singular if there exists a non-zero 
vector whose image is zero vector. Thus, it is non-singular if the only 
zero vector has zero vector as image, or equivalently, if its kernel 
consists only of the zero vector: 0Ker f .

A linear transformation :f E F  is one to one if and only if 
0Ker f . 

• The nullity of f denoted n f  is the dimension of Ker f . i.e, 
dimn f Ker f .

• The image or range of a linear mapping :f E F is the 
set of points in F  to which points in E  are mapped on. i.e, 

Im :f u F f v u v E .
A linear transformation :f E F  is onto if the range is equal to F .

• The rank of f denoted rank f  or r f  is the dimension of image 
of f .

i.e, dim Imrank f f .
2. Elementary row/column operations

When these operations are performed on rows, they are called 
elementary row operations; and when they are performed on 
columns, they are called elementary column operations.

Operation description                                  Notation           

Row operations 

1. Interchange row and

2.Multiply 
i ji j r r

row by 0
3. Add times row to row

Column operations

1. Interchange column and

2.Multiply column by

i i

j j i

i j

i s r sr
s i j r r sr

i j c c
i 0

3. Add times column to column
i i

j j i

s c sc
s i j c c sc
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Two matrices are said to be row equivalent (or column equivalent) if 
one can be changed to the other by a sequence of elementary row (or 
column) operations.

Two matrices A  and B are said to be similar if 1B P AP  for 
some invertible matrix P .

3. Diagonalisation of matrices
a) Eigenvalues and eigenvectors

The eigenvalues of f  are the roots (in K ) of the polynomial: 
det f I . This polynomial is a polynomial associated with f  

and is called characteristic polynomial. For any square matrix A
, the polynomial det A I is its characteristic polynomial. The 

homogeneous system 0f I u  gives the eigenvector u  
associated with eigenvalue .

Cayley-Hamilton states that “Every square matrix satisfies its own 
characteristic equation”.

a) Diagonalisation

To diagonalise matrix A, we perform the following steps:
(i) Find the eigenvalues.
(ii) If there is a non-real eigenvalue, the matrix cannot be diagonalised.
(iii) 

(iv) If the number of eigenvectors is not equal to the order of matrix A, 
then this matrix cannot be diagonalised.

(v) If the number of eigenvectors is equal to the order of matrix A , 
form matrix P  whose columns are elements of eigenvectors.

(vi) Find the inverse of P .

(vii) Find D , diagonal matrix of A 1D P AP .

4. Applications

a) Echelon matrix

A matrix is in row echelon form (ref) when it satisfies the following 
conditions:
(i) 

is 1.
(ii) 

(iii) 
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A matrix is in reduced row echelon form (rref) when it satisfies the 
following conditions:

(iv) 
conditions listed above).

(v) 
column.

b) Matrix inverse

A is a square matrix of order n . To calculate the inverse of A , 

denoted as 1A , follow these steps:

(i) |M A I A  is in the 
left half of M  and the  I  is on the right.

(ii) Using the Gaussian elimination method, transform the left half, 
A
results in the right side will be the inverse of matrix A .

c) Rank of matrix
The rank of matrix is the number of linearly independent rows or 
columns. Using this definition, the Gaussian elimination method is 
used to find the rank.
A line can be discarded if:

 »
 » There are two equal lines.
 »

 » A line is a linear combination of others.

In general, eliminate the maximum possible number of lines, and the 
rank is the number of non-zero rows.

d) Solving system of linear equations

Consider the following system

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...
...

...

n n

n n

m m mn n m

a x a x a x c
a x a x a x c

a x a x a x c

The Gauss elimination method is to transform a system of equations 
into an equivalent system that is in triangular form.
To facilitate the calculation, transform the system into a matrix and 
place the coefficients of the variables and the independent terms into 
the matrix as follows:
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Where;

The matrix :A C  is called augmented matrix.
Remarks

• If :rank A rank A C , the system is said to be inconsistent 
and there is no solution.

• If :rank A rank A C r , the system is said to be 
consistent and there is solution.

 » If r n
unique solution.

 » If r n

e) Power of matrix

The power of matrix A  is given by 1n nA PD P  for an invertible 
matrix P  whose columns are elements of eigenvectors of matrix A .

Where,

1

2

0 0
0 0

0 0

n

n
n

n
k

D

k  are eigenvalues
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End of unit assessment
1. In question a-e, find the characteristic polynomial:

a) 
7 3
5 2

A  b) 
2 5
4 1

B

c) 
3 2
9 3

C  d) 

1 6 2
3 2 0
0 3 4

D

e) 

1 2 3
3 0 4
6 4 5

E

2. Let 
3 4
2 6

A

a) Find all eigenvalues and corresponding eigenvectors.

b) Find matrices P  and D  such that P  is non-singular and 
1D P AP  is diagonal.

3. Let 
2 2
1 3

B

a) Find all eigenvalues and corresponding eigenvectors.

b) Find matrices P  and D  such that P  is non-singular and 
1D P AP  is diagonal.

c) Find 6A  and f A , where 
4 3 23 6 7 3f t t t t t

d) Find a real cube root of B , that is, a matrix B  such that 3B A  
and B  has real eigenvalues.

4. Consider matrix 

4 1 1
2 5 2
1 1 2

A

a) Find all eigenvalues of A.

b) Find a maximum set S of linearly independent eigenvectors of A.

c) Find diagonal matrix for A.
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5. Given linear transformation 3 3:T  defined by 
, , 2 2 ,2 3 4 ,T x y z x y z x y z x y z . Find all 

eigenvalues of matrix representative of A relative to the canonical 
basis and diagonalise it.

6. Show that a matrix A and its transpose 
tA  have the same characteristic 

polynomial.
7. In question a-d, find the row echelon form of each matrix.

a) 

1 1 1 1
1 1 1 1
0 1 2 3
0 1 2 1

A  b) 

1 2 1
2 2 2
1 0 1

B

c) 

1 2 1 2 1
2 1 2 1 2
0 1 0 1 0

C  d) 
1 2 3
2 3 4

D

8. In question a-d, compute the rank of each matrix.

a) 

1 2 0 5
2 3 1 4
1 1 1 1

A  b) 

1 2 1
1 3 4
2 1 3

B

c) 

1 2 1
0 3 1
2 1 4

C  d) 

1 3
2 1
1 3

D

9. In question a-b, use Gaussian elimination method to solve the 
following systems

a) 
3 2 6
4 3 3 7
2 9

x y z
x y z
x y z

 b) 

3 2 4
3 3

4 10 4 10

x y z
x y z

x y z

10. Using Cayley-Hamilton theorem, find the inverse of the following 
matrices:

a) 

3 5 1
2 10 1
1 8 1

A  b) 

2 2 0
1 3 4
3 1 4

B
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c) 

0 1 0
2 2 0
1 1 1

C

11. Find the characteristic equation of the matrix 
2 1 1
0 1 0
1 1 2

A . 

Verify Cayley-Hamilton theorem and hence evaluate the matrix 
expression 7 6 5 4 3 25 7 3 5 8 2A A A A A A A .
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c) 

0 1 0
2 2 0
1 1 1

C

11. Find the characteristic equation of the matrix 
2 1 1
0 1 0
1 1 2

A . 

Verify Cayley-Hamilton theorem and hence evaluate the matrix 
expression 7 6 5 4 3 25 7 3 5 8 2A A A A A A A .

Unit
8

405

The curves that can be obtained by intersecting a double cone with a plane 
are called conics or conic sections, the most important of which are circles, 
ellipse, parabolas and hyperbolas. 

Now, lets consider this situation. Suppose you are a gardener, and you 
have just planted a lot of flowers that you want to water. The flower bed is 
450 cm wide and 450 cm long. You are using a circular sprinkler system, 
and the water reaches 180 cm out from the centre. The sprinkler is located, 
from the bottom left corner of the bed, 210 cm up, and 180 cm over. If the 
flower bed was a graph with the bottom left corner being the origin, what 
would the equation of the circle be?

Introductory activity

Today, properties of conic sections are used in the constructions of 
telescopes, radar antennas, and navigational systems, and in determination 
of satellite orbits. 

Consider the parabolic antenna below

Figure 1.1. Parabolic antenna Figure 1.2. 
point

A parabolic antenna is an antenna that uses a parabolic reflector, a curved 
surface with the cross-sectional shape of a parabola, to direct the radio 
waves. Figure 8.1 represents parabolic antenna and figure 8.2 shows how 
parabolic antenna helps to reflect all waves to one point called focal point 
F. The most common form is shaped like a dish. Its main advantage is that 

Conics
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it has high directivity. But, how can we find the equation of this dish? You 
can also think about motion of planets. What can you say about motion 
of planets around the sun? How can you find the equation of their orbits 
around the sun? 

By the end of this unit, a student will be able to: 
• Define geometrically a conic as the intersection of a plane and 

a cone and classify conics from the position of the intersecting 
plane. 

• Express, in Cartesian form, the standard equation of a parabola, an 
ellipse and a hyperbola. 

• Convert Cartesian coordinates into polar coordinates and vice 
versa.

• Find the polar equation of a conic, a straight line and a circle.
• Use translation or rotation to reduce a general equation of a conic.

Objectives

8.1. Generalities on conoc sections

Consider a double cone in the figure below.

 

Figure 1.3. Double cone

Taking different planes, slice through the double cone and hence draw the 
shape that is obtained when the plane:

1. Is parallel to a generator but not along the generator.
2. Cuts the cone obliquely.
3. Is parallel to the axis but not along the axis.
4. Is parallel to the base but does not pass through the vertex.

Activity 8.1  
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Conic is the name given to the shapes that we obtain by taking different 
plane slices through a double cone. The sections of a right circular cone 
by different planes give curves of different shapes.

From activity 8.1, when different plane slices through a double cone we 
obtain:
a) A parabola: This is the section formed 

when the plane is parallel to a generator 
but not along the generator. See figure 8.4.

Figure 1.4. Parabola

b) An ellipse: This is the section formed when 
the plane cuts the cone obliquely; that is, 
cuts the axis at an angle. See figure 8.5.

Figure 1.5. 

c) A hyperbola: This is the section formed 
when the plane is parallel to the axis but 
not along the axis. Note that the hyperbola 
has two branches. See figure 8.6.

Figure 1.6. Hyperbola
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d) A circle: This is a section formed when a 
plane is parallel to the base but does not 
pass through the vertex. The circle can be 
regarded as a special case of an ellipse. 
See figure 8.7.

Figure 1.7. A circle

A conic section is the set of all points which move in a plane such that its 
distance from a fixed point and a fixed straight line not containing the 
fixed point are in a constant ratio.

We use the term degenerate conic sections to describe the single point, 
single straight line and the term non-degenerate conic sections to 
describe parabola, ellipse or hyperbola.

The three non-degenerate conics (the parabola, ellipse and hyperbola) 
can be defined as the set of points P  in the plane that satisfy the following 
condition:

The distance from a fixed point F (called the focus of the conic) to point 
variable P  is a constant multiple of distance from a fixed straight line (called 
its directrix) to point P . This constant multiple is called its eccentricity, e .

Figure 1.8. 

From  figure 8.8, we have PF e PM  where M is a foot of perpendicularity 
of line joining P to directrix, point P lying on conic and F the focal point.
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A focal axis is a line passing through the focus and perpendicular to the 
directrix. 

A vertex is a point where the conic intersects its axis.

A parabola has one focus and one directrix while ellipse and hyperbola 
have two foci and two directrices.

Notice
The different conics arise according to the value of eccentricity e.

A non-degenerate conic is:

•  An ellipse if 0 1e   •  A parabola if 1e  

•  A hyperbola if 1e  

When 0e , the ellipse is actually a circle whose focus is the centre of the 
circle and the directrix is at infinity.

Any conic section is represented by the second degree equation
2 22 2 2 0Ax Bxy Cy Dx Ey F  

where , , , ,A B C D E  and F  are real numbers and ,A B , C  are not all nulls.

Application activity 8.1 
Taking different planes, slice through a double cone and explain how to 
obtain:
1. A single point 2. A single line 3. Pair of lines

8.2. Parabola
8.2.1.

1. What is the equation of the locus of all points equidistant from the 
two points 5,3  and 2,1 ? Does the equation obtained represent 
a straight line or a curve?

2. Find the equation of the curve that is the locus of all points equidistant 
from the line 3x  and the point 3,0 .

3. In each case 1) and 2), plot the curve or straight line.

Activity 8.2  

A parabola is the set of points ,P x y in the plane equidistant from 

hhahhhhhhhhhh v
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a fixed point F, called focus and a fixed line d, called the directrix i.e. 
1 ,PF PD  where D is a point of directrix d.

Simply, the parabola is the set , :C P x y PF PD .

We obtain the equation of a parabola in standard form if we choose:

a) The focus F  on the x axis  to have coordinate ,0a .

b) The directrix d to be the line with equation x a .

c) The x axis  is called the axis of the parabola (axis of symmetry).

d) The origin is the vertex of the parabola.

e) Parabola has no centre.

x

y

0 Focus

,x y

Vertex

2 20x y

D
ire
ct
rix

D'

D

x a

aa

x
a

Figure 1.9. 

From figure 8.9, the distance from point ,x y  to the focus ,0a  is 
2 2x a y .

The distance from point ,x y  to the line (directrix) x a  is x a .

Since these two distances are equal, we have 
2 2x a y x a .

Squaring both sides and expanding, we get

2 2 2 2 22 2x ax a y x ax a .

Combining like terms yields

2 4y ax
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Thus, the standard equation of a parabola, whose focus at point ,0a
and directrix with equation x a , is given by

2 4y ax .

Notice

• If the parabola has vertex at ,h k , then the equation is 
2 4 .y k a x h .

• Parametric equations of parabola are

2

2
x at
y at

 where t  is a parameter.

• The equation of a parabola, whose focus is at point 0,a  and 
directrix has the equation y a , is given by 2 4x ay .

• Recall that the distance from point ,m n  onto the line 

ax by c  is given by 
2 2

am bn c
a b

.

Definitions

x

0

P

Fa

d

L

'L

Q

Figure 1.10. 

• The distance from a point on a parabola to its focus is called the focal 
distance of the point. In figure 8.10, FP is the focal distance.
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• A chord of the parabola which passes through its focus is called the 

focal chord. In figure 8.10, PQ  is the focal chord.

• The chord through the focus and perpendicular to the axis of the 
parabola is called the latus rectum of the parabola. In figure 8.10, 

'LFL  is the latus rectum.

Example 8.1 

For each of the parabolas, find the focus and the equation of the directrix: 

a) 2 8y x  b) 2 6x y

Solution

a) The given parabola is 2 8y x  which is of the form 2 4y ax .

 4 8; 2a a .

Coordinates of the foci, ,0 2,0F a

Directrix is x a  i.e. 2x  or 2 0x

b) The given parabola is 2 6x y  which is of the form 2 4x ay .

34 6;
2

a a .

Coordinates of the foci 
30, 0,
2

F a

Directrix is y a  i.e. 
3
2

y or 2 3 0y .

Example 8.2 

Find the foci, vertices, directrices and axis of the following parabolas:

a) 24 3y x x  b)  2 2 3 5 0x y x

In each case, sketch the parabola.

Solution

a) The given parabola is 2 24 3 4 3y x x x x y

2 3 1
4 4

x x y
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Completing squares gives

2
2 3 9 1 9 3 1 9

4 64 4 64 8 4 64
x x y x y

23 1 9
8 4 16

x y

Shifting the origin to the point 
3 9,
8 16

, yields

2 1
4

X Y  with 
3 9,
8 16

X x Y y .

The parabola of the form 2 4X aY  has focus at point 0,a  and 
directrix with equation Y a . 

Hence, 1 14
4 16

a a .

With respect to new coordinate system

Focus 
10,
2

F , Vertex 0,0V , Directrix is 
1
2

Y  

and Axis is 0X .

With respect to original coordinate system

Focus 
3 1 90 ,
8 16 16

F  or 
3 1,
8 2

F

Vertex 
3 90 ,0
8 16

V  or 3 9,
8 16

V

Directrix is 
1 9
16 16

y  or 
5
8

y

Axis is 
30
8

x  or 
3
8

x .
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Sketch

-2 -1 1 2

-5

-4

-3

-2

-1

1

x

24 3y x x

0

b) The given parabola is 2 2 3 5 0x y x
2 3 2 5x x y

Adding 
9
4

 for completing square gives

2 23 9 3 112 5 2
2 4 2 4

x y x y

23 112
2 8

x y

Shifting the origin to the point 3 11,
2 8

, we get

2 2X Y  with 
3 11,
2 8

X x Y y .

The parabola 2 2X Y  is of the form 2 4X aY .

Thus, 
14 2
2

a a .
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Sketch
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With respect to new coordinate system

Focus 
10,
2

F   Vertex 0,0V

Directrix is 
1
2

y  Axis is 0x .

With respect to original coordinate system

Focus 
3 1 110 ,
2 2 8

F  or 
3 15,
2 8

F

Vertex 
3 110 ,0
2 8

V  or 
3 11,
2 8

V

Directrix is 
1 11
2 8

y  or 
7
8

y

Axis is 
30
2

x  or 
3
2

x .

Sketch

Example 8.3 

Find the equation of the parabola whose focus is 5,3  and the directrix 
is the line 3 4 1 0x y .
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Solution

Let ,P x y  be any point on the parabola. The focus is 5,3F

Distance from point ,P x y  to the directrix 3 4 1 0x y  is 

3 4 1 3 4 1
9 16 25

x y x y

Distance from ,P x y  to 5,3F  is 
2 25 3x y

Now, 
2 2 3 4 15 3

25
x yx y

22
2 2 3 4 15 3

25
x yx y

2
2 2 3 4 1

5 3
25

x y
x y

2 2 2 225 10 25 25 6 9 9 16 24 6 8 1x x y y x y xy x y

2 216 9 24 256 142 849 0x y xy x y

Thus, the required equation is 16 9 24 256 142 849 02 2x y xy x y+ + − − + =

Application activity 8.2 

1. Find the focus and directrix of the parabola with equation 2 8y x
.

2. For each of the following equations, sketch the parabola. Clearly 
show the focus, vertex and directrix.

a) 
2 6y x  b) 

2 9x y

c) 
23 6 2y x  d) 

2 4 2 1x x y

3. For each of the parabolas, find the focus,  equation of the directrix, 
length of latus rectum, equation of latus rectum and ends of  latus 
rectum:

a) 
2 25y x b) 

2 8x y c) 2 5x y
4. Determine the equation of a parabola with vertex 1,2  and focus 

4,2 .
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5. Find an equation of  the parabola having its:

a) Focus 0, 2 , directrix 2y .

b) Focus at 3,0  and the directrix 5 0x .

c) Focus 1, 2  and the directrix 2 3 0x y .

6. For the parabola 
24 1 7 3y x , find the:

a) Latus rectum.

b) Coordinates of the focus and the vertex.

7. Determine the point on the parabola 2 9y x  at which the ordinate 
is three times the abscissa.

8.2.2.

1. Using the technique for the differentiation of implicit functions, 
derive the formula for tangent line on parabola 2 4y ax  at a 
point 0 0,x y .

2. Deduce the equation  of normal line on the parabola at the point 
,x y .

3. Draw the tangent line of 2 2y x  to 0,0 .
Hint: 

,
o

o o
x x

dyT y y m x x with m
dx

Activity 8.3  

From activity 8.3, the tangent line at a point 0 0,x y , on parabola 
2 4y ax , is given by 

0 02T y y a x x
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Notice
Condition for tangency

The condition for tangency states that the line y mx ctouches the 

parabola 2 4y ax  if 
ac
m

.

In fact, let y mx c be the line tangent to the parabola 2 4y ax , then

2 4
y mx c
y ax

2

2 2 2

2 2 2

2 2 2

4

2 4
2 4 0
2 4 0

mx c ax

m x mcx c ax
m x mcx c ax
m x mc a x c

The line will touch the parabola if it intersects at one point only. This will 
happen only when the roots are real and coincident or the discriminant of 
the above equation is zero.

2 2 2

2 2 2

2 4 0

2 4 4 0

m x mc a x c

mc a m c
2 2 2 2 24 16 16 4 0m c mca a m c

216 16 0mca a
216 16a mca
ac
m

In  this case, the tangent line is 
ay mx
m

.

Example 8.4 

Find the tangent line to the parabola 2 8y x  at point 2, 4A .

Solution

The tangent line at point 0 0,x y , on parabola 2 4y ax , is given by 

0 02T y y a x x
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But, 2a

The tangent line is 4 4 2T y x
4 4 8T y x

2T y x

Alternative method

The tangent line at point 0 0,x y  is 0 0T y y m x x  where m  is 
the gradient.

Differentiating the given equation, to obtain slope of the tangent;

2 8 2 8d dyy x y
dx dx

 or 
4dy

dx y
.

 Slope, 
4

1
y

dym
dx

.

Hence, 4 2 2 4T y x y x  2T y x

Application activity 8.3 

1. Determine the gradient of the curve 23 2xy y  at the point 
1, 2 .

2. Find the coordinates of the focus and the vertex, the equation 
of the axis, directrix and the tangent at vertex for the  parabola 

2 4 4 16 0x x y

3. Find equation of tangents drawn from 2,3  to the curve 2 8y x .

4. Find equation of the normal to the parabola 2 4y ax at the point 
2 , 2at at . If this normal passes through the point 6 ,0a , find the 

possible values of t . 
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8.3. Ellipse
8.3.1.

1. What is the equation of the curve that is the locus of all points in which 
the ratio of its distance from the point 3,0  to its distance from the 

line 
25
3

x  is equal to 3
5

.

2. Sketch the curve in 1.

Activity 8.4  

We define an ellipse with eccentricity e(where 0 1e ) to be the set of 
points P in the plane whose distances from a fixed point F is e times their 
distances from a fixed line d.

Let us consider figure 8.11:

0

C

a

b

x

y M
,P x y

,0F ae

ax
e

X

Y

Figure 1.11. 

We can obtain equation of an ellipse, in standard form if we choose

1. The focus F  to lie on the x axis  and have coordinates ,0ae .

2. The directrix d to be the line with equation 
ax
e

.

From activity 8.4 and figure 8.11, we get the equation of ellipse in standard 

form, that is  
2 2

2 2 1x y
a b

Since the equation of ellipse in standard form is symmetric about both 
the x axis  and y axis , then, there is a second focus ' , 0F ae  and a 
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second directrix ' ad x
e

. 

The distance between two foci is 2ae  with 
2 2

2

a be
a

.

Considering figure 8.12, we identify the elements of an ellipse.

Figure 1.12. 

Ellipse is also defined as the locus of points P such that the sum of the 
distances from P to two fixed points is constant.

Thus, let 1F  and 2F  be the two points (called foci, the plural of focus), then 
the defining relation for the ellipse is 1 2 2PF PF a .

Therefore, Ellipse C is the set 1 2, : 2 ,C P x y PF PF a a .

The line through the foci is called the focal axis of the ellipse; the point on 
the focal axis halfway between the foci is called the centre of the ellipse; 
the points where the ellipse crosses the focal axis are called the vertices. 

The line segment joining the two vertices is called the major axis, and the 
line segment through the centre and perpendicular to the major axis, with 
both end-points on the ellipse, is called the minor axis.

If the ellipse has centre at ,h k  which is not the origin, then the 

equation is 
2 2

2 2 1
x h y k

a b
.

For an ellipse centre of origin h=k=0.

Parametric equations of ellipse whose centre ,h k  are

cos
sin

x h a t
y k b t

   where t is a parameter and .t  
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Length of latus rectum of ellipse

Let us consider ellipse 
2 2

2 2 1x y
a b

 where 0a b

-5 -4 -3 -2 -1 1 2 3 4 5

-4

-3

-2

-1

1

2

3

x
0

L

L'

S

Figure 1.13. 

Let 'LSL  be the latus rectum through S in figure 8.13.

Let SL l ; thus L ,ae l .

Since the point ,ae l  lies on the ellipse 
2 2

2 2 1x y
a b

,  

Therefore,
2 2 2 2 2

2 2 2 21 1
ae l a e l
a b a b  

2
2

2 1le
b

2
2

2 1l e
b

 
2 2

2 2

l b
b a

 as 2 2 21b a e

4
2

2

bl
a  

2bl
a

Hence, the length of latus rectum is 
222 bl

a
.

Ends of latus rectum through S  are 
2

, bae
a

 and 
2

, bae
a

.
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2
2
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2 2

2 2
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4
2

2
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Also, the ends of latus rectum through 'S  are 
2

, bae
a

 and 
2

, bae
a.

Equations of latus rectum through S  and 'S  are x ae  and x ae  
respectively.

Notice

If the denominator of 2y  is greater than the denominator of 2x , the 
major axis is vertical and the minor axis is horizontal. Always, we will take 

b a . Here, the equation is written as 
2 2

2 2 1x y
b a

. In this case, foci are 
' 0,F ae , 

directrices are ' ed y
a

 and vertices are 0, a .

Example 8.5 

Find the equation for the ellipse whose one focus is 2,1  and its 
corresponding directrix is the line 2 3 0x y  and the eccentricity is 
2
2

.

Solution

Let ,P x y  represent any point on this ellipse and e  be the eccentricity

distance from point to focus
distance from point todirectrix

Pe
P

2 22 12
2 32

4 1

x y
x y

 

2 22 52 1
2 2 3

x y
x y

2
2 2 25 2 12

2 2 3
x y

x y

2 2

2

5 2 12
4 2 3

x y

x y  

2 2 22 2 3 20 2 1x y x y

Expanding and simplifying we get

rererrerrrerreeeeesp
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2 26 4 9 52 14 41 0x xy y x y

Example 8.6 

Find the centre, the length of axes and eccentricity of the ellipse 
2 22 3 4 12 13 0x y x y .

Solution

By completing squares we have

2 22 3 4 12 13 0x y x y

2 22 2 3 4 13 0x x y y

2 22 2 3 4 13 0x x y y

2 22 1 1 3 2 4 13 0x y

2 22 1 2 3 2 12 13 0x y   
2 22 1 3 2 1x y

2 21 2
11 1

2 3

x y

The centre is 1,2

2 21 2 1 3and
2 2 3 3

a a b b

Major axis is 2 2a , minor axis is 
2 32
3

b

Also, we know that 2 2 21b a e  where e  is the eccentricity

2 2 21 1 2 1 31 1
3 2 3 3 3

e e e e

Example 8.7 

Find the length of the axes, eccentricity, coordinates of foci, equation of 
directrices and latus rectum for each of the following ellipses:
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Find the length of the axes, eccentricity, coordinates of foci, equation of 
directrices and latus rectum for each of the following ellipses:

425

a) 
2 2

1
25 16
x y  b)  2 29 5 45x y

Solution

a) For ellipse 
2 2

1
25 16
x y

, 2 225, 16a b  and a b .

Therefore, 

Length of the axes are 2 10a  and 2 8b .

Eccentricity 
2 2

2

25 16 9 3
25 25 5

a be
a

Coordinates of foci are ,0ae  and ,0ae

But 
35 3
5

ae .

Hence, coordinates of foci are 3,0  and 3,0 .

Equation of directrices are 
ax
e

 and 
ax
e

Hence, equation of directrices are 
5
3
5

x  or 
25
3

x .

Latus rectum: 
22 16 322

5 5
bl
a

b) Ellipse 2 29 5 45x y  can be rewritten as 
2 2

1
5 9
x y

2 25, 9a b  and a b .

Major axis is 2 6b

Minor axis is 2 2 5a .

Eccentricity 
2 2

2

9 5 4 2
9 9 3

b ae
b

Coordinates of foci are 0,be  and 0, be

But 
23 2
3

be .
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Hence, coordinates of foci are 0,2  and 0, 2 .

Equation of directrices are 
by
e

 and 
by
e

.

Thus, equation of directrices are 
3
2
3

y  or 
9
2

y .

Latus rectum is 
22 5 102

3 3
a
b

Application activity 8.4 

1. Find the foci of the ellipse 2 22 4x y .

2. Find the equation of the ellipse passing through 1,4  and 6, 1 .

3. Find an equation for the ellipse with foci 0, 2  and major axis with 
end-points 0, 4 .

4. For each of the following equations, sketch the ellipse. Label the foci,  
the ends of the major and minor axes. 

a) 
2 2

1
16 9
x y

 b) 
2 23 2 4 1 12x y

c) 2 24 8 10 13 0x y x y       

5. By completing squares, show that the curve 
2 216 9 64 54 1 0x y x y  is an ellipse and hence deduce the 

foci.

6. Find the eccentricity of the ellipses whose:

a) 
1Latusrectum major axis
2 .

b) Distance between directrices distance between 3 foci.
c) Latusrectum semi minor axis .

7. Find the focal distance of the point 5,4 3P  on the ellipse 
2 216 25 1600x y .

8. The ellipse 
2 2

1
169 25
x y

 has the same eccentricity as 

the ellipse 
2 2

2 2 1x y
a b

. Find the ratio of a to b.
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8.3.2.

1. Using the derivative of implicit functions, derive the equation of 

tangent line to the ellipse 
2 2

2 2 1x y
a b

 at point 0 0,x y .

Hint:
2 2

2 2 2 2 2 2
2 2 1x y b x a y a b

a b

2. Draw the tangent line to the curve 
2

2 1
9
yx  at 0,3 .

Activity 8.5  

From activity 8.5, the tangent line at point 0 0,x y , on ellipse 
2 2

2 2 1x y
a b

, is given by: 0 0
2 2 1x x y yT

a b
.

Recall that, if m is the gradient of tangent line T, the gradient of the normal 

line N at the same point is 1
m

.

Notice
Condition of tangency

The condition of tangency states that the line y mx ctouches the 

ellipse 
2 2

2 2 1x y
a b

 if 2 2 2 2c b a m .

In fact, let y mx c be the line tangent to the ellipse 
2 2

2 2 1x y
a b

, then

2 2

2 2 1

y mx c
x y
a b

22
2 2

2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2

2 0

mx cx a b
a b
b x a m x mcx c a b

b x a m x a mcx a c a b
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2 2 2 2 2 2 2 2 22 0b a m x a mcx a c a b

The line will touch the ellipse if it intersects at one point only. This will 
happen only when the roots are real and coincident or the discriminant of 
the above equation is zero.

2 2 2 2 2 2 2 2 2

22 2 2 2 2 2 2 2

2 0

2 4 0

b a m x a mcx a c a b

a mc b a m a c a b

4 2 2 2 2 2 2 4 4 2 2 4 2 2

2 2 2 2 4 4 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2

4 4 4 4 4 0
4 4 4 0

4 0

0

a m c b a c a b a m c a m b
b a c a b a m b

b a c b a m

c b a m
c b a m

4 2 2 2 2 2 2 4 4 2 2 4 2 2

2 2 2 2 4 4 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2

4 4 4 4 4 0
4 4 4 0

4 0

0

a m c b a c a b a m c a m b
b a c a b a m b

b a c b a m

c b a m
c b a m

Thus 2 2 2c b a m

In this case, the tangent line is 2 2 2y mx b a m

Example 8.8 

Determine the equation of tangent and normal line to ellipse 
2 2

1
4 9
x y

 

at point 
6 12,
5 5

Solution

2 2

1
4 9
x y
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22 2 2 2 2 2 2 2

2 0

2 4 0
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4 2 2 2 2 2 2 4 4 2 2 4 2 2

2 2 2 2 4 4 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2

4 4 4 4 4 0
4 4 4 0

4 0

0

a m c b a c a b a m c a m b
b a c a b a m b

b a c b a m

c b a m
c b a m

4 2 2 2 2 2 2 4 4 2 2 4 2 2

2 2 2 2 4 4 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2

4 4 4 4 4 0
4 4 4 0

4 0

0

a m c b a c a b a m c a m b
b a c a b a m b

b a c b a m

c b a m
c b a m

Thus 2 2 2c b a m

In this case, the tangent line is 2 2 2y mx b a m

Example 8.8 

Determine the equation of tangent and normal line to ellipse 
2 2

1
4 9
x y

 

at point 
6 12,
5 5

Solution

2 2

1
4 9
x y
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The point 
6 12,
5 5

 lies on 
2 2

1
4 9
x y

 since 

36 144
36 144 9 1625 25 1

4 9 100 225 25 25

Equation of tangent line:

Since o oT y y m x x  where 
ox x

dym
dx

differentiating the equation of the ellipse with respect to x  gives

2 2 20
4 9 2 9
x dy x dyy y

dx dx
 or 

9
4

dy x
dx y

At point 
6 12,
5 5

, 

6
9 9 6 95

124 4 12 8
5

dym
dx

Equation of tangent line is

12 9 6
5 8 5

T y x
 

640 96 45
5

y x

40 96 45 54y x  45 40 150x y 9 8 30 0x y

Therefore, 9 8 30 0T x y .

Alternative method

Since 2 2 1o ox x y yT
a b

, 
6
5ox  and 

12
5oy , then

6 12
6 125 5 1 1

4 9 20 45

x y x yT
3 4 1
10 15

x y 45 40 150x y

                          9 8 30 0x y

Hence, 9 8 30 0T x y .
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Normal line equation:

1
o oN y y x x

m
 where 

ox x

dym
dx

the slope of normal line to the 
2 2

1
4 9
x y

 at point 
6 12,
5 5

 is 
1 8
9 9
8

.

 The equation of normal line is 
12 8 6
5 9 5

N y x

645 108 40
5

y x
 

45 108 40 48y x

40 45 60 0x y  8 9 12 0x y

Therefore, the equation of this normal line is 8 9 12 0N x y

Application activity 8.5 

1. Find the gradients of the tangents drawn to the ellipse 
2 2

2
4 9
x y

 
at the point where 2x .

2. Determine the equation of the tangent drawn to the ellipse 

3cos , 2sinx y  at a point where 
6

.

3. Find the value(s) of k  such that the line 2x y k  is tangent to 
the ellipse 2 24 8x y . For each value of k, determine the point of 
contact.

4. Find equations for the tangents to the ellipse 
2 22 1 5x y  

at the points where the ellipse cuts the coordinates axes.

5. Find the range of values of m  so that the line y mx and the conic 
2 2 6 8 24 0x y x y

a) Intersect at two points.

b) Touch at two points.

c) Do not touch each other.   



430

Normal line equation:

1
o oN y y x x

m
 where 

ox x

dym
dx

the slope of normal line to the 
2 2

1
4 9
x y

 at point 
6 12,
5 5

 is 
1 8
9 9
8

.

 The equation of normal line is 
12 8 6
5 9 5

N y x

645 108 40
5

y x
 

45 108 40 48y x

40 45 60 0x y  8 9 12 0x y

Therefore, the equation of this normal line is 8 9 12 0N x y

Application activity 8.5 

1. Find the gradients of the tangents drawn to the ellipse 
2 2

2
4 9
x y

 
at the point where 2x .

2. Determine the equation of the tangent drawn to the ellipse 

3cos , 2sinx y  at a point where 
6

.

3. Find the value(s) of k  such that the line 2x y k  is tangent to 
the ellipse 2 24 8x y . For each value of k, determine the point of 
contact.

4. Find equations for the tangents to the ellipse 
2 22 1 5x y  

at the points where the ellipse cuts the coordinates axes.

5. Find the range of values of m  so that the line y mx and the conic 
2 2 6 8 24 0x y x y

a) Intersect at two points.

b) Touch at two points.

c) Do not touch each other.   

431

8.4. Hyperbola

8.4.1.

If the foci of a conic are 1 ,0F c  and 2 ,0F c  where 2 2c a b , 
derive the equation of locus for which the difference of the distances 
from any point ,P x y  on conic to these two foci is 2a .

Indicate the nature of this curve by use of a sketch if necessary.

Activity 8.6  

From activity 8.6, the locus of points P such that the difference 
of the distances from P to two fixed points (foci) is a constant i.e. 

1 2, : 2 ,C P x y PF PF a a  and has equation 
2 2

2 2 1x y
a b

 and 
is called a hyperbola.

Let us consider figure 8.14 and define elements of hyperbola:

x
0Focus Focal axis

Transverse axis

Center

C
on

ju
ga

te
 a

xi
s

1F
2F

Focus

P

DirectrixDirectrix

Figure 1.14. 

The line through the foci is called the focal axis of the hyperbola; the 
point on the focal axis halfway between the foci is called the centre; the 
points where the hyperbola crosses the focal axis are called the vertices.

The line segment joining the two vertices is called the transverse axis.

This hyperbola has two asymptotes 
by x
a

 and 
by x
a
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If the hyperbola has centre at ,h k , then the equation is 
2 2

2 2 1
x h y k

a b
Parametric equations of hyperbola are

sec
tan

x a t
y b t

 where t is a parameter and 
3, ,

2 2 2 2
t

Since the equation of a hyperbola in standard form is symmetric about 
x axis  and y axis , there is a second focus ' , 0F ae  and a second 

directrix ' ed x
a

.

The line segment joining the points ,0a , has length which is equal 
to 2a  and is called a transverse axis and the segment joining 0, b , 
which is equal to 2b  and is called a conjugate axis.

The distance between two foci is 2ae .

Notice
Unlike in ellipse, the orientation of hyperbola is not determined by 
examining the relative sizes of 2a  and 2b , 
but rather by noting where the minus sign occurs in the equation. If the 

minus sign precedes the 2y  term i.e. 
x
a

y
b

2

2

2

2 1− = ,

the foci lie on the x axis  and if the minus sign precedes the 2x  term, i.e 
2 2

2 2 1y x
a b

, the foci lie on the y axis , that 

is, the foci are ' 0,F ae , directrices are ' ed y
a

 and vertices are 
0, a . 

The hyperbola 
2 2

2 2 1y x
a b

 has two asymptotes, 
ay x
b

 and 
ay x
b

.

When the eccentricity of hyperbola takes the value 2 , we get the case of 
perpendicular hyperbola or rectangular hyperbola.

TTTThTTTTTTTTT e
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TTTThTTTTTTTTT e
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The curve of a rectangular hyperbola is shown below;

y

x0

In this case, the equation is 2xy c  and the parametric equations are 

x ct
cy
t

  where t  is a parameter different from zero.

In this case, the equation is 2xy c  and the parametric equations are 

x ct
cy
t

  where t  is a parameter different from zero.

The asymptotes of this hyperbola are y x .

Example 8.9 

Find, in standard form, the equation of a hyperbola whose eccentricity is 
2  and the distance between foci is 16 units.

Solution

2e

Since we know that the distance between the two foci is 2ae , 
then 2 16ae . 

Now, 22 8 4 2 32a a a

Also, 2 2 2 1b a e  or 2 32 2 1 32b

The equation is 
2 2

1
32 32
x y
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Example 8.10 

Find the equation of hyperbola whose one directrix is 2 1 0x y  and 
corresponding focus is 1,2  and eccentricity 3 .

Solution

Let ,P x y  represent any point on this hyperbola. 

distance from point to focus
distance from point todirectrix

Pe
P

2 21 2
3 2 1

4 1

x y
x y

 

2 2 53 1 2
2 1

x y
x y

2
2 2

2 5 1 2
3

2 1
x y

x y

2 2

2

5 1 2
3

2 1

x y

x y

2 2 23 2 3 5 1 2x y x y

Expanding and simplifying we get

2 27 12 2 2 14 22 0x xy y x y

Example 8.11 

Find the eccentricity and coordinates of foci for hyperbola 
2 24 9 36x y  

Solution

2 2
2 24 9 36 1

9 4
x yx y

2

2

9 3
4 2

a a
b b

2 2 2 21 4 9 1b a e e
 

2 4 131
9 9

e  
13
3

e
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Thus, the eccentricity is 13
3

Coordinates of foci; ,0 13,0ae

Application activity 8.6 

1. For each of the following equations, sketch the hyperbola, state 
the coordinates of vertices and foci, and find equations for the 
asymptotes. 

a) 
2 2

1
4 9
y x  b) 

2 22 4
1

9 4
x y

c) 
2 23 2

1
36 4

y x

2. Find the foci, the vertices, and asymptotes of the hyperbola 
2 2

1
16 9
y x

.

3. For the following hyperbolas, find the lengths of transverse and 
conjugate axes, eccentricity, coordinates of foci and vertices.

a) 2 216 9 144 0x y  b) 
2 22 3 6x y

c) 2 216 16y x
4. Find the equation of the hyperbola with vertices 0, 8  and 

asymptotes 
4
3

y x .

5. By completing squares, show that the curve 
2 2 4 8 21 0x y x y  is a hyperbola and hence determine the 

coordinates of foci, vertices and asymptote equations.

6. Find the equation of hyperbola whose;

a) eccentricity is 
5
4

, one of the foci is at 2,0  

and the corresponding directrix is 4 3 1x y . 

b) focus is 3,3 , the corresponding directrix is the line 5 6 0x  

and eccentricity is 5
4

.

7. Find the equation of hyperbola whose distance between two foci is 

10 and eccentricity is 
5
2

.
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8.4.2.

Derive the general equation of tangent line to the hyperbola 
2 2

2 2 1x y
a b

 at point 0 0,x y .

Example 8.12 

From activity 8.7,

The tangent line at point 0 0,x y  on hyperbola 
2 2

2 2 1x y
a b

 is given by 

0 0
2 2 1x x y yT

a b
.

Remember that if m is the gradient of tangent line T, the gradient of the 

normal line N at the same point is 1
m

.

Notice
Condition of tangency

The condition of tangency states that the line y mx c touches the ellipse 
2 2

2 2 1x y
a b

 if 2 2 2 2c a m b .

In fact, let y mx c  be the line tangent to the ellipse
2 2

2 2 1x y
a b

, then

2 2

2 2 1

y mx c
x y
a b

22
2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2

2

2 0

mx cx a b b x a m x mcx c a b
a b
b x a m x a mcx a c a b

2 2 2 2 2 2 2 2 22 0b a m x a mcx a c a b



436

8.4.2.

Derive the general equation of tangent line to the hyperbola 
2 2

2 2 1x y
a b

 at point 0 0,x y .

Example 8.12 

From activity 8.7,

The tangent line at point 0 0,x y  on hyperbola 
2 2

2 2 1x y
a b

 is given by 

0 0
2 2 1x x y yT

a b
.

Remember that if m is the gradient of tangent line T, the gradient of the 

normal line N at the same point is 1
m

.

Notice
Condition of tangency

The condition of tangency states that the line y mx c touches the ellipse 
2 2

2 2 1x y
a b

 if 2 2 2 2c a m b .

In fact, let y mx c  be the line tangent to the ellipse
2 2

2 2 1x y
a b

, then

2 2

2 2 1

y mx c
x y
a b

22
2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2

2

2 0

mx cx a b b x a m x mcx c a b
a b
b x a m x a mcx a c a b

2 2 2 2 2 2 2 2 22 0b a m x a mcx a c a b
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The line will touch the hyperbola if it intersects at one point only. This will 
happen only when the roots are real and coincident or the discriminant of 
the above equation is zero.

2 2 2 2 2 2 2 2 2

22 2 2 2 2 2 2 2

2 0

2 4 0

b a m x a mcx a c a b

a mc b a m a c a b

4 2 2 2 2 2 2 4 4 2 2 4 2 2

2 2 2 2 4 4 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

4 4 4 4 4 0
4 4 4 0

4 0 0

a m c b a c a b a m c a m b
b a c a b a m b

b a c b a m c b a m

c b a m c a m b

Thus, 2 2 2c a m b

In this case, the tangent line is 2 2 2y mx a m b .

Example 8.13 

Determine the value of 2a  such that the line 5 4 16 0x y  is a tangent 
to the hyperbola 2 2 2 29 9x a y a .

Solution

Rewriting the equation 2 2 2 29 9x a y a  as 
2 2

2 1
9

x y
a

and the equation 5 4 16 0x y  as 4 5 16y x or 
5 4
4

y x

But the tangency condition is 2 2 2 2c a m b  with 254, , 9
4

c m b
2

2 2 25 25 25 1616 9 25 16
4 16 25

a a a

Thus, 2 16a

Example 8.14 

Find the equations of normal lines to the hyperbola 2 23 4 12x y  which 
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are parallel to the line 0x y .

Solution

Rewriting the equation 2 23 4 12x y  as 
2 2

1
4 3
x y

and the equation 0x y  as y x . 

Since the normal is parallel to the line y x , then the tangent is 
perpendicular to the line y x  tangent has equation of

the form y x c  and normal line has the form y x k .

Since the tangency condition is 2 2 2 2c a m b  with 
2 20, 1, 4, 3c m a b

then,
2 4 1 3 1c c

Then, the tangent lines are 1y x  and 1y x

We use these two lines to find the points of tangency:

For the line 1y x :

2 2

22 2 2

3 4 12
1

3 4 1 12 3 4 2 1 12

x y
y x

x x x x x

2 2 2

2

3 4 8 4 12 0 8 16 0
8 16 0 4

x x x x x
x x x

1 3y x

Thus, point of contact between the tangent and the hyperbola is (4,-3).

For the normal line 3 4 7y x k k k

The normal line is 7y x

Again, for the line 1y x :

2 2

22 2 2

3 4 12
1

3 4 1 12 3 4 2 1 12

x y
y x

x x x x x
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22 2 2
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1
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2 2 2

2

3 4 8 4 12 0 8 16 0
8 16 0 4

x x x x x
x x x

1 3y x

For the normal line 3 4 7y x k k k

The normal line is 7y x

Example 8.15 

Find the coordinates of the point at which the normal line to the curve 
8xy  at the point 4,2  cuts the tangent to the curve 2 216 64x y  at 

point 
12 ,6
2

.

Solution

Normal line 
1

o oN y y x x
m

 where 
ox x

dym
dx

Differentiating 8xy  on both sides with respect to x  yields

0dy dy yy x
dx dx x

.

At the point 4,2 , the gradient of the tangent is 
2 1 .
4 2

m

Therefore, the gradient of the normal at point 4,2  is 1 2.
m

Hence, equation of normal is 2 2 4N y x  or 2 6y x .

Differentiating 2 216 64x y  on both sides with respect to x  yields

1632 2 0dy dy xx y
dx dx y

.

At point 
12 ,6
2 , the gradient of the tangent is 

16 1 202
6 2 3

m .

Therefore, the equation of tangent line is 20 16 2
3 2

T y x
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3 18 20 50y x 20 3 32 0x y

To get intersection point, we solve the simultaneous equations 
2 6

20 3 32 0
y x

x y
which gives 1x  and 4y .

Thus the required normal and tangent intersect at the point 1, 4 .

Application activity 8.7 

1. Evaluate dy
dx

 at 
6

 radians for the hyperbola 

whose parametric equations are 3sec , 6 tanx y .

2. Determine the equation of the tangent drawn to the rectangular 

hyperbola 
55 ,x t y
t

 at 2t .

3. Find the equation of the tangent to the curve 29 9x y  at the 

point 
5 ,4
3

.

4. A line tangent to the hyperbola 2 24 36x y  intersects the y axis  
at the point 0,4 . Find the point(s) of contact between the tangent 
and the hyperbola.

8.5. Polar coordinates
8.6.1.

1. Find the modulus of each of the following complex numbers:

a) 3 4z i  b) 1z i
2. Consider the complex number 1z i . Find the value of  such 

that 
1cos
2

 and 
1sin
2

 for 

Activity 7.1  

1 Fi d

To form a polar coordinate system in the plane, we fix a point 0 called the 
pole (or origin) and construct from 0 an initial ray called the polar axis. 
Then each point P in the plane can be assigned polar coordinates ,r  
as follows:
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r  is the directed distance from 0 to P.

 is the directed angle, counterclockwise from polar axis to the segment 
OP .

x

,P r

Pole

r

Polar axis

Figure 1.15. 

In polar coordinate system, the coordinates ,r , , 2 ,r k k  
and , (2 1)r k   represent the same point. Moreover, the pole is 
represented by 0,  where  is any angle.

To establish the relationship between polar and rectangular coordinates, 
let the polar axis coincide with the positive x axis  and the pole coincide 
with the origin.

x

y

,x yy

x0

r

cosr

sinr

Figure 1.16. 
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The polar coordinates ,r  of a point are related to the rectangular 
coordinates ,x y  as follows:

2 2cos , sinx r y r and r x y

Notice

To convert rectangular coordinates ,a b  to polar coordinates is 
the same as finding the modulus and argument of complex number 
z a bi .

Example 8.16 

Given the polar coordinates 
32,
4

. Find their corresponding rectangular 
coordinates.

Solution

In this case, we have; 
32,
4

r

3 3cos 2cos 2 sin 2sin 2
4 4

x r and y r  

Then the corresponding rectangular coordinates are 2, 2 .

Example 8.17 

Find the polar coordinates of the point 
3 1,
2 2

Solution

3 1,
2 2

x y  and 
2 2 3 1 1

4 4
r x y

Thus,
3cos
2 6

1 6sin
52
6
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x r and y r  

Then the corresponding rectangular coordinates are 2, 2 .
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Solution

3 1,
2 2
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2 2 3 1 1

4 4
r x y

Thus,
3cos
2 6
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6
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The common angle is 
6

Therefore, the polar coordinates are 1,
6

Example 8.18 

Express:

a) 2 3x xy  in polar form.

b) 3 sinr  in cartesian form.

Solution

a) 
2 3x xy

Substituting cosx r  and siny r  gives 

2 2 2cos cos sin 3r r  
2 cos cos sin 3r

b) 3 sinr  

In order to be able to use 2 2 2r x y  and siny r , we first multiply 
the polar equation by r :

2 3 sinr r r

2 2 2 23x y x y y  

22 2 2 29x y y x y  which is the required cartesian form. 

Example 8.19 

Illustrate graphically the curve given by polar equation 2 2sinr t .

Solution

We first construct a table of values using the special angles and their 

multiples. r  is maximum and equal to 4 for 
2

t . r  is minimum and 

equal to zero when 3
2

t . 
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t  0
 6 4  3 2

2
3  

3
4

5
6

r  2  3  3.4  3.7  4  3.7  3.4  3  2

t 7
6

5
4  

4
3  

3
2

5
3

7
4

11
6

2

r  1  0.6  0.3  0  0.3  0.6  1 2

We now plot the points in the table, then join them with a smooth curve. 
The points and the graph of the given polar equation are shown below. 

-3 -2 -1 1 2 3 4

-1

1

2

3

4

x
0

 

Example 8.20 
Graph the polar equation given by 4cos 2r t .

Solution
Just like in the previous example 8.18, we first construct a table of values 
using the special angles and their multiples. r  is maximum and equal to 
4 for 0t  and t . 

r  is minimum and equal to 4  for 
2

t  and 
3
2

t . 

t 0
 6 4  3 2

2
3  

3
4

5
6

r  4  2  0  -2  -4  -2  0  2  4

t 7
6

5
4  

4
3  

3
2

5
3

7
4

11
6

2

r  2  0  -2  -4  -2  0  2 4
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We now first plot the points in the table then join them with a smooth 
curve. 

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4

x

y

0

Application activity 8.8 
1. Which of the following polar coordinates describe the same point?

a) 3,0  b) 3,0  c) 
22,
3

d) 
72,
3

    e) 3,  f) 2,
3

g) 3,2  h) 2,
3

2. Plot the following points (given in polar coordinates).

a) 2,0  b) 2,0

c) 2,
2

 d) 2,
2

3. Find the Cartesian coordinates of each of the points in question 1).

4. Express in Cartesian coordinates of the following polar equations.

a) cos sin 1r r  b) cos 3r  

c) 
4

 d) 
3

cos 3sin
r

e) 9r  f) 2 2 2 225 cos 16 sin 400r r
g) 3sinr  h) 2 6 cos 2 sin 6r r r
i) 2sin 3cosr



446

8.6.2.

1. Express the equation of the parabola 2 1 2y x  in polar 
equation.

2. a) Express the polar equation 
6

2 cos
r  in 

    Cartesian equation.  
b) What are the characteristics of the equation 
    found? Hence, identify the nature of its curve.

Activity 2.2  

Another alternative way to define a conic is using polar coordinates. In 
polar equation of a conic, the pole is the focus of the conic.

In this case, we use the following relations:

2 2 2cos , sin , , tan , 0yx r y r r x y x
x

A conic curve with eccentricity e , focus at the origin, whose directrix 

x p  has equation 
1 cos

epr
e

 where ,r  are 

polar coordinates of any point P  lying on the conic and 0x p  is the 
vertical directrix.

It is an ellipse if 1e , a parabola if 1e  and a hyperbola if 1e .

Example 8.21 

Find the polar equation of an ellipse whose centre is at 3,0 ,

horizontal major axis with 10units  and vertical minor axis with 8units .

Solution

In the equation 
2 2

2 2 1
x h y k

a b
, 3, 0h k

2 10 5 2 8 4a a and b b  



446

8.6.2.

1. Express the equation of the parabola 2 1 2y x  in polar 
equation.

2. a) Express the polar equation 
6

2 cos
r  in 

    Cartesian equation.  
b) What are the characteristics of the equation 
    found? Hence, identify the nature of its curve.

Activity 2.2  

Another alternative way to define a conic is using polar coordinates. In 
polar equation of a conic, the pole is the focus of the conic.

In this case, we use the following relations:

2 2 2cos , sin , , tan , 0yx r y r r x y x
x

A conic curve with eccentricity e , focus at the origin, whose directrix 

x p  has equation 
1 cos

epr
e

 where ,r  are 

polar coordinates of any point P  lying on the conic and 0x p  is the 
vertical directrix.

It is an ellipse if 1e , a parabola if 1e  and a hyperbola if 1e .

Example 8.21 

Find the polar equation of an ellipse whose centre is at 3,0 ,

horizontal major axis with 10units  and vertical minor axis with 8units .

Solution

In the equation 
2 2

2 2 1
x h y k

a b
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2 10 5 2 8 4a a and b b  
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Then, 

2 2

2 2

3 0
1

5 4
x y

Expanding, we get 2 216 25 96 256x y x
2 216 25 96 256x y x  

Creating the perfect square on the right side 
2 2 2 216 9 25 9 96 256x x y x x
2 2 2 216 9 25 9 2 48 256x x y x x

22 225 25 3 16x y x  
22 225 3 16x y x

But 2 2 2 , cosx y r x r

Then,

2 22 2 225 3 16 25 3 cos 16x y x r r

2225 3 cos 16r r  5 3 cos 16r r

5 3 cos 16r r  5 3cos 16r  
16

5 3cos
r

Application activity 8.9 

1. Find the polar equation of the conic section:

a) 
2 1 2y x  b) 2 23 8 4x y y

2. Determine the cartesian equation of each of the following polar 
equations:

a) 
2

2 cos
r  b) 

2
1 sin

r

3. Show that the equations cos , sinx r y r  transform to the 

polar equation 
1 cos

kr
e

 and 

Cartesian equation 2 2 2 21 2 0e x y kex k .
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8.6.3.

Consider a straight line with equation 3 2 6 0x y . 

From polar coordinates, derive the expression for 
1
r

 which is the polar 
equation of the line.

Activity 7.1  

From activity 8.10,considering the straight line 0ax by c , the 

polar equation of the straight line is 
1 cos sin , ,A B A B
r

 and 
andA B  are not all zero.

Example 8.22 

Find the polar equation of the line passing through point 1,
2

 and 2,

Solution

From; 1 cos sinA B
r

For point 1,
2

; 1 cos sin 1
1 2 2

A B B

For point 2, ; 1 1cos sin
2 2

A B A

Then, the polar equation is

1 1 cos sin
2r

Application activity 8.10 

Determine the polar equation of each of the following lines:

1. 3 4x y  2. 2x y  

3. 
3 1
2

y x  4. 2 5x y
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8.6.4.

Consider the following figure:

x

0

R
,P r

,C

r

Polar axis

Figure 1.17. 
Hint:

Consider the following triangle

The cosine law states that

2 2 2

2 2 2

2 2 2

2 cosA

2 cosB

2 cosC

a b c bc

b a c ac

c a b ab

Using cosine law, derive the expression for 2r

Activity 2.2  

From activity 8.11, the polar equation of a circle with centre ,  and 
radius R  is

2 2 2 2 cosr R r
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Example 8.23 

Find the polar equation of the circle with centre 3,
6

 and radius 2.

Solution

In the equation 2 2 2 2 cosr R r , 2, 3,
6

R

The equation is

2

2

4 9 6 cos
6

5 6 cos
6

r r

r r

Application activity 8.11 

Determine the polar equation of the circle:

1. Whose radius 3 and centre 3,0 .

2. Whose radius 2 and centre 2,
2

.

3. Whose radius 1
2

 and centre 1 ,0
2

.

4. Whose radius 1 and centre 1,
2

.

8.6. Applications

Is the Earth a perfect sphere? Justify your answer by giving facts.

Activity 2.3  

The orbits of planets are ellipses with the sun at one focus. For most 
planets, these ellipses have very small eccentricity, so they are nearly 
circular. However, Mercury and Pluto, the innermost and outermost known 
planets respectively, have visibly elliptical orbits.
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Planets Eccentricity
Mercury 0.206
Venus 0.007
Earth 0.017
Mars 0.093
Jupiter 0.048
Saturn 0.056
Uranus 0.046
Neptune 0.010
Pluto 0.248

The following examples illustrate many of the practical applications of 
conics.

Example 8.24 
An arch is in the form of a parabola with its axis vertical. The arch is 10m  
high and 5m  wide at the base. How wide is it 2m  from the vertex of the 
parabola?

Solution

It is given that arch is in the parabolic form with its vertical axis.

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

x

2 4x ay

0

10m10m

5

2.5cm2.5cm

(2.5,10)
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Let the vertex of the parabola be at the origin and the axis be y axis ; 

Thus, the equation of the parabola is of the form 2 4x ay .

Since 2.5,10  lies on the parabola, then 
22.5 4 10 6.25 40a a

625 5
4000 32

a .

Therefore, the equation of parabolic arch is 2 54
32

x y  or 2 5
8

x y .

When 2 5 5 52, 2
8 4 2

y x x .

The width of the arch at height of 2m  from the vertex is 

52 5
2

m m .

Example 8.25 

An arch is in the form of a semi-ellipse. It is 8m  wide and 2m  high at the 
centre. Find the height of the arch at a point 1.5 m from one end.

Solution

Let the x axis  lie along the base of arch, with the origin at the middle of 
the base. 

Let the equation of the ellipse be 
2 2

2 2 1x y
a b

.

-4 -3 -2 -1 1 2 3 4

2

-1

1

2

3

4

x

y

0

P(2.5,h)

C

8m

2.5m

4m

(0,2)
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Solution
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.

-4 -3 -2 -1 1 2 3 4

2

-1

1

2

3

4

x

y

0
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C

8m
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4m
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453

Let the vertex of the parabola be at the origin and the axis be y axis ; 
that is, equation of the parabola is of the form 2 4x ay .

Since 2 8 4a a .

The point 0,2  lies on the ellipse, then 
2 2

2 2

0 2
1

a b
 or 

2
2

4 1 4b
b

;

The point 2.5,h  also lies on our ellipse,  
2 2

2 2

2.5
1

h
a b

 

26.25 1,
16 4

h
 with 24 4s a and b

2 6.25 9751
4 16 1600
h

 
2 975 4 2.4375

1600
h

2.4375 1.56h
Hence, the height of the arch at a point 1.5 m from one end is 1.56m .

Application activity 8.12 

1. The cross-section of a reflector of a torch is modelled by the part of 
26 0.24y x  which lies above the x-axis, where x and y are both 

measured in .cm  Draw this curve and find the;

a) depth of the reflector,

b) diameter of the mouth of the reflector.

2. A penny-farthing bicycle on display in a museum is supported by a 
stand at points A and C.  
A and C lie on the front wheel.
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With coordinate axes as shown and 1 5unit cm , 
the equation of rear wheel (the small wheel) is 

2 2 6 0x y y  and the equation of the front wheel is 
2 2 28 20 196 0x y x y .

a) i) Find the distance between the centres of the two wheels. 
ii) Hence calculate the clearance, i.e. the smallest gap between the 

front and rear wheels. Give your answer to the nearest millimeter.

b) i) 7,3B  is half-way between A  and C  where P is the centre of 
the front wheel. Find the gradient of PB . 
ii) AC  and the coordinates of A and C.

3. A bakery firm makes gingerbread men each 14cm high with circular 
heads and bodies. 

y

x0

14

The equation of body is 
2 2 10 12 45y x y and the line of 

centres is parallel to the y -axis. Find the equation of head.

4. An arc is in the form of a parabola with its axis vertical. The arc is 10m 
high and 5m wide at the base. How wide is it 2m from the vertex of 
the parabola?

5. Satellites can be put into elliptical orbits if they need only sometimes 
to be in high- or low-earth orbit, thus avoiding the need for 
propulsion and navigation in low-earth orbit and the expense of 
launching into high-earth orbit.  
Suppose a satellite is in an elliptical orbit, with 4416b  and with 
the centre of the Earth being at one of the foci of the ellipse. 

Assuming the Earth has a radius of about 3960 miles, find the lowest and 
highest altitudes of the satellite above the Earth.
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a) i) Find the distance between the centres of the two wheels. 
ii) Hence calculate the clearance, i.e. the smallest gap between the 

front and rear wheels. Give your answer to the nearest millimeter.
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ii) AC  and the coordinates of A and C.

3. A bakery firm makes gingerbread men each 14cm high with circular 
heads and bodies. 

y

x0

14

The equation of body is 
2 2 10 12 45y x y and the line of 

centres is parallel to the y -axis. Find the equation of head.

4. An arc is in the form of a parabola with its axis vertical. The arc is 10m 
high and 5m wide at the base. How wide is it 2m from the vertex of 
the parabola?
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propulsion and navigation in low-earth orbit and the expense of 
launching into high-earth orbit.  
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Assuming the Earth has a radius of about 3960 miles, find the lowest and 
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6. The design layout of a 
cooling tower is shown in 
figure below. The tower 
stands 179.6 metres tall. 
The diameter of the top is 
72 metres. At their closest, 
the sides of the tower are 60 
metres apart.

Find the equation of the hyperbola that models the sides of the 
cooling tower. Assume that the centre of the hyperbola indicated 
by the intersection of dashed perpendicular lines in the above 
figure is the origin of the coordinate plane. Round off final values 
to four decimal places.

7. A whispering room is one with an elliptically-arched ceiling. 
If someone stands at one focus of the ellipse and whispers 
something to his friend, the dispersed sound waves are reflected 
by the ceiling and concentrated at the other focus, allowing people 
across the room to clearly hear what the person said. Suppose 
such gallery has a ceiling reaching twenty feet above the five-foot-
high vertical walls at its tallest point (so the cross-section is half 
an ellipse topping two vertical lines at either end), and suppose 
the foci of the ellipse are thirty feet apart. What is the equation 
for the elliptical ceiling and the height of the ceiling above each 
whispering point?

1. Generalities on conic sections
Parabolas, circles, ellipses and hyperbolas are called conics because 
they are curves in which planes intersect right circular cones.

2. Parabola 
A parabola is the set of all points in plane that are equidistant from 
a fixed line (called directrix) and a fixed point (called focus) not on 
the line. 
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Equation 2 4y ax  
2 4x ay

Focus ,0a 0,a

Directrix x a y a

Principal axis(the line through 
the focus perpendicular to the 
directrix) 

0y 0x

Vertex (point where the parabola 
crosses its principal axis)

0,0 0,0

Length of latus rectum (length 
of chord through a focus and 
perpendicular to the principal 
axis)

4a 4a

Equation of latus rectum x a y a

Ends of latus rectum , 2a a 2 ,a a

Replacing x with  has the effect of shifting the graph of an equation 
by h  units to the right if h is positive, to the left if h is negative. 

Similarly, replacing y with  has the effect of shifting the graph by k  
units up if k is positive and down if k is negative.

Equation
2 4y k p x h

 
2 4x h p y k

Focus h ,p k ,h k p

Directrix x h p y k p

Principal axis(the line 
through the focus 
perpendicular to the 
directrix) 

y k x h

Vertex (point where the 
parabola crosses its 
principal axis)

,h k ,h k
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Parametric equations of parabola are

2

2
x at
y at

 where t  is a parameter.

The tangent line at point 0 0,x y , on parabola 2 4y ax , is given by 

0 02T y y a x x

3. Ellipse 

Ellipse is a set of all points in the plane, the sum of whose 
distances from two fixed points (called foci) is a given positive 
constant.

Equation of Standard 
form

2 2

2 2 1, 0x y a b
a b

2 2

2 2 1, 0x y a b
a b

Coordinates of centre 0,0 0,0

Coordinates of 
vertices ,0a  and ,0a 0,b  and 0, b

Length of major axis 2a 2b

Equation of major 
axis 

0y 0x

Length of minor axis 2b 2a

Equation of minor 
axis 0x 0y

Eccentricity (ratio of 
semi-focal separation 
and the semi-major 
axis)

2 2
2 2 21 a bb a e e

a

2 2
2 2 21 b aa b e e

b

Coordinates of foci ,0ae  and ,0ae

2 2 ,0a b

0,be  and 0, be

2 20, b a
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Equation of 
directrices

ax
e

by
e

Length of latus 
rectum

22b
a

22a
b

Equations of 
latus rectum

x ae y be

Parametric equations of ellipse with centre ,h k  are

cos
sin

x h a t
y k b t

 where t  is a parameter and ,t

The tangent line at point 0 0,x y , on ellipse 
2 2

2 2 1x y
a b

, is given by 

0 0
2 2 1x x y yT

a b

4. Hyperbola

Hyperbola is a set of all points in the plane, the difference of whose 
distances from two fixed points (foci) is a given positive constant

Equation of Standard 
form

2 2

2 2 1x y
a b

2 2

2 2 1x y
a b

Coordinates of centre 0,0 0,0

Coordinates of vertices ,0a  and ,0a 0,b  and 0, b

Length of transverse axis 2a 2b

Equation of transverse 
axis

0y 0x

Equation of conjugate axis 0x 0y

Coordinates of foci ,0ae  and ,0ae

2 2 ,0a b

0,be  and 0, be

2 20, a b
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Equation of directrices ax
e

by
e

Length of latus rectum 22b
a

22a
b

Equations of latus rectum x ae y be

Eccentricity 2 2 21b a e 2 2 21a b e

Parametric equations of hyperbola are

sec
tan

x a t
y b t

 where t  is a parameter and 

3, ,
2 2 2 2

t

The tangent line at point 0 0,x y , on hyperbola 
2 2

2 2 1x y
a b

,is given 
by 

0 0
2 2 1x x y yT

a b

5. Polar coordinates

To form a polar coordinate system in the plane, we fix a point 0 called 
the pole (or origin) and construct from 0 an initial ray called the polar 
axis. Then each point P in the plane can be assigned polar coordinates 
,r  as follows:

• r is the directed distance from 0 to P.

•  is the directed angle, counterclockwise from polar axis to the 
segment OP .

In polar coordinate system, the coordinates ,r , , 2 ,r k k  
and , (2 1)r k  represent the same point. 

Coordinate conversion

The polar coordinates ,r  of a point are related to the rectangular 
coordinates ,x y  as follows:
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2 2 2cos , sin , , tan , 0yx r y r r x y x
x

Polar equation of a conic

A conic curve with eccentricity e , focus at the origin, whose directrix 

x p  has equation 
1 cos

epr
e

 

where ,r  are polar coordinates of any point P lying on the conic.

It is an ellipse if 1e , a parabola if 1e , a hyperbola if 1e .

6. Applications

Eccentricities of orbits of the planets

The orbits of planets are ellipses with the sun at one focus. For most 
planets, these ellipses have very small eccentricity, so they are nearly 
circular. However, the Mercury and Pluto, the innermost and outermost 
known planets respectively, have visibly elliptical orbits.

1. Describe the conic having the given equations. Give its foci and 
principal axes and, if it is a hyperbola, its asymptotes:

a) 2 8x y  b) 2 22 2x y  c) 23x y      

d) 2 2 8y x  e) 2 2 3x y y  f) 2 28 2 16x y

2. For each of the following,  find all intersections of the given curves, 
and make a sketch of the curves that show the points of intersection:

a) 2 24 36 2 20 0x y and x y

b) 2 2 28 5 2 0y x and y x   

c) 2 2 2 23 7 5 9 2 1x y and y x  

d) 
2 2 2 21 7x y and y x  
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3. Find equation of ellipse traced by a point that moves so that the 
difference between its distances to 4,1  and 4,5  is 12.

4. Find the equation of the hyperbola traced by a point that moves 
so that the sum of its distances to the points 0,0  and 1,1  is 1.

5. Let 2 24 4 6 1 0x xy y x  be equation of a conic. Determine 
the values of k  for which the line y kx ;

a) intersects the given conics once,

b) cuts the given conics in two  points,

c) does not intersect the given conics.

6. What points in the xy plane  satisfy the equations and inequalities 
in the following curves? In each case, illustrate graphically.

a) 2 2 2 2 2 21 25 4 4 0x y x y x y  

b) 2 2 1 0x y x y  

c) 
2 2

1
9 16
x y

  d) 
2 2

1
9 16
x y

e) 2 2 2 29 4 36 4 9 16 0x y x y

f) 2 2 2 29 4 36 4 9 16 0x y x y

7. For each of the following equations, it is given how many units up 
or down and to the right or left each conic is to be shifted. 

Find an equation for the new conic, and indicate the new 
vertex, focus and directrix for parabola; the new foci, vertices, 
centre and asymptotes if any.

a) 2 4y x , left 2,down 3

b) 2 8x y , right 1, down 7

c) 
2 2

1
6 9
x y

, left2, down 1

d) 
2 2

1
3 2
x y

, right 2, up 3   



462

e) 
2 2

1
4 5
x y

, right 2, up2 

f) 2 2 1y x , left 1, down1.

8. Find rectangular coordinates of the points whose polar coordinates 
are given:

a) 6,
6

 b) 
27,
3  c) 

98,
4

d)  5,0  e) 
177,
6

 f) 0,
9. The following are rectangular coordinates.

a) 5,0  b) 2 3, 2  c) 0, 2

d) 8, 8  e) 3,3 3  f) 1,1

Express the points in polar coordinates, with 

(i) 0r  and 0 2
(ii) 0r  and 0 2

10. In each of the following, transform the given polar equation to 
rectangular coordinates and identify the curve represented.

a) 5r   b) sin 4r  c) 
1

1 cos
r  

d) 
2

1 2sin
r   e) 

5
3sin 4cos

r  

f) 6
2 cos

r  g) 4cos 0r      

11. A planet travels about its sun in an ellipse whose semi-major axis 
length a .

a) Show that 1r a e  when the planet is closest to the sun 
(perihelion) and 1r a e  when the planet is farthest from the 
sun (aphelion).

b) Use the data in the table below to find how close each planet in 
our solar system comes to the sun and how far away each planet 
gets from the sun.
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Planets Semi-major axis (astronomical 
units)

Eccentricity

Mercury 0.3871 0.2056
Venus 0.7233 0.0068
Earth 1.000 0.0167
Mars 1.524 0.0934
Jupiter 5.203 0.0484
Saturn 9.539 0.0543
Uranus 19.18 0.0460
Neptune 0.0082 0.0082

c) Use the data from the table above to find polar equations for 
the orbits of the planets

12. A man running a race-course discovers that the sum of the 
distances from the two flag posts from him is always 10m  and the 
distance between the flag post is 8m . Find the equation of the 
path traced by the man.

13. The towers of a bridge, hung in the form of a parabola, have their 
tops 30m above the roadway and 200m apart. If the cable is 5m  
above the roadway at the centre of the bridge, find the length of 
the vertical supporting cable 30m  from the centre.

14. Given two points A and B where 6AB . Find in its simplest 
form the equation of the locus of point which moves such that 

8PA PB .

15. Ellis built a window frame shaped like the top half of an ellipse. 
The window is 40 inches tall at its highest point and 160 inches 
wide at the bottom. What is the height of the window 20 inches 
from the centre of the base?

16. A forest ranger at an outpost in the Sam Houston National Forest 
and another ranger at the primary station both heard an explosion. 
The outpost and the primary station are 6 km apart. If one ranger 
heard the explosion 6 s before the other, write an equation that 
describes all the possible locations of the explosion. Locate the 
two ranger stations on the x -axis with the midpoint between the 
stations at the origin. The transverse axis is horizontal. (Hint: The 
speed of sound is about 0.35 kilometre per second).
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A bag contains 6 blue pens and 4 red pens. Three pens are drawn and 
not replaced. If x stands for  the number of blue pens and y the number 
of red pens drawn

Complete the following table to illustrate different situations you can 
have.

x y Total number =3
0 3 3

1 ... ...

2 ... ...

3 ... ...

Can you determine exact number of blue pens to be selected at any 
time if you do not know the number of red pens selected? 

Does this number remain the same? Explain you answer.

Introductory activity

By the end of this unit, a student will be able to:  

• Define a random variable

• Identify whether a given random variable is discrete or continuous. 

• Define the parameters of a discrete random variable.  

• Learn in which situation the Binomial distribution applies and state 
its parameters, …

Objectives

Random Variables
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9.1. Discrete and finite random variables
9.1.1. Probability density function

Suppose a box contains 6 balls of which 4 are red and 2 are black. 
Three balls are withdrawn one after the other. Let x represent the 
number of red balls drawn. Construct a table to represent this 
probability distribution if each ball is replaced before another is 
withdrawn. What can you say about the value x takes on the sum of 
obtained probabilities?

Activity 2.4  

Suppose that the outcome set S  of an experiment is divided into n  
mutually exclusive and exhaustive events 1 2 3, , ,..., nE E E E .

A variable X  which can assume numerical values each of which can 
correspond to one and only one of the events is called a random variable 
because outcomes depend on chance..

A random variable X is said to be a discrete random variable, if it takes 
only finite values between its limits; for example, the number of students 
appearing in a festival consisting of 400 students is a discrete random 
variable which can assume values other than 0, 1, 2, …,400.

Discrete random variables are usually (but not necessarily) countable. 
Their values can be finite or countably infinite.

Random variables are usually denoted by upper case letters. The possible 
values a random variable assumes are denoted by the corresponding 
lower case letters and thus we write X x .

Before talking about probability density function, let us remember some 
key words of probability theory.

The sample space corresponds to the set of all possible outcomes of the 
experiment. Elements of a sample space are called outcomes.

An event is a subset of a sample space.

Distribution function for a random variable X is a real function M whose 
domain is .

The random variables are described by their probabilities. i.e

1 1 2 2, , ..., n nP X x p P X x p P X x p .
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The distribution of probabilities i iP X x p  is called the probability 
distribution and satisfy 

• 0M w  for all w
• 1i

i
M w

Then, for any subset E  of , the probability of E is the number 

i
w E

p E M w p X x .

Then X  is called a discrete random variable if 
1

1
n

i
i

p .

The probability density function (p.d.f), f x , is a function that allocates 
probabilities to all distinct values that X  can take on.

Notice
If the initial probability is known, you can find successive 
probabilities using the following recurrence relation 

1
1

n x pP X x P X x
x q

In fact, 1n x n x
xP X x C p q

and 

1 1
11 2n x n x

xP X x C p q

Dividing (2) by (1) yields

1 1
11

1

n x n x
x
n x n x

x

P X x C p q n x p
P X x C p q x q

Thus,

1
1

n x pP X x P X x
x q

Example 9.1 

A game involves throwing a six sided die. Find;

a) The outcome of X is even

b) 1P X  c) 1 2P X  d) 2 3P X

pppppppppppppppppppppppppppppppppppppp
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e) 1 6P X  f) 6P X

g)  p E  where E X  is an even.

Solution

In this case, the possible outcomes are 1,2,3,4,5,6.

P (any number to appear) 
1
6

Let X be the random variable “the number that appears”

Thus, we can write; 1 , 1,2,...,6
6i iP X x x

a) The sample space is 1,2,3,4,5,6

b) 1 0P X  impossible event

c) 
11 2 2
6

P X P X

d) 2 3 2 3P X P X P X

1 1 1
6 6 3

e) 1 6 1 2 3 4 5P X P X P X P X P X P X

1 1 1 1 1 5
6 6 6 6 6 6

f) 6 1 2 3 4 5 6P X P X P X P X P X P X P X
1 1 1 1 1 1 1
6 6 6 6 6 6

g) Let event E be “the result of the roll is an even number”

Thus, 2,4,6E , and then

1 1 1 12 4 6
6 6 6 2

p E M M M .
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Example 9.2 

A bag contains 6 blue balls and 4 red balls. Three balls are drawn and 
not replaced. Determine the probability distribution for the number of red 
balls drawn.

Solution

6 blue balls
10 balls

4 red balls

Let : blue ball, : red ballB R

If X is the random variable “the number of red ball drawn”, we have;

0 no red ball
6 5 4 2 1
10 9 8 12 6

P X P P BBB

1 1 red ball and 2 blueballs

4 6 5 6 4 5 6 5 4 1
10 9 8 10 9 8 10 9 8 2

P X P

P RBB P BRB P BBR

2 2 red balls and 1 blueball

4 3 6 4 6 3 6 4 5 3
10 9 8 10 9 8 10 9 8 10

P X P

P RRB P RBR P BRR

3 noblueball
4 3 2 1
10 9 8 30

P X P P RRR

Thus, we have;

x 0 1 2 3

P X x 1
6

1
2

3
10

1
30
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Application activity 9.13 

1. A discrete variable X  has probability distribution defined by 
1 1
6

P X x x , for 2,3,4x . Show 

that X  is a random variable.

2. A discrete random variable has the following probability 
distribution:

x 1 2 3 4

P X x 1
5

3
10

2
5

p

Find; a)  the value of p.

b) 2P X .
3. The probability distribution of a discrete random variable T  is 

given by 
2
3

t

P T t a , for 1,2,3,...t . Find the value of a .

Cumulative distribution of discrete random variable

Recall, in statistics, that Cumulative frequency can be defined as the 
sum of all previous frequencies up to the current point. Use this fact 
to complete the table below, for the number of heads obtained when 
an unbiased coin with sides labeled head (H) and tail (T) is tossed 
four times.

Heads 0 1 2 3 4

Probability
1
16

4
16

6
16

4
16

1
16

Cumulative 
Probability

... ... ... ... ...

Activity 2.5  

To find a cumulative probability, we add the probabilities for all values 
qualifying as “less than or equal” to the specified value. 

The cumulative distribution function of a random variable X  is the 
function F x P X x .
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Example 9.3 

Suppose that the range of a discrete random variable is 0,1,2,3,4  

and its probability density function is 
10
xf x . What is its cumulative 

distribution function?

Solution 

For

1, 0 0
11 2, 0 1 0
10

1 2 32 3, 0 1 2 0
10 10 10

1 2 3 63 4, 0 1 2 3 0
10 10 10 10

1 2 3 4 104 , 0 1 2 3 4 0 1
10 10 10 10 10

x F x f

x F x f f

x F x f f f

x F x f f f f

x F x f f f f f

Then, 

x 0 1 2 4 5

F x 0
1
10

3
10

6
10

1

Thus, we can write the cumulative distribution function as;

0, 1
1 , 1 2
10
3 , 2 3
10
6 , 3 4
10
1, 4

x

x

F x x

x

x
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Example 9.4 

A discrete random variable X  has the cumulative distribution

x 0 1 2 4 5

F x 1
10

3
10

5
10

8
10

1

Determine the probability distribution of X.

Solution 

The cumulative distribution only changes value at 0,1,2,4,5 . So the range 
of X  is 0,1,2,4,5 .

10
10

F  so 
10
10

f

31 0 1
10

F f f  so 
3 1 21
10 10 10

f

52 0 1 2
10

F f f f  so 5 1 2 22
10 10 10 10

f

84 0 1 2 4
10

F f f f f   

So 
8 1 2 2 34
10 10 10 10 10

f

105 0 1 2 4 5
10

F f f f f f   

So 
10 1 2 2 3 25
10 10 10 10 10 10

f

Then, we write

x 0 1 2 4 5

f x 1
10

2
10

2
10

3
10

2
10
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Exercise 9.14 

1. I toss a coin twice. Let X be the number of observed heads. Find the 
cumulative distribution function of X.

2. We roll both dice at the same time and add the two numbers that are 
shown on the upward faces. Let X be the discrete random variable 
associated to this sum. Find its cumulative distribution.

3. The discrete random variable X has cumulative density function 

5
xF x  for 1,2,3,4,5x . Find the 

probability distribution of X.

9.1.2. Expected value, variance and standard deviation

Complete the following table for a discrete random variable X .

x P X x xP X x 2x P X x
1 0.2 … …
2 0.5 … …
3 0.3 … …
Sum … … …

Activity 7.6  

The expected value of random variable X , which is the mean of the 
probability distribution of X  is denoted and defined by 

1

n

i i
i

E X x P X x

Also, the expectation of any function g X  of the random variable X is 

1

n

i
i

E g X g x P X x

The variance of random variable X  is denoted and defined by 

22

1

n

i i
i

Var X x E X p X x ;
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which can be simplified to

22 2Var X E X E X

Since the term 2

1

n

i i
i

x P X x  is also written as 
2E X ,

the standard deviation of random variable X , denoted by SD X , is the 
square root of the variance. That is

SD X Var X .

Example 9.5 
The following probability distribution has a random variable X .

x 0 1 2 3 4 5

P X x 0.05 0.10 0.20 0.40 0.15 0.10

Find the;

a) expected value, 

b) variance,

c) standard deviation.

Solution

a) 
6

1
i i

i
E X x P X x

0 0.05 1 0.10 2 0.20 3 0.40 4 0.15 5 0.10
2.80

b) 
22

1
var

n

i i
i

X x P X x E X

22 2 2 2 2 20 0.05 1 0.10 2 0.20 3 0.40 4 0.15 5 0.10 2.80
9.40 7.84 1.56

c) SD var 1.56 1.2490X X



474

Properties for mean and variance

,a b

1. E a a  2. E aX aE X

3. E aX b aE X b  4. E X Y E X E Y

5. 
2 2E aX b aE X b  6. var 0a

7. 
2var varaX a X  8. 2var varaX b a X

Application activity 3.15 

1. Find the mean of each of the following discrete probability 
distribution:

a) 
x 0 1 2 3

P X x 0.1 0.2 0.4 0.3

b) 
x 1 2 3

P X x 0.1 0.4 0.5

c) 
x -1 0 1 2

P X x 0.2 0.3 0.4 0.1

d) 
x 4 6 8 10

P X x 0.002 0.040 0.299 0.659

2. The random variable X  has the following probability distribution:

x 2 4 6

P X x a 22a a 2 1a a

Find the:

a) Value of a  b) E X

c) Var X  d) SD X
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3. Calculate the expected value, variance, and standard deviation of 
the probability distribution for the possible outcomes that can be 
obtained by throwing a die.

9.1.3. Binomial distribution (Law of Bernoulli)

Suppose that we need to determine the probability of getting 
4 heads in 10 coin tosses. In this case, 10n  is the number 
of independent trials. If getting a head is a “success (S)” then 
getting a tail is a “fail (F)”. Therefore, the number of successes 
is 4r  and the number of fails is 10 4 6n r  in 10 trials. 
Here, if the first 4 tosses are heads, the last 6 are tails. That is 
SSSSFFFFFF .

1. If p is the probability of success and q is the probability of failure, 
what is the probability of the sequence SSSSFFFFFF  in terms 
of p and q?

2. From result in 1), deduce the probability of a specific sequence 
of outcomes where there are r successes and n r  failures.

3. Recall that each way of getting heads is equally likely (for 
example the sequence SSSSFFFFFF is just as likely as the 
sequence SFSFFSFFSF ). From result in 1), how many different 
combinations produce 4 heads? 

Considering that: The total number of ways of selecting 4 
distinct combinations of 10 objects, irrespective of order, is 

10
4

10!
4! 10 4 !

C

4. From result in 3), deduce different combinations that produce r 
heads in n trials.

Activity 2.7  

Let X be the random variable “the number of successes in the n trials”. 

Let p and q be the probabilities of success and failure in any one trial.

From activity 9.4, in the n independent trials, the probability that there will 
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be r successes and n – r failures is given by

, 0,1, 2, ,n r n r
rP X r C P q r n .

The probability distribution of the random variable X is therefore given by

X  0 1 2 r n

P X 0
0

n nC P q 1 1
1

n nC P q 2 2
2

n nC P q n r n r
rC P q 0n n

nC P q

The probability distribution is called the binomial distribution because 
for r = 0, 1, 2, ......, n, p x  are the probabilities of the successive terms of 

the binomial expansion of 
nq p .

Binomial distribution was discovered by James-Bernoulli in 1700 and is 
denoted

: , , 0,1, 2, ,n r n r
rb r n p C P q r n

The constant n, p, q are called parameters of the binomial distribution.

Note that 1p q

Notice
 For N set of n trials, the successes 0, 1, 2, .....r, ....., n are given by 

nN p q , which is called binomial distribution.

Example 9.6 

During war, a ship out of nine was sunk on an average in making a voyage. 

What was the probability that exactly 3 out of a convoy of 6 ships would 
arrive safely ?

Solution

Let p  be the probability of a ship arriving safely i.e.,
1 8 11 , then , with 6, 1
9 9 9

p q n N  

The binomial distribution is 
68 1

9 9
nN p q

The probability that exactly 3 ships arrive safely is
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3 3
6

3 6 6

8 1 512 1024020 0.0193
9 9 9 9

C

Example 9.7 

The probability that a person belongs to a certain club A is 0.6. Find the 
probability that in a randomly selected sample of 8 people there are:

a) Exactly 3 people who belong to club A.

b) More than 5 people who belong to club A.

Solution

In this case, success is belonging to club A and failure: not belonging to 
club A.

0.6, 1 0.6 0.4,with 8, 1p q n N  

So, the binomial distribution is 
80.6,0.4nN p q  

Thus,

a) 
8 3 5

33P X C p q

3 58! 0.6 0.4
3!5!
0.124

b) 5 6 7 8P X P X P X P X
8 6 2 8 7 1 8 8 0

6 7 8
6 2 7 1 8 08 8 8

6 7 80.6 0.4 0.6 0.4 0.6 0.4
0.316

C p q C p q C p q

C C C

Example 9.8 

The probability that a pen drawn at random from a box of pens, is defective, 
is 0.1.

If a sample of 6 pens is taken, find the probability that it will contain:

a) No defective pen.

b) 5 or 6 defective pens.
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c) Less than 3 defective pens.

Solution

Success: defective pen 

Failure: no defective pen 

0.1, 1 0.1 0.9 with 6p q n

a) 
0 66

00 0.1 0.9 0.531P X C

b) 4 5 6P X P X P X
5 1 6 06 6

5 60.1 0.9 0.1 0.9
0.000055
C C

c) 3 2 1 0P X P X P X P X
2 4 1 5 0 66 6 6

2 1 00.1 0.9 0.1 0.9 0.1 0.9
0.98
C C C

Example 9.9 

The following data shows the number of seeds germinating out of 10 on 
damp filter for 80 sets of seeds. Fit a binomial distribution to this data.

x  0 1 2 3 4 5 6 7 8 9 10
f 6 20 28 12 8 6 0 0 0 0 0

Solution

Let us first find mean 
x f

x
f

x  0 1 2 3 4 5 6 7 8 9 10 Total 

f 6 20 28 12 8 6 0 0 0 0 0 80

x f 0 20 56 36 32 30 0 0 0 0 0 174

174 87
80 40

x
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The mean of a binomial distribution = np

Given that n = 10, N = 80 and 
87
40

x

Therefore, 
87
40

np  
87 0.2175
400

p

Then, 1 0.7825q p

Hence, the binomial distribution to be fitted to the data is 

1080 0.2175 0.7825nN p q

Thus, the expected  frequencies are

x  0 1 2 3 4 5 6 7 8 9 10
f 6.9 19.1 24.0 17.8 8.6 2.9 0.7 0.1 0 0 0

Application activity 9.16 

1. Find the probability of getting 4 heads in 6 tosses of fair coin.

2. If on an average one ship in every ten is wrecked during a war, find 
the probability that out of 5 ships expected to arrive, at least 4 will 
arrive safely.

3. The averall percentage of failures in a certain examination is 20. If six 
candidates appear in the examination, what is the probability that at 
least five will pass the examination?

4. Ten percent of screws produced in a certain factory turn out to be 
defective. Find the probability that in a sample of 10 screws chosen at 
random, exactly two will be defective.

5. The probability that a man aged 60 will live to be 70 is 0.65. What is 
the probability that out of 10 men, now 60, at least 7 will live to be 70?

6. If 10% of bolts produced by a machine are defective. Determine the 
probability that out of 10 bolts chosen at random;

a) 1

b) none

c) utmost 2 bolts will be defective.

7. A die is thrown 8 times. Determine the probability that a 3 will be 
shown

a) exactly 2 times,
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b) at least seven times,

c) at least once.

8. An underground mine has 5 pumps installed for pumping out storm 

water. If the probability of any one of the pumps failing during the 

storm is 1
8

. What is the probability that;

a) at least 2 pumps will be working,

b) all the pumps will be working during a particular storm?

Expected value, variance and standard deviation of a binomial 
distribution

An experiment, or trial, whose outcome can be classified as either a 
success or failure is performed; 1x  when the outcome is the success 
or 0x  when the outcome is a failure. For any Bernoulli trial, probability 
of success (1) is p  and probability of fail (0) is 1 p q .

1. Use the expected formula, 
1

n

i i
i

E X x P X x ,

to find the mean of any Bernoulli trial. And hence E X  for 
n trials.

2. Recall that, the variance for a random variable is 
22Var X E X E X . Use this relation and result in 1) 

to find 
22Var X E X E X  for n trials. Remember that 

2 2

1

n

i i
i

E X x P X x  

Activity 2.8  

From activity 9.5,

The expected value (or mean) of a binomial distribution of a discrete 
random variable X  is denoted and defined by 

E X np .

where n  is the number of trials and p  is the probability of success.

The variance of a binomial distribution of a discrete random variable X is 
denoted and defined by
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2 Var X npq 1np p

where n  is the number of trials, p  is the probability of success and q  is 
the probability of failure.

The standard deviation of a binomial distribution of a discrete random 

variable X  is denoted and defined by Var X npq .

Example 9.10 

A die is tossed thrice. If getting an even number is considered as success, 
what is the variance of the binomial distribution?

Solution

Let p be the probability of getting an even number, 

i.e. 
3 1 ,
6 2

p  then 
1 11 , 3
2 2

q n

The variance of binomial distribution 
1 1 33
2 2 4

npq

Example 9.11 

The mean and variance of a binomial distribution are 4 and 3 respectively.

Find the probability of getting exactly six successes in this distribution.

Solution

The mean of binomial distribution 4np   (1)

And the variance of binomial distribution 3npq  (2)

Using (1) and (2), we have

33 4 3
4

npq q q

and 
3 11 1
4 4

p q

From (1), 
14 4 16
4

np n n
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The probability of 6 successes; 
6 10 10

16
6 16

1 3 8008 3
4 4 4

C

Example 9.12 

In 256 sets of 12 tosses of a coin, how many cases one can expect 8 heads 
and 4 tails.

Solution

Let p be the probability of head and q be the probability of tail, thus 

1 1 ; 12, 256
2 2

p and q n N

The binomial distribution is 
121 1256

2 2
nN p q

 

The probability of 8 heads and 4 tails in 12 trials is

8 4
12

8
1 1 495
2 2 4096

C

The expected number of such cases in 256 sets

495256 30.9 31
4096

n

Example 9.13 

A random sample is taken on 800 families with 4 children each, how many 
families would be expected to have;

(i) 2 boys and 2 girls   (ii) at least one boy 

(iii) no girl    (iv) at most two girls? 

Assuming equal probabilities for boys and girls.

Solution

Since, the probabilities for boys and girls are equal, let p be the probability 
of having a boy and q be the probability of having a girl.

Here, 
1 ,
2

p q  n = 4, N = 800
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The binomial distribution is 
41 1800 ,

2 2
nN p q .

(i) The expected number of families having 2 boys and 2 girls is 

2 2
4

2
1 1 800 6800 300
2 2 16

C
 

ii) The expected number of families having at least one boy is 

1 3 2 2 3 1 4 0
4 4 4 4

1 2 3 4
1 1 1 1 1 1 1 1800
2 2 2 2 2 2 2 2

C C C C

800 4 6 4 1
750

16

(iii) The expected number of families having no girl is 

4
4

4
1 800800 50
2 16

C

(iv) The expected number of families having utmost two girls is 

4 1 3 2 2
4 4 4

0 1 2
1 1 1 1 1800
2 2 2 2 2

C C C

800 1 4 6
550

16

Application activity 9.17 

1. Bring out the fallacy in the statement:  
“The mean of a binomial distribution is 3 and variance is 4”. 

2. A die is tossed 180 times. Find the mean and the standard 
deviation of the random variable representing the total number of 
sixes obtained.

3. A card is selected from an ordinary deck of 52 cards then replaced 
before a second card is selected. This procedure is carried out 10 
times. If X  represents the number of spades selected, find;

a) E X  b) Var X
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4. If in a binomial experiment of n  trials, the probability of succes is 
p  and the mean and variance are 3 and 2 respectively, find the 

probability that there is:

a) Exactly 1 success.

b) At least 1 success.

5. An irregular six-faced die is thrown and the expectation that in 100 
throws, it will give five even numbers is twice the expectation that it 
will give four even numbers. How many times in 10,000 sets of 10 
throws would you expect it to give no even number? 

6. In a precision bombing attack, there is a 50% chance that anyone 
bomb will strike the target. Two direct hits are required to destroy 
the target completely. How many bombs must be dropped to give 
a 99% chance or better of completely destroying the target?

7. Assuming that half the population are consumers of rice so that 
the chance of an individual being a

consumer is 
1
2

 and assuming that 100 investigators, 

each take ten individuals to see whether they are consumers or not, 
how many investigators do you expect to report that three people or 
less are consumers ?

9.1.4.
distribution

Consider the Maclaurin’s expansion of e . That is, 

0 1 2 3

... ... 1
0! 1! 2! 3! !

n

e
n

In a probability situation, the sums of the probabilities for all the 
possible outcomes must sum to 1, then, we can say that, any algebraic 
sum whose value is 1 can in theory be interpreted as a probability 
distribution.

Activity 2.9  
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the target completely. How many bombs must be dropped to give 
a 99% chance or better of completely destroying the target?

7. Assuming that half the population are consumers of rice so that 
the chance of an individual being a

consumer is 
1
2

 and assuming that 100 investigators, 

each take ten individuals to see whether they are consumers or not, 
how many investigators do you expect to report that three people or 
less are consumers ?

9.1.4.
distribution

Consider the Maclaurin’s expansion of e . That is, 

0 1 2 3

... ... 1
0! 1! 2! 3! !

n

e
n

In a probability situation, the sums of the probabilities for all the 
possible outcomes must sum to 1, then, we can say that, any algebraic 
sum whose value is 1 can in theory be interpreted as a probability 
distribution.

Activity 2.9  
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1. Divide both sides of relation (1) by e  to get 1 on the left hand side.

2. Suppose that  in relation obtained in 1) is the rate of occurrence 
of a random event per some unit or module of observation say; an 
hour of time, or a yard of length, or whatever. Substitute  (rate) for 
the previous  to obtain new relation.

3. Suppose that we want to know, given a particular average rate 
of occurrence ( ), how many times x events will most likely be 
observed in a set of n time or space units. Use the general term 
of the series obtained in 2) and put n x  to get the probability 
P X x .

Poisson distribution was discovered by a French mathematician Simeon 
Denis Poisson in 1837. Poisson distribution is also a discrete probability 
distribution of a discrete random variable, which has no upper bound.

The Poisson distribution is a discrete distribution  often used as a model 
for the number of events (such as the number of customers in waiting 
lines, number of defects in a given surface area, airplane arrivals, or the 
number of accidents at an intersection) in a specific time period.

Poisson distribution is a limiting form of the binomial distribution 
np q  under the following conditions:

a) ,n  i.e., the number of trials is indefinitely large.

b) 0p , i.e., the constant probability of success for each trial is 
indefinitely small.

c) np  is a finite quantity, say .

Thus, , 1p q
n n

, where  is a positive real number.

The major difference between Poisson and Binomial distributions is that 
the Poisson distribution does not have a fixed number of trials but it instead 
uses a fixed number of time or space in which the number of success is 
recorded.

Typical events which could have a Poisson distribution are:

a) Number of customers arriving at a supermarket checkout per minute.

b) Number of suicides or deaths caused by heart attack in 1 minute.

c) Number of accidents that take place on a busy road in time t.



486

d) Number of printing mistakes at each unit of the book.

e) Number of cars passing a certain street in time t.

f) Number of  particles emmited per second by radioactive 
sources.

g) Number of faulty blades in a packet of 1000.

h) Number of persons born blind per year in a certain village.

i) Number of telephone calls received at a particular switch board in a 
minute.

j) Number of times a teacher is late for class in a given week.

From activity 9.6, the probability density function of Poisson distribution is 
defined by 

, 0,1, 2,...
!

xeP X x x
x

Where  is a parameter which indicates the average number (the expected 
value) of events in the given time interval and 2.718...e

For a Poisson distribution, we write PoX

Notice
• If the initial probability is known, you can find successive 

probabilities using the following recurrence relation; 

1
1

P X x P X x
x

.

Indeed, 1
!

xeP X x
x

 and 
1

1 2
1 !

xeP X x
x

Dividing (2) by (1), we get
1

1 1 !

!

x

x

e
P X x x

eP X x
x  

1 !
1 !

x

x

e x
x e

!
1 !

x

x

e x
x x e  1x
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Thus,

1
1

P X x P X x
x

• For a Poisson distribution of a discrete random variable X , the 
mean  (or expected value) and the variance 2  are the same 
and equal to . Thus, 2 . 

Example 9.14 

On average on Friday, a waitress gets no tip from 5 customers. Find the 
probability that she will get no tip from 7 customers this Friday.

Solution

The waitress averages 5 customers that leave no tip on Friday: 5 .

But 7x
5 757 0.104
7!

eP X

Example 9.15 

A small life insurance company has determined that on the average, it 
receives 6 death claims per day. Find the probability that the company 
receives at least seven death claims on a randomly selected day.

Solution

Since 6 , and we need 7P X

7 1 6P X P X

6 0 6 1 6 2 6 3 6 4 6 5 6 6

6 0 1 2 3 4 5 6

6 6 6 6 6 6 6
0! 1! 2! 3! 4! 5! 6!

0.6265

P X P X P X P X P X P X P X P X

e e e e e e e

7 1 0.6265 0.3735P X
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Example 9.16 

The number of traffic accidents that occur on a particular stretch of road 
during a month follows a Poisson distribution with a mean of 9.4. Find the 
probability that less than two accidents will occur on this stretch of road 
during a randomly selected month.

Solution

Here 9.4 , we need 2P X

0 19.4 9.4

2 0 1

9.4 9.4
0.00085

0! 1!

P X P X P X

e e

Example 9.17 

If the variance of the Poisson distribution is 2, find the probabilities for  x 
= 1, 2, 3, 4 from the recurrence relation of the Poisson distribution. Also, 
obtain P(x ≥ 4).

Solution

We know that for Poisson’s distribution, mean and variance are both 
equal i.e., mean = variance = 2.

Recurrence relation for Poisson distribution 

1
1

P x P x
x  

21
1

P x P x
x

The Poisson’s distribution is 

!

xeP X x
x

From recurrence relation for Poisson distribution, 

if 
20, 1 0 2 0.1353 0.2706

0 1
x P P

if 
21, 2 1 0.2706

1 1
x P P  
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if 
2 2 0.27062, 3 2 0.1804

2 1 3
x P P  

if 
2 13, 4 3 0.1804 0.0902

3 1 2
x P P  

Now, 4 4 5 6P x P P P  

 1 0 1 2 3P P P P

 = 1 – [0.1353 + 0.2706 + 0.2706 + 0.1804]

 = 1 – 0.8569 = 0.1431.

Application activity 9.18 

1. Criticise the following statement:  
“The mean of a Poisson distribution is 7, while the standard 
deviation is 6”.

2. The number of road construction projects that take place at any one 
time in a certain city follows a Poisson distribution with a mean of 7. 
Find the probability that more than four road construction projects 
are currently taking place in the city. 

3. The number of traffic accidents that occur on a particular stretch of 
road during a month follows a Poisson distribution with a mean of 7. 

Find the probability of observing exactly three accidents on 
this stretch of road in the next month. 

4. Suppose the number of babies born during an 8-hour shift at a 
hospital’s maternity wing follows a Poisson distribution with a mean 
of 6 an hour, find the probability that five babies are born during a 
particular 1-hour period in this maternity wing. 

5. The university policy department must write, on average, five tickets 
per day to keep department revenues at budgeted levels. Suppose 
the number of tickets written per day follows a Poisson distribution 
with a mean of 8.8 tickets per day. Find the probability that less than six 
tickets are written on a randomly selected day from this distribution. 

6. The number of goals scored at State College hockey games follows 
a Poisson distribution with a mean of 3 goals per game. Find the 
probability that each of four randomly selected State College hockey 
games resulted in six goals being scored. 
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7. Red blood cell deficiency may be determined by examining a 
specimen of the blood under a microscope. Suppose a certain small 
fixed volume contains on the average 20 red cells for normal persons. 
Using Poisson distribution, obtain the probability that a specimen 
from a normal person will contain less than 15 red cells.

8. A skilled typist, on routine work, kept a record of mistakes made 
per day during 300 working days

Number of cells per 

square x  
0 1 2 3 4 5 6

Number of squares 
f 103 143 98 42 8 4 2

Fit a Poisson distribution to the above data and hence 
calculate the expected (theoretical) frequencies.

9.2. Continuous random variables
9.2.1. Probability density function

Given the function 

21 1 0
0 1

k x xf x
k x

;

1. Find the value of the constant k  if the area under the curve of f x  
is 1.

The Area under a curve is determined by integration.

2. Sketch the graph of f x .

Activity 9.10  

A random variable X  is said to be continuous if its possible values are all 
real values in some interval. A continuous random variable is theoretical 
representation of continuous variable such as weight, temperature, time, 
distance, mass  and height. 

To describe the probability of a continuous random variable, we use a 
probability density function (p.d.f.) 0.f x
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A function defined on an interval ,a b  is a probability density function for 
a continuous random variable X distributed on ,a b  if, whenever 1x  and 

2x  satisfy 1 2a x x b , we have 

2

1

1 2

x

x

p x X x f x dx .

If X is a continuous random variable, then the probability that 
the values of X will fall between the values a and b is given 
by the area of the region lying below the graph of f x  and 

above the x axis  between a and b and this area is 
b

a

f x dx .

We have 
b

a

p a x b f x dx  and 0f x  for a x b . 
a

Figure 9.1. Area enclosed by the curve of function f(x) and x-axis

Properties of pdf, f x  

a) 0f x  for all x

b) 1
all x

f x dx

How to obtain probabilities

The probability that a random variable attains values between 1x  and 

2x  given by 1 2P x x x  is obtained from the area under the curve 
between 1x  and 2x .

Therefore, 
2

1

1 2

x

x

P x x x f x dx .



492

Example 9.18 

A continuous random variable x has a p.d.f

,0 4
0,
kx x

f x
otherwise

where k is a constant.

a) Find the value of the constant k .

b) Sketch the graph y f x .

c) Find 1 2.5P x .

Solution

a) 1
b

a
f x

424

0
0

16 11 1 1
2 2 8

kx kkx k

b) Graph

1
8

y f x y x

If 0, 0x y

If 
14,
2

x y
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c) 
2.5

1

11 2.5
8

P x xdx

2.5
22

1

1 1 212.5 1
16 16 64

x

Example 9.19 

A continuous random variable x has a p.d.f f x  where 

, 0 2,
4 , 2 4,

0, elsewhere;

kx x
f x k x x

where k is a constant.

a) Find the value of the constant k .

b) Sketch y f x

c) Find 
1 2.5
2

P x

Solution

a) 
2 4

0 2
4 1kxdx k x dx
2 42 2

0 2

4 1
2 2

12 16 8 8 2 1 4 1
4

kx kxkx

k k k k k k k

1 , 0 2
4, 0 2
14 , 2 4 4 , 2 4
4

0, elsewhere 0, elsewhere

x x
kx x

f x k x x f x x x

b) Sketch of f(x)

1 , 0 2
4

f x x x ,
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If 0, 0x y , if 
12,
2

x y

1 4 , 2 4
4

f x x x ,

If 12,
2

x y , if 4, 0x y

 

c) 
1 12.5 2 2 2.5
2 2

P x P x P x

2 2.5

0.5 2

1 1 4
4 4

xdx x dx

2.522 2

0.5 2

1 4
8 4 2
x xx

2 20.5 2.54 1 44 2.5 8
8 8 4 2 2

11
16
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If 0, 0x y , if 
12,
2

x y

1 4 , 2 4
4

f x x x ,

If 12,
2

x y , if 4, 0x y

 

c) 
1 12.5 2 2 2.5
2 2

P x P x P x

2 2.5

0.5 2

1 1 4
4 4

xdx x dx

2.522 2

0.5 2

1 4
8 4 2
x xx

2 20.5 2.54 1 44 2.5 8
8 8 4 2 2

11
16

495

Application activity 9.19 

1. Let X  be a random variable with a p.d.f given by 
2 , 1,

0, otherwise;
cx x

f x

where c is a constant.

a) Find the constant c

b) Find 
1
2

P X

2. Triangle ABC  is right angled at B  and 10AC cm . If BC X cm  
and X  is a random variable uniformly distributed between 6cm  
and 8cm , find the probability that the length of AB  exceeds 
7.5cm .

3. A continuous random variable X distributed has p.d.f of the form 

k, 0 2,
2 3 , 2 3,

0, ;

x
f x k x x

otherwise  

where c is a constant.

Determine;

a) the value of constant k .

b) (i) 1P x   ii) 1P x  

iii) 2.5P x  iv) 0 2 � 1P x x

Hint: �
P A B

P A B
P B
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Cumulative distribution of continuous random variable

Consider a continuous random variable X  with probability density 

function: 

1 , 1 3
4
0, otherwise

x x
f x

Let 
1

x
F x f x dx  be the cumulative distribution function.

1. Find F x  for 1x

2. Find F x  for 1 3x

3. Find F x  for 3x

4. Combine results from 1) to 3) and write down the function 
F x .

Hint: Recall that F x  accumulates all of the probability less than or 
equal to x.

Activity 2.11  

You might recall that the cumulative distribution function is defined for 
discrete random variables. Again, F x accumulates all of the probability 
less than or equal to x. The cumulative distribution function for continuous 
random variables is just a straight forward extension of that of the discrete 
case. All we need to do is replace the summation with an integral.

The cumulative distribution function of a continuous random variable 

X  is defined as 
x

F x f t dt  for ,x .

Properties

 0F x for x

 1F x  for x

Example 9.20 

A continuous random variable X has the following probability density 

function: 
23 ,0 1

0,
x x

f x
elsewhere

. 
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What is the cumulative distribution function F x ?

Solution

For 0x , 0f x  and 0 0 0F x F
2

0

3

0
3

3

, 0 1

x

x

F x t dt

t

x x

For 1x , 0f x  and 
1

1 1 0 1
x

F x F f t dt

Then, 

3

0, 0,
, 0 1,

1, 1.

x
F x x x

x

Example 9.21 

A continuous random variable X has the following probability density 

function: 

3

,0 2
4
0,

x xf x
otherwise

.

What is the cumulative distribution function F x ?

Solution

For 0x , 0f x  and 0 0 0F x F .

3

0

4

0
4

4

16

, 0 2
16

x

x

tF x dt

t

x x

For 2x , 0f x  and 
2

1 1 0 1
x

F x F f t dt .
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Then, 

4

0, 0

, 0 2
16
1, 2

x
xF x x

x

Application activity 9.20 
1. Suppose that the probability density function of a continuous 

random variable X is defined as

1, 1 0
1 , 0 1
x x

f x
x x

Find the cumulative density function.

2. Given the probability density function of a continuous random 
variable X defined as

, 0 4
8
0, otherwise

x x
f x

Find the cumulative density function.

3. A probability density function of a continuous random variable X is 
defined by

, 0 2
3
2 2, 2 3
3

0, otherwise

x x

xf x x

Find the cumulative density function.
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1, 1 0
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x x

f x
x x

Find the cumulative density function.

2. Given the probability density function of a continuous random 
variable X defined as

, 0 4
8
0, otherwise

x x
f x

Find the cumulative density function.

3. A probability density function of a continuous random variable X is 
defined by

, 0 2
3
2 2, 2 3
3

0, otherwise

x x

xf x x

Find the cumulative density function.
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9.2.2. Expected value, variance and standard deviation

A continuous random variable X  takes values between 0 and 1 and 
has a probability density function 6 1f x x x . Find:

1. 
1

0
A xf x dx  2. 

1 2

0
B x f x dx  3. 2B A

Activity 9.12  

If X  is a continuous random variable with probability density function 
f x  on interval ,a b , then,

the mean  (or expected value E X ) of X  is denoted and defined by
b

a

E X xf x dx .

Also, expectation of function g(X) is
b

a

E g x g x f X dx .

The variance Var x  or 2  is denoted and defined by

22 2Var X E X E x .

And the standard deviation is

SD Var X .

Notice

In 
b

a

E X xf x dx , ,a b  is the interval where f x
is defined.

Generally, E X xf x dx  and

22 2Var X x f x dx E x .
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Properties of E X  and Var X

,a b

1. E a a  2. E aX aE X

3. E aX b aE X b  4. E X Y E X E Y

5. 
2 2E aX b aE X b  6. var 0a

7. 2var varaX a X  8. 2var varaX b a X

Example 9.22 

If X  is a continuous random variable with probability density function 
23 ,0 4( ) 64

0,elsewhere

x xf x

Find the expected value E X .

Solution

b

a
E X x f x dx

24

0

3
64
xE X x dx

 

34

0

3
64
x dx

 

44

0

3
256

x

 

43(4) 0 3
256

Example 9.23 

The continuous random variable has a probability density function 
1 3 ,0 4
20
0,

x x
f x

otherwise

a) Find E X

b) Verify that 2 5 2 5E X E X

c) Find 2E X
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d) Find 2 2 3E X X

Solution

a) 
4

0

3
20

x
E X x dx

4 2

0

1 3
20

x x dx
 

43 2

0

1 3
20 3 2

x x

3 21 4 3 4 0
20 3 2
34
15

b) 
4

0

12 5 2 5 3
20

E X x x dx
4 2

0

1 2 11 15
20

x x dx

43 2

0

1 2 11 15
20 3 2

x x x

3 22 4 11 41 15 4 0
20 3 2

143
15

On the other hand,

342 5 2 5 )
15

143
15

E X from result in a

Thus, 
1432 5 2 5
15

E X E X  hence verified

c) 
42 2

0

3
20

x
E X x dx
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4 3 2

0

1 3
20

x x dx
 

44 3

0

1 3
20 4 3

x x

4
31 4 4 0

20 3
32
5

d) 2 22 3 2 3E X X E X E X from properties
32 342 3 ) )
5 15

from results in a and c

209
15

Example 9.24 

The continuous random variable has a probability density function 

,0 4
8
0,

x x
f x

elsewhere
Find:

a) E X  b)  2E X  c)  var X

d) SD X  e)  var 3 2X

Solution

a) 
4

0 8
xE X x dx  

24

0 8
x dx  

43

024
8
3

x

b) 
42 2

0 8
xE X x dx  

34

0 8
x dx  

44

032
8

x
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4 3 2

0

1 3
20

x x dx
 

44 3

0

1 3
20 4 3

x x

4
31 4 4 0

20 3
32
5

d) 2 22 3 2 3E X X E X E X from properties
32 342 3 ) )
5 15

from results in a and c

209
15

Example 9.24 

The continuous random variable has a probability density function 

,0 4
8
0,

x x
f x

elsewhere
Find:

a) E X  b)  2E X  c)  var X

d) SD X  e)  var 3 2X

Solution

a) 
4

0 8
xE X x dx  

24

0 8
x dx  

43

024
8
3

x

b) 
42 2

0 8
xE X x dx  

34

0 8
x dx  

44

032
8

x
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c) 
2

22 8 8var 8
3 9

X E X E X

d) 
8 2 2SD var
9 3

X X

e) 2 8var 3 2 3 var 9 8
9

X X

Example 9.25 

Find the mean  and the standard deviation  of a random variable X 
distributed uniformly on the interval ,a b . Find P x .

Solution

The probability density on the interval is 
1f x

b a
 on ,a b , so the 

mean is given by 

2 2 21
2 2 2

bb

a a

x x b a b aE X dx
b a b a b a

22 2E X E X

But 
2 3 3 3 2 2

2 1
3 3 3

bb

a a

x x b a b ba aE X dx
b a b a b a

Hence the variance is

22 2
2

3 2
b ba a b a

 

2 2 2 22
3 4

b ba a b ba a

2 2 2 24 4 4 3 6 3
12

b ba a b ba a

 

2 22
12

b ba a

 

2

12
b a

Therefore, standard deviation is 
2 3
b a

Finally,

dxP x
b a

1 x
b a
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1
b a

 

2
3

b a
b a b a  

1 0.577
3

Application activity 9.21 

1. A continuous random variable X  has a probability density function 

defined by 
, 0 1,

1
0, elsewhere.

k x
f x x

where k is a constant.

Find the; a)  value of k .

b) mean and variance.

2. Let X  be a random variable with a p.d.f given by 
2 , 1

0,
cx x

f x
otherwise

where c is a constant.

Find;       a)  the constant c

b) E X  and var X
3. The outputs of 9 machines in a factory are independent variables 

each with p.d.f given by 

, 0 10
20 , 10 20

0,

ax x
f x a x x

elsewhere
Find;

a) the value of a
b) the expected value and variance of outputs of each machine.

Hence or otherwise, the expected value and variance of the 
total outputs from all machines.
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Unit summary
1. Discrete and finite random variables

a) Probability density function

A random variable X is said to be a discrete random variable, if it 
takes only finite values 

between its limits; for example, the number of student appearing 
in a festival consisting of 400 students is a discrete random 
variable which can assume values other than 0, 1, 2, …,400.

The probability density function (p.d.f), F x , is a function that 
allocates probabilities

to all distinct values that X  can take on.

If the initial probability is known, you can find successive 
probabilities using the following recurrence relation 

1
1

n x pP X x P X x
x q

.

To find a cumulative probability, we add the probabilities for 
all values qualifying as “less than or equal” to the specified value. 
Then, the cumulative distribution function of a random variable X is 
the function F x P X x .

2. Expectation, variance and standard deviation

The expected value of random variable X , which is the mean of 
the probability distribution of X , is denoted and defined by 

E X xf x dx

Also, the expectation of any function g X  of the random 
variable X is 

E g x g x f x dx

The variance of random variable X is denoted and defined by 

22

1

n

i i
i

Var X x P X x

This can be simplified to

2 2 2Var X E X
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The standard deviation of random variable X, denoted by SD X , is the 
square root of the variance. That is,

SD X Var X

Properties for mean and variance

,a b

a) E a a  b) E aX aE X

c) E aX b aE X b  d) E X Y E X E Y

e) 
2 2E aX b aE X b  f) var 0a

g) 
2var varaX a X  h) 

2var varaX b a X

3. Binomial distribution (Law of Bernoulli)

For binomial probability distribution, we are interested in the 
probabilities of obtaining r successes in n trials, in other words r 
successes and n-r failures in n attempts.

Binomial distribution is denoted 
: , , 0,1, 2, ,n r n r

rb r n p C P q r n
The constant n, p, q are called parameters of the binomial 
distribution.

The following are assumptions made:

 » There is a fixed number (n) of trials.

 » The probability of success is the same for each trial.

 » Each trial is independent of all other trials.

Note that 1p q

For N set of n trials, the successes 0, 1, 2, .....r, ....., n are given by 
nN p q , which is called binomial distribution.

The expected value (or mean) of a binomial distribution of a discrete 

random variable X  is denoted and defined by E X np   
where n  is the number of trials and p  is the probability of success.

The variance of a binomial distribution of a discrete random variable 
X  is denoted and defined by 2 Var X npq .
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where n  is the number of trials, p  is the probability of success and q  
is the probability of failure.

The standard deviation of a binomial distribution of a discrete random 

variable X  is denoted and defined by Var X npq .

4. Uncountable infinite discrete case: Poisson distribution

The Poisson distribution is a discrete distribution  often used as a 
model for the number of events (such as the number of customers 
in waiting lines, number of defects in a given surface area, airplane 
arrivals, or the number of accidents at an intersection) in a specific 
time period.

Poisson distribution is a limiting form of the binomial distribution 
np q  under the following conditions:

(i) ,n
(ii) 0p

(iii) np .

Typical events which could have a Poisson distribution are:
(i) 

per minute.
(ii) 
(iii) 

time t.
(iv) 
(v) t.
(vi) Number of 

radioactive source.
(vii) 
(viii) 
(ix) Number of telephone calls received at a particular switch 

board in a minute.
(x) 



508

The probability density function of Poisson distribution is defined by 

, 0,1, 2,...
!

xeP X x x
x

where  is a parameter which indicates the average number (the expected 
value) of events in the given time interval. We write PoX .

 » If the initial probability is known, you can find successive 
probabilities using the following recurrence relation; 

1
1

P X x P X x
x

 » For a Poisson distribution of a discrete random variable X , the mean 
 (or expected value) and the variance 2  are the same and equal 

to . Thus, 2 .

5. Continuous random variables

a) Probability density function

A function defined on an interval ,a b  is a probability density function 
for a continuous random variable X distributed on ,a b  if, whenever 1x  

and 2x  satisfy 1 2a x x b , we have 
2

1

1 2

x

x

p x X x f x dx

Properties of p.d.f f x

(i) 0f x  for all x

(ii) 1
all x

f x dx

The cumulative distribution function of a continuous random 

variable X is defined as: 
x

F x f t dt
where 

• 0F x  for x

• 1F x  for x
b) Expected value, variance and standard deviation

The mean  (or expected value E X ) of X is denoted and 
defined by

E X xf x dx
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Also, expectation of function g  of X is

E g x g x f x dx

The variance Var x  or 2  is denoted and defined by
22 2Var X E X E x  

The standard deviation is

SD Var X

Properties of E X  and Var X

,a b

1. E a a  2. E aX aE X

3. E aX b aE X b  4. E X Y E X E Y

5. 
2 2E aX b aE X b  6. var 0a

7. 
2var varaX a X  8. 

2var varaX b a X
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End of unit assessment
1. A problem of statistics is given to three students A, B and C whose 

chances of solving it are 
1 3,
2 4

 and 
1
4

 

respectively. What is the probability that the problem will be 
solved?

2. A company owns 400 laptops. Each laptop has an 8% probability of 
not working. Suppose you randomly selected 20 laptops for your sales 
people. What is the likelihood that:

a) 5 will be broken?  b) They will all work? 

c) They will all be broken? 

3. A study indicates that 4% of American teenagers have 
tattoos. If a random sample of 30 teenagers was made, 
what is the likelihood that exactly 3 will have a tattoo? 

4. An XYZ cell phone is made from 55 components. Each component has 
a 0.002 probability of being defective. What is the probability that an 
XYZ cell phone will not work perfectly? 

5. The ABC Company manufactures toy robots. About 1 toy robot per 
100 does not work. Suppose you purchase 35 ABC toy robots, what is 
the probability that exactly 4 do not work? 

6. A thin but biased coin has a probability of 0.55 of landing with the 
head up and 0.45 of landing with the tail up. The coin is tossed three 
times. (Determine all numerical answers to the following questions to 
6 decimal places).

a) What is the sample space of possible outcomes of the three tosses?

b) What is the probability of each of these possible outcomes?

c) Find the probability function for the number X of the times heads 
come up during the 3 tosses.

d) What is the probability that the number of heads is at least one?

e) What is the expected outcomes of X?

7. Assuming half the population of a town consumes chocolates and 
that 100 investigators each take 10 individuals to see whether they 
are consumers, how many investigators would you expect to report 
that three people or less were consumers? 

8. The mean and variance of binomial distribution are 4  and 
4
3

 
respectively. Find 1P X .
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9. The incidence of occupational disease in an industry is such that the 
workers have a 25% chance of suffering from it. What is the probability 
that out of six workers 4 or more will contact the disease?

10. A box contains ‘a’ red and ‘b’ black balls, ‘n’ balls are drawn. Find the 
expected number of red balls drawn.

11. The probability of a student arriving at the school late on any given 

day is 
1
10

.

a) What is the probability of his/her being punctual for a whole week 
(i.e. 5 days).

b) Calculate the mean and variance of the number of days he/she will 
be late in school term consisting 14 weeks. 

12. Assuming that, on average, one telephone number out of 15 calling 
between 2 p.m. and 3 p.m. on week day is busy. What is the probability 
that if 6 randomly selected telephone numbers are called:

a) Not more than three will be busy?

b) At least three of them will be busy ?

13. A candidate is selected for interview for three posts. For the first post, 
there are three candidates, for the second there are four, and for the 
third one are two. What is the chance of getting at least one post?

14. A cross word puzzle is published in the times magazine each day of 
the week, except Sunday. A man is able to complete on average 8 out 
of 10 of the cross puzzles.

a) Find the expected value and the standard deviation of the number 
of completed cross words in a given week.

b) Find the probability that he will complete at least 5 in a given week.

15. The number of accidents in a year involving taxi drivers in a city follows 
distribution with mean equal to 3. Out of 1000 taxi drivers sampled 
(selected), find approximately the number of drivers with:

a) No accident in year.
b) More than 3 accidents in a year.

16. In a Poisson distribution P x  for 0x  is 0.1 . Find the mean.

17. Six coins are tossed 6400 times. Using the Poisson distribution, what is 
the approximate probability of getting six heads x  times?



512

18. Suppose that a book of 600 pages contains 40 printing mistakes. 
Assume that these errors are randomly distributed throughout 
the book and x , the number of errors per page follows a Poisson 
distribution. What is the probability that 10 pages selected at random 
will be free of errors? 

19. If I receive 4 e-mails per day via my home computer, what is the 
probability that on a given day, I receive:

a) Exactly two e-mails,
b) No e-mail,
c) At least three e-mails.

20. Telephone calls arriving at the school office follow a poisson 
distribution with an average rate of 0.6  per minute. Determine the 
probability that:

a) The office receives at least 2 calls in a given minute.

b) The office receives 7 calls in a space of 10 minutes.

c) The office receives only 3 calls in a given 5 minutes.

d) No call arrived while the secretary was out of the office for 6 minutes.

21. Fit a Poisson’s distribution to the following data and calculate expected 
frequencies:

Deaths 0 1 2 3 4
Frequencies 122 160 15 2 1

22. An insurance company found that only 0.01% of the population 
is involved in a certain type of accident each year. If its 1000 policy 
holders were randomly selected from the population, what is the 
probability that not more than two of its clients are involved in such an 

accident next year? 0.1 0.9048e .

23. A manufacturer of coffer pins knows that 5 per cent of his product 
is defective. If he sells coffer pins in boxes of 100 and guarantees 
that not more than 4 pins will be defective, what is the approximate 
probability that a box will fail to meet the guaranteed quality?  
( 5 0.0067e ).

24. Fit a Poisson distribution to the following data which gives the number 
of yeast cells per square for 400 squares

Mistakes per day 0 1 2 3 4 5 6
Number of days 143 90 42 12 9 3 1

It is given that 1.32 0.2674e



512

18. Suppose that a book of 600 pages contains 40 printing mistakes. 
Assume that these errors are randomly distributed throughout 
the book and x , the number of errors per page follows a Poisson 
distribution. What is the probability that 10 pages selected at random 
will be free of errors? 

19. If I receive 4 e-mails per day via my home computer, what is the 
probability that on a given day, I receive:

a) Exactly two e-mails,
b) No e-mail,
c) At least three e-mails.

20. Telephone calls arriving at the school office follow a poisson 
distribution with an average rate of 0.6  per minute. Determine the 
probability that:

a) The office receives at least 2 calls in a given minute.

b) The office receives 7 calls in a space of 10 minutes.

c) The office receives only 3 calls in a given 5 minutes.

d) No call arrived while the secretary was out of the office for 6 minutes.

21. Fit a Poisson’s distribution to the following data and calculate expected 
frequencies:

Deaths 0 1 2 3 4
Frequencies 122 160 15 2 1

22. An insurance company found that only 0.01% of the population 
is involved in a certain type of accident each year. If its 1000 policy 
holders were randomly selected from the population, what is the 
probability that not more than two of its clients are involved in such an 

accident next year? 0.1 0.9048e .

23. A manufacturer of coffer pins knows that 5 per cent of his product 
is defective. If he sells coffer pins in boxes of 100 and guarantees 
that not more than 4 pins will be defective, what is the approximate 
probability that a box will fail to meet the guaranteed quality?  
( 5 0.0067e ).

24. Fit a Poisson distribution to the following data which gives the number 
of yeast cells per square for 400 squares

Mistakes per day 0 1 2 3 4 5 6
Number of days 143 90 42 12 9 3 1

It is given that 1.32 0.2674e

513

25. A probability distribution function is given by 

, 0 3
6
1 4 , 0 3
2
0,

x x

f x x x

elsewhere

Calculate:

a) The probability that x  lies in the interval 1,2 .

b) The probability that 2x .

26. The probability density function of a continuous random variable X is 

sin , 0 ,
0, .
k x x

f x
elsewhere  

Find;

a) The value of k  b) 
3

P x

where k is a constant.

27. The time taken to perform a particular task, t hours, has the p.d.f given 
by

210 , 0 0.6
9 1 , 0.6 1
0,

Ct t
f x C t t

elsewhere
 

where c is a constant.

Determine the probability that the time required will be: 

a) More than 48 minutes.

b) Between 24 and 48 minutes.

28. A continuous random variable X has probability density function 

, 0 2,

k 4 ,2 4,
0, .

kx x x

f x x x
otherwise  

where k is a constant.

Determine the:
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a) Value of k b) Mean  c) 1 3P x
29. The continuous random variable X has probability density function 

, 0 2,
3 , 2 3,

0, .

k x
f x k x x

elsewhere

where k is a constant.

a) Determine the:

(i) Value of k
(ii) Mean

(iii) Standard deviation  of X 

b) if E x , find the p x

30. For each of the following functions, find the:

a) Value of k  for which f  is a probability density on the given 
interval.

b) Mean , variance 
2

 and standard deviation  of the probability 

density function f , and p x
(i) f x kx  on 0,3
(ii) 2f x kx  on 0,1

(iii) 2f x k x x  on 0,1

31. Petrol is delivered to a garage every Monday morning. At this garage, 
the weekly demand of petrol in thousands of units is continuous 
random variable X distributed with a p.d.f of the form 

2 ,0 1
0,
ax b x x

f x
otherwise  

a) Given that the mean weekly demand is 600 units, determine the 
value of a and b.

b) If the storage tanks at this garage are filled to their capacity of 900 
units every Monday morning, what is the probability that in any given 
week, the garage will be unable to meet the demand of petrol?
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Summative Evaluations

• 55 marks)

• 45 marks)

Evaluation 1

SECTION A: Attempt all questions (55 marks)

Solve: 
2

3 21 4
8

x
x  (3 marks)

2. For which values of m  does the following  
quadratic equation; 2 3 0x x m  admit a  
double root? Find that root. (4 marks)

3. Find the value of k  if the angle between  
,3u k  and 4,0v  is 45o . (2 marks)

4. Solve: 22cos cos 1 0x x  (4 marks)

5. Evaluate: 
0

1 coslim
sinx

x
x

 (2 marks)

6. Consider a sequence nu  where 1 3 2n nu u  
and 0 0u  
sequence. Is the sequence arithmetic,  
geometric or neither? (4 marks)

7. Let 2 2 2 22 1 2 1f x x x x x

a) f x . (3marks)

b) Simplify f x  
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(Hint: Start by calculating 2f x ) (4 marks)

8. A biased coin is such that head is three times  
as likely to appear as tail.  
Find P T  and P H . (4 marks)

9. Find equations of the tangent and normal lines to the curve of the 
function 3 22 4y f x x x  at point  2,4 . (3 marks)

a)    Give the equation of sphere with centre  6,5, 2  
       and radius 70 . (2 marks)

b) Find the radius and the centre of the  
sphere whose equation is 2 2 2 4 8 6 7 0x y z x y z   
(3 marks)

c) Find the intersection of the given sphere in  
b) and the line passing through the points 

1,1, 1A  and 2, 3, 4B . (3 marks)

Sugar dissolves in water at a rate proportional to the amount still 
undissolved. If there were 50 kg of sugar present initially, and at the 
end of 5 hours only 20 kg of sugar is left, how much longer will it take 
until  
90% of the sugar is dissolved?  (4 marks)

Prove that: sin cos cos sin siny x y y x y x  
 (2 marks)

Evaluate the following limit:  
35

0

1 1
lim
x

x
x  (3 marks)

Find the value of x  if the mean of  
56,37,54,52, and 48x  is 50. (2 marks)

Calculate the area enclosed by the curves  
2 2y px  and 2 2x py  (4 marks)
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x
x  (3 marks)

Find the value of x  if the mean of  
56,37,54,52, and 48x  is 50. (2 marks)

Calculate the area enclosed by the curves  
2 2y px  and 2 2x py  (4 marks)
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SECTION B: Attempt any three questions (45marks)

Given the statistical distribution 

ix 7 8 9 11 15

iy 33 25 17 9 6

a) Calculate the linear correlation  
(6 marks)

b) Determine the equation of the regression  
line of y  on x . (4 marks)

c) Draw a scatter plot of this set of the  
distribution and the regression line. (5 marks)

a) Solve in 3  the following system 

     
3 2 5 2

2 3
2 3

x y z
x y
x y z

 (8 marks)

b) Find the area of a parallelogram having adjacent sides 
6 3 2a i j k  and 3 2 6b i j k  (7 marks)

A random variable X has probability density function 
26 ; 0 6

0,
cx x xF x

elsewhere

a) Find the value of c (4 marks)

b) Calculate the;

(i) mean (5 marks)

(ii) variance (4 marks)

(iii) standard deviation (2 marks)

Given that 
2

0

sinnx
nI e xdx  and 

2

0

cosnx
nJ e xdx , on
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a) Applying successive integration by parts on integrals nI  
and nJ , establish two relations between nI  and nJ . (9 
marks)

b) Hence, deduce the value of nI  and nJ . (6 marks)

Solve the differential equation " ' 2 6y y y x   
given that 0 ' 0 1y y  (15 marks)

Evaluation 2

SECTION A: Attempt all questions (55 marks)

Solve the following simultaneous equations: 
x y

xy

2 2 37
4

3
2

+ =

=

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

   (2 marks)

2. Assume that x is a positive real number, calculate: 
ln

3ln ln
xe e

e x
 

(2 marks)

3. Solve the following equation in : 4
3arctanarctan x  (3 marks)

4. Calculate the derivative of the function: f x
x

ex
( )

ln
=

+( )1 2

2  (4 marks)

5. Evaluate the following limit: 
1
1lim

31 x
x

x
 (4 marks)

6. Solve in the set of complex numbers, the equation iz i z− = −2 4  and 
put the answer in algebraic  
form. (4 marks)

7. Prove that x
xx

xx tan
2coscos1

2sinsin  (4 marks)

8. Evaluate the following limit: 

2

1 2 3 ...lim
x

n
n  (4 marks)
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9. Find the equation of the tangent to the curve y x= −ln( )4 11  at the 
point where 3x .  (5 marks)

The function f 1: : ( ) ln
1

xf IR IR x f x
x

.  
 

f . (5 marks)

Given the function 
2

( ) ln
2
xF x x x x ,  

 
calculate its derivative 'F x  (5marks)

Solve in : 

a) 1x xe e e  (2 marks)

b) 2 2 2 26x xe e e  (2 marks)                                                                                                                                    

Determine the inverse 1f  of the function xx

xx

ee
eexf )(  (3 marks)

Express y  in terms of x  given that: 
xyxy 2222 log3log2)4(log3log5  (3 marks)

 
which is 11 m high. What is the angle of elevation  

(3 marks)

SECTION B: Attempt any three questions (45 marks)

Solve the equation in the complex number set and the system in 2 .

a) 
4 28 1 8 0z i z i  (11 marks) 

b) 
1 2 2 3

3 81
3

2 2

5
7

+ − + = −

=

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

+
− −

log ( ) log ( )x y x y

x y
x y

 (4 marks)

Given the function f of real variable x
4
1)( 2

2

x
xxf

a)  
of f x . (2 marks)

b) Calculate the limits at the boundaries  



520

of the domain. (3 marks)

c) State any asymptotes. (2 marks)

d) Make the variation table. (3 marks)

e) Find the x-intercepts and y-intercepts  
for the graph of f. (2 marks)

f) Sketch the graph of f in a Cartesian  
plane. (3 marks)

a) From a group of 4 men and 5 women, how many committees of 
size 3 are possible.

(i) With no restrictions? (3 marks)

(ii) With 1 man and 2 women? (3 marks)

(iii) With 2 men and 1 woman  if a at least  
a man must be in the committee? (3 marks)

b) If 3 books are picked at random from a shelf containing 
5 novels, 3 books of poems, and a dictionary. What is the 
probability that:

(i) The dictionary is picked? (3 marks)

(ii) 2 novels and 1 book of poems are  
selected? (3 marks)

a) The numerical function f of real variable x  

    as follows: 
1
2)(

2

x
xxxf . By writing 

     f x ax b c
x

( )= + +
+1

where a, b and c are real numbers, determine  
the values of a, b and c; and hence deduce 

f x dx . (8 marks)

b) Solve the differential equation 
2

2

2 1y dy y
x dx x   (7 marks)
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2

2 1y dy y
x dx x   (7 marks)
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a) Receives 6 calls between 09:00 hrs  
and 10:00 hrs on this Wednesday. (5 marks)

b) Will receive exactly 3 calls  
between 09:15 hrs and 09:30 hrs. (5 marks)

c) Will receive 3 calls between  
09:15 hrs and 09:30 hrs  on exactly  
2 days during a given week. (5 marks)                         

Evaluation 3

SECTION A: Attempt all questions (55 marks)

Solve the following inequality: 23 5 0x x  (3 marks)

2. Find the equation of the circle passing through  
points 0,1 , 4,3  and 1, 1  (3 marks)

3. Determine the value(s) of k for which the equation 
2 1

1
x x k

x
 has repeated roots. (4 marks)

4. Solve the following system by Gaussian elimination method 
1

3 2 0
2 3 3 3

x y z
x y z
x y z  (4 marks)

5. Evaluate the following limit: 
2 2lim

3 6x

x
x

 (3 marks)

6. An arithmetic series has 72 6nU n .  
n terms of the series  

n. (4 marks)

7. Find the centre and radius of the sphere  
with equation: 1 2 3 4 1 1 0x x y y z z  (3 marks)

8. Using a diagrams show the validity or fallacy of the following 
arguments:

a) All human being are mortal.
b) Peter the cat is mortal.
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c) Therefore, Peter the cat is a human being. (4 marks)

9. Find the derivative of function f 2sin tanf x x x . (4 
marks)

a)     Find the equation of the line joining  
        3,4,1A  and 5,1,6B . (2 marks)

b) Find the co-ordinates of the point where  
that line cuts the plane 0z . (2 marks)

Determine the Maclaurin series of the function  
cos3f x x . (3 marks)

Express 
2

3 2

1
4 3

x
x x x

 in partial fractions (2.5 marks)

and hence 
2

3 2

1
4 3

x dx
x x x

 (2.5 marks)

Express the complex number 2 2
1

iz
i

 in both algebraic and polar 
forms. (3 marks)

Given that 
ln16

0

3
4

x

x

eI dx
e

 and 
ln16

0 4x

dxJ
e , 

 
calculate the values of I J  and 3I J . (5 marks)

Let U and W be the following subspaces of 4 : 
, , , : 0U a b c d b c d , , , , : 0, 2W a b c d a b c d . Find 

the  
dimension of U W . (3 marks)

SECTION B: Attempt any three questions (45 marks)

Suppose you have 100,000Frw  to invest for one year at a nominal 
annual rate of interest of 8% , how much would your investment be 
worth after one year if interest is compounded:

a) Annually (3 marks)       

b) Quarterly (3 marks)         
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523

c) Monthly (3 marks)

d) Weekly (3 marks)      

e) Daily? (3 marks)

The following table gives a number of advertisement  
ix  and the volume of sales in hundreds of dollars iy   

of a certain sports company.

ix 1 2 3 4 5 6

iy 41 50 54 54 57 63

a) Find the standard deviation for ix   
and iy . (4 marks)

b) r . (3 marks)

c) Find the equation of regression line  
for y with respect to x. (4 marks)

d) For 7 numbers of advertisements,  
estimate the volume of sales. (2 marks)

The vertices of the triangle are 1,2,3A , 2,1, 4B  and 3,4, 2C .

a) Find the perimeter of the triangle ABC. (4 marks)

b) Determine the coordinates of centre of  
gravity of the triangle ABC. (3 marks)

c) Find the angles of the triangle ABC. (6 marks)

d) Find the area of the triangle ABC. (2 marks)

Given the function f of real variable x
11
2

f x x x
x

a)  
of f x ? (1 mark)

b) Write f x  without the symbol of  
absolute value. (2 marks)

c) Calculate the limit on boundaries of  
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equation of  asymptotes. (3 marks)

d)  
indicate the interval of increasing or  
decreasing. (2 marks)

e) Construct the table of variation. (2 marks)

f) Establish the direction of concavity. (2 marks)

Plot the curve in Cartesian plane. (3 marks)

a)     Find the equation of parabola whose focus  
        is at 1, 2  and directrix 2 3 0x y . (4 marks)

b) Find the equation of the set of the all points  

whose distances from 0,4  are 
2
3  of their distances from 

the line 9y . (5 marks)

c) In the hyperbola 2 24 4x y
coordinates of the foci, the eccentricity and the latus 
rectum. (6 marks)

Evaluation 4

SECTION A: Attempt all questions (55 marks)

Find the term independent of x  in the expansion of 
201x

x
. (3 

marks)
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Evaluation 4
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marks)
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2. The cubic polynomial 3 26 7x x ax b  has a  
remainder of 72 when divided by 2x  and is  
exactly divisible by 1x . Find the values of a   
and b . (3 marks)

3. Solve the equation: sin 3 cos 1x x  (3 marks)

4. Given the matrix 
11 2 8
2 2 10
8 10 5

x
A x

x
, 

x  such that matrix A   
is singular (has no inverse) if 9 is one of those  
values.

5. Solve the following system 

2 4

log 1
log 2log 4

x y
x y  (3 marks)

6. If  and  are the roots of the equation 2 3 0x x , without 
 

of 3 3 . (3 marks)

7. Find the centre, foci, and eccentricity for the ellipse: 
2 24 4 8 4 0x y x y   (4 marks)

8. Write the equation of the tangent and the  
normal to the curve of 2 23 2 12 0x xy y  at  
the point 2,3 . (4 marks)

9. Find the value of the constant k   

if 
1

20

1 1
32

dx
x k

 (5 marks)

Solve in set of complex numbers the  
equation: 6 1z  (5 marks)

the second term is seven  
 

the common difference. (5 marks)

Evaluate 
cos

2

lim tan x

x
x  (4 marks)
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Given that 6.2, 3.03315, 2.04, 0.461519x yx y  and 
0.957241xyr  

of y  on x  where; , , ,x yx y  and xyr  stand for the mean of x , the 
standard deviation of x , the mean  
of y , the standard deviation of y and the  

(5 marks)

From a pack of 52 cards, two cards are drawn  
together at random. What is the probability of  
both cards being kings? (2 marks)

Find the cosine of the angle and the angle  
itself (in radians and degrees) between  

(3 marks)

SECTION B: Attempt any three questions (45 marks)

On the same graph, sketch the curves of functions 
2 5 4y x x  and 22 5 1y x x .  

 
between the two curves. (15 marks)

a)   The events ,A B  and C  in the same sample space  
      are such that A  and C  are mutually exclusive  
      events while A  and B  are independent events.     
      Given that:  

      2 1 4, ,
3 5 5

P A P C P A B  and 
13
25

P B C . 

(i) Find ,P A C P B  and P A B  (6 marks)

(ii) Are B  and C  independent events?  
Justify your answer. (2 marks)

b) A hospital diagnoses that a patient has contracted a virus 
X , but it is known that one could have been from one of 
the three trains of the virus 1 2,X X  or 3X  . For the patient 
having virus X , the probability of it being 1 2,X X  or 3X  is 
1 3,
2 8

 or 1
8

 

 
1 3,
2 8

 and 1
8

. Find the probability 



526

Given that 6.2, 3.03315, 2.04, 0.461519x yx y  and 
0.957241xyr  

of y  on x  where; , , ,x yx y  and xyr  stand for the mean of x , the 
standard deviation of x , the mean  
of y , the standard deviation of y and the  

(5 marks)

From a pack of 52 cards, two cards are drawn  
together at random. What is the probability of  
both cards being kings? (2 marks)

Find the cosine of the angle and the angle  
itself (in radians and degrees) between  

(3 marks)

SECTION B: Attempt any three questions (45 marks)

On the same graph, sketch the curves of functions 
2 5 4y x x  and 22 5 1y x x .  

 
between the two curves. (15 marks)

a)   The events ,A B  and C  in the same sample space  
      are such that A  and C  are mutually exclusive  
      events while A  and B  are independent events.     
      Given that:  

      2 1 4, ,
3 5 5

P A P C P A B  and 
13
25

P B C . 

(i) Find ,P A C P B  and P A B  (6 marks)

(ii) Are B  and C  independent events?  
Justify your answer. (2 marks)

b) A hospital diagnoses that a patient has contracted a virus 
X , but it is known that one could have been from one of 
the three trains of the virus 1 2,X X  or 3X  . For the patient 
having virus X , the probability of it being 1 2,X X  or 3X  is 
1 3,
2 8

 or 1
8

 

 
1 3,
2 8

 and 1
8
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that if the selected patient recovers, he had  
virus 3X . (7 marks)

a)    Given the points 2, 3, 1 , 3, 4,2A B  and     
       4, 5,2C , 

(i) AB AC  (3 marks)

(ii) The area of the triangle ABC . (2 marks)

b) The points A  and B  have coordinates  
2,1,1  and 0,5,3  respectively.

(i) Find the equation of the line AB  in  
terms of parameter. (3 marks)

(ii) If C  is the point with coordinates 5, 4,2 , 
D  on AB  such that CD  

is perpendicular to  
AB . (5 marks)

(iii) Find the equation of the plane  containing the line 
AB  and parallel to CD . (2 marks)

Given the complex number 
2cis
5

U

a) Prove that 
1 1 2cos
2 5

U
U

. (3 marks)

b) Calculate 5U . (3 marks)

c) Deduce that 4 3 2 1 0U U U U . (3 marks)

d) By taking 1x U
U

, write the real part of the

expression in c) in terms of x . (3 marks)

e) Solve, in set of real numbers, the  
expression obtained in d) and deduce  

the exact value of 2cos
5

. (3 marks)

a)    In how many ways can 5 men, 4 women and  
       3 children be arranged in a row so that all men,  
       women and the children each sit together? 
        (3 marks)
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b) Solve the following system 
1

14 5

x x
y y

x x
y y

C C

C C
 (6 marks)

c) Prove that 
2 2 2

1 22n n n n
m m m mC C C C  (6 marks)
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