PHYSICS

TEACHER'S GUIDE FOR RWANDA SECONDARY SCHOOLS

© 2020 Rwanda Education Board (REB).

All rights reserved.

This book is property of the Government of Rwanda.

Credit must be provided to REB when the content is quoted.

${\bf Contents}$

Introduction	vi
Physics and society	vi
Physics and society	vi
Physics and learners	vii
Methods	vii
Modeling	vii
Observation method	viii
Analysis	viii
Experimental method	viii
Empirical method	ix
Lesson planning:	lii
UNIT 1 Wave and Practical Nature of Light	
Scope and sequence	
Lesson development	4
Solution to Activities	16
Solution to Activities	20
Answer to End of Unit Question	21
UNIT2 Simple Harmonic Motion	22
Scope and sequence	24
Lesson development	25
main contents and concepts to emphasise	32
Solution of a Simple Harmonic motion equation	34
Solutions to activities	42
Opening question	42
More Activities	43
Answers of End of unit questions (On page 47 of Students' Book)	45
UNIT 3 Forced Oscillations and Resonance of a System	48
Scope and Sequence	50
Lesson development	51
Main contents and concepts to emphasise	60
Answer to end of unit questions (On page 72 of Students' Book)	60

UNIT 4 Propagation of Mechanical Waves	62
Scope and Sequence	
Lesson Development	65
Main contents and concepts to emphasise	74
Solution to Activities	75
Conclusion	76
ANSWERS OF END OF UNIT QUESTIONS	77
UNIT5 Complex Electrical Circuit	79
ScopE and Sequence	
Lesson development	
Main contents and concepts to emphasise	
Solutions to Activities	
Answers to End of unit Question	95
UNIT6 Fossil and Non-fossil Fuel and Power Producti	on98
Scope and Sequence	
Lesson development	
Main contents and concepts to emphasise	112
UNIT7 Electric field potential and gravitational potential	
Scope and Sequence	
Lesson development	
Main contents and concept to emphasise	
Solution to Activities	
Answer to End of Unit Question	131
UNIT8 Motion in Orbits	
Scope and sequence	
Lesson development	
main contents and concepts to emphasise	
Solutions of Activities	
Answers of End of unit questions	149
UNIT 9 Atomic models and photoelectric effect	
Scope and sequence	
Lesson development	153

r	main contents and concepts to emphasise	.163
9	Solutions of Activities	.167
5	Solutions of Exericise 9-1 (On page 244 of the Students' Book)	.169
A	Answers of End of unit questions	.170
UNI	$\Gamma10$ Analog and Digital Signals	171
ŀ	Know this	.171
5	Scope and Sequence	.173
L	Lesson development	.174
ľ	Main contents and concepts to emphasise	.184
5	Solutions of Exericise 10-1	.189
UNI	$\Gamma 11$ Mobile phone and radio communication	191
9	Scope and Sequence	.192
L	Lesson development	.193
ľ	Main contents and concepts to emphasise	.202
A	Answers to the End of unit questions	203
UNI	$\Gamma 12$ Relativity concepts and postulates of special relativity	. 205
	Scope and SequenceLesson development	
ľ	Main contents and concepts to Emphasise	.216
5	Solutions to Activities	.217
UNI	$\Gamma13$ Interference of Light Waves	219
5	Scope and Sequence	.221
L	Lesson development	.222
ľ	Main Contents and Concepts to Emphasise	.230
UNI	$\Gamma 14$ Stellar Distance and Radiation	. 234
5	Scope and Sequence	.235
L	Lesson development	.236
ľ	Main content and concepts to emphasise	.246
A	Activity 14.1 (Page 324 of Student's Book)	.247
1	Answers to End of Unit Questions (Page 338 Student book)	.248

Introduction

PHYSICS AND SOCIETY

The purpose of this teacher guide is to help teachers to implement the Physics syllabus of senior five according to unit planning, lesson planning and lesson delivery to develop the learners' competences and skills. It is designed to stimulate teachers to create meaningful teaching programs and lessons by enabling them to choose relevant and purposeful activities and teaching activities. It will encourage teachers to research and look for new and challenging ways of fecilitating students' learning in Physics.

The teacher guide supports the syllabus. The syllabus states the key unit competences to develop, links to other subjects, assessment criteria, learning outcomes for the subject and units, and outlines the content and skills that students will learn.

Rationale of teaching and learning physics

PHYSICS AND SOCIETY

Physics is one of the natural science subjects and contributes significantly to global socioeconomic transformation through its discoveries. These have led to development of new technologies in all fields of production and are beneficial to mankind. Applications of Physics knowledge is evident in industries, engineering, transportation (automobiles, trains, flights etc), medicine and Information and Communication Technology (ICT).

Physics significantly contributes to the advancement of new technologies that arise from theoretical breakthroughs. For example, advances and understanding of electromagnetism or nuclear physics has led to the development of new products which have dramatically transformed the modern society. Some of the discoveries based on Physics knowledge include televisions, computers, electrical appliances, nuclear weapons, advancements in thermodynamics and mechanics which have led to mass industrialization.

Physics is the key to the Rwandan education ambition of developing a knowledge-based society since it promotes science and technology which are necessary for learners to be competent both at regional and global job markets. This new curriculum will address gaps in the current Rwanda Education system which lacks of appropriate skills and attitudes provided by the current education system.

PHYSICS AND LEARNERS

Physics is a worthwhile subject because it prepares students for the real world of work by providing career pathways in mechanical and construction engineering, information and communication technology and other related fields. Physics provides skills that guide the construction of theories and laws that help to explain natural phenomena and enable management of environment.

It also provides answers to problems modern society by empowering students, make them to be creative and innovative, leading to independent approaches of solving daily life problems. Through physics, students explore the laws and rules that govern all the natural phenomena associated with the subject observed in the universe.

Methods, Strategies, Attitudes and Techniques

This section addresses the methods, strategies, attitudes and techniques recommended in the program. While they are different from the concepts, these elements are important in the development of competencies.

METHODS

Methods require special attention. They should not be applied in isolation, but in learning and evaluation situations in which several of them are combined. The ability to apply a combination of different methods is an indicator of proficiency.

Five methods are presented here: modeling, observation, analysis, experimentation and the empirical methods.

MODELING

Modeling consists in constructing a representation of an abstract situation, one that is difficult to observe or impossible to see. This representation can be a text, a drawing, a mathematical formula, a chemical equation, a software program or a scale model. Over time, the model becomes more refined and complex. It may be valid only for a certain amount of time and in a specific context and in many cases, it can be modified or rejected. It is

also important to consider the context in which it was created. A model must help learners understand a given reality, explain certain properties of that reality and predict new observable phenomena.

OBSERVATION METHOD

The observation method is an active process intended to help the observer/learner interpret facts on the basis of his or her predetermined criteria and generally accepted criteria within a given field. In light of the information collected, learners gain a new understanding of the facts, which is inextricably linked to the context in which the observations were made. In his or her interpretation and organization of information, the learner reinterprets the physical world on the basis of his or her assumptions and the conceptual schemes that are an integral part of what he or she brings to the observation process. All observations involve a theoretical model established by the observer.

ANALYSIS

The elements that determine or make up a phenomenon, an object or a system, as well as the interactions between these elements, can be identified through analysis. Analysis also leads to the identification of structural and functional components, which can in turn be analyzed, and to the determination of their hierarchical or interdependent connections. In some cases, this method involves using a broader understanding of a system to determine the function of its parts and the relationships between them, thereby making it possible to highlight the dynamics of a complex system and examine its behaviour over time. This aspect of the analytical method is particularly useful in studying phenomena and applications.

EXPERIMENTAL METHOD

The experimental method begins with the formulation of preliminary explanations. Then learners can begin looking for an answer and defining the framework of the experiment. It then becomes necessary to develop an experimental procedure in order to identify a certain number of variables to be manipulated. The aim of the procedure is to identify and compare observable or quantifiable elements and check them against the initial hypotheses. Moving back and forth between the different stages of the experimental method raises new questions and allows students to

formulate new hypotheses, adjust the experimental procedure and take the limitations of the experiment into account.

EMPIRICAL METHOD

The empirical method involves field research without any manipulation of variables. Its spontaneity does not detract from the methodology involved (for example, a sample survey is an empirical approach that leaves nothing to chance). Often based on intuitive models, this method sometimes provides a way of exploring and representing the elements of a problem. Often, it can lead to a number of preliminary ideas, hypotheses and theories, as well as new techniques and possible avenues for other research projects.

Source: Québec Education Program - Physics

The role of the teacher

Teachers play a fundamental role in helping their students develop competencies. The support they provide must relate to the three aspects of every competency: the mobilization of resources in a specific context, the availability of resources and the ability to reflect on the process involved. Teachers must offer learning and evaluation situations that promote the development of the target competencies, support the students' learning progress and evaluate their level of competency development.

The role of learners

Although the teacher sets the pedagogical framework, it is important for the students to be fully engaged in the learning process. Only they can make the necessary connections between their previous knowledge and the new concepts they must assimilate, and they must also adapt their knowledge to the concepts to be learned, and vice versa.

It is important for students to use appropriate techniques when handling equipment and substances. If they use verification or control instruments, they must take into account possible errors in their measurements, whether caused by the instrument, the user or the environment. They must record their measurements using an appropriate number of significant figures and analyze their results based on a certain margin of error. At all times, they must comply with safety standards and handle equipment and substances with care. When in doubt, they must ask the teacher or laboratory technician to ensure that they are working safely and using the

equipment and substances correctly.

Learning Outcomes

Expected outcomes are summarized in table I.

Table I: Learning outcomes

Learning	Very high	Very high	Satisfac-	Low	Below
Outcomes	achieve-	Achieve-	tory	Achieve-	minimum
	ment	ment	Achieve-	ment	standard
			ment		
1. Demonstrate understanding of fundamental physics principles and models	Demonstrates extensive knowledge and understands a wide range of physics principles	Demonstrates sound knowledge and understanding of physics principles and models	Adequate demonstration of knowledge of physics principles and models	Demonstrates limited knowledge of physics principles and models	Has failed to demon- strate under- standing of fundamen- tal physics principles and models
0 41	and models		A 3	Damas	11 6-:1- 1
2. Apply scientific	Highly creative	Sound inquiry and	Adequate inquiry and	Demon- strates lim-	Has failed to demon-
inquiry and reasoning skills to find solu- tions to problems	and innovative in conducting investigations using scientific methodologies to find solutions to problems	reasoning skills in conducting investiga- tions using scientific method- ologies in finding solutions to problems	reasoning skills with fair idea of using scien- tific meth- odologies in finding solutions to problems	ited inquiry and reason- ing skills in problem solving using scien- tific meth- odologies	strate scientific inquiry and reasoning skills in solving problems using scien- tific meth- odologies
3. Com- municate scientific data and information	Highly efficient and innovative in communicating	Very good in commu- nicating scientific data and	Adequate competency in communicating information	Limited competency in communicating information	Has failed to achieve competency in

from investigations and laboratory work in different ways	information and scien- tific data from inves- tigations and labora- tory work	information from inves- tigations and labora- tory work	and scientific data from investigations and laboratory work	and scientific data from investigations and laboratory work	commu- nicating information and scien- tific data from inves- tigations and labora- tory work
4. Analyse and interpret data and information	Excellent analysis and inter- pretation of data and information	Very good in analys- ing and interpret- ing data and infor- mation	Adequate analysis and interpreta- tion of data and information	Demonstrates limited ability in analysing and interpreting data and information	Has failed to demon- strate ability to analyse and interpret data and information
5. Analyse and evaluate developments in physics from the past and present and its impact on people and the environment; and use the information to support and make informed decisions	Makes informed decisions based on excellent analysis and evaluation of develop- ments in physics and their impact on society	Makes informed decisions based on sound analysis and evaluation of developments in physics and their impact on society	Makes decisions based on adequate analysis and evaluation of develop- ments in physics and their im- pact on society	Makes decisions based on limited analysis and evaluation of developments in physics and their impact on society	Makes decisions based on poor analysis and evaluation of developments in physics and their impact on society

6. Relate	Displays	Can effec-	Can	Shows lim-	Is not able
relevant	excellent	tively per-	adequately	ited ability	to perceive
traditional	ability to	ceive and	perceive	in perceiv-	and
knowledge,	perceive	correlate	and	ing and	correlate
beliefs,	and	traditional	correlate	correlating	traditional
and skills	effectively	knowledge,	traditional	traditional	knowledge,
to princi-	correlate	belief	knowledge,	knowledge,	belief
ples and	traditional	and skills	belief and	belief and	and skills
concepts of	knowl-	to	skills to	skills to	to
physics	edge, belief concepts of	principles	principles	principles	principles
	physics.	and	and con-	and	and
	pily bies.	concepts of	cepts	concepts of	concepts of
		physics	of physics	physics	physics

Source: physics upper secondary education teacher guide, Department of Education, Papua New Guinea. ISBN 978-9980-9925-4-3

Knowledge and Understanding

When preparing and teaching physics, the teacher should think and pinpoint some requirements to meet some expected outcomes. Students are expected to:

- understand phenomena, facts and patterns, principles, concepts, laws, theories and models in physics;
- learn vocabulary, terminology and conventions in physics;
- acquire knowledge of techniques and skills specific to the study of physics;
- group and organise physical knowledge and understanding, and apply them to familiar and unfamiliar situations; and
- develop an understanding of technological applications of physics and of their social implications.

Skills and Processes

Physics teachers must strive to provide opportunities for students to develop life skills. Student activities are designed to address the content knowledge that general science strands usually ignore. There are many skills students develop through interactive science. So students are expected to:

• develop scientific thinking and problem-solving skills;

- acquire an analytical mind to critically evaluate physics-related issues;
- communicate scientific ideas and values in meaningful and creative ways with appropriate use of diagrams, symbols, formulae, equations and conventions, as well as verbal means;
- acquire practical skills such as how to manipulate apparatus and equipment, carry out given procedures, analyse and present data, draw conclusions and evaluate experimental procedures;
- make careful observations, ask relevant questions, identify problems and formulate hypotheses for investigation;
- plan and conduct scientific investigations individually or collaboratively with appropriate instruments and methods, collect quantitative and qualitative data with accuracy, analyse and present data, draw conclusions and evaluate evidence and procedures;
- develop study skills to improve the effectiveness and efficiency of learning; and develop abilities and habits that are essential to lifelong learning

Values and Attitudes

Students are expected to:

- develop positive values and attitudes such as curiosity, honesty, respect for evidence, perseverance and tolerance of uncertainty through the study of physics;
- develop a habit of self-reflection and the ability to think critically;
- be willing to communicate and comment on issues related to physics, and demonstrate an open-mindedness towards the views of others;
- be aware of the importance of safety for themselves and others, and be committed to safe practices in their daily life;
- appreciate the achievements made in physics and recognise their limitations;
- be aware of the social, economic, environmental and technological implications of achievements in physics; and
- recognise the importance of life-long learning in our rapidly changing knowledge-based society.

Competences to develop

INTEGRATION OF COMPETENCES

A competence-based curriculum takes learning to higher levels by providing Challenging and engaging learning experiences which require deep thinking rather than just memorisation. Its focus is on what young people can do rather than just on what they know.

There are two categories of competences in a competence-based curriculum: Basic competences and generic competences.

Basic Competences

Basic competences are main, key or vital competences identified basing on expectations and aspirations reflected in the national policy documents. It is on the basis of descriptors of these competences that are built into the learners profile in each level of education, subjects to be taught and learning areas.

Basic competences are listed in the diagram below

- Literacy
- Numeracy
- ICT
- Citizenship and National Identity
- Entrepreneurship and Business Development
- Science and Technology
- Communication in the official languages

These have all been identified as competences with particular relevance to Rwanda on account of its history and context.

Literacy and numeracy are basic to accessing learning in other subjects.

Competence in ICT can be developed through the use of ICT across the subjects. One of the nation's great strengths is its unity in terms of both its population and its sense of purpose. The focus on citizenship and national identity is important in this respect.

There is a key drive to ensure that Rwandans actively create employment opportunities rather than having a mindset of relying on others. Hence entrepreneurship and business development is regarded as basic.

The impact of science and technology increasingly affects all aspects of life and therefore should be considered a basic aspect of subjects across the curriculum.

Generic Competences

Generic competences involve and promote the development of the higher order thinking skills. In doing so they boost subject learning as well as being highly valuable in themselves. They are seen as generic competences because they apply across all curricula, and can be developed in all the subjects studied.

Developing competences

Competences cannot be taught directly like subject knowledge. They are acquired over time through the cumulative effect of a competence approach to learning. They require students to practice and employ the generic competences throughout the subjects that they study. They require teachers to adopt approaches that encourage and enable students to think critically, to carry out research, to solve problems, to be creative and innovative, to communicate, to co-operate and to become life-long leaners.

The subject content provides a necessary context for students to develop the competences, and the basic and generic competences help deepen students' understanding of the subject and build students' ability to apply their subject learning

Generic Competences

The generic student competences that will be developed within all subjects are:

- Critical thinking
- Creativity and innovation
- Research and problem solving
- Communication
- Co-operation, interpersonal relations and life skills
- Life long learning

These generic competences help students deepen their understanding of subjects and apply their subject learning in a range of situations. They therefore contribute to the development of subject competence.

As students develop these generic competences they also acquire the set of

skills that employers look for in their employees, so the competences help prepare students for the world of work.

The generic competences are also vital for enabling students to become life long learners who can adapt to our fast-changing world and the uncertain future. Competence in a subject requires a learner to have achieved an appropriate level in terms of all two categories of competence.

Higher Order Thinking Skills (HOTS)

Higher Order Thinking Skills (HOTS) are central to a competence-based curriculum because they develop the understanding that enables learning to be applied effectively.

As the table below shows, Knowledge and Understanding learning objectives relate to memorisation and explanation -the lower levels of learning. Skills learning objectives use more challenging, active verbs so that learners are required to think more deeply and to develop higher order thinking skills.

It is important to highlight the fact that knowledge and understanding are no less

important in a competence-based curriculum. High levels of knowledge and understanding are crucial for a successful knowledge-based economy. It is through the focus on competences and higher order thinking skills in a competence-based curriculum that learners' skills and abilities are developed and, as a consequence, their knowledge and understanding are deepened.

There must be opportunities in subjects for students to develop and to apply basic skills and cross cutting issues where possible. Subject syllabi must focus on what learners need to be able to do as well as on subject knowledge. Basic competences are developed through application of subject learning. The generic competences help the development of the higher order thinking skills so both will deepen subject learning and be valuable in themselves.

Assessment

Competence based assessment is an assessment process in which the learner is confronted with a complex situation related to their everyday life and asked to put into practice what has been learned(knowledge, skills and attitude) in order to resolve or overcome this situation. In competence based assessment the evidence collected is then used as the basis on which judgments are made concerning the learner's progress towards the satisfaction of fixed performance criteria.

Assessment is an integral part of the teaching learning process. One of the major purposes of assessment is to measure the extent to which learning objectives and competences have been achieved and to identify which schools and learners need pedagogical advice and strategic intervention.

Coherence

It is essential that the assessment measures are coherent across ages and schools so that learners can be confident that the standards being applied to their work are compatible with standards across the country. To achieve this level of confidence in the design on the assessment the marking or grading must be trustworthy, delivering reliable and valid tests and examinations.

Recognition of achievement

Assessments must examine or measure what learners know and can do, and how far they succeed, avoiding focusing on what they are unable to do. Assessments must allow for learners to show their knowledge and skill in appropriate ways which may vary with learner, topic and competency.

Accessible, equitable and fair

Assessments must offer equal opportunities to learners to succeed, and be adaptable to learners' circumstances. Assessments must be accessible to all learners in terms of the forms of questioning and testing. Accessibility involves particular attention to the language demands for learners, especially those for whom English is an additional language.

Support progression

Assessments should yield information about aspects of learners' performance which can then be used to diagnose strengths and weaknesses, and next steps for learners.

Formative assessments which are relevant to the current learning should provide evidence which teachers can use to feedback to learners. Competencies, which include knowledge, skills and attitudes, should be assessed in the context of practical application in order for progress to be identified and supported.

Fit for purpose

The methods and forms of assessment should vary, according to such factors as the domains being assessed, the age of the learners, the language in which the assessment is made. The use of the results of assessments affects the forms used, in both formal and informal contexts

Valid

Any assessment must assess what it sets out to measure and be clear about what is being assessed, including such aspects as memory, processes, application. In order to be valid the forms of assessment vary with what is being assessed.

Reliable

Formal assessments and examinations must be consistent in the results they produce over time and for all learners. In examinations, as far as possible, sources of inconsistency, such as item production, marking and linguistic barriers must be eliminated.

Transparent and accountable

Learners, teachers and parents must understand the purposes, forms and uses of assessments that schools make. Schools should make the results of assessments available to learners and parents. Stakeholders and policy makers should take into account the results of assessments nationally when making decisions.

Types of Assessment

Formative assessment (Continuous assessment)

Formative assessment is a crucial element of teaching and learning. The goal of formative assessment is to monitor student learning to provide ongoing feedback that teachers can use to improve their teaching and by students to improve their learning.

More specifically, formative assessments help:

- Learners identify their strengths and weaknesses and target areas that need work;
- Teachers in recognizing where students are struggling and address problems immediately.

Constructive feedback is a vital component of assessment for formative purposes.

Formative assessment involves using both formal and informal methods to check whether learning is taking place. They are given throughout the school year at classroom and school level in order to have a complete picture of the learners' progress and achievements in subject concepts and in competencies. They help teachers to develop appropriate instructional strategies to improve on the teaching-learning process. Formative assessments use one or a combination of the following: observation, pen and paper and oral questioning to measure the areas below:

a) Knowledge and understanding

Evidence of acquisition of knowledge and understanding is through testing mastery of subject concepts and subject competencies and how they are applied in a specific skill area.

b) Practical skills

Evidence of the ability to perform and accomplish a given task is measured through aptitude and or practical tests and evaluation of the final outcome of learning.

c) Attitude and values

Assessing the behavioral approach towards a given task or a situation.

d) Generic competencies

Assessing the steps the learner goes through to perform a given task and the reasoning behind it. Through formative assessment, the logic behind each step and skills utilized to overcome each challenge can be measured. Competence based assessment measures a learner's ability to confront a complex situation common in daily life and to practice what has been learned (knowledge, skills and attitude) in order to resolve or overcome this situation. The evidence is then used as a basis to determine the learner's progress towards satisfaction of fixed performance criteria.

Summative assessment (assessment of learning)

Summative assessments are used to evaluate student learning, skill acquisition, and academic achievement at the conclusion of a defined instructional period—typically at the end of a project, unit, course, semester, program, or school year. Generally speaking, summative assessments are defined by three major criteria:

The tests, assignments, or projects are used to determine whether students have learned what they were expected to learn. In other words, what makes an assessment "summative" is not the design of the test, assignment, or self-evaluation, per se, but the way it is used—i.e., to determine whether and to what degree students have learned the material they have been taught.. This assessment should have an integrative aspect whereby a student must be able to show mastery of all competencies.

Cross-cutting issues

The curriculum reflects the significance of connections between different subject areas, integrating them across years and cycles. Cross-cutting issues are integrated across learning areas appropriately. They are all important for students to learn about, but they are not confined to one subject. The cross-cutting issues, which have been integrated in the curriculum are described below:

Comprehensive Sexuality Education

The primary goal of a school based Comprehensive Sexuality Education curriculum is to equip children, adolescents, and young people with knowledge, skills and values in an age appropriate and culturally gender sensitive manner so as to enable them to make responsible choices about their sexual and social relationships, explain and clarify feelings, values and attitudes, and promote and sustain risk reducing behavior.

Environment and sustainability

Integration of Environment, Climate Change and Sustainability in the curriculum focuses on and advocates for the need to balance economic growth, society well-being and ecological systems. Learners need basic knowledge from the natural sciences, social sciences, and humanities to understand to interpret principles of sustainability.

Financial Education

The integration of Financial Education into the curriculum is aimed at a comprehensive Financial Education programme as a precondition for achieving financial inclusion targets and improving the financial capability of Rwandans so that they can make appropriate financial decisions that best fit the circumstances of one's life.

Gender

Genderwillbeunderstoodinschoolsbeginningwithfamilycomplementarities, gender roles and responsibilities, the need for gender equality and equity, gender stereotypes, gender sensitivity, gender mainstreaming, genderblind/gender-unaware.

Genocide Studies

Rwandan children should know about the genocide perpetrated against the Tutsi alongside the Holocaust and other genocides. They should know what caused the genocide in Rwanda, its planning and execution, how it was stopped and what the consequences have been. Rwandan children should take part in fighting genocide ideology and genocide denial. Rwandan students will remember the genocide, which is a means to protect the memory of those that were lost.

Peace and Values Education

Peace and Values Education (PVE) is defined as education that promotes social cohesion, positive values, including pluralism and personal responsibility, empathy, critical thinking and action in order to build a more peaceful society.

Standardisation Culture

Standardisation Culture in Rwanda will be promoted through formal education and plays a vital role in terms of health improvement, economic growth, industrialization, trade and general welfare of the people through the effective implementation of Standardization, Quality Assurance, Metrology and Testing.

Inclusive Education

Inclusion is based on the right of all learners to a quality and equitable education that meets their basic learning needs, and understands the diversity of backgrounds and abilities as a learning opportunity.

Required materials

Table II shows a list of materials that should be available to be used in teaching physics as indicated unit wise.

Table II: physics requirement list

Weeks	Term	Unit	Weeks Term Unit Unit title	Essential requirements for
				activities and assessment
1 - 3	1	1	Wave and	Glass and Perspex prisms,
			Particle nature	ray box kits, Light source,
			of light	Evacuated glass tube, small
				metal plate (photocell), Battery,
				Ammeter, Black and white
				bodies and electronic microscope.

6-8 1 3 Forced and masses, Ripple tank, springs and masses, Ripple tank, oscillations and microphone, loudspeaker, resonance of a system of mechanical waves. 11-13 2 5 Complex Pieces of paper, ammeters, electrical circuit. ohm meters, galvanometers, ohm meters, dry cells, light bulbs, resistors dry cell holders switches, resistance boxes, Wheatstone bridges (slide wire form or resistor form), potentiometers (slide wire type) resistance wires (nichrome) of different diameters and lengths meter ruler, copper wire leads and power cow dung, and others), closed production containers,	4 - 6	1	2	Simple	
motion 8 1 3 Forced oscillations and resonance of a system 11 1 4 Propagation of mechanical waves 13 2 5 Complex electrical circuit. electrical and non fossil fuel and power production				harmonic	Ripple tanks, ropes, springs,
8 Forced oscillations and resonance of a system 11				motion	String, bob, fixed point, springs
resonance of a system 1 4 Propagation of mechanical waves. 2 5 Complex electrical circuit. electrical and non fossil fuel and power production	8 - 9	1	3	Forced	and masses, Ripple tank,
resonance of a system 1				oscillations and	microphone, loudspeaker,
system 1				resonance of a	cathode ray oscilloscope.
1 4 Propagation of mechanical waves. 2 5 Complex electrical circuit. electrical and non fossil fuel and power production				system	
of mechanical waves. Complex electrical circuit. electrical circuit. Fossil and non fossil fuel and power production	8 - 11	1	4	Propagation	
waves. Complex electrical circuit. Prostil and non fossil fuel and power production				of mechanical	
2 Complex electrical circuit. electrical circuit. Fossil and non fossil fuel and power production				waves.	
electrical circuit. Fossil and non fossil fuel and power production	11 - 13	2	5	Complex	Pieces of paper, ammeters,
2 6 Fossil and non fossil fuel and power production				electrical circuit.	voltmeters, galvanometers,
2 6 Fossil and non fossil fuel and power production					ohm meters, dry cells, light
2 6 Fossil and non fossil fuel and power production					bulbs, resistors, dry cell holders,
2 6 Fossil and non fossil fuel and power production					switches, resistance boxes,
2 6 Fossil and non fossil fuel and power production					Wheatstone bridges (slide
2 6 Fossil and non fossil fuel and power production					wire form or resistor form),
2 6 Fossil and non fossil fuel and power production					potentiometers (slide wire type),
2 6 Fossil and non fossil fuel and power production					resistance wires (nichrome) of
2 6 Fossil and non fossil fuel and power production					different diameters and lengths,
2 6 Fossil and non fossil fuel and power production					metre ruler, copper wire leads
iuel	13 - 16	2	9	Fossil and	Radioactive decay data, waste
				non fossil fuel	materials (like banana peels,
				and power	cow dung, and others), closed
				production	containers,

16 - 18	2	7	Electric field	Perspex rulers, electroscopes,
			potential and gravitational	ebonite and glass rods, silk and fur materials, pieces of
			potential.	paper, ammeters, voltmeters,
				galvanometers
18 - 21	2	8	Motion in Orbits	Motion in Orbits Large Rubber or plastic sheet
				Heavy round object, lighter
				objects, such as tennis balls
21 - 24	2-3	6	Atomic	Electric heaters, power supply,
			models and	cathode ray oscilloscope, photo
			photoelectric	cells, TV screen,
			ettect.	
24 - 26	3	10	Analog and	Activity sheets and supporting
			digital signals	resources (including film clips!)
26 - 29	3	11	Mobile phone	Loud speakers, fixed phone,
			and radio	mobile phone, charts
			communication.	
29 - 31	3	12	Relativity	Activity sheets and supporting
			concepts and	resources
			postulates of	
			special relativity	
31 - 34	3	13	Interference of	Diffraction gratings
			light waves.	

34 - 36	က	14	Stellar distance	Stellar distance Activity sheets and supporting
			and radiation	resources

Scheme of work and unit plan

The scheme is the breakdown of syllabus into teachable units for a specifically given time frame. For example week, month or term. In other words it is the amount of materials the teacher prepares and intends to teach during a stipulated period of time. The reflective teacher has to plan a scheme of work in advance for the coverage of subject's topics or concepts period of time following certain aims, methods and activities. So this scheme should include the unit plans of as drafted in the syllabus. It's basically the teacher's own personal plan of what he /she intends to teach over a titles, learning objectives, teaching methods and techniques, evaluation procedures, resources, references and all units in the syllabus. Unit plan should include dates and number of lesson per week, unit titles and lesson observations of each week. Table III of this guide is a unit plan of unit 1 in senior five physics syllabus

Content Map

Units	Number	Introduction	Classroom	Equipment	Activities	Competence	Lan-	Vocabulary
	of		organization	required		practiced	guage	Acquisition
	$\mathbf{Periods}$						Practice	
Units 1	21	Light is a	Group dis-	Glass and		Critical		Quantum
		complex phe-	cussion	Perspex		thinking		mechanics,
		nomenon that		prisms,		skills,		Flanck's quan-
		is classically		ray box		Co-opera-		work function.
		explained		kits, Light		tion, inter-		threshold fre-
		with a simple		source,		personal		quency, pho-
		model based		Evacuat-		manage-		toelectrons,
		on rays and		ed glass		ment and		Blackbody,
		wave-fronts.		tube, small		life skills,		A-1 dy 3,
		An excellent		metal plate		Lifelong		
		comparison of		(photocell),		learning,		
		the wave and		Battery,		literacy,		
		particle theo-		Ammeter,		use of ICT		
		ries involves		Black and		tools, com-		
		the differenc-		white bod-		munication		
		es that occur		ies and		skills		
		when light is						
		reflected from						
		a smooth,						

	Periodic Time, Frequency, simple har- monic equa- tion, Energy conservation, Superposition.
	Critical thinking, Creativity and in- novation, Communication, Co-operation, inter- personal manage- ment and life skills,
electronic microscope.	Ripple tanks, ropes, springs, bob, fixed point, springs and masses, Ripple tank, microphone, loudspeaker, cathode
	Group discussion
specular surface, such as a mirror. This unit is interesting but the teacher needs to give concrete examples and explanations to delete any confusions.	A lot of things in nature repeat themselves over and over again as time passes. Think of an example like our own planet orbiting the sun. Every 365 days it completes a single
	17
	Units 2

																			Oscillations,	Damping,	resonance			
science and	technology																		Critical	thinking,	commu-	nication,	coopera-	tion, i
ray oscillo-	scope,																							
																			Group dis-	cussion				
revolution	around the	sun. It's been	doing this	for millions	of years, and	will continue	to do it on the	same schedule	for millions of	years. There	are many in-	teresting facts	of simple har-	monic motion	in our every-	day life of	which learners	should know.	This unit in-	volves deriva-	tion of expres-	sions using the	knowledge of	differential
																			17					
																			Unit 3					

	Propagation, wave, superposition of harmonics, Electric field, magnetic field, reflection, refraction, Electromagnetic, interference, diffraction, Soung double slit
nterper- sonal manage- ment and life skills, numeracy, literacy.	Critical thinking skills, Research and prob- lem-solv- ing, Cre- ativity and innovation, Communi- cation,
	Group discussion
equations. It is better to remind the learners that they should apply the knowledge gained in mathematics—differential equations and trigonometryin this unit.	The term wave is clearly understood as the distur- bance that leads to the transfer of energy from one point to another. This involves oscil- lation of
	17
	Unit 4

Co-opera-	tion, inter-	personal	manage-	ment and	life skills,	Lifelong	learning,	Litera-	cy, use of	ICT tools,	science and	technology.												
individual	molecules	and atoms	about fixed	points and	interchange of	energy oc-	curs between	neighbouring	molecules or	atoms. This	should be	made clear	to learners	to avoid any	misunder-	standings. In	a wave, the	energy of a vi-	bration is mov-	ing away from	the source in	the form of a	disturbance	within the

	Circuit, potential difference, Sign conventions, Kirch- hoff's laws, network of resistors, Potentiometer
	Critical thinking, Creativity and in- novation, Research and prob- lem-solv- ing, ICT and science and tech- nology
	pieces of paper, ammeters, yoltmeters, galva- nometers, dry cells, light bulbs, resistors, dry cell holders, switches, resistance boxes, Wheatstone bridges (slide wire form or resistor,
	Group discussion
surrounding medium	Generally speaking, network analysis is any structured technique used to mathematically analyze a circuit (a "network" of interconnected components). Quite often the technician or engineer will encounter circuits containing multiple sources of power or component component
	17
	Unit 5

on ur- is In In on	which defy	defy	potentiom-	
	simplifi		eters (slide	
	by serie		wire type),	
	allel an		resistance	
	techniq		wires (ni-	
	those co	ases, he	chrome) of	
	or she v	will be	different	
	forced t	to use	diame-	
	other m	neans.	ters and	
	This ch	lap-	lengths,	
	ter pres	sents	metre	
	a few te	ech-	rules, cop-	
	niques	nseful	per wire	
such com- plex circuits. Mathematical techniques to solve for multiple un- knowns (called "simultaneous equations" or "systems") can	in anal	yzing	leads	
plex circuits. Mathematical techniques to solve for multiple un- knowns (called "simultaneous equations" or "systems") can	snch co	m-		
Mathematical techniques to solve for multiple un- knowns (called "simultaneous equations" or "systems") can	plex cir	cuits.		
techniques to solve for multiple un- knowns (called "simultaneous equations" or "systems") can	Mather	matical		
to solve for multiple un- knowns (called "simultaneous equations" or "systems") can	techniq	lnes		
multiple un- knowns (called "simultaneous equations" or "systems") can	to solve	e for		
knowns (called "simultaneous equations" or "systems") can	multipl	le nn-		
"simultaneous equations" or "systems") can	knowns	s (called		
equations" or "systems") can	simult "simult	aneous		
"systems") can	equatio	ons" or		
1,00001:04	system system	ns") can		
pe applied to	be applied t	lied to		

	Fossil fuel , non-renew- able energy, coal storage, electricity, fission, Nucle- ar, Explosion, Global Warm- ing, Pollution, Radioactive Wastes
	Critical thinking, Lifelong learning, Commu- nication, Co-opera- tion, inter- personal manage- ment and life skills
	Radioactive decay data, waste materials (like banana peels, cow dung, and others), closed containers,
	Group discussion
basic Laws of circuits to solve net works.	Fossil fuel power plants burn carbon fuels such coal, oil or gas to generate steam that drives large turbines that produce elec- tricity. These plants can generate elec- tricity reliably over long pe- riods of time. However, by burning car- bon fuels they produce large amounts
	Unit 6 18

carbon diox-	ide, which	causes climate	change. This	unit explains	the types of	these fossil	fuels and ex-	plains non-fos-	sil fuels and	how they are	used in power	production	and even the	use in making	atomic bombs.	We should	understand	the need for	this content	and special	attention is	needed on how	to avoid the	negative
Warm-	ing,	Follu-	Radio-	active	Wastes																			

	electric field and gravita- tional field, electrostatic force, equi- potential, electric dipole, thermionic emission, Trajectory, electron deflection, electron namics
	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
	Perspex rulers, electro- scopes and ebonite and glass rods, silk and fur materi- als, pieces of paper, ammeters, voltmeters, ters
	Group discussion cussion rulers, electroscopes a ebonite glass ro silk and fur mat als, piec of paper ammete voltmet galvano ters
results that may erupt when using these fuels.	It is useful if students can recognise that fields are part of the model to explain forces acting at a distance and that they recognise how diagrams are used to represent the strength of these fields. Students will have some qualitative ideas about gravitational and electric fields, when
	Unit 7 18

	Critical Gravitathinking, Gravita- Research and proberon- ing, Communication, Cooperation, interpresentation, interpresentation, interpresentation, cooperation, interpresentation interpresenta
	ls- Large Rubber or plastic sheet
they meet the idea of gravity and electrostatics. Useful demon- strations and videos can be used to clearly explain the concepts.	From a Group disconceptual cussion standpoint, orbital motion involves giving something enough horizontal velocity so that, by the time gravity pulls it down, it has traveled far enough to have Earth's surface curve
2 G G C C C C C C C C C C C C C C C C C	Unit 8 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

	Structure of atom, plane-tary model, electron, spectral lines, Fluorescence, Phosphorescence, photoelectric effect
learning, numeracy, ICT, sci- ence and technology	Critical thinking, Communication, Co-operation, interpersonal manage- ment and life skills, Lifelong learning, numeracy, ICT,
	Electric heaters, power sup- ply, cath- ode ray os- cilloscope, photo cells, TV screen,
	Group discussion
away from it. As a result, it stays above the surface. An object in orbit is essentially falling around the Earth but going so fast it never hits it.	Atoms consist of several particles called subatomic particles like the proton, electron, neutron, positron, neutrino, meson, etc and these form the basis of particle physics which is domto-
Heavy round object, light- er ob- jects, such as tennis balls	Unit 9 20

science and	technology																								
inating in to-	day's research	in different	domains. It is	important to	realise that a	lot of what we	know about	the structure	of atoms has	been devel-	oped over a	long period of	time. This is	often how sci-	entific knowl-	edge develops,	with one per-	son building	on the ideas of	someone else.	We are going	look at how	our modern	understanding	

	Communica- tion system, transmis- sion, Band- width, Ana- logue signal, digital tech- nology
	Critical thinking, Creativity and inno- vation
	bu g s G:
	Activity sheets and supporting resources (including film clips!)
	Group discussion
of the atom has evolved over time.	In today's world, many different types of signals that carry information that help us to communicate surround us, helping us communicate every day. The two types of signals that are used to transport information are analog and digital. Most communication uses both types of
	18
	Unit 10

	Radio communication, Transmitter, Digital communication,
	Critical thinking, Creativity and
·	Loud speak- ers, fixed phone,
signals. Therefore, we need a way to be able to use each type efficiently, to ensure the infor- mation reaches its destination This unit discuss- es digital and analog signals and the use in modern communi-	Group dis- cussion
communica- tion system, transmission, Bandwidth, Analogue signal, digital technology	Like all other radio commu- nication appli- cations, mobile
	18
	Unit 11

Analog communication, Sampling, Quantization, Coding, cellular network, Handoffs	
innovation, Communication, Co-operation, interpersonal manage- ment and life, Life- long learn- ing, Liter- acy, ICT, science and technology	
mobile phone, charts	
telephony uses radio waves to carry the informa- tion, like voice, text and im- ages, through the air. Radio waves are a kind of electro- magnetic fields (EMF) that are also called radio frequen- cy fields or radio frequen- cy energy. Electromag- netic fields are present in our every day life, both naturally and from man- made sources.	

	Relativity, frames of reference, dilation, Momentum, Galilean equation of transformation
	Critical thinking, Research and prob- lem-solv- ing, Commu- nication, Co-opera- tion, inter- personal manage- ment and life skills, Lifelong learning,
	Activity sheets and supporting resources
	Group discussion
Radio waves travel with the speed of light. They consist of an electric and a magnetic component, which vary periodically in time.	Along with quantum mechanics, relativity is central to modern physics. In particular, relativity provides the basis for understanding cosmic processes and the geometry of the universe itself.
	17
	Unit 12

		Interference,	electromag-	netic radi-	tromagnetic	spectrum,	Reflection,	Absorp-	tion, Trans-	Scattering.	Coherence,	monochro-	maticity,	Fringe								
ICT, Literacy, sci-	technology	Critical	thinking,	Research	and prob-	lem-solv-	ing,	Commu-	nication,	Co-opera-	tion, inter-	personal	manage-	ment and	life skills,	Lifelong	learning,	numeracy,	Literacy,	ICT, sci-	ence and	technology
		Diffraction	gratings																			
		Group dis-	cussion																			
		When two or	more waves	interact and	combine, they	interfere with	one another.	But interfer-	ence is not	necessarily	bad: waves	may interfere	constructively,	resulting in a	wave larger	than the orig-	inal waves.	Or, they may	interfere	destructively,	combining in	such a way
		17																				
		Unit	13																			

that they form	a wave smaller	than the origi-	nal ones. Even	so, destructive	interference	may have pos-	itive effects:	without the	application of	destructive	interference	to the muffler	on an automo-	bile exhaust	system, for	instance, noise	pollution from	cars would be	far worse than	it is. Other	examples of	interference,	both construc-	tive and	

	Solar system, Bright- ness-magni- tude scale, Dwarfs, Hertz- sprung-Rus- sel diagram, parallax, luminosity
	<i>è</i> .
	Critical thinking, Research and problem-solving, Communication, Co-operation, interpersonal manage- ment and life skills, Lifelong
	Activity sheets and supporting resources
	Group discussion
destructive, can be found wherever there are waves: in wa- ter, in sound, in light. This unit details the interfer- ence of light.	Stars vary in their effective temperature and colour. A hot star radiates more energy per second per metre surface area than a cooler star. Does this then mean that a hot star is going to appear
	18
	Unit 14

brighter to us	learning,
than a cool-	Literacy,
er one? The	ICT, sci-
answer to this	ence and
actually de-	technology
pends on a few	
factors. These	
included in	
this unit.	

TSCHEME OF WORK: PHYSICS S5 PCB

Teacher's name: Class + Combination: ...5 PCB, PCM, MPG, MPC....... Number of period School: Subject: Physics... Academic year: ...2017 Term: ...1st per week: ...7.....

Dates &	Units	Lessons	Learning objec-	Teaching meth-	Resources &	Observations
number of	+	+	tives	ods & Evalua-	References	
lessons (periods) in a week	lessons Key Unit (periods) in Competences a week	Evaluation		tion procedures techniques		
From January og (Mo) to January 13 (Friday) (7 lessons)	Unit 1: Wave and Particle nature of light Key Unit competences: By the end of this unit the learner should be able to analyse the nature of light	Lesson 1: Introduction Lesson 2: Planck's quantum theory Lesson 3: Photon theory of light Lesson 4: Photoelectric effect 1 Lesson 5: Photoelectric effect 2 Lesson 6: Assessment 1	By the end of these lessons, using practical examples and derivations learners will be able to explain Planck's quantum theory, photon theory of light and photoelectric effect clearly	Group work discussions. Question and answer Guided discovery Experimentation Questioning (oral) Exercises Quizzes Group work presentations	Research on internet Using libraries Laboratory equipments Teachers in the same department Flip charts Abott, A. (1989). Physics. chicago: Heinman Educational Publisher Nelkon, M., & Parker, H. (1995). Adanced Level Physics. London: Heinemann. Tom, D. (2000). Advanced Physics. London: Heinemann. Tom, D. (2000).	The lessons were success- fully taught. because learn- ers were able to

		Lesson 7: Activities on photoelectric effect			Freedman and William J. Kaufmann III, (2008): Stars and galaxies. Universe, Third Edition, W.H. Freeman and	Realize applications of photo- electric effects in science domains.
From January 16 (Monday) to January 20 (Friday) (7 lessons)	Unit 1: Wave and Particle nature of light Key Unit competences: By the end of this unit the learner should be able to analys the nature of light	Unit 1:Lesson 8:By the end of these ticle nature of photoelectric effect lightBy the end of these lightlightLesson 9:able to explain wave theory of lightwave theory of light, properties of waves be able to analys the nature of lightlight, properties of light, properties of waveslight, properties of light, properties of wavesCompton effect and mass energy relation of the analys the nature of lightLesson 11:Assessment 2photon clearly.Black body radii-Lesson 12:photon clearly.Black body radii-ationation	By the end of these lessons, using real life examples learners will be able to explain wave theory of light, properties of waves, black body radiation, Compton effect and mass energy croup work presentation of the sentations	Group work discussions. Question and answer Guided discovery Experimentation Questioning (oral) Exercises Quizzes Group work presentations	Research on internet Using libraries Laboratory equipments Teachers in the same department Flip charts	

	Lesson 13: Ener-		Roger A. Freed-	The lessons
	gy, mass and mo-		man and William	were success-
	mentum relation.		J. Kaufmann	fully taught.
	Lesson 14: Comp-		III, (2008): Stars	because learn-
	ton effect.		and galaxies.	ers were able
			Universe, Third	to Explain
			Edition, W.H.	the relation-
			Freeman and	ship between
			Company	energy, mass
				and momentum
				of photon and
				differentiate
				electron mi-
				croscope and
				Compton effect
				as applied in
				medicine

Research on internet Using libraries Laboratory equipments Teachers in the same department Flip charts Abott, A. (1989). Physics. chicago: Heinman Educational Publisher Nelkon, M., & Parker, H. (1995). Adanced Level Physics. London: Heinemann. Tom, D. (2000). Advanced Physics. ics. London:
Group work discussions. Question and answer Guided discovery Experimentation Questioning (oral) Exercises Quizzes Group work presentations
By the end of these lessons, with examples learners will be able to ex- plain photon inter- cuided d action, wave-par- ticle duality of light, the principle of complementar- ities, wave nature of matter and elec- tron microscope clearly. Group wo sentation clearly.
Lesson 15: Photon interaction Lesson 16: Wave-particle duality of light Lesson 17: The principle of complementarities Lesson 18: Wave nature of matter Lesson 19: Electron micro- scope: T
Unit 1: Wave and Particle nature of light Key Unit competences: By the end of this unit the learner should be able to analyse the nature of light
January 23 (Monday) to January 27 (Friday) (7 lessons)

	Most of students were successful in this unit.
Education. Roger A. Freedman and William J. Kaufmann III, (2008): Stars and galaxies. Universe, Third Edition, W.H. Freeman and	
	Evaluation procedures This should be based on the results of assessment I, assessment II and assessment III
Lesson 20: Electron microscope: SEM Lesson 21: Assessment 3	
	Evaluation

Lesson plan

A lesson plan is a teacher's detailed description of the course of instruction, r 'learning trajectory' for a lesson. A daily lesson plan is developed by a teacher to guide class learning. Proper classroom planning will keep teachers organized and on track while teaching, thus allowing them to teach more and help students reach objectives more easily. The better prepared the teacher is, the more likely she/he will be able to handle whatever unexpectedly happens in the lesson.

LESSON PLANNING:

- provides a coherent framework for smooth efficient teaching.
- helps the teacher to be more organized.
- gives a sense of direction in relation to the syllabus.
- helps the teacher to be more confident when delivering the lesson.
- provides a useful basis for future planning.
- helps the teacher to plan lessons which cater for different students.
- Is a proof that the teacher has taken a considerable amount of effort in his/her teaching.

In this guide, table IV is a format of the lesson plan and is flexible for some changes about which the teacher feels more comfortable according to the teaching and learning situation and the content to teach. But in making changes the teacher should bear in mind that this Lesson plan should be detailed and structured systematically to make lesson delivery perfect and easy.

Table IV: Lesson Plan with guidelines School Name: Teac

		DOLLOU LIGHTO	:	1011080			
Term Date	0	Subject	Class	Unit N	Unit N Lesson N	Duration	Class size
I 25 /01/ 2017	2017	Physics	S.5	1	1 of 24	40 minutes	30
Type of Special Educationa	ıl Edu	cational	Needs to	Number	of learners w	vith impairment and	I Needs to Number of learners with impairment and the type of impairment e.g. one
be catered for in this lesson and num-student has hearing impairment	in thi	s lesson a	-unu pu	student h	as hearing i	mpairment	
ber of learners in each category	in eac	th categor	ý				
Unit title		Wave and	Wave and particle nature of light	ture of li	ght		
Key Unit Compe-	e-	By the end	of this un	it the lea	rner should	end of this unit the learner should be able to analysis the nature of light	e nature of light
tence							
Title of the lesson	nos	Introduc	tion to the	e theory	of quantun	Introduction to the theory of quantum mechanics	
Instructional		With the h	nelp of real	life exan	nples, learne	rs will be able to exp	e help of real life examples, learners will be able to explain the theory of quantum me-
Objective		chanics cle	clearly				
Plan for this Class	lass	In class					
(location: in /							
outside)							
Learning Materials	rials	Flip charts, audio-visual materials	s, audio-vis	sual mate	rials		
(for all learners)	s)						
References		• Abott,	A. (1989).	Physics.	Chicago: Hei	Abott, A. (1989). Physics. Chicago: Heinman Educational Publisher	ublisher
		• Nelko	n, M., & Pa	ırker, H.	(1995). Adan	Nelkon, M., & Parker, H. (1995). Adanced Level Physics. London: Heinemann.	ondon: Heinemann.
		• Tom, I	D. (2000). A	Advanced	Physics. Lor	Tom, D. (2000). Advanced Physics. London: Hodder Education.	ion.

Timing for each step	Description of teaching and learning activity	nd learning activity	Generic competences
	By viewing documentary vide	By viewing documentary videos learners will be able to under-	and Cross cutting issues to be
	stand the quantum theory correctly.	rrectly.	addressed +
	Teacher's activities	Learner's activities	a short explanation
Steps and Timing			
INTRODUCTION:	Begin the lesson ask-	Let the learners responde to the	Critical thinking is developed
(5 minutes)	ing learners the opening	questions and suggest possible	through responding to the
	question and allow them to	answers according to their under-	questions.
	react on it.	standing.	Communication skills are developed
			in responding/ answering to the
	Give them the work-		questions.
	sheet		
			Peace and values are addressed
	The teacher trys to an-		through reespecting each other in
	swer questions.		asnwering questions.

Development of the lesson (30minutes)	The teacher displays the documentary videos about quatium theory and lets the	Learners watch the documentary videos displayed	Through watching vides, critical thinking is developed.
	learners watch. The teacher provides questions related to quatium	Learners share ideas and suggest possible answers, then prepare for the for presentation.	Co-operation and communication skills are developed through sharing ideas and presentation.
	theory, and schedule the presentation after the discussions in their respective groups.	Learners make presentation about the findings of their discussions.	Genddear is addressed in group making and presentation.
	Perform an activity and presentation of the results with assist learner in their groups.	Carry out different measurements and record the values obtained. Present their work in front of other groups.	Peace and value is addressed through team work spirit.
	Appreciate and give comments on the presentation. Gives summary on the work presented.	✓ Write down the comments of the facilitator in their note	
Conclusion (5 min)	Teacher provides and justifies the expected answers.	Write down the answers and critical thinking through recognicomments about the answers being tion of responces of the challanges provided.	Critical thinking through recognition of responces of the challanges in the lesson.
Teacher self-evaluation	Collect materials given and rearrange the class room		

UNIT 1

Wave and Practical Nature of Light

KNOW THIS

Light is a complex phenomenon that is classically explained with a simple model based on rays and wave-fronts. An excellent comparison of the wave and particle theories involves the differences that occur when light is reflected from a smooth, specular surface, such as a mirror. This unit is interesting but the teacher needs to give concrete examples and explanations to delete any confusions.

Key unit competence

By the end of this unit the learner should be able to analyse the nature of light

Unit description

This unit involves theories which the learner should understand and master. It would be helpful to carry out some demonstrations and presentations using projected videos and other IT tools to explain some principles deeply. This unit deals with;

- 1.1 Planck's quantum theory
- 1.2 Photon theory of light
- 1.3 Photoelectric effect
- 1.4 Wave theory of monochromatic light
- 1.5 Properties of a light wave
- 1.6 Blackbody radiation
- 1.7 Energy, mass and momentum of a photon
- 1.8 Compton effect
- 1.9 Photon interactions
- 1.10 Wave-particle duality of light
- 1.11 The principle of complementarities
- 1.12 The wave nature of matter
- 1.13 Electron microscope

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
State Planck's	Explain the wave	Appreciate the
quantum theory.	theory of light and	importance of light
	state its limitations	waves in life.
Explain the photon	Describe phenomena of	Realize applications of
theory of light and	black-body radiation.	photoelectric effects in
photoelectric effect.		science domains.
Explain the	Evaluate properties of	Recognize the value of
relationship between	light as a wave.	analyzing light energy.
energy, mass and		
momentum of photon.		
	Describe photon	
	interactions and the	
	wave nature of matter.	
	Investigate the theory of	
	wave-particle duality.	
	Describe electron	
	microscope and	
	Compton Effect as	
	applied in medicine.	

Learning objectives

By the end of this unit learners will be able to;

- explain the Planck's quantum theory and apply it to other theories.
- explain photoelectric effect and use it to derive and apply Einstein's photoelectric equation.
- derive the Compton shift using the scattering principle of obstructed photon.

SCOPE AND SEQUENCE

This unit will be delivered in 21 lessons each of 40 minutes.

Unit 1: Wave and Particle nature of light

Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Introduction	Planck's	Photon theory of	Photoelectric
	quantum theory	light	effect 1
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Photoelectric	Assessment 1	Activities on	Applications of
effect 2		photoelectric	photoelectric
		effect	effect
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Wave theory of	Properties of	Assessment 2	Black body
light	waves		radiation
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Energy, mass	Compton effect	Photon	Wave-particle
and momentum		interaction	duality of light
relation			
Lesson 17	Lesson 18	Lesson 19	Lesson 20
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
The principle of	Wave nature of	Electron	Electron
complementari-	matter	microscope: TEM	microscope: SEM
ties			
Lesson 21			
This lesson			
should cover:			
Assessment 3			

LESSON DEVELOPMENT

Lesson 1	Title: Introduction
Learning objectives	By the end of this lesson using real life examples, learners will be able to explain the theory of quantum mechanics clearly.
Key words	Quantum mechanics
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Criticalthinkingskills, Co-operation, interpersonal management and life skills, Lifelong learning, literacy, use of ICT tools, communication skills
Attention to special educational need children	Special care should be given to learners with hearing and visual impairments since the lesson is more theoretical and needs the use of audio-visual instruments.
Lesson 2	Title: Planck's quantum theory
Learning objectives	By the end of this lesson, using Planck's quantum theory hypothesis, learners will be able to explain the variation of the photon's energy with frequency accurately.
Key words	Planck's quantum theory, Planck's constant, photon
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Critical thinking, Co-operation, interpersonal management and life skills, Life long learning, literacy, communication skills
Attention to special educational need children	Special attention is needed for learners with intellectual difficulties

Lesson 3	Title: Photon theory of light
Learning objectives	By the end of this lesson, using real
	life examples, learners will be able
	to explain the photon theory of light
	clearly.
Key words	Photons, Photon theory of light.
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Critical thinking skills, Co-oper-
	ation, interpersonal management
	and life skills, Life long learning,
	literacy, use of ICT tools, communi-
	cation skills
Attention to special educational	Special care should be given to
need children	learners with hearing and visual
	impairments since the lesson is
	more theoretical and needs the use
	of audio-visual instruments.
Lesson 4	Title: Photoelectric effect 1
Learning objectives	By the end of this lesson, using the
	hypothesis of Einstein learners will
	be able to explain and derive the
	Einstein's photoelectric equation
	easily.
Key words	Photoelectric equation, work func-
	tion, threshold frequency, threshold
	wavelength, kinetic energy
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Co-operation, interpersonal man-
	agement and life skills, Life long
	learning, literacy, use of ICT tools,
	communication skills
Attention to special educational	The lesson should be developed using
need children	audio-visual instruments so that
	learners with hearing and visual
	impairment can be considered.
	impairment can be constacted.

Lesson 5	Title: Photoelectric effect 2
Learning objectives	By the end of this lesson,
	using Einstein's photoelectric
	equation learners will be able to
	solve calculations dealing with
	photoelectric effect and graphically
	interpret them accurately.
Key words	Photoelectric equation, work
	function, threshold frequency,
	threshold wavelength, kinetic
	energy, stopping potential
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Criticalthinkingskills, Co-operation,
	interpersonal management and life
	skills, Lifelong learning, literacy,
	communication skills, numeracy.
Attention to special educational	Intellectual, developmental, speech
need children	and language disabilities should be
	taken care of.
Lesson 6	Title: Assessment 1
Learning objectives	By the end of this assessment using
	knowledge and skills gained in
	previous lessons, learners will be
	able to relate the content with the
	real life experiences.
Key words	Quantum mechanics, Planck's
	quantum theory, Planck's constant,
	photon, Photon theory of light, Pho-
	toelectric equation, work function,
	threshold frequency, threshold
	wavelength, stopping potential
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Critical thinking, problem solving.

Attention to special educational need children	make it easy for learners with visual
	impairment to read.
Lesson 7	Title: Activities on photoelectric
	effect
Learning objectives	By the end of this lesson practically,
	learners will be able to explain
	photoelectric effect clearly.
Key words	Photoelectric effect, stopping
	potential, work function, threshold
	wavelength and frequency,
	graphical presentation.
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Critical thinking skills, Research
	and problem-solving, Creativity and
	innovation, Communication, Co-op-
	eration, interpersonal management
	and life skills, Lifelong learning,
	Literacy, use of ICT tools, science
	and technology.
Attention to special educational	Special care should be taken for
need children	learners with visual, intellectual,
	developmental, physical and hear-
	ing impairments.
Lesson 8	Title: Applications of
	photoelectric effect
Learning objectives	By the end of this lesson using
	practical and real life examples,
	learners will be able to explain and
	apply the theory of photoelectric
	effect properly.
Key words	Photoelectric effect, anode, cathode,
	photoelectrons, photons, photocells,
	current.
Cross-cutting issues to discuss	Gender, peace and values.

Competence developed	Critical thinking skills, Research and problem-solving, Creativity and innovation, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, Literacy, use of ICT tools, science and technology.
Attention to special educational need children	Special attention is taken for learners with visual, hearing and developmental disabilities.
Lesson 9	Title: Wave theory of light
Learning objectives	By the end of this lesson, theoretically learners will be able to explain the wave theory of light properly.
Key words	Wave theory, Wavelets, Wave front, Wave normal, Primary source and Secondary source.
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Critical thinking skills, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, Literacy, use of ICT tools, science and technology.
Attention to special educational	Special attention is given to
need children	learners with visual, hearing and developmental disabilities.
Lesson 10	Title: Properties of waves
Learning objectives	By the end of this lesson graphically and using examples, learners will be able to state and explain the properties of waves properly.
Key words	Wavelength, amplitude, periodic time, frequency, phase angle
Cross-cutting issues to discuss	Gender, peace and values.

Competence developed	Critical thinking skills								
Competence developed	Critical thinking skills,								
	Communication, Co-operation,								
	interpersonal management and life								
	skills, Life long learning, Literacy.								
Attention to special educational	Special attention is given to								
need children	learners with visual, hearing and								
	developmental disabilities.								
Lesson 11	Title: Assessment 2								
Learning objectives	By the end of this assessment using								
	knowledge and skills gained in								
	previous lessons, learners will be								
	able to relate the content with the								
	real life experiences.								
Key words	Photoelectric effect, work function,								
	threshold wavelength and								
	frequency, photoelectrons, photons,								
	Wavelets, Wave theory, properties								
	of waves.								
Cross-cutting issues to discuss	Gender, peace and values.								
Competence developed	Critical thinking, problem solving.								
Attention to special educational	Printed papers should be used to								
need children	make it easy for learners with visual								
	impairment to read.								
Lesson 12	Title: Black body radiation								
Learning objectives	By the end of this lesson using								
g sag sa sa	practical examples, learners will								
	be able to explain the black body								
	radiation clearly.								
Key words	Blackbody, emission of								
	electromagnetic waves, temperature								
Cross-cutting issues to discuss	Gender, peace and values.								
Competence developed	Critical thinking skills, Communi-								
restate as traped	cation, Co-operation, interpersonal								
	management and life skills, Life-								
	long learning, Literacy, science and								
	TIVILE TOUTHINGS THEOLOGY, BUILDING ALL								
	technology.								

Attention to special educational									
need children	learners with visual, hearing and developmental disabilities.								
Lesson 13	Title: Energy, mass and								
	momentum relation								
Learning objectives	By the end of this lesson								
	mathematically, learners will be								
	able to derive the mathematical								
	relation between mass, energy and								
	momentum of the photon clearly.								
Key words	Energy, mass and momentum of a								
	photon								
Cross-cutting issues to discuss	Gender, peace and values.								
Competence developed	Criticalthinkingskills, Co-operation,								
	interpersonal management and life								
	skills, Lifelong learning, literacy,								
	communication skills, numeracy.								
Attention to special educational	Special attention is needed for								
need children	learners with intellectual difficulties								
	which highly arise when dealing								
	with calculations, developmental,								
	hearing and visual impairments.								
Lesson 14	Title: Compton effect								
Learning objectives	By the end of this lesson with								
	derivations, learners will be to								
	explain the scattering of the photon								
	and electron emission properly,								
Key words	x-rays, scattering, Compton effect,								
	Compton shift,								
Cross-cutting issues to discuss	Gender, peace and values.								
Competence developed	Criticalthinkingskills, Co-operation,								
	interpersonal management and life								
	skills, Lifelong learning, literacy,								
	communication skills, numeracy.								
Attention to special educational	Special attention is given to								
need children	learners with visual, hearing and								
	developmental disabilities.								

Lesson 15	Title: Photon interaction								
Learning objectives	By the end of this lesson using								
	examples learners will be able to								
	explain different kinds of photon								
	interactions properly.								
Key words	Photon interactions, Coherent								
	Scattering, Photoelectric Effect,								
	Compton Interaction, Pair								
	Production, Photodisintegration								
Cross-cutting issues to discuss	Gender, peace and values.								
Competence developed	Criticalthinkingskills, Co-operation,								
	interpersonal management and life								
	skills, Lifelong learning, literacy,								
	communication skills.								
Attention to special educational	Special attention is given to								
need children	learners with visual, hearing and developmental disabilities since								
	developmental disabilities since								
	audio visual instruments can be								
	used in lesson delivery.								
Lesson 16	Title: Wave-particle duality of								
	light								
Learning objectives	By the end of this lesson, simple								
	examples learners will be able to								
	explain the wave particle nature of								
	light properly.								
Key words	Interference, diffraction,								
	polarization, Planck's hypothesis,								
	photoelectric experiment, black								
	body experiment								
Cross-cutting issues to discuss	Gender, peace and values.								
Competence developed	Criticalthinkingskills, Co-operation,								
	interpersonal management and life								
	skills, Lifelong learning, literacy,								
	communication skills.								

Attention to special educational need children	learners with visual, hearing and developmental disabilities since audio visual instruments can be								
Lesson 17	used in lesson delivery. Title: The principle of								
Lesson 17	complementarities								
Learning objectives	By the end of this lesson, theoretically								
	learners will be able to explain the								
	principles of complementarities								
	clearly.								
Key words	Principle of complementarities								
Cross-cutting issues to discuss	Gender, peace and values								
Competence developed	Criticalthinkingskills, Co-operation,								
	interpersonal management and life								
	skills, Lifelong learning, literacy,								
	communication skills.								
Attention to special educational	Special care is given to learners with								
need children	hearing and visual impairments.								
Lesson 18	Title: Wave nature of matter								
Learning objectives	By the end of this less on theoretically,								
	learners will be able to explain the								
	wave nature of matter.								
Key words	Wave nature of matter, Broglie								
	wavelength								
Cross-cutting issues to discuss	Gender, peace and values.								
Competence developed	Criticalthinkingskills, Co-operation,								
	interpersonal management and life								
	skills, Lifelong learning, literacy,								
	communication skills.								
Attention to special educational	Special care is given to learners with								
need children	hearing and visual impairments.								

Lesson 19	Title: Electron microscope: TEM								
Learning objectives	By the end of this lesson, with clear examples learners will be able to explain the working mechanism of transmission electron microscope properly.								
Key words	Transmission electron microscope, fluorescent screen, cathode, anode, electron beam								
Cross-cutting issues to discuss	Gender, peace and values								
Competence developed	Criticalthinkingskills, Co-operation, interpersonal management and life skills, Lifelong learning, literacy, communication skills.								
Attention to special educational need children	Care is taken for learners with visual, physical and hearing impairments.								
Lesson 20	Title: Electron microscope: SEM								
Learning objectives	By the end of this lesson, with clear examples learners will be able to explain the working mechanism of scanning electron microscope properly.								
Key words	Scanning electron microscope, Detectors, back scattered electrons, TV screen								
Cross-cutting issues to discuss	Gender, peace and values								
Competence developed	Criticalthinkingskills, Co-operation, interpersonal management and life skills, Lifelong learning, literacy, communication skills.								
Attention to special educational need children	Care is given to learners with visual, physical and hearing impairments.								

Lesson 21	Title: Assessment 3								
Learning objectives	By the end of this assessment,								
	using knowledge and skills gained								
	in previous lessons, learners will be								
	able to relate the content with the								
	real life experiences.								
Key words	Blackbody, electromagnetic waves,								
	Energy, mass and momentum of a								
	photon, Compton effect, Compton								
	shift, Coherent Scattering, Photo-								
	electric Effect, Compton Interaction,								
	Pair Production, Photo-disintegra-								
	tion, Wave-particle duality of light,								
	Principle of complementarities,								
	Wave nature of matter, de-Broglie								
	wavelength, electron microscope.								
Cross-cutting issues to discuss	Gender, peace and values.								
Competence developed	Critical thinking, problem solving.								
Attention to special educational	Printed papers should be used to								
need children	make it easy for learners with visual								
	impairment to read.								

Main contents and concepts to emphasise

Quantum mechanics is the system of laws which governs the behaviour of matter on the atomic scale. So Quantum mechanics is required to analyze the behaviour of molecules, atoms, and nuclei.

Planck's quantum theory arose out of the inability of the classical physics to explain the experimentally observed distribution of energy in the spectrum of a black body.

$$E = nhf = \frac{nhc}{\lambda}$$

The **photon theory** of light suggests that all light comes from a radiating source and is transmitted as tiny particles, or photons as they are now called.

According to Einstein's theory, an electron is ejected from the metal by a collision with a single photon. Energy of the photon is used as stated in the famous **Einstein photoelectric equation**

$$hf = W_o + K.E_{\text{max}}$$

Photoelectric emission is the phenomenon of emission of electrons from the surface of metals when the radiations of suitable frequency and suitable wavelength fall on the surface of the metal.

Work function is the minimum energy required to set free an electron from the binding forces on the metal surface.

The **Threshold Frequency** is defined as the minimum frequency of incident light required for the photo electric emission.

Stopping potential is the potential difference applied until no electron reaches the anode and no current flows.

$$V_s = \frac{h}{e} (f - f_o)$$

Wave theory of monochromatic light: If light consists of undulations in an elastic medium it should diverge in every direction from each new centre of disturbance, and so, like sound, bend round all obstacles and obliterate the shadow.

A wave: is any disturbance that results into the transfer of energy from one point to another point.

Primary source: The geometrical center or axis of the actual source of light which is either a point or a line is called the primary source.

Wavelets: All points lying on small curved surfaces that receive light at the same time from the same source (primary or secondary) are called wavelets.

Secondary source: Any point on a wavelet, acts as the source of light for further propagation of light. It is called a secondary source.

Wave front: The envelope of all wavelets in the same phase- having received light from sources in the same phase at the same time is called a wave front.

Wave normal: The normal at any point drawn outward on a wave front is called the wave normal. Further propagation of light occurs along the wave normal. In isotropic media the wave normal coincides with the 'ray of light'.

A **black body** is a theoretical object that absorbs 100% of the radiation that hits it and re-radiates energy which is characteristic of this radiating system or body only.

The mass, energy and momentum of a photon are related according to equations;

$$E = mc^2$$
 $P = \frac{E}{c}$ (where *m* is the mass defect)

Compton effect says that when x-rays are projected on the target, they are scattered after hitting the target and change the direction in which they were moving. The Compton shift for the photon is given by

$$\lambda' - \lambda = \frac{h}{mc} \left(1 - \cos \phi \right)$$

Photon interactions: Because photons are electrically neutral, they do not steadily lose energy via coulombic interactions with atomic electrons, as the charged particles. Photon interactions include; Coherent Scattering, Photoelectric Effect, Compton Interaction, Pair Production and Photodisintegration.

Wave-particle duality of light: According to different experiments and properties, light behaves as waves as well as particles.

Principle of complementarities: Both properties of light of being a wave and a particle are necessary for gaining complete knowledge of the phenomena; They are complementary to each other but at the same time they also exclude each other.

The wave nature of matter: It is important to realize that the attribution of a wavelength to a massive particle implies that it should behave as a wave under some conditions.

Electron microscope: is an instrument that uses one or several lenses to form an enlarged (magnified) image. The most common electron microscopes are Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM).

SOLUTION TO ACTIVITIES

Possible solutions to the Opening question

- (e) Sarah's potential energy increases because she is climbing up the ladder and thus her height from the ground increases.
- (f) The potential energy of Jovia is greater than that of Peter because of her height above peter.
- (h) As Jovia slides down, her potential energy decreases and will be zero the moment she reaches the ground.
- (h) Mr. John is assisting the kids to climb the ladder.

The kid's energy and potential are not enough to make her reach the top of the ladder.

On Fig.1-2 (page 3 in student's book), the electron is shown interacting with light and subsequently dissipating the excess energy it receives from the light by doing work in an external circuit. The electric current flows through external circuit via terminals F and B. The sequence involved is analogous to the children playing on the slide with the help of Mr. John.

SOLUTIONS TO EXERCISE 1.1

- 1. The comprehensive theory incorporating the wave and quantum aspects of a particle together is dealt with what is called "quantum mechanics".
- 2. Planck believed that radiation is composed of energy bundles only in the vicinity of the emitter and once emitted, the radiation energy spreads as waves.
- 3. There four postulates of Planck theory:
 - (a) The matter is composed of a large number of oscillating particles.

 These oscillators have different frequencies.
 - (b) The radiant energy which is emitted or absorbed by the blackbody is not continuous but discontinuous in the form of small discrete packets of energy and each such packet of energy is called a 'quantum'. In case of light, **the quantum** of energy is called a '**photon**'.
 - (c) The energy of each quantum is directly proportional to the frequency

 (f) of the radiation, the energy of the oscillations of atoms
 within molecules cannot have just any value; instead each
 has energy which is a multiple of a minimum value related
 to the frequency of oscillation by

$$E = hf = \frac{hc}{\lambda}$$

Where

- $h = 6.63 \times 10^{-34} \ J \cdot s = 4.136 \times 10^{-15} \ eV \cdot m$ is the Planck's constant and E the energy of a particle;
- λ is the wavelength and f the frequency of the corresponding wave

$$hc = (6.63 \times 10^{-34} \ J \cdot s)(3.00 \times 10^8 \ m/s) = 1240 \ eV \cdot nm$$

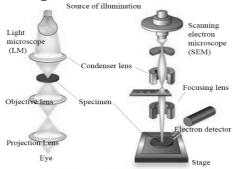
(d) The oscillator emits energy, when it moves from one quantized state to the other quantized state. The oscillator does not emit energy as long as it remains in one energy state. The total amount of energy emitted or absorbed by a body will be some whole number quanta.

Hence E = nhf

4.
$$E = hf = 6.63 \times 10^{-34} \times 4.69 \times 10^{14} = 3.11 \times 10^{-19} J$$

$$Number\ of\ quanta = \frac{1.3\times 10^{-2}}{3.11\times 10^{-19}} = 4.18\times 10^{16}$$

SOLUTION TO ACTIVITIES


ACTIVITY 1-1

- (a) The amplitude of the wave is 2.08 cm
- (b) The wavelength of the wave is 6 cm
- (c) Point A is called the trough.

ACTIVITY 1-3 (Page 16 In Student's Book)

٧	Т	Α	0	1	w	А	Т	х	0	W	0	0	D	R	0	р	5	5	E	А	5	U	р	Т	5
s	С	А	T	T	Ē	R	1	N	G	A	С	A	N	U	М	В	E	Р	Н	Х	D	E	E	Х	7
Α	М	х	Q	q	ï	y	р	Н	o	Т	0	D	1	5	1	N	Т	E	G	R	А	T	1	0	1
0	w		А	В	D	С	0	U	L	0	М	В	Ţ	С	L,	х	U	E	F	Д	C	Н	Р	L	1
E	L	E	С	T	R	0	N	А	т	E	p	U	1	0	N	1	р	D	5	Y	1	0	D	5	
S	х	1	N	С	٥	Н	E	R	Ε	N	Т	0	S	D	Q	Z	T	М	D	U	H	М	L		7
U	О	р	0	Т	5	M	L	E	р	R	0	D	U	С	T	Ė	0	N	U	5	0	5	F	X	
Д	1	N	т	E	R	А	С	Т	1.	0	N	L	T	Į.	Т	т	L	K	0	Т	s	0	х	D	Ī
0	5	М	C	О	5	U	N	М	0	D	1	F	1	Е	D	1	р	н	0	Т	0	N	Т	р	Г

ACTIVITY 1-4 (Page 21 In Student's Book)

MORE ACTIVITIES

Light of a set frequency is shone onto a plate of Sodium. Electrons are ejected towards to the top plate, which is connected to the negative of a variable power supply. The voltage is increased until the current decreases to zero, and the voltage was recorded. The frequency was changed and the experiment repeated.

The following results were obtained.

Frequency \times 10 ¹⁴ (Hz)	Stopping voltage (V)
5.3	0.45
6.9	1.0
7.75	1.3
8.25	1.6
9.9	2.4
11.9	3.15

- (a) Plot this experimental data for Sodium
- (b) Use your graph to determine values for Planck's constant, the Threshold Frequency and the Work Function for the metal.

SOLUTION TO EXERCISE 1.2

1.
$$E_{\rm rest} = mc^2$$

$$E_{\rm rest} = 9.11 \times 10^{-31} \text{ kg} \times (3.00 \times 10^8 \text{ m s}^{-1})^2$$

$$= 8.2 \times 10^{-14} \text{ J}.$$

2. Energy in eV is energy in joules divided by $1.6 \times 10^{-19} \, \text{J/eV}$

$$E = \frac{8.2 \times 10^{-34} J}{1.60 \times 10^{-19} J/eV} = 0.51 MeV$$

- 3. 0.51 MeV since electrons and positrons have identical mass.
- $4.\ \ 1.02\ MeV.\ Two\ particles, each\ of\ rest\ energy\ 0.51\ MeV, are\ annihilated.$
- $5.\ \, 0.51$ MeV each. The two photons share the total 1.02 MeV.
- 6. 1.02 MeV. The photon has to create the rest energy of two particles, each 0.51 MeV.
- 7. Approximately 10⁴ pairs. Each pair requires approximately

$$1 MeV = 1 \times 10^6 \ eV$$
 and $10 GeV = 10 \times 10^9 \ eV$ is available.

MORE ACTIVITIES

1. Clearly analyzing the images of Fig.1-4, answer the questions that follow;

Fig.1.4. Behavior of light

- (a) When particles hit a surface, what do you expect to see? (Bounce, reflection)
- (b) When particles enter a surface, what do you expect to see? (They slow down, change direction, etc)
- (c) Can you visualize reflection and refraction as particles?
- (d) If in a dark room there is a single bulb on the wall and we put a partition in front of the light, will the room be completely dark behind the partition?
- (e) What happens in the light bulb case? How is the light spread in the room? Can light (travelling in a straight line) bend around the partition?
- (f) If you imagine waves of light, how would you explain this (think of waves of water)?
- (g) Now what is your conclusion about the theory of light?

SOLUTION TO ACTIVITIES

- (a) We see reflection and/or refraction.
- (b) They slow down or move faster depending on the nature of the surface and they then change direction.
- (c) Yes, if the partition is big then we can see the room completely dark. If this partition is small the room will not be completely dark behind the partition.
- (d) In the light bulb case, light spreads out in all directions like particles being emitted out. It spreads in the room by disturbance that reads to the transfer of energy form a point to a point. Yes. Light can bend around the partition.

ANSWER TO END OF UNIT QUESTION

- 1. Answer: $E = 3.07 \times 10^{-19} \text{ J}, f = 4.57 \times 10^{14} \text{ Hz}$
- 2. $1.6 \times 10^{30} \, s^{-1}$ [Hint number of photons = $\frac{\text{energy/unit time}}{\text{energy/photon}}$
- 3. Phenomenalike interference, laws of refraction, reflection, simultaneous refraction and reflection, double refraction etc can be explained on the basis of this theory.

According to Huygens, theory, the velocity of light in denser medium is less than velocity of light in a rarer medium as was experimentally proved by Foucault.

[Note: for rest of the questions see notes]

Simple Harmonic Motion

KNOW THIS

A lot of things in nature repeat themselves over and over again as time passes. Think of an example like our own planet orbiting the sun. Every 365 days it completes a single revolution around the sun. It's been doing this for millions of years, and will continue to do it on the same schedule for millions of years. There are many interesting facts of simple harmonic motion in our everyday life of which learners should know.

Key unit competence

By the end of the unit the learner should be able to analyze energy changes in simple harmonic motion.

Unit description

We have already studied the most common types of motion in level four: linear and rotational motion. We developed the concepts of work, energy, and momentum for these types of motion. To complete our study of classical mechanics we must finally examine the complicated case of oscillations. Unlike the other types of motion we have studied, oscillations generally do not have constant acceleration, are many times chaotic and require far more advanced mathematics to handle. As such, we give a complete treatment to the subject as possible, concentrating on the kinds of oscillations that are easiest to examine. This unit covers;

- 2.1 Kinematics of Simple Harmonic Motion
- $2.2\qquad \hbox{Equation of Simple Harmonic motion}$
- 2.3 Solution of a Simple Harmonic motion equation
- 2.4 Simple Harmonic oscillators
 - 2.4.1 Simple Pendulum
 - 2.4.2 Mass on a Coil Spring
 - 2.4.3 Torsion Pendulum
 - 2.4.4 Compound pendulum
 - 2.4.5 Liquid in a U-tube

- 2.5 Kinetic and Potential energy of an oscillating system
- 2.6 Energy changes in an oscillating system
- 2.7 Energy conservation in oscillating systems
- 2.8 Superposition of harmonics of same frequency and same direction
- 2.9 Superposition of harmonics of same frequency and opposite direction

Summary of knowledge, skills, attitudes and values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes.

Knowledge	Skills	Attitudes and value
Explain kinematics	Distinguishkinematics	Appreciate the impor-
and simple harmonic	and simple harmonic	tance of simple har-
motion	motion	monic motion in life.
Describe examples of	Analyse examples of	Acquirescientificrea-
simpleharmonicoscil-	simple harmonic mo-	soning and attitude
lators.	tion oscillators.	forinterpretingsimple
		harmonic motion.
Explaintheequations	Derive equations of	Acquire aptitude to
ofsimpleharmonicmo-	simple harmonic mo-	logically and system-
tion.	tion.	aticallypursuesimple
		harmonic motion situ-
		ations
Explainenergychange	Analyseenergychang-	Adaptscientificmeth-
and conservation in os-	esandconservationin	odofthinkingapplica-
cillating systems.	oscillating systems.	ble in all areas of life.
Explainsuperposition	Analysesuperposition	Acquireknowledgefor
of harmonics of same	of harmonics of fre-	analysing and model-
frequency.	quency.	lingphysicalprocesses.
		Enjoyobservingbodies
		undergoingsimplehar-
		monic motion

Learning objectives

By the end of this lesson, learners will be able to;

- determine the periodic time of an oscillating mass by practically and by calculation accurately.
- derive and apply the equation of simple harmonic motion correctly
- determine the periodic time of the simple pendulum correctly.

SCOPE AND SEQUENCE

This unit will be delivered in 17 lessons each of 40 minutes.

Unit 2: Simple Harmonic motion			
Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson should cover: Kinematics of Simple Harmonic Motion	This lesson should cover: Equation of Sim- ple Harmonic motion and its solution	This lesson should cover: Simple Pendu- lum	This lesson should cover: Determination of acceleration due to gravity using a simple pendu- lum bob
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson should cover: Mass on a Coil Spring	This lesson should cover: Assessment 1	This lesson should cover: Determination of acceleration due to gravity using a spiral spring.	This lesson should cover: Torsion Pendu- lum
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson should cover: Compound pen- dulum	This lesson should cover: Liquid in a U-tube	This lesson should cover: Kinetic and Potential energy of an oscillating system	This lesson should cover: Assessment 2
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson should cover: Energy changes in an oscillating system	This lesson should cover: Energy conservation in oscillating systems	This lesson should cover: superposition of harmonics of same frequency and same direction	This lesson should cover: superposition of harmonics of same frequency and opposite direction
Lesson 17 This lesson should cover: assessment 3		,	

LESSON DEVELOPMENT

Lesson 1	Title: Kinematics of Simple Harmonic Motion
Learning objectives	By the end of this lesson, practically and by calculations learners will be able to determine the periodic time of an oscillating mass accurately.
Key words	Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity
Cross-cutting issues to discuss	Gender, peace and values
Competence developed	Critical thinking, Creativity and innovation, Communication, Co-operation, interpersonal management and life skills, science and technology
Attention to special educational need children	Special attention is given to gifted and talented learners and those with visual, physical and developmental impairments.
Lesson 2	Title: Equation of Simple Harmonic motion and its solution
Learning objectives	By the end of this lesson, by derivation and calculations, learners will be able to derive and apply the equation of simple harmonic motion correctly.
Key words	Equation of simple harmonic equation, solution of simple harmonic equation
Cross-cutting issues to discuss	Gender equality, peace and values
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life skills, numeracy
Attention to special educational need children	Since the lesson involves a number of calculations, special attention is needed for learners with hearing impairment and gifted and talented learners.
Lesson 3	Title: Simple Pendulum
Learning objectives	By the end of this lesson, by derivation and calculations, learners will be able to determine the periodic time of the simple pendulum correctly.

Key words	Simple Pendulum, bob, acceleration due to gravity, periodic time	
Cross-cutting issues to discuss	Gender equality, peace and values	
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life skills, numeracy	
Attention to special educational need children	This lesson is more practical, so special attention is needed for learners with physical and developmental impairments.	
Lesson 4	Title: Determination of acceleration	
	due to gravity using a simple pendu-	
	lum bob	
Learning objectives	By the end of this lesson, practically using a simple pendulum, learners will be able to determine acceleration due to gravity correctly.	
Key words	Acceleration due to gravity, simple pendulum, periodic time	
Cross-cutting issues to discuss		
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life skills, numeracy, innovation and creativity.	
Attention to special	This lesson is more practical, so special	
educational need children	attention is needed for learners with	
Lesson 5	physical impairments. Title: Mass on a Coil Spring	
	Title: Mass on a Coil Spring	
Learning objectives	By the end of this lesson, by derivation and calculations, learners will be able to calculate the periodic time of an oscillation of spring properly.	
Key words	Spring, mass, periodic time, simple harmonic motion	
Cross-cutting issues to discuss	Gender, pace and values	
Competence developed	Critical thinking, communication, cooperation, numeracy	
Attention to special educational need children	Special attention is given to learners with developmental impairment.	

Lesson 6	Title: Assessment 1	
Learning objectives	By the end of this assessment, using	
	knowledge and skills gained from lesson 1	
	to lesson 5, learners will be able to relate	
	the content with the real life experiences.	
Key words	Periodic Time, Frequency, Amplitude,	
	Angular velocity, Linear acceleration,	
	Linear velocity, Equation of simple	
	harmonic motion, Simple Pendulum,	
Cross-cutting issues to discuss	Gender equality, peace and values.	
Competence developed	Critical thinking, problem solving.	
Attention to special	Printed papers should be given to make it	
educational need children	easy for learners with visual impairment	
	to read.	
Lesson 7	Title: Determination of acceleration	
	due to gravity using a spiral spring.	
Learning objectives	By the end of this lesson practically,	
	learners will be able to derive the	
	expression of periodic time of a oscillation	
	accurately.	
Key words	Periodic time, spring, acceleration due to	
	gravity, the mass	
Cross-cutting issues to discuss	Gender, peace and values	
Competence developed	Critical thinking, Communication, Co-	
	operation, interpersonal management	
	and life skills, numeracy, innovation and	
	creativity.	
Attention to special	This lesson is more practical, so special	
educational need children	attention is needed for learners with	
T 0	physical and developmental impairments.	
Lesson 8	Title: Torsion Pendulum	
Learning objectives	By the end of this lesson by derivation	
	and calculations, learners will be able to	
	calculate the periodic time of an oscillating	
17 1	torsion pendulum accurately.	
Key words	Torsion pendulum, moment of inertia,	
	periodic time	

Cross-cutting issues to discuss	Gender, peace and values	
Competence developed	Critical thinking, Communication, Co-	
	operation, interpersonal management	
	and life skills, numeracy	
Attention to special	Special attention is needed for learners	
educational need children	with physical and developmental	
	impairments.	
Lesson 9	Title: Compound pendulum	
Learning objectives	By the end of this lesson, by derivation	
	and calculations, learners will be able to	
	calculate the periodic time of an oscillating	
	compound pendulum accurately.	
Key words	Rigid body, compound pendulum, periodic	
	time.	
Cross-cutting issues to discuss	Gender, peace and values	
Competence developed	Critical thinking, Communication, Co-	
	operation, interpersonal management	
	and life skills, numeracy	
Attention to special	Special attention is needed for learners	
educational need children	with physical and developmental	
	impairments.	
Lesson 10	Title: Liquid in a U-tube	
Learning objectives	By the end of this lesson, by derivation	
	and calculations, learners will be able to	
	calculate the periodic time of an oscillating	
	liquid in a U-tube accurately.	
Key words	U-shaped tube, Excess pressure, Newton's	
	Second law of motion, periodic time	
Cross-cutting issues to discuss	Gender, peace and values	
Competence developed	Critical thinking, Communication, Co-op-	
	eration, interpersonal management and	
	life skills, numeracy	
Attention to special educa-	Special attention is needed for learners	
tional need children	with physical and developmental impair-	
T 44	ments.	
Lesson 11	Title: Kinetic and Potential energy of	
	an oscillating system	

Learning objectives	By the end of this lesson, by calculations
	and derivations, learners will be able to
	determine the values of kinetic energy
	and potential energy of an oscillating par-
	ticle accurately.
Key words	Kinetic energy and potential energy.
Cross-cutting issues to	Gender, peace and values, environment
discuss	and sustainability.
Competence developed	Critical thinking, communication, cooper-
	ation, interpersonal management and life
	skills, numeracy, literacy.
Attention to special educa-	Special attention is paid to gifted and tal-
tional need children	ented learners and learners with develop-
	mental and physical impairments.
Lesson 12	Title: Assessment 2
Learning objectives	By the end of this assessment using
	knowledge and skills gained from lesson 7
	to lesson 11, learners will be able to relate
	the content with the real life experiences.
Key words	Periodic time, torsion pendulum, rigid
	body, compound pendulum, U-shaped
	tube, Kinetic energy and potential energy.
Cross-cutting issues to discuss	Gender, peace and values.
Competence developed	Critical thinking, problem solving.
Attention to special educa-	Printed papers should be given to make it
tional need children	easy for learners with visual impairment
	to read.
Lesson 13	Title: Energy changes in an oscillat-
	ing system
Learning objectives	By the end of this lesson, by derivation
	and using real life examples learners will
	be able to explain energy changes in an
	oscillating system clearly.
Key words	Energy changes and Energy conservation
Cross-cutting issues to discuss	Environment and sustainability.

Attention to special educational need children	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy. Special attention is paid to gifted and talented learners and learners with	
educational need children	developmental and physical impairments.	
Lesson 14	Title: Energy conservation in	
	oscillating systems	
Learning objectives	By the end of this lesson, using examples, learners will be able to explain the principle of conservation of energy clearly.	
Key words	Conservation of energy	
Cross-cutting issues to discuss	Environment and sustainability.	
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy.	
Attention to special	Special attention is given to gifted and	
educational need children	talented learners and learners with developmental impairment	
Lesson 15	Title: superposition of harmonics of	
	same frequency and same direction	
Learning objectives	By the end of this lesson, using derivation and calculations learners will be able to calculate the displacement of the resultant oscillation of harmonics of the same frequency and same direction correctly.	
Key words	Superposition, harmonics, displacement, frequency.	
Cross-cutting issues to discuss	Environment and sustainability	
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy.	
Attention to special educational need children	Special attention is given to gifted and talented learners, and learners with developmental impairment	

Lesson 16	Title: superposition of harmonics of same frequency and opposite	
	direction	
Learning objectives	By the end of this lesson, using derivation and calculations, learners will be able	
	to calculate the displacement of the resultant oscillation of harmonics of the	
	same frequency and opposite directions correctly.	
Key words	Superposition, harmonics, displacement,	
	frequency.	
Cross-cutting issues to discuss	Environment and sustainability	
Competence developed	Critical thinking, communication,	
	cooperation, interpersonal management	
	and life skills, numeracy, literacy.	
Attention to special	Special attention is given to gifted and	
educational need children	talented learners, and learners with	
	developmental impairment	
Lesson 17	Title: Assessment 3	
Lesson 17 Learning objectives	By the end of this assessment using	
	By the end of this assessment using knowledge and skills gained from lesson 1	
	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences.	
	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude,	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration,	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple harmonic equation, Simple Pendulum, the	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple harmonic equation, Simple Pendulum, the bob, acceleration due to gravity, periodic	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple harmonic equation, Simple Pendulum, the bob, acceleration due to gravity, periodic time, periodic time, Spring, torsion	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple harmonic equation, Simple Pendulum, the bob, acceleration due to gravity, periodic time, periodic time, Spring, torsion pendulum, moment of inertia, rigid body,	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple harmonic equation, Simple Pendulum, the bob, acceleration due to gravity, periodic time, periodic time, Spring, torsion pendulum, moment of inertia, rigid body, compound pendulum, U-shaped tube,	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple harmonic equation, Simple Pendulum, the bob, acceleration due to gravity, periodic time, periodic time, Spring, torsion pendulum, moment of inertia, rigid body, compound pendulum, U-shaped tube, Excess pressure, Second Newton's law of	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple harmonic equation, Simple Pendulum, the bob, acceleration due to gravity, periodic time, periodic time, Spring, torsion pendulum, moment of inertia, rigid body, compound pendulum, U-shaped tube, Excess pressure, Second Newton's law of motion, Kinetic energy, potential energy.	
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences. Periodic Time, Frequency, Amplitude, Angular velocity, Linear acceleration, Linear velocity, Equation of simple harmonic equation, solution of simple harmonic equation, Simple Pendulum, the bob, acceleration due to gravity, periodic time, periodic time, Spring, torsion pendulum, moment of inertia, rigid body, compound pendulum, U-shaped tube, Excess pressure, Second Newton's law of	

Cross-cutting issues to discuss	Gender, peace and values.	
Competence developed	Critical thinking, problem solving.	
Attention to special educa-	Printed papers should be clear to make it	
tional need children	easy for learners with visual impairment	
	to read.	

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Simple Harmonic Motion: Any motion that repeats itself with equal time intervals is called periodic motion with the force F acting on an object is directly proportional to the displacement x from a fixed point and is always towards this point.

Periodic Time is the time taken for the particle to complete one oscillation.

Frequency is defined as how many oscillations occur in one second.

$$f = \frac{1}{T}$$

Amplitude is the maximum displacement of the particle from its resting position.

Angular velocity (ω): is the rate of change of angular displacement with time.

$$\omega = \frac{2\pi}{T}$$

Linear velocity (v): is the rate of change of linear displacement with time.

$$v = \pm \omega \sqrt{A^2 - x^2}$$

Linear acceleration of a particle is the rate of change of linear velocity of that particle with time.

$$a = -\omega^2 x$$

The **equation of simple harmonic** motion is derived based on the conditions necessary for simple harmonic motion;

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

Solution of a Simple Harmonic motion equation;

$$x(t) = A\sin(\omega t + \Phi)$$

A simple pendulum executes S.H.M and its period is given by;

$$T = 2\pi \sqrt{\frac{L}{g}}$$

The extension of the spiral spring (caused by attached mass 'in') which

obeys Hooke's law is directly proportional to the extending tension. The periodic time of oscillation caused by releasing the mass is given by;

$$T = 2\pi \sqrt{\frac{m}{k}}$$
 (Where k is spring constant)

In a torsion pendulum, an extended body is suspended by a light wire and is rotated about the wire about the axis of rotation to execute a simple harmonic motion with period;

$$T = 2\pi \sqrt{\frac{I}{K}}$$

Where I is moment of inertia of the rod and K is the spring constant

For a **Compound pendulum**, any rigid body suspended from a fixed support constitutes a physical pendulum that oscillates with a periodic time given by;

$$T = 2\pi \sqrt{\frac{I}{Mgd}}$$

Where *I* is the rotational inertia of pendulum about axis is suspension M is pendulum mass, is distance between suspension point and centre of mass, g is acceleration due to gravity.

Any compound pendulum behaves like a simple pendulum if its effective length is equal to;

$$l = \frac{1}{Md}$$

A U-shaped tube is filled with a liquid and liquid on one side of a U-tube is depressed by blowing gently down that side, the level of the liquid will oscillate and execute simple harmonic motion with period given by;

$$T = 2\pi \sqrt{\frac{h}{g}}$$

Kinetic energy of an oscillating object is given by;

$$K.e = \frac{1}{2}m\omega^2 A^2 - \frac{1}{2}m\omega^2 x^2$$

The potential energy of the oscillating object is given by;

$$P.e. = \frac{1}{2}m\omega^2 x^2$$

The total energy of any oscillating object is always constant and is given by;

$$E = \frac{1}{2}m\omega^2 A^2$$

Superposition of harmonic oscillations always gives the displacement of the

resultant wave equal to the sum of individual displacements.

SOLUTION OF A SIMPLE HARMONIC MOTION EQUATION

To solve the equation of simple harmonica motion in the student's book, we need to find the auxiliary quadratic equation (A.Q,E).

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

To find the solution, assume that , then;

$$\frac{dx}{dt} = pe^{pt}$$

$$\frac{d^2x}{dt^2} = p^2e^{pt}$$

Substituting the above expressions in the equation of S.H.M gives;

$$p^{2}e^{pt} + \omega^{2}e^{pt} = 0$$

$$(p^{2} + \omega^{2})e^{pt} = 0$$

$$p^{2} + \omega^{2} = 0$$
..... Equation 2-1

Equation 2-1 is an A.Q.E and its solution is;

$$p = \pm \sqrt{-1} \times \omega$$

 $p = \pm \sqrt{-1} \times \omega$ From here we introduce the operator $; \sqrt{-1} = i$

$$\therefore p = \pm i\omega$$
 Equation 2-2

The general solution of the equation of simple harmonic motion is;

$$x(t) = C_1 e^{p_1 t} + C_2 e^{p_2 t}$$

Where C_1 and C_2 are constants.

$$x(t) = C_1 e^{j\omega t} + C_2 e^{-j\omega t}$$

$$x(t) = C_1 (\cos \omega t + j\sin \omega t) + C_2 (\cos \omega t - j\sin \omega t)$$

$$x(t) = C_1 \cos \omega t + jC_1 \sin \omega t + C_2 \cos \omega t - jC_2 \sin \omega t$$

Assume
$$x(t) = C_1 \cos \omega t + C_2 \cos \omega t + jC_1 \sin \omega t - jC_2 \sin \omega t$$

$$x(t) = (C_1 + C_2)\cos \omega t + j(C_1 - C_2)\sin \omega t$$
Equation 2-3

$$K_1 = C_1 + C_2 = A \sin \Phi$$
 Equation 2-4
$$K_2 = j(C_1 - C_2) = A \cos \Phi \text{ QUATION 2-3 WILL GIVE}$$

 $\therefore A \sin \Phi \cos \omega t + A \cos \Phi \sin \omega t$

Adding these two equations gives

$$\Rightarrow x(t) = A\cos(\omega t + \Phi)$$
 Equation 2-5

Equation 2-5 is the expression of amplitude of oscillation.

It is possi $A = \sqrt{(K_1^2 + K_2^2)}$ ent of the particle to start from the maximum point. So displacement takes the form;

..... Equation 2-6

So our assumptions will be;

$$\Rightarrow x(t) = A\sin(\omega t + \Phi) \qquad \qquad \text{Equation 2-7}$$

Torsion Pendulum

In a torsic $K_1 = C_1 + C_2 = A\cos\Phi$ ded body is suspended by a light wire. The body $K_2 = i(C_1 - C_2) = -A\sin\Phi$ as the axis of rotation. The upper end of the wire remains fixed with the support and the lower end of the wire is rotated through an angle with the body, thus a twist θ is produced in the wire.

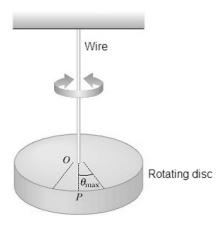


Fig.2-1; Torsional pendulum

Any twisting of the wire is inevitably associated with mechanical deformation. The wire resists such deformation by developing a restoring torque. The twisted wire exerts a restoring torque on the body to bring it back to its original position i.e. $\theta = 0$.

The restoring torque is proportional to the angle of deformation. This is valid for small angles;

$$\tau_1 \alpha \theta$$
 Equation 2-8 $\tau_1 = -K\theta$

Where and is called the torsion constant or torque constant.

The rotational equation of rotational motion is;

$$\tau_2 = I\alpha$$
 Equation 2-9

Where is the moment of inertia of the disc and is angular acceleration of the system. Driving and restoring torque are equal but act in opposite direction.

$$\therefore -K\theta = I\alpha$$

$$\alpha = -\frac{K}{I}\theta$$
 Equation 2-10

But and are constants.

$$\alpha = \frac{d^2\theta}{dt^2} = -\frac{Mgd}{I}\theta$$

This means that torsion pendulum executes simple harmonic motion.

So, comparing equation 2-12 in student's book and equation 2-10 n this guide gives; $\omega^2 = \frac{K}{L}$

$$\omega = \sqrt{\frac{K}{r}}$$

$$\frac{2\pi}{T} = \sqrt{\frac{K}{I}}$$

$$T = 2\pi \sqrt{\frac{I}{K}}$$

..... Equation 2-11

Equation 2-11 is an expression for the periodic time of the torsion pendulum. Compound pendulum $\,$

Any rigid body suspended from a fixed support constitutes a physical pendulum. The motion of such a system can be followed very nearly in the same way as that of a simple pendulum. The distance of the center of mass of the body from the fixed suspension point acts as the effective length of the pendulum and the total mass being the mass of the particle situated at the center of the body. This system can now be treated in exactly the same way as a simple pendulum.

Consider an extended body of mass M with a hole drilled through it. Suppose that the body is suspended from the peg which passes through the hole such it is free to swing from side to side as shown on Fig.2-2. The setup is known as a compound pendulum.

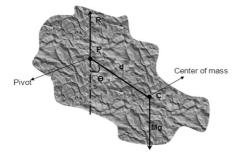


Fig.2-2; Compound pendulum

The restoring torque acting on the body when rotated through an angle θ is given by;

$$\tau_1 = -Mgd\sin\theta$$
 Equation 2-12

For small angles measured in radians;

$$\sin \theta = \theta$$

$$\tau_1 = -Mgd\theta$$

..... Equation 2-13

The negative sign means that restoring torque opposes the driving torque. The driving torque is given by equation 2-9. Then equating equation 2-9 and equation 2-13 gives;

$$I\alpha = -Mgd\theta$$

$$\alpha = -\left(\frac{Mgd}{I}\right)\theta$$
 Equation 2-14

Where $\frac{Mgd}{I}$ is constant. Which means that a compound pendulum executes simple harmonic motion.

Comparing equation 2-12 in student's book and equation 2-14 derived in this guide will give;

$$\omega^{2} = \frac{Mgd}{I}$$

$$\omega = \frac{2\pi}{T} = \sqrt{\frac{Mgd}{I}}$$

$$T = 2\pi \sqrt{\frac{I}{Mgd}}$$
...... Equation 2-15

Comparing equation 2-11 and equation 2-15, we conclude that a compound pendulum behaves like a simple pendulum with an effective length;

$$l = \frac{I}{Md}$$
Equation 2-40

SOLUTIONS OF EXERCISE 2-1

1.(a)
$$a = \frac{F}{m} = \frac{0.05 N}{0.1 kg} = 0.5 m \cdot s^{-2}$$
 for 100 g read as 0.1 kg

(b)
$$s = \omega^2 s$$
 and $\omega = \frac{2\pi}{T}$

so
$$T = 2\pi \sqrt{\frac{A}{a}} = 2\pi \sqrt{\frac{20 \times 10^{-3} m}{0.5 m.s^{-2}}} = 1.3 s$$

2.
$$x = A \sin \omega t$$

$$v = A\omega \cos \omega t$$

$$a = -\omega^2 A \sin \omega t$$

$$P = mv = mA\omega \cos \omega t$$

$$F = ma = -m\omega^2 A \sin \omega t$$

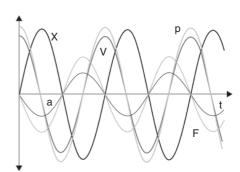


Fig.2-1; Wave forms

3. (a)
$$A = 8.00 \text{ cm}$$
 $\omega = 0.250 \text{ Hz}$
 $x = A \sin(\omega t + \Phi)$

$$v = A \omega \cos(\omega t + \Phi)$$

A at
$$t = 0$$
, $v = 1.24 \text{ m/s}$

This gives
$$\phi = \cos^{-1}(\frac{1.24}{0.25 \times 8}) = 0.669 \ rad$$

$$x = A\sin(0.25t + 0.669)$$

$$v = 2\cos(0.5\pi t + 0.469\pi)$$

(b) Initial displacement is the value of x at t = 0 $x_0 = 8\cos 0.669 = 6.28 \ cm$

SOLUTIONS OF EXERCISE 2-2

1. (a)
$$x = \frac{F}{x} = \frac{mg}{x} = \frac{5.0 \text{ kg} \times 10 \text{ N kg}^{-1}}{500 \text{ N m}^{-1}} = 0.1 \text{ m}$$

(b)
$$\omega = \frac{2\pi}{T} \text{ and } T = 2\pi \sqrt{\frac{m}{k}}$$

So $\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{500 \text{ Nm}^{-1}}{5.0 \text{ kg}}} = 10 \text{ rad s}^{-1}$

(c) The time taken from maximum displacement to equilibrium position

is
$$t = \frac{T}{4}$$

as $T = \frac{2\pi}{\omega} = \frac{2\pi}{10 \ rad \cdot s^{-1}}$ hence $t = \frac{T}{4} = \frac{2\pi}{4 \times 10 \ rad \cdot s^{-1}} = 0.16 \ s$
(d) $v_{\text{max}} = 2\pi f A = \omega A = 10 \ \text{rad s}^{-1} \times 0.10 \ \text{m} = 1.0 \ \text{m s}^{-1}$

With two unknowns, this requires the use of simultaneous equations. Initially

$$T = 2\pi \sqrt{\frac{l}{g}} = 4.2 \, s$$

When the length is shorter

$$2\pi \sqrt{\frac{l-1.0 \text{ m}}{g}} = 3.7 \text{ s.}$$

Dividing one equation by the other

$$\frac{\sqrt{\frac{l}{g}}}{\sqrt{\frac{l-1.0 \text{ m}}{g}}} = \frac{4.2 \text{ s}}{3.7 \text{ s}}.$$

This gives $\frac{l}{l-1.0 \text{ m}} = \left(\frac{4.2}{3.7}\right)^2 = 1.29$

$$l = 1.29(l - 1.0 \text{ m}) = 1.29l - 1.29 \text{ m}$$

and 0.29l = 1.29 m

so
$$l = \frac{1.29 \text{ m}}{0.29} = 4.5 \text{ m}.$$

f) Since $T = 2\pi \sqrt{\frac{l}{g}}$

f) Since
$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$g = \frac{4\pi^2 l}{T^2} = \frac{4\pi^2 (4.5 \, m)}{(4.2 \, s)^2} = 10 \, m \, s^{-2}$$

2. Simple harmonic oscillators work because the force acts in the opposite direction to the displacement. As the pendulum moves away from the area immediately below the peg it is hanging on, the force no longer acts in the opposite direction to the displacement.

3. Assumption:- the angular displacement is very small.

$$g = \frac{4\pi^2 l}{T^2} = \frac{4\pi_2 \times 0.75}{1.7357} = 9.8281 m/s^2$$

4.

5. $g = (2\pi f)^2 l = (2\pi)^2 (0.819)^2 (0.371) = 9.824 m/s^2$ $\therefore \frac{A}{2} = A \cos \phi$ $\cos \phi = \frac{1}{2}$ $\phi = 60^\circ$ $-\frac{1}{2}A = A \cos(\omega t + 60^\circ) \Leftrightarrow -\frac{1}{2} = \cos(\omega t + \frac{\pi}{3})$ $-\frac{2\pi}{T}t + \frac{\pi}{3} = \frac{2\pi}{3} \Leftrightarrow t = \frac{T}{6} = \frac{12}{6} = 2 s$ equilibrium

1 2

6.

Fig.2-2; Helical springs

$$\begin{split} L_0 &= 500 \; mm = 0.5 \; m \\ L_1 &= 850 \; mm = 0.85 \; m \\ m_1 &= 250g = 0.25 \; kg \\ m_2 &= 0.5 \; kg \\ x_{1\text{max}} &= 120 \; mm = 0.12 \; m \\ x_{2\text{max}} &= ? \end{split}$$

$$A_2 = ?$$

From hooke's law,

$$F = kx$$
 and frequency, $f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$

(a) spring constant

$$ke = mg$$

 $e = L_1 - L_0 = 0.85 - 0.5 = 0.35 m$

$$k = \frac{mg}{e} = \frac{0.25 \times 9.8}{0.35} = 7N/m$$

- (b) See notes
- (c) Amplitude: If the spring is pulled down by 120 mm, $x_{\rm 1max} = 0.12 \; m$
- (d) Frequency and period (does not depend upon amplitude)

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{7}{0.250}} = 0.84 \ Hz$$

$$T_1 = \frac{1}{f_1} = 1.2 s$$

(e)
$$e_2 = \frac{mg}{k} = \frac{0.5 \times 9.8}{7} = 0.7 m$$

 $L_2 = e_2 + L_0 = 0.7 + 0.5 = 1.2 m$

(f)
$$T_1 = 2\pi \sqrt{\frac{m_1}{k}}$$
 and $T_2 = 2\pi \sqrt{\frac{m_2}{k}}$

$$\frac{T_2}{T_1} = \sqrt{\frac{m_2}{m_2}} = \sqrt{\frac{0.500}{0.250}} = \sqrt{2} = 1.4$$

SOLUTIONS TO ACTIVITIES

Opening question

In each case, when the mass is displaced and then released, it will move up and down. In other words, it will oscillate. This oscillatory motion is periodic and displacement keeps reducing until the mass returns to its rest position.

MORE ACTIVITIES

1. This aim of this activity is to determine the period of Oscillation of a bifilar suspension

Required materials

Two retort stands/clamps/bosses, two metre rulers, stop watch, two lengths of cotton thread (about 50 cm).

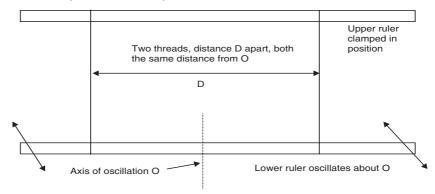


Fig.2-3; Bifilar suspension

Procedure

- (a) Set up the apparatus as shown above with two lengths of thread of equal lengths (approximately 30 cm). Do not tie the threads too tightly as you will need to vary the distance **D** during the experiment.
- (b) Set the distance D = 60 cm between the two threads.
- (c) Set the lower ruler into oscillation in such a way that it oscillates about a vertical axis at O.
- (d) Use your stop-watch to record the time **t** for 10 complete oscillations. Calculate the time **T** for one oscillation.
- (e) Repeat procedures 2 to 4 for values of D = 55, 50, 45, 40, 35 cm.
- (f) Record your results in a suitable table including the values of $\log T$ and $\log D$.
- (g) Plot a graph of log T against log D
- (h) Calculate the gradient, **m** and calculate the value **c** of $\log T$ for $\log D = 0$.
- (i) The period of a bifilar suspension is expected to be given by an

equation of form: $T = aD^b$

Where $\mathbf{a} = \mathbf{a}$ constant that depends on the other physical properties of the set up (e.g. the mass of the lower rule).

- (j) Express the above equation (in procedure 9) as $\log T = b.z + p$.
- (k) Calculate the values of **a** and **b**.
- 2. This activity aims at determining the acceleration due to gravity

Required materials

Spring, tall retort stand/clamp, set of 100g masses with holder, long pin, small piece of plasticine, stop watch, one metre rule.

Procedures

(a) Hang the spring vertically from a stand and attach the optical pin pointer onto the end of the spring using a small piece of plasticine. Clamp the metre rule vertically next to the spring as shown below:

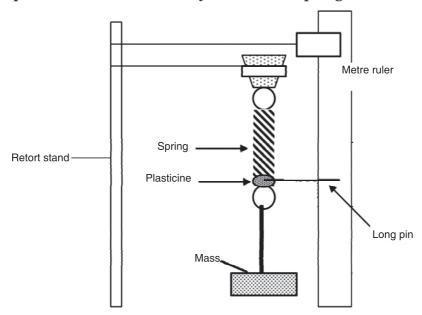


Fig.2-4; Oscillation of a mass on spring

- (b) Note the initial level **A** of the optical pin against the rule.
- (c) Hang a mass, $m = 200 \ kg$ and then note the new pin level **B** and so calculate the spring extension, x in metres.
- (d) Now displace this mass from its equilibrium position and release.

Measure the time **t** for **10** oscillations.

- (e) Finally calculate the period **T** for one oscillation.
- (f) Repeat stages 3 to 5 for the values of $m = 0.300 \ kg$, $0.400 \ kg$, $0.500 \ kg$, $0.600 \ kg$, $0.700 \ kg$
- (g) Tabulate your results in a suitable table including the values of T^2 .
- (h) Plot the following graphs:
 - (i) Graph 1: mass, m against extension, x.
 - (ii) Graph 2: T^2 against m.

Both graphs should be on different graph papers.

- (i) Calculate the slope G₁ of Graph 1.
- (j) Calculate the slope G₂ of Graph 2.
- (k) Calculate the value of acceleration due to gravity g from $g = \frac{4\pi^2}{G_1G_2}$
- (1). The extension, x caused by a mass, \mathbf{m} of weigh mg are related by: mg = kx. Find the value of k.
- (m) (i) How, if at all, would your graphs and results be different if you were to perform this experiment on the moon?
 - (ii) Show how the expression $g=\frac{4\pi^2}{G_1G_2}$ is obtained from $T=2\pi\sqrt{\frac{m}{k}}$ and mg=kx

ANSWERS OF END OF UNIT QUESTIONS

1.a) By comparing this equation with General equation for simple harmonic motion: $x = A\cos(\omega t + \varphi)$

We see that A=4.00~m , and $\omega=\pi~rad/s$. Therefore, $f=\frac{\pi}{2\pi}=0.500~Hz$ and $T=\frac{1}{f}=2~s$

(b)
$$x = (0.400 \text{ m})\cos(\pi t + \frac{\pi}{4}) \Rightarrow v = \frac{dx}{dt} = -4.00\pi \sin(\pi t + \frac{\pi}{4})$$

 $a = \frac{dv}{dt} = -4.00\pi^2 \cos(\pi t + \frac{\pi}{t})$

(c) Noting that the angles in the trigonometric functions are in radians, we obtain, at t = 1.00 s,

$$x = (4.00 \text{ m})\cos(\pi + \frac{\pi}{t}) = -2.83 \text{ m}$$

$$v = -(4.00 \text{ m})\pi \sin(\pi + \frac{\pi}{t}) = 8.89 \text{ m/s}$$

$$a = -(4.00 \text{ m})\pi^2 \cos(\pi + \frac{\pi}{t}) = 27.9 \text{ m/s}^2$$

(d) In the general expressions for v and a found in part (b), we use the fact that the maximum values of the sine and cosine functions are unity. Therefore, v varies between to and a varies between -4.00π m/s to $+4.00\pi$ m/s

Thus,
$$v_{\text{max}} = 4.00\pi = 12.6 \text{ m/s}$$
 and $a = 4.00\pi^2 = 39.5 \text{ m/s}^2$

We obtain the same results using $v_{\rm max}=\omega A$ and $a_{\rm max}=\omega^2 A$ where. A=4.00~m, and $\omega=\pi~rad/s$

- (e) The x coordinate at $t = 1.00 \, s$ is $x_i = (4.00 \, m) \cos \frac{\pi}{4} = 2.83 \, m$ In part (c), we found that the xcoordinate $t = 1.00 \, s$ is $x_f = (4.00 \, m) \cos(\pi + \frac{\pi}{t}) = -2.83 \, m$; therefore, the displacement between $t = 0 \, s$ and $t = 1.00 \, s$ is $\Delta x = x_f - x_i = -5.66 \, m$
- (f) $\Delta x = -5.66 \ m$
- 2. (a) 1.26s

(b) $0.25 \, m/s$

(c) $1.25 \ m/s^2$

(d) $-(1.25m/s)^2\cos 5.00t$

3. (a)
$$F = kx \iff k = \frac{F}{x} = 200 \text{ N/m}$$

(b)
$$\omega = 2\pi f = \sqrt{\frac{g}{l}} \Leftrightarrow l = \frac{g}{4\pi^2 f^2} = \frac{9.81}{4\pi^2 (0.5)^2} = 0.994$$

4. Solving Equation of period for the length gives

$$T = 2\pi \sqrt{\frac{l}{g}} \iff l = \frac{gT^2}{4\pi^2} = \frac{9.80 \times 1^2}{4\pi^2} = 0.248 \ m$$

Thus, the meter's length would be slightly less than one fourth its current length

- 5. (a) Period decreases. (b) Period increases. (c) No change.
- 6. No, the equilibrium position of the pendulum will be shifted (angularly) towards the back of the car. The period of oscillation will increase

slightly, since the restoring force (in the reference frame of the accelerating car) is reduced.

7.
$$T = 2\pi \sqrt{\frac{l}{g}} \Leftrightarrow g = \frac{4\pi^2 l}{T^2} = \frac{4\pi^2 (75.00 \times 10^{-2} \text{ m})}{(1.7357 \text{ s})^2} = 9.81 \text{ m/s}^2$$

UNIT 2

Forced Oscillations and Resonance of a System

KNOW THIS

This unit involves derivation of expressions using the knowledge of differential equations. It is better to remind the learners that they should apply the knowledge gained in mathematics —differential equations and trigonometry- in this unit.

Key unit competence

By the end of this the unit learner should be able to analyze the effects of forced oscillations on systems.

Unit Description

This unit involves writing trigonometric differential equations of different systems and finding their solutions. This unit requires learners to have the mathematical knowledge of differential equations of the first and second order. The unit will deeply deal with

- 3.0 Introduction
- 3.1 Damped oscillations
- 3.2 Equation of Damped oscillations
- 3.3 The solution of equation of damping
- 3.4 Types of damped oscillations
 - 3.4.1 Under damping oscillation
 - 3.4.2 Over damped oscillation
 - 3.4.3 Critically damped oscillation
- 3.5 Natural frequency of a vibration and forced oscillation
- 3.6 Equation of forced oscillation and its solution
- 3.7 Variation of forced frequency on graph at amplitude close to natural frequency of vibration
- 3.8 Resonances
- 3.9 Applications and examples of resonance in everyday life
 - 3.9.1 A washing machine
 - 3.9.2 Breaking the glass using the voice

- 3.9.2 Breaking the bridge
- 3.9.3 Musical instruments
- 3.9.4 Tuning circuit
- 3.9.5 Microwave ovens
- 3.9.6 Magnetic Resonance Imaging (MRI)
- 3.10 Effect of resonance on a system

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Define damping	Perform experiments to demonstrate damping of oscillating systems	Appreciate applications of damped oscillators in life
Outline types of damped oscillations	Analyse damped oscillators.	Acquire scientific attitudes for interpreting the resonance
Explain examples of damped oscillators	Analyse natural vibration and forced oscillation	Acquire ability to systematically analyse cases of simple harmonic motion
Explain natural vibration and forced oscillation	Analyse graphically forced oscillations	Acquire knowledge for analysing and modelling physical processes
Describe resonance and give examples	Describe graphically the variation of forced oscillations	
	Describe resonance and give examples	
	Describe applications of resonance	

Learning objectives

By the end of this unit learners will be able to

- explain the concept of oscillating systems and relate it to the real life situations.
- solve equations of different types of damped oscillations and derive the expression for displacement for each.
- explain resonance, state its conditions and explain its applications in everyday life.

SCOPE AND SEQUENCE

This unit will be delivered in 17 lessons each of 40 minutes.

Unit 3: Forced oscillations and resonance of a system			
Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Introduction	damped	Equation	The solution
	oscillators	of damped	of equation of
		oscillations	damping and
			under damping
			oscillation
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Over damped	Assessment 1	Damping	Equation of
oscillation		Activity	forced oscillation
and Critically		Natural	
damped		frequency of	
oscillation		a vibration	
		and forced	
		oscillation.	
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Solution of the	Variation of	Condition for	Assessment 2
equation of	forced frequency	resonance	
forced oscillation	on graph at		

	amplitude close to natural frequency and resonance		
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Applications	Applications	Applications	Effect of
of resonance:	of resonance;	of resonance;	resonance on
A washing	Breaking the	Microwave	systems
machine,	bridge, Musical	ovens, Magnetic	
Breaking the	instruments	Resonance	
glass using the		Imaging (MRI)	
voice			
Lesson 17			
This lesson			
should cover:			
Assessment 3			

LESSON DEVELOPMENT

Lesson 1	Title: Introduction
Learning objectives	By the end of this lesson, using examples, learners will be able to explain the concept of oscillating systems clearly.
Key words	Oscillations, oscillatory systems, guitar string, bridges, swing
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy
Attention to special educational need children	Special attention is given to gifted and talented learners and learners with any impairment

Lesson 2	Title: Damped oscillators.
Learning objectives	By the end of this lesson, using real life examples, learners will be able to explain applications of oscillating systems in everyday life properly.
Key words	Irreversible energy loss, Damping, Shock Absorber, Electrical Meters, musical instrument, paper cone, loud speaker
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy
Attention to special educational need children	Special attention is given to gifted and talented learners and learners with developmental impairment
Lesson 3	Title: Equation of Damped oscillations
Learning objectives	By the end of this lesson, by derivations and using calculations, learners will be able to derive the differential equation of damped oscillations accurately.
Key words	differential equation, auxiliary quadratic equation, damped angular frequency
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy
Attention to special educational need children	Special attention is given to gifted and talented learners and learners with developmental impairment

Lesson 4	Title: The solution of equation of damping; under damping oscillation
Learning objectives	By the end of this lesson, by derivation and calculation, learners will be able to solve the equation of damped oscillations and derive the expression for displacement for under-damped oscillation accurately.
Key words	natural damping
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy.
Attention to special	Special attention is given to gifted and
educational need children	talented learners and learners with developmental impairment
Lesson 5	Title: Over damped oscillation and
	Critically damped oscillation
Learning objectives	By the end of this lesson, by derivation and calculation, learners will be able to solve the equation of damped oscillations and derive the expression for displacement for over-damped and critically damped oscillation accurately.
Key words	Over damping, critical damping, decay constant, damping coefficient
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy.
Attention to special educational need children	Special attention is given to gifted and talented learners and learners with developmental impairment

Lesson 6	Title: Assessment 1	
Learning objectives	By the end of this assessment, using knowledge and skills gained from lesson 1 to lesson 5, learners will be able to relate the content with the real life experiences.	
Key words	Oscillations, oscillatory systems, guitar string, bridges, swing, irreversible energy loss, Damping, Shock Absorber, Electrical Meters, musical instrument, paper cone, loud speaker, differential equation, auxiliary quadratic equation, damped angular frequency, natural damping, Over damping, Critically damped, decay constant, damping coefficient	
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability	
Competence developed	Critical thinking, problem solving.	
Attention to special educational need children	Printed papers should be used to make it easy for learners with visual impairment to read.	
Lesson 7	Title: Natural frequency of a vibration and forced oscillation.	
Learning objectives	By the end of this lesson, learners will be able to analyse damping and theoretically explain natural frequency of a vibration and forced oscillation clearly.	
Key words	mean value, oscillator, uncertainty	
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability	
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy.	

Attention to special educational need children	Special attention is given to gifted and talented learners and learners with developmental impairment
Lesson 8	Title: Equation of forced oscillation
Learning objectives	By the end of this lesson learners will be able to derive the differential equation of forced oscillation.
Key words	Natural frequency, forced oscillation, restoring force
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy.
Attention to special educational need children	Special attention is paid to gifted and talented learners, and learners with developmental impairment
Lesson 9	Title: Solution of the equation of forced oscillation
Learning objectives	By the end of this lesson learners will be able to solve the differential equation of forced oscillation.
Key words	homogeneous equation , steady state solution, displacement
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy
Attention to special educational need children	Special attention is given to gifted and talented learners and learners with developmental impairment

Lesson 10	Title: Variation of forced frequency on graph at amplitude close to natural frequency
Learning objectives	By the end of this lesson, using real life examples, learners will be able to explain the variation of forced frequency and amplitude of oscillation and theoretically explain the concept of resonance accurately.
Key words	forced frequency and natural frequency of vibration, amplitude, applied force, resonance
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy.
Attention to special educational need children	Special attention is paid to gifted and talented learners and learners with developmental impairment
Lesson 11	Title: Condition for resonance
Learning objectives	By the end of this lesson, by derivation, learners will be able to state the condition of resonance clearly.
Key words	Maximum amplitude, condition for resonance
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy
Attention to special educational need children	Special attention is paid to gifted and talented learners, and learners with developmental impairment

Lesson 12	Title: Assessment 2
Learning objectives	By the end of this assessment, using knowledge and skills gained from lesson 6 to lesson 11, learners will be able to relate the content with the real life experiences.
Key words	mean value, oscillator, uncertainty, natural frequency, forced oscillation, restoring force, homogeneous equation , steady state solution, displacement, resonance
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, problem solving
Attention to special educational need children	Printed papers should be used to make it easy for learners with visual impairment to read.
Lesson 13	Title: Applications of resonance: A washing machine, Breaking the glass using the voice
Learning objectives	By the end of this lesson, using theoretical principles, learners will be able to explain the applications of resonance in real life clearly.
Key words	washing machine
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy.
Attention to special educational need children	Special attention is given to gifted and talented learners, and learners with developmental impairment

Lesson 14	Title: Applications of resonance; Breaking the bridge, Musical instruments
Learning objectives	By the end of this lesson, using theoretical principles, learners will be able to explain the applications of resonance in real life clearly.
Key words	Bridge, Musical instruments
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy
Attention to special educational need children	Special attention is given to gifted and talented learners, and learners with developmental impairment
Lesson 15	Title: Applications of resonance; Microwave ovens, Magnetic Resonance Imaging (MRI)
Learning objectives	By the end of this lesson, using theoretical principles, learners will be able to explain the applications of resonance in real life clearly.
Key words	Microwave ovens, Magnetic Resonance Imaging (MRI)
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy
Attention to special educational need children	Special attention is given to gifted and talented learners and learners with developmental impairment

Lesson 16	Title: Effect of resonance on a system
Learning objectives	By the end of this lesson, using real life examples, learners will be able to explain the effects of resonance on systems clearly.
Key words	Resonance
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, communication, cooperation, interpersonal management and life skills, numeracy, literacy
Attention to special educational need children	Special attention is given to gifted and talented learners and learners with developmental impairment
Lesson 17	Title: Assessment 3
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 16, learners will be able to relate the content with the real life experiences.
Key words	Damping, shock absorber, electrical meters, damped angular frequency, natural damping, over damping, critical damping, decay constant, damping coefficient, natural frequency, forced oscillation, applications of resonance
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking, problem solving
Attention to special educational need children	Printed papers should be provided to make it easy for learners with visual impairment to read.

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Damping is a dissipating force that is always in the opposite direction to the direction of motion of the oscillating particle and is represented by equation;

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$$

The solution of this equation depends on the type of damping, given as

For Under-damping oscillation: $x(t) = e^{-\frac{b}{2m}t}(C_1\cos\omega_d t + C_2\sin\omega_d t)$

For Over damped oscillation: $x(t) = e^{-\frac{b}{2m}t}(C_1e^{\omega_d t} + C_2e^{-\omega_d t})$

For Critically damped oscillation: $x(t) = e^{-\frac{bt}{2m}}(C_1 + C_2 t)$

The **natural frequency** of an object is the frequency of oscillation when released. e.g. a pendulum.

A forced oscillation is where an object is subjected to a force that causes it to oscillate at a different frequency than its natural frequency. It is represented by differential equation:

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_0\cos\omega t$$

Resonance occurs when an object capable of oscillating, has a force applied to it with a frequency equal to its natural frequency of oscillation. Resonance occurs when angular frequency of oscillation is related to natural angular frequency according to equation;

$$\omega = \sqrt{{\omega_0}^2 - \gamma^2}$$

In real life, resonance is applied in;

- A washing machine
- Breaking the glass using the voice
- Breaking the bridge
- Musical instruments
- Tuning circuit
- Microwave ovens
- Magnetic Resonance Imaging (MRI)

ANSWER TO END OF UNIT QUESTIONS

1.
2.
$$y = 3\cos 5t + 2\sqrt{3}\sin 5t = 0$$

2. $y = 3\cos 5t + 2\sqrt{3}\sin 5t = 0$
2. $y = 3\cos 5t + 2\sqrt{3}\sin 5t = 0$
3. $y = 3\cos 5t = 0$

3.
$$y = -5\cos\left(\frac{t}{2}\right) - 10\sin\left(\frac{t}{2}\right)$$
, $\omega_0 = \frac{1}{2}$, $A = 5\sqrt{5}$, $\Phi = \pi + \tan^{-1}2$

4.
$$A = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega_e^2)^2 + 4\delta^2 \omega_e^2}}$$
 with $c = 2\delta m = 0$, $A = \pm \frac{F_0}{m(\omega_0^2 - \omega_e^2)}$
Thus $\omega_e^2 = \omega_0^2 \pm \frac{F_0}{mA} = \frac{k}{m} \pm \frac{F_o}{mA} = \frac{6.30}{0.150} \pm \frac{1.70}{0.150 \times 0.44}$

This yields: $\omega_e = 8.23 \, rad \, / \, s$ or. $\omega_e = 8.23 \, rad \, / \, s$

Then $f_e = \frac{\omega_e}{2\pi}$ gives either $f_e = 1.31 \, Hz$ or $f_e = 0.641 \, Hz$

5. The frequency if undamped would be

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{2.05 \times 10^4}{10.6}} = 44.0 \ rad \ / \ s$$

With damping:

$$\omega_d = \sqrt{\omega_o^2 - (\frac{c}{2m})^2} = \sqrt{44.0^2 - (\frac{3}{2 \times 10.6})^2} = 44.0 \text{ rad / s}$$

$$f = \frac{\omega_d}{2\pi} = \frac{44.0}{2\pi} = 7.0 \text{ Hz}$$

6. Equation of forced oscillation: $\ddot{x} + 2\delta \ddot{x} + \omega_o^2 x = \frac{F_e}{m} \cos \omega_e t$ The damping constant: $\delta = \frac{c}{2m} = \frac{0.5}{2 \times 0.5} = 0.5 \ rad / s$

The amplitude of resonant

$$A_{r} = \frac{F_{e}}{m\sqrt{(\omega_{o}^{2} - \omega_{e}^{2})^{2} + (2\delta\omega_{e})^{2}}} = \frac{F_{e}}{2m\delta\omega_{o}} = \frac{F_{e}}{c\omega_{o}} = \frac{0.1}{0.5\sqrt{\frac{50}{0.5}}} = 0.02 m$$

7. Equation of forced oscillation: $\ddot{x} + 2\delta \ddot{x} + \omega_o^2 x = \frac{F_e}{m} \cos \omega_e t$ The damping constant: $\delta = \frac{b}{2m} = \frac{0.5}{2 \times 0.5} = 0.5 \ rad \ / \ s$ The amplitude of resonant

$$A_r = \frac{F_e}{m\sqrt{(\omega_o^2 - \omega_e^2)^2 + (2\delta\omega_e)^2}} = \frac{F_e}{2m\delta\omega_o} = \frac{F_e}{c\omega_o} = \frac{0.1}{0.5\sqrt{\frac{50}{0.5}}} = 0.02 m$$

UNIT

Propagation of Mechanical Waves

KNOW THIS

The term wave is clearly understood as the disturbance that leads to the transfer of energy from one point to another. This involves oscillation of individual molecules and atoms about fixed points and interchange of energy occurs between neighbouring molecules or atoms. This should be made clear to learners to avoid any misunderstanding. In a wave, the energy of a vibration is moving away from the source in the form of a disturbance within the surrounding medium.

Key unit competence

By the end of the unit the learner should be able to evaluate the propagation of mechanical waves.

Unit description

This unit involves many derivations and graph representation. Clear demonstrations are needed to make learners clearly understand the content. This unit deals with:

- 4.0 Introduction
- 4.1 The concept of waves
- 4.2 Terms used and characteristics of waves
- 4.3 Types of waves
 - 4.3.1 Mechanical waves
 - 4.3.2 Electromagnetic waves
- 4.4 Properties of waves
 - 4.4.1 Reflection
 - 4.4.2 Refraction
 - 4.4.3 Interference
 - 4.4.4 Diffraction
- 4.5 Young's double slit experiment
- 4.6 Wave on a vibrating string
- 4.7 Applications of waves

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Explain wave concept	Describe wave	Appreciate
	properties and their	applications of wave
	characteristics	interference in life
Explain the terms	Classify waves as	Recognize importance
amplitude, frequency	longitudinal and	of resonance in
displacement,	transverse, mechanical	designing musical
wavelength and wave	and electromagnetic	instruments
phase	waves	
Explain the terms	Observe and describe	Appreciate the sound
transverse and	nodes and antinodes in	systems on the studio
longitudinal waves	stationary waves	
Explain the terms	Explain conditions	Appreciate application
progressive and	necessary for	of acoustics in a radio
stationary waves	interference to occur	studio
Explain phase of	Describe interference	Develop positive
vibration	fringes (constructive	attitude of curiosity,
	interference	honesty, respect for
	and destructive	evidence, perseverance
	interference)	and tolerance while
		solving wave related
		problems
Explain reflection,	Apply the equation	
refraction, diffraction	of two superimposed	
and interference of	progressive waves	
waves.		
Explain Young's		
double slit experiment		

Learning objectives

By the end of this unit, learners will be able to:

- explain the concept and characteristics of waves properly
- explain the types of waves properly
- derive and apply the progressive wave equation clearly

- analyse the superposition of harmonics of the same frequency clearly
- to analyse standing waves clearly
- analyse examples of mechanical waves properly
- explain the concept of electromagnetic waves
- explain the reflection of waves
- explain the refraction of waves
- explain interference of waves clearly
- explain the diffraction behaviour of waves clearly
- the positions of fringes on the screen accurately
- explain the behaviour of waves in vibrating strings and applications of waves properly

SCOPE AND SEQUENCE

This unit will be delivered in 17 lessons each of 40 minutes.

Unit 4: Propagation of Mechanical Waves			
Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Classroom	The concept of	Types of waves	Equation of a
demonstration	waves, Terms		progressive wave
	used and		
	characteristics		
	of waves		
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Principle of	Assessment 1	Stationary	Examples of
superposition		waves	mechanical waves
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Electromagnetic	Reflection of	Refraction of	Assessment 2
waves	waves	waves	

Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Interference of waves	Diffraction	Young's double slit experiment	Wave on a vibrating string and Applications of waves
Lesson 17			
This lesson			
should cover:			
Assessment 2			

LESSON DEVELOPMENT

Lesson 1	Title: Classroom Demonstration
Learning objectives	By the end of this lesson, practically,
	learners will be able to explain the
	concept of waves clearly.
Key words	Disturbance, propagation of waves,
	medium, groups, the concept of waves
Cross-cutting issues to	Gender, peace and values, environment
discuss	and sustainability
Competence developed	Critical thinking skills, research and
	problem-solving, creativity and
	innovation, communication, co-operation,
	interpersonal management and life
	skills, lifelong learning, literacy, use of
	ICT tools, science and technology
Attention to special	Special care should be given to learners
educational need children	with visual, intellectual, developmental,
	physical and hearing impairments and
	also gifted and talented learners.
Lesson 2	Title: The Concept of Waves, terms
	used and characteristics of waves

Learning objectives	By the end of this lesson, with examples, learners will be able to explain the terms, concept and characteristics of waves properly.
Key words	Concept of waves, period, frequency wavelength, wave speed, amplitude, phase difference, wave number, intensity, wavefront
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking skills, research and problem-solving, creativity and innovation, communication, co-operation, interpersonal management and life skills, lifelong learning, literacy, use of ict tools, science and technology.
Attention to special educational need children	Special care should be given to learners with visual, intellectual, developmental, physical and hearing impairments and also gifted and talented learners.
Lesson 3	Title: Types of Waves
Learning objectives	By the end of this lesson, using real life examples, learners will be able to explain the types of waves properly.
Key words	Mechanical waves, Progressive waves, Longitudinal waves, Transverse waves
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability
Competence developed	Critical thinking skills, research and problem-solving, creativity and innovation, communication, co-operation, interpersonal management and life skills, lifelong learning, literacy, use of ICT tools, science and technology.

Attention to special educational need children	Special care should be given to learners with visual, intellectual, developmental,
	physical, and hearing impairments and
	also gifted and talented learners.
Lesson 4	Title: Equation of a progressive wave
Learning objectives	By the end of this lesson, by derivation,
	learners will be able to derive and apply
	the progressive wave equation clearly.
Key words	Displacement, wave function
Cross-cutting issues to	Gender, peace and values, environment
discuss	and sustainability
Competence developed	Critical thinking skills, research and
	problem-solving, creativity and
	innovation, communication, co-operation,
	interpersonal management and life
	skills, lifelong learning, literacy, use of
	ICT tools, science and technology.
Attention to special	Special care should be taken of learners
educational need children	with visual, intellectual, developmental,
	physical and hearing impairments and
	also gifted and talented learners.
Lesson 5	Title: Principle of Superposition
Learning objectives	By the end of this lesson, by calculations
	learners will be able to analyse the
	superposition of harmonics of the same
	frequency clearly.
Key words	Displacement, superposition of
	harmonics
Cross-cutting issues to	Gender, peace and values, environment
discuss	and sustainability
Competences developed	Critical thinking skills, research and
	problem-solving, creativity and
	innovation, communication, co-operation,
	interpersonal management and life
	skills, lifelong learning, literacy, use of
	ICT tools, science and technology.

Attention to special	Special care should be given to learners
educational need children	with visual, intellectual, developmental,
	physical and hearing impairments and
	also gifted and talented learners.
Lesson 6	Title: Assessment 1
Learning objectives	By the end of this assessment, using
	knowledge and skills gained in
	previous lessons, learners will be able
	to relate the content with the real life
	experiences.
Key words	Concept of waves, period, frequency,
	wavelength, wave speed, amplitude,
	phase difference, wave number
	mechanical waves, progressive waves,
	longitudinal waves, transverse waves,
	superposition of harmonics
Cross-cutting issues to	Gender, peace and values, environment
discuss	and sustainability
Competence developed	Critical thinking, problem solving
Attention to special	Printed papers should be used to make it
educational need children	easy for learners with visual impairment
	to read.
Lesson 7	Title: Stationary Waves
Learning objectives	By the end of this lesson, using real
	life examples, learners will be able to
	analyse standing waves clearly.
Key words	Nodes, antinodes
Cross-cutting issues to	Gender, peace and values, environment
discuss	and sustainability
Competence developed	Critical thinking skills, research
	and problem-solving, creativity and
	innovation, communication, co-operation,
	interpersonal management and life
	skills, Lifelong learning, Literacy, use of
	ICT tools, science and technology.

Attention to special educational need children	Special care should be given to learners with visual, intellectual, developmental, physical and hearing impairments and also gifted and talented learners.	
Lesson 8	Title: Examples of Mechanical Waves	
Learning objectives	By the end of this lesson, theoretically and practically, learners will be able to analyse examples of mechanical waves properly.	
Key words	Sound waves, water waves, ocean waves, earthquake waves, body waves, surface waves	
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability	
Competence developed	Critical thinking skills, research and problem-solving, creativity and innovation, communication, co-operation, interpersonal management and life skills, lifelong learning, literacy, use of ICT tools, science and technology.	
Attention to special educational need children	Special care should be given to learners with visual, intellectual, developmental, physical and hearing impairments and also gifted and talented learners.	
Lesson 9	Title: Electromagnetic Waves	
Learning objectives	By the end of this lesson, using real life applications, learners will be able to explain the concept of electromagnetic waves clearly.	
Key words	Electric field, magnetic field	
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability	

Competence developed	Critical thinking skills, research and problem-solving, creativity and innovation, communication, co-operation, interpersonal management and life skills, lifelong learning, literacy, use of ICT tools, science and technology.	
Attention to special	Special care should be given to learners	
educational need children	with visual, intellectual, developmental, physical and hearing impairments and	
	also gifted and talented learners.	
Lesson 10	Title: Reflection of Waves	
Learning objectives	By the end of this lesson, using	
	mathematical proofs and drawings,	
	learners will be able to explain the	
	reflection behaviour of waves clearly.	
Key words	Wavefronts, laws of reflection	
Cross-cutting issues to	Gender, peace and values, environment	
discuss	and sustainability	
Competence developed	Critical thinking skills, research and	
	problem-solving, creativity and	
	innovation, communication, co-operation,	
	interpersonal management and life	
	skills, lifelong learning, literacy, use of	
	ICT tools, science and technology.	
Attention to special	Special care should be given to learners	
educational need children	with visual, intellectual, developmental,	
	physical and hearing impairments and	
-	also gifted and talented learners.	
Lesson 11	Title: Refraction of Waves	
Learning objectives	By the end of this lesson, using	
	mathematical proofs and drawings,	
	learners will be able to explain the	
77 1	refraction behaviour of waves clearly.	
Key words	Wavefronts, laws of refraction	
Cross-cutting issues to	Gender, peace and values, environment	
discuss	and sustainability	

Competences developed	Critical thinking skills, research and problem-solving, creativity and innovation, communication, co-operation, interpersonal management and life skills, lifelong learning, literacy, use of ICT tools, science and technology.	
Attention to special educational need children	Special care should be given to learners with visual, intellectual, developmental, physical and hearing impairments and also gifted and talented learners.	
Lesson 12	Title: Assessment 2	
Learning objectives	By the end of this assessment, using knowledge and skills gained in previous lessons, learners will be able to relate the content with the real life experiences.	
Key words	Nodes, antinodes, Electromagnetic waves, Examples of mechanical waves, Reflection of waves, Refraction of waves	
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability	
Competence developed	Critical thinking, problem solving	
Attention to special educational need children	Printed papers should be used to make it easy for learners with visual impairment to read.	
Lesson 13	Title: Interference of Waves	
Learning objectives	By the end of this lesson, using real life examples, learners will be able to explain interference of waves clearly.	
Key words	Constructive interference, destructive interference	
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability	

Competence developed	Critical thinking skills, research and problem-solving, creativity and innovation, communication, co-operation, interpersonal management and life skills, lifelong learning, literacy, use of ICT tools, science and technology.	
Attention to special educational need children	Special care should be given to learners with visual, intellectual, developmental, physical and hearing impairments and also gifted and talented learners.	
Lesson 14	Title: Diffraction	
Learning objectives	By the end of this lesson, using drawings and practical analysis, learners will be able to explain the diffraction behaviour of waves clearly.	
Key words	Fresnel's diffraction, Fraunhofer diffraction	
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability	
Competence developed	Critical thinking skills, research and problem-solving, creativity and innovation, communication, co-operation, interpersonal management and life skills, lifelong learning, literacy, use of ICT tools, science and technology.	
Attention to special educational need children	Special care should be given to learners with visual, intellectual, developmental, physical and hearing impairments and also gifted and talented learners.	
Lesson 15	Title: Young's Double Slit Experiment	
Learning objectives	By the end of this lesson, using calculations, learners will be able to locate the positions of fringes on the screen accurately.	
Key words	Fringe separation, slit separation	
Cross-cutting issues to discuss	Gender, peace and values, environment and sustainability	

Competences developed	Critical thinking skills, research and problem-solving, creativity and innovation, communication, co-operation, interpersonal management and life skills, lifelong learning, literacy, use of ICT tools, science and technology.	
Attention to special	Special care should be given to learners	
educational need children	with visual, intellectual, developmental,	
	physical and hearing impairments and	
	also gifted and talented learners.	
Lesson 16	Title: Wave on a Vibrating String	
	and Applications of Waves	
Learning objectives	By the end of this lesson, using	
	examples, learners will be able to	
	explain the behaviour of waves in	
	vibrating strings and applications of	
	waves properly.	
Key words	Waves in strings	
Cross-cutting issues to	Gender, peace and values, environment	
discuss	and sustainability	
Competence developed	Critical thinking skills, research and	
	problem-solving, creativity and	
	innovation, communication, co-operation,	
	interpersonal management and life	
	skills, lifelong learning, literacy, use of	
	ICT tools, science and technology.	
Attention to special	Special care should be given to learners	
educational need children	with visual, intellectual, developmental,	
	physical and hearing impairments and	
	also gifted and talented learners.	
Lesson 17	Title: Assessment 3	
Learning objectives	By the end of this assessment, using	
	knowledge and skills gained in all	
	lessons of the unit, learners will be able	
	to relate the content with the real life	
	experiences.	

Key words	The concept of waves, characteristics of	
	waves, Types of waves, wave equation,	
	Principle of superposition, Nodes,	
	antinodes, properties of waves, Young's	
	double slit experiment, Waves in strings	
Cross-cutting issues to	Gender, peace and values, environment	
discuss	and sustainability	
Competence developed	Critical thinking, problem solving	
Attention to special	Printed papers should be used to make it	
educational need children	easy for learners with visual impairment	
	to read.	

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Waves can be thought of as a disturbance in a medium that transfers energy from one place to another.

The **period** T of the wave is the time it takes for one wavelength of the wave.

The **frequency** f is the number of wavelengths that pass a point in space in one second.

The **wavelength** λ is the horizontal distance in space between two nearest points that are oscillating in phase

The **wave speed** v is the speed at which the wave advances.

Phase difference (phase angle) is the angular difference between two points on the wave or between two waves.

The **wave number** also called the **propagation number** k is the spatial frequency of a wave.

The **Intensity** of a wave or the power radiated by a source are proportional to the square of the amplitude.

Wavefront is a line or surface in the path of the wave motion on which the disturbance at every point have the same phase.

Mechanical waves are waves produced by the disturbance in a material medium.

A **progressive** wave consists of a disturbance moving from one point to another.

Longitudinal wave propagates through some medium in the direction of travel of the disturbance.

In **Transverse waves**, the direction of disturbance is perpendicular to the direction of travel of the wave.

Equation of a progressive wave is given by;

$$y_P = A \sin \left(\omega t - \frac{2\pi x}{\lambda} \right)$$

Principle of superposition states that the resultant displacement at any time is the vector sum of the individual displacements.

Stationary waves are waves which seem to be at rest.

The positions of nodes are $x = \frac{m\lambda}{4}$ where m = 1,3,5,7,9,...

The positions of antinodes are $x = \frac{n\lambda}{2}$ where n = 0,1,2,3,4,5,6,...

Electromagnetic waves are disturbances in form of varying electric and magnetic fields.

All kinds of waves reflect, refract, interfere and also spread around the obstacle.

Other than the superposition of waves meeting at a point, other **conditions** for interference are;

- The sources of the waves must be coherent, which means they emit identical waves with a constant phase difference.
- The waves should be monochromatic they should be of a single wavelength.

A **bright fringe** is obtained when the path difference is given by $x = \frac{n\lambda D}{a}$ where n = 0,1,2,3,4,...

A **dark fringe** is obtained when the path difference is given by $x = \frac{m\lambda D}{2a}$ where m = 1,3,5,7,...

SOLUTION TO ACTIVITIES

Class Demonstration

Possible Solutions

- (a) Their raised, then lowered, arms were the disturbance
- (b) up and down
- (c) around the circle
- (d) the push
- (e) around the ring
- (f) around the ring

Activity 4-1

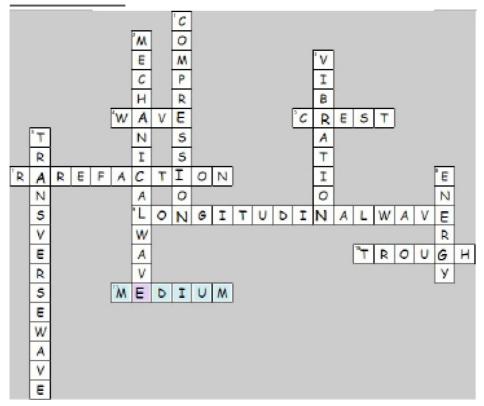
Conclusion

The student will hear a clear sound when the spoon is struck. The vibrations of the spoon propagate up the string and into the student's head. Bone, especially around the temples and outer ear, resonates readily in response to sound.

Note: The bone in front of your ear is the most resonant bone in the body, so it is ideal for transmitting vibrations and hearing sound. The vibrations from the spoon are transmitted easily through the string and your skull, which you hear as a sound.

Activity 4-2

Answer:


Across

- 1. speed
- 3. period
- 4. trough
- 9. mechanical
- 10. crest
- 11. photons
- 12. force
- 13. inertia

Down

- $2.\ electromagnetic$
- 5. reflection
- 6. medium
- 7. displacement
- 8. amplitude

Activity 4-3

ANSWERS OF END OF UNIT QUESTIONS

1. One method for producing a sinusoidal wave on a string. The left end of the string is connected to a blade that is set into oscillation. Every element of the string, such as that at point P, oscillates with simple harmonic motion in the vertical direction.

Using Angular frequency Equations, we find that

$$\omega = \frac{2\pi}{T} = 2\pi f = 2\pi (5.00) = 31.4 \ rad / s$$

Using **Speed of sinusoidal wave** Equations, we find that

$$k = \frac{\omega}{v} = \frac{4 \cdot .4}{2 \cdot .0} = 1.5 \quad rad/s$$

Because A = 12.0 cm = 0.120 m we have

$$y = A\sin(\omega t - kx) = (0.120)\sin(31.4t - 1.57x)$$

- 2. (a) amplitude: 3.0 mm, (b) Frequency: 60 Hz,
- (c) Wavelength: 2. 00 cm, (d) Speed:1.2 m/s, (e) period:0.017 s.
- 3. a) the nth resonance frequency: $f_n = nf_o = 252$

The next higher resonance frequency: $f_{n+1} = (n+1)f_0 = 336$

Solving equ (a) and (b) we get $\frac{n}{n+1} = \frac{252}{356} \Leftrightarrow n=3$

Hence the fundamental frequency is $f_o = \frac{f}{n} = \frac{252}{3} = 84 \text{ Hz}$

b) The wavelength of fundamental frequency $\lambda = 2L = 6 m$ The wave speed: $v = \lambda f = 6 m \times 256 Hz = 504 m/s$

The tension in the string;

$$v = \sqrt{\frac{T}{\mu}} \Leftrightarrow T = \mu v^2 = (0.0025 \text{ kg/m})(504 \text{ m/s}) = 635 \text{ N}$$

4. Fundamental frequency:

$$f_o = \frac{1}{2 \times 400 \times 10^{-3}} \sqrt{\frac{120 \times 400 \times 10^{-3}}{1.2 \times 10^{-3}}} = 250 \text{ Hz}$$

Third harmonic $f_2 = 3f_0 = 3 \times 250 \ Hz = 750 \ H$

5. (a) The wave number k, period T, angular frequency ω , and speed v of the wave are: $k = \frac{2\pi}{\lambda} = \frac{2\pi}{40.0} = 0.157 \ rad/cm$

$$T = \frac{1}{f} = \frac{1}{8.00} = 0.125 s$$
$$\omega = 2\pi f = 2\pi \times 8.00 = 50.3 \, rad/s$$

$$v = \lambda f = 40.0 \times 8.00 = 320 \, cm/s$$

(b) Because A = 15.0 cm and because y = 15.0 cm at x = 0 and t = 0, substitution into Equation 4.34 gives

$$y_m = A \sin(\omega t - kx + \phi) \Rightarrow 15.0 = 15.0 \sin \phi \Leftrightarrow \sin \phi = 1 \Leftrightarrow \phi = \frac{\pi}{2} rad$$

Hence the wave function is of the form:

$$y = A\sin(\omega t - kx + \frac{\pi}{2}) = A\sin(\omega t - kx + \frac{\pi}{2})$$

Substituting the values for A, k, and into this expression, we obtain

y = 1.5 sin(50.3t - 0.157 x +
$$\frac{\pi}{2}$$
) = 15.0 cos(50.3 t - 0.157 x)

Complex Electrical Circuit

KNOW THIS

Generally speaking, network analysis is any structured technique used to mathematically analyze a circuit (a "network" of interconnected components). Quite often the technician or engineer will encounter circuits containing multiple sources of power or component configurations which defy simplification by series/parallel analysis techniques. In those cases, he or she will be forced to use other means. This chapter presents a few techniques useful in analyzing such complex circuits. Mathematical techniques to solve for multiple unknowns (called "simultaneous equations" or "systems") can be applied to basic laws of circuits to solve networks.

Key unit competence

By the end of the unit, the learner should be able to construct and to analyze a complex electrical circuit.

Unit description

This unit deals with:

- 5.1 Kirchhoff's laws
- 5.2 Design of complex and simple electric circuits
- 5.3 Resistors and electromotive forces in series and parallel complex circuits.
- 5.4 Simple potentiometer circuits
- 5.5 Comparison of e.m.f.s
- 5.6 Measurement of internal resistance of a cell
- 5.7 Measurement of current by Potentiometer
- 5.8 Advantages and disadvantages of potentiometer

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes.

Knowledge	Skills	Attitudes and Values
State and explain	Carry out investigation	Appreciate application
Kirchhoff's laws.	on measurement of	of Kirchhoff's laws
	voltage and electrical	in designing complex
	current.	circuits.

Distinguish between simple and complex circuits.	Evaluate complex circuits using Kirchhoff's laws.	Enjoy applying Kirchhoff's laws in complex electrical circuits.
Identify mixture of parallel and series connections in complex circuit.	Analyze the electrical current flowing in a complex circuit.	Adapt scientific skills in analyzing complex circuits to avoid overloads.
Explain applications of Kirchhoff's laws to complex circuits.	Design complex electrical circuit.	
Outline measuring instruments for voltage and electrical current.	Perform an experiment using simple potentiometer circuits.	
Explain advantages and disadvantages of potentiometer.	Solve problems involving complex circuit and potentiometer.	

Learning objectives

By the end of this unit, learners should be able to:

- analyse complex electrical circuits well.
- use Kirchhoff's laws in circuit analysis accurately.
- analyse simple potentiometer circuits clearly.

SCOPE AND SEQUENCE

This unit will be taught in 17 lessons as distributed below;

Unit 5: Complex electrical circuit			
Lesson 1	Lesson 1 Lesson 2 Lesson 3 Lesson 4		
This lesson	This lesson This lesson This lesson		
should cover:	should cover:	should cover:	should cover:
Introduction	Kirchhoff's laws	Kirchhoff's	Kirchhoff's
		Current Law	Voltage Law

Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Uses of Kirchhoff's laws	Assessment 1	Design of complex and simple electric circuits	Applications of Kirchhoff's laws in circuit analysis
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson should cover: Simple potentiometer circuits	This lesson should cover: Comparison of e.m.f.s	This lesson should cover: Assessment 2	This lesson should cover: Measurement of internal resistance of a cell
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson should cover: Activity 2	This lesson should cover: Measurement of current by Potentiometer	This lesson should cover: Activity 3	This lesson should cover: Advantages and disadvantages of potentiometer
Lesson 17			
This lesson should cover: Assessment 3			

LESSON DEVELOPMENT

Lesson 1	Title: Introduction
Learning objectives	By the end of this lesson, with examples, learners will be able to define and calculate branch currents accurately.
Key words	complex circuit configuration, combination circuit, potential difference.

Cross-cutting issues to discuss	Gender, peace and values,
	standardization culture and
	environment for sustainability.
Competence developed	Critical thinking, creativity and
	innovation, research and problem-
	solving, ICT and science and
	technology
Attention to special educational	Special attention is given to
need children	learners with physical disabilities.
Lesson 2	Title: Kirchhoff's laws
Learning objectives	By the end of this lesson,
	practically learners will be able to
	analyse complex electrical circuits
	well.
Key words	Kirchhoff's Circuit Laws and Sign
	Conventions
Cross-cutting issues to discuss	Gender, Peace and Values
	Education
	Standardization Culture
Competence developed	Critical thinking, creativity and
	innovation, research and problem-
	solving, ICT and science and
	technology
Attention to special educational	Special attention is given to
need children	learners with physical disabilities,
	gifted learners and learners with
	developmental disabilities.
Lesson 3	Title: Kirchhoff's Current Law
Learning objectives	By the end of this lesson, using
	Kirchhoff's current law learners will
	be able to calculate loop currents
	and branch currents correctly.
Key words	Junction Rule, current, schematic
	diagram
	~-~ <u>9-</u> ~

Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Financial Education, Standardization Culture
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life skills and numeracy
Attention to special educational need children	Special attention is given to learners with Intellectual Challenges, Developmental Challenges, Speech and Communication Difficulties and Gifted and Talented
Lesson 4	Title: Kirchhoff's Voltage Law
Learning objectives	By the end of this lesson, using Kirchhoff's voltage law, learners will be able to analyse circuits loops and calculate voltage drops and branch currents correctly.
Key words	loop of a closed circuit, Kirchhoff's Loop Rule
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Financial Education, Standardization Culture
Competence developed	Critical thinking, creativity and innovation, cooperation, interpersonal management and life skills, communication, numeracy, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, gifted and talented learners

Lesson 5	Title: Uses of Kirchhoff's laws
Learning objectives	By the end of this lesson, using examples, learners will be able to list the use of Kirchhoff's laws in real life situations.
Key words	Uses of Kirchhoff's laws
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Financial Education, Standardization Culture
Competence developed	Critical thinking, Creativity and innovation, Cooperation, interpersonal management and life skills, communication, numeracy, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, gifted and talented learners
Lesson 6	Title: Assessment 1
Learning objectives	By the end of this assessment, using knowledge and skills gained in lessons 1 to 5, learners will be able to relate the content with the real life experiences.
Key words	complex circuit configuration, combination circuit, potential difference, Kirchhoff's Circuit Laws, sign conventions, current, schematic diagram, loop of a closed circuit, uses of Kirchhoff's laws
Cross-cutting issues to discuss	Environment and Sustainability, Gender, Peace and Values Education, Standardization Culture

Competence developed	Critical thinking, problem solving
Attention to special educational need children	Special attention is given to learners with visual difficulties, behavioural difficulties, emotional difficulties, learners with health challenges.
Lesson 7	Title: Design of complex and simple electric circuits
Learning objectives	By the end of this lesson, using different electrical components and theories, learners will be able to design complex electrical circuits properly.
Key words	series and parallel network of resistors, complex and simple electric circuits.
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture
Competence developed	Critical thinking, creativity and innovation, communication, cooperation, interpersonal management and life skills, science and technology.
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners.
Lesson 8	Title: Applications of Kirchhoff's laws in circuit analysis
Learning objectives	By the end of this lesson, by calculations learners will be able to use Kirchhoff's laws in circuit analysis accurately.

Key words	Branch currents, loop currents, voltage drops.
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture, Financial Education.
Competence developed	Critical thinking, Creativity and innovation, Research and problem-solving, Communication, Cooperation, interpersonal management and life skills, lifelong learning, ICT, entrepreneurship and business development, science and technology
Attention to special educational need children	Intellectual challenges, speech and communication difficulties, behavioural difficulties
Lesson 9	Title: Simple potentiometer circuits
Learning objectives	By the end of this lesson, by calculations and derivations, learners will be able to analyse simple potentiometer circuits clearly.
Key words	potential difference, voltage divider, the balance point
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture, Financial Education
Competence developed	Critical thinking, Creativity and Innovation Communication, Cooperation, interpersonal management and life skills, ICT, science and technology

Attention to special educational need children	Intellectual challenges, speech and communication difficulties, gifted and talented learners
Lesson 10	Title: Comparison of e.m.f.s
Learning objectives	By the end of this lesson, by calculations learners will be able to compare e.m.f.s accurately.
Key words	standard cell, e.m.f.s
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture, Financial Education
Competence developed	Critical thinking, creativity and innovation, Research and problem-solving, Communication, Cooperation, interpersonal management and life skills, ICT, entrepreneurship and business development, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication, gifted and talented learners
Lesson 11	Title: Assessment 2
Learning objectives	By the end of this assessment, using knowledge and skills gained in lessons 7 to 10, learners will be able to relate the content with the real life experiences.
Key words	series and parallel network of resistors, complex and simple electric circuits, Branch currents, loop currents, voltage drops, voltage divider, the balance point, standard cell, e.m.f.s

Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture, Financial Education
Competence developed	Critical thinking, problem solving
Attention to special educational need children	Special attention is given to learners with visual difficulties, behavioural difficulties, emotional difficulties, learners with health challenges
Lesson 12	Title: Measurement of internal
	resistance of a cell
Learning objectives	By the end of this lesson, by derivations and calculations, learners will be able to calculate and measure internal resistance of the cell accurately.
Key words	internal resistance, balance point
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture, Financial Education
Competence developed	Critical thinking, Creativity and innovation, Research and problem-solving, Communication, Cooperation, interpersonal management and life skills, ICT, entrepreneurship and business development, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication, gifted and talented learners

Lesson 13	Title: Activity 2
Learning objectives	By the end of this activity, practically using a potentiometer learners will be able to measure the e.m.f of an unknown cell accurately.
Key words	e.m.f of an unknown cell
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture, Financial Education
Competence developed	Critical thinking, Creativity and innovation, Research and problem-solving, Communication, Co-operation, interpersonal management and life skills, ICT, entrepreneurship and business development, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication, gifted and talented, difficulties in handling equipments
Lesson 14	Title: Measurement of current by Potentiometer
Learning objectives	By the end of this lesson, by derivations and calculations, learners will be able to calculate current in a potentiometer accurately.
Key words	Measurement of current, balance point

Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture, Financial Education
Competence developed	Critical thinking, Creativity and innovation, Research and problem-solving, Communication, Co-operation, interpersonal management and life skills, ICT, entrepreneurship and business development, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication, gifted and talented learners
Lesson 15	Title: Activity 3
Learning objectives	By the end of this activity, practically using a potentiometer learners will be able to measure the e.m.f of an unknown cell accurately.
Key words	e.m.f of an unknown cell
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education, Standardization Culture, Financial Education
Competence developed	Critical thinking, Creativity and innovation, Research and problem-solving, Communication, Co-operation, interpersonal management and life skills, ICT, entrepreneurship and business development, science and technology

Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication, gifted and talented, difficulties in handling equipments
Lesson 16	Title: Advantages and disadvantages of potentiometer
Learning objectives	By the end of this lesson, with examples learners will be able to list advantages and disadvantages of potentiometer well.
Key words	Potentiometer
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and problem-solving, Lifelong learning, Communication, Co-operation, interpersonal management and life skills, Literacy, Citizenship and national identity, entrepreneurship and business development
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication, gifted and talented learners
Lesson 17	Title: Assessment 3
Learning objectives	By the end of this assessment using knowledge and skills gained in lessons, 1 to 16 learners will be able to relate the content with the real life experiences.

Key words	complex circuit configuration,
	combination circuit, potential
	difference, Kirchhoff's laws
Cross-cutting issues to discuss	Environment and sustainability,
	Gender , Peace and Values
	Education, Standardization Culture,
	Financial Education
Competence developed	Critical thinking, problem solving
Attention to special educational	Special attention is given to
need children	learners with visual difficulties,
	behavioural difficulties, emotional
	difficulties, learners with health
	challenges

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Kirchhoff's laws

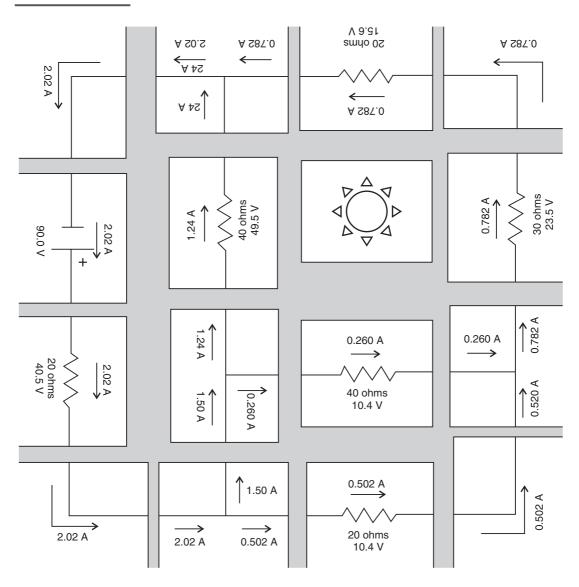
There are two Kirchhoff's laws:

Kirchhoff's Current Law states that "the algebraic sum of the currents flowing at a node or junction in an electric circuit is zero".

Kirchhoff's Voltage Law states that "the algebraic sum of the potentials around a closed electric circuit is zero".

To solve the resistor circuits using Kirchhoff's rules

- 1. Define the various currents
 - Can either define branch (segment) currents for each element in the circuit
 - Or can define loop currents for each loop in the circuit
- 2. If using branch currents, use Kirchhoff's Junction Rule to look for interdependent currents. This allows for reducing the number of variables being solved for.
- 3. Use Loop Rule to define voltage equations for each loop, using previously defined currents.
- 4. Solve set of simultaneous equations using algebraic manipulation.
 - A simple potentiometer is a device used for taking a number of electrical measurements. It is a piece of resistance wire, usually a meter long, fixed between two points A and B with a cell of output voltage, V, connected between the two ends


SOLUTIONS TO ACTIVITIES

Opening questions

- 1. The current outside the branches of a combination circuit is everywhere the same. The current inside the branches is always less than that outside of the branches. When comparing the current of two parallel-connected resistors, the resistor with the least resistance will have the greatest current. The current within a single branch will be the same above and below the resistor.
 - (a) The current at location A is **equal to** the current at location B.
 - (b) The current at location B is **greater than** the current at location E.
 - (c) The current at location G is **less than** the current at location F.
 - (d) The current at location E is **greater than** the current at location G.
 - (e) The current at location B is **greater than** the current at location F.
 - (f) The current at location A is **equal to** the current at location L.
 - (g) The current at location H is **less than** the current at location I.
- 2. The voltage drop across a resistor is dependent upon the current in the resistor and the resistance of the resistor. In situations in which the current is the same for both resistors (such as for series-connected resistors), the resistor with the greatest resistance will have the greatest voltage drop.
 - (a) The electric potential difference (voltage drop) between points B and C is **greater than** the electric potential difference (voltage drop) between points J and K.
 - (b) The electric potential difference (voltage drop) between points B and K is **greater than** the electric potential difference (voltage drop) between points D and I.
 - (c) The electric potential difference (voltage drop) between points E and F is **equal to** the electric potential difference (voltage drop) between points G and H.
 - (d) The electric potential difference (voltage drop) between points E and F is **equal to** the electric potential difference (voltage drop) between points D and I.

- (e) The electric potential difference (voltage drop) between points J and K is **greater than** the electric potential difference (voltage drop) between points D and I.
- (f) The electric potential difference between points L and A is **equal to** the electric potential difference (voltage drop) between points B and K.

Activity 5-1

Solution to Exercise 5.1

1.
$$\varepsilon = 1.12 V$$

2.
$$l = 67.2 cm$$

ANSWERS TO END OF UNIT QUESTION

4.
$$I_1 = \frac{1}{1100}A$$
, $I_2 = \frac{4}{275}A$, $I_3 = -\frac{3}{220}A$

$$I_2 = \frac{4}{275}A,$$

$$I_3 = -\frac{3}{220}A$$

5.
$$I_1 = 4.75 A$$
, $I_2 = -3.50 A$, $I_3 = 8.25 A$

$$I_{0} = -3.50 A$$

$$I_3 = 8.25 A$$

6.
$$I = 0.286 A$$

$$V = 11.44 V$$

7.
$$I = 2.5 A$$

8.
$$I_1 = \frac{26}{13}A$$

$$I_{2} = -1 A$$

$$I_3 = 1 A$$

9. We apply the loop rule to the three loops shown:

$$I_3 - I_1 - (I_1 - I_3) = 0$$

$$-I_2 - 2(I_2 + I_3) + 13 = 0$$

$$-I_1 - I_3 + I_2 = 0$$

Solving these equation we get: $I_1 = 6 A$, $I_2 = 5 A$, $I_3 = -1 A$

The total current through the network is $I_1 + I_2 = 1$ A and the potential drop across it is equal to the battery emf, 13 V. The equivalent resistance of the network is therefore

$$R_{eq} = \frac{13}{11} = 1.2 \,\Omega$$

$$V_{ab} = -4 \times 2 + 7 \times 1 = -1 V$$

10: We apply KVL to the three loops in turn.

For loop 1:
$$-24 + 10(i_1 - i_2) + 12(i_1 - i_3) = 0 \Leftrightarrow 11i_1 - 5i_2 - 6i_3 = 12$$
 a)

For loop 2:
$$24i_2 + 4(i_2 - i_3) + 10(i_2 - i_1) = 0 \Leftrightarrow -5i_1 + 19i_2 - 2i_3 = 0$$
 b)

For loop 3:
$$4i_0 + 12(i_3 - i_1) + 4(i_3 - i_2) = 0$$

But at node A, $i_0 = i_1 - i_2$ so that

$$4(i_1 - i_2) + 12(i_3 - i_1) + 4(i_3 - i_2) = 0 \Leftrightarrow -i_1 - i_2 + 2i_3 = 0$$
 c)

Solving these equations we get: $i_1 = 2.25 A$, $i_2 = 0.75 A$, $i_3 = 1.5 A$

thus
$$i_0 = i_1 - i_2 = 1.5 A$$

11. For loop:
$$-15 + 5i_1 + 10(i_1 - i_2) + 10 = 0 \Leftrightarrow 3i_1 - 2i_2 = 1$$
 a)

For loop 2: $6i_2 + 4i_2 + 10(i_2 - i_1) - 10 = 0 \Leftrightarrow i_1 - 2i_2 = -1$ (b)

Using the substitution method, we substitute Eq. (a) into Eq. (b), and we get:

$$I_1 = i_1 = 1 A$$
 $I_2 = i_2 = 1 A$ $I_3 = i_1 - i_2 = 0$

To use Cramer's rule, we cast Eqs. (a) and (b) in matrix form as

$$\begin{bmatrix} 3 & -2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

We obtain the determinants: $\Delta = \begin{vmatrix} 3 & -2 \\ 1 & -2 \end{vmatrix} = -4$

$$\Delta_1 = \begin{vmatrix} 1 & -2 \\ -1 & -2 \end{vmatrix} = -4 \qquad \Delta_2 = \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} = -4$$

Thus
$$i_1 = \frac{\Delta_1}{\Delta} = \frac{-4}{4} = 1 \ A$$
 $i_2 = \frac{\Delta_2}{\Delta} = \frac{-4}{4} = 1 \ A$

12. The 45.0 Ω and 15.0 Ω resistors are in parallel, so first reduce them to a single equivalent resistance. Then find the equivalent series resistance of the circuit.

$$R_{eq} = \frac{45.0 \times 15.0}{45.0 + 15.0} = 11.5 \,\Omega$$

The total equivalent resistance is

$$R_{eq} = 18.0 + 11.5 + 3.26 = 32.5 \Omega$$

Ohm's law gives
$$I = \frac{25.0}{32.5} = 0.769 \Omega$$

The circuit appears complicated until we realize that the 45.0 Ω and 15.0 Ω resistors are in parallel

Activity 5-2

- A. Parallel Circuit: A circuit with two or more branches for current to flow
 - B. Conductor: Material that electrons can move through
 - C. Electric Current: Flow of electrons through a conductor
 - D. Complex Circuit: Made up of series and parallel circuits
 - E. Switch: A device to break a circuit
 - F. Insulator: Poor conductor of electricity
 - G. Ampere: Unit for measuring rate of electron flow in a circuit
 - H. Electric Charge: Having too many or too few electrons
 - I. Battery: A temporary source of electric current
 - J. Power: Rate at which a device converts electrical energy to another form of energy
 - K. Circuit: Path of electric conductors
 - L. Static Electricity: Electric charge built up in one place
 - M. Electroscope: Device that detects electric charges
 - N. Resistance: Opposition to the flow of electricity
 - O. Series Circuit: Electric current where current flows through all parts of the circuit
 - P. Volt: Unit to measure Electric Potential

UNIT 6

Fossil and Non-fossil Fuel and Power Production

KNOW THIS

Fossil fuel power plants burn carbon fuels such coal, oil or gas to generate steam that drive large turbines to produce electricity. These plants can generate electricity reliably over long periods of time. However, on burning, carbon fuels produce large amounts carbon dioxide, which causes climate change. This unit explains the types of these fossil fuels and explains nonfossil fuels and how they are used in power production and in making atomic bombs. We should understand the need for this content and special attention is needed on how to avoid the negative results that may erupt when using these fuels.

Key unit competence

By the end the learner should be able to evaluate fossil and non fossil fuels for power production

Unit description

This lesson seems to be theoretical but is more comprehensive when real life examples are used. Fuels are used everywhere in our everyday activities. The teacher should allow learners to closely interact and grasp the necessary information that will help them understand the content. This unit discusses;

- 6.0 Introduction
- 6.1 Fossil fuels and Non fossil fuels
 - 6.1.1 Fossil fuels
 - 6.1.2 Non fossil fuels
- 6.2 Storage and transportation of different types of fossil fuels
 - 6.2.1 Coal
 - 6.2.2 Transporting Natural Gas and crude oil
- 6.3 Advantages and disadvantages of fossil fuels
- 6.4 Energy production using fossil fuels
- 6.5 Nuclear fuel and nuclear fission
- 6.6 Controlled fission (power production)
- 6.7 Uncontrolled fission (nuclear weapons)

- 6.8 Impacts of nuclear weapons
- 6.9 Energy transformations in a nuclear power station.
- 6.10 Problems associated with generation nuclear power
- 6.11 Environmental problems due to use of fossil fuels
- 6.12 Safety issues and risks associated with nuclear power.
 - 6.12.1 Nuclear Meltdown
 - 6.12.2 Nuclear (Radioactive) Wastes

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Outline historical and	Distinguish between	Appreciate that
geographical reasons	fossil fuel and non	industrialization
for use of fossil fuels	fossil fuel	requires larger
		deposits of fossil fuels
Explain energy density	Distinguish between	Be aware of moral
of fossil fuels and	controlled fission and	and ethical issues
power station demand	uncontrolled fission	associated with
		nuclear weapons
Discuss advantages	Evaluate advantages	Appreciate the need
and disadvantages	and disadvantages	to think scientifically
associated with the	associated with the	in producing nuclear
transportation and	transportation and	power
storage of fossil fuels	storage of fossil fuels	
State efficiency of	Estimate the rate of	Recognize the value of
power station fuelled	fuel consumption in	adapting to scientific
by fossil fuels	power stations	method of storing fossil
		fuels
Explain environmental	Apply knowledge	
problems associated	attained to identify	
with recovery of fossil	safety issues and risks	
fuels after use in	of nuclear power	
power stations		
Outline safety issues		
and risks of nuclear		
power		

Learning objectives

By the end of this lesson, learners should be able to:

- explain the concept of fossil and nn-fossil fuels and their use in power production properly.
- explain the differences between fossil and non-fossil fuels properly.
- discuss the use of nuclear fuel and nuclear fission in energy production and their associated dangers properly.
- explain the environmental problems of fossil fuels and suggest their solution clearly.

SCOPE AND SEQUENCE

This unit will be delivered in 18 lessons each of 40 minutes.

Unit 6: Fossil and non fossil fuel and power production			
Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Introduction	Fossil fuels and Non fossil fuels	Storage and transportation of different types of fossil fuels	Storage of coal
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Transportation of coal	Transporting Natural Gas and crude oil	Assessment 1	Advantages and disadvantages of fossil fuels
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Energy production using fossil fuels	Nuclear fuel and nuclear fission reaction	Controlled fission and uncontrolled fission reactions	Assessment 2

Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Impacts of	Energy	Problems	Environmental
nuclear weapons	transformations	associated with	problems of
	in a nuclear	the production of	fossil fuels
	power station	nuclear power	
Lesson 17	Lesson 18		
This lesson	This lesson		
should cover:	should cover:		
Safety issues and	Assessment 3		
risks associated			
with nuclear			
power			

LESSON DEVELOPMENT

Lesson 1	Title: Introduction
Learning objectives	By the end of this lesson, using real life examples, learners should be able to explain the concept of fossil and non-fossil fuels and their use in power production properly.
Key words	Fossil fuel , non-renewable energy
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Lifelong learning, Communication, Co-operation, interpersonal management and life skills
Attention to special educational need children	Intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented, emotional difficulties, behavioral difficulties, learners with health challenges

Lesson 2	Title: Fossil fuels and Non fossil fuels
Learning objectives	By the end of this lesson, using real life examples, learners should be able to explain the differences between fossil and no-fossil fuels properly.
Key words	Coal, Oil and natural gas
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 3	Title: Storage and transportation of different types of fossil fuels
Learning objectives	By the end of this lesson, using real life examples, learners should be able to explain the storage and transportation of fossil fuels.
Key words	Types of coal, Means of transporting coal storage
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, literacy, science and technology, Citizenship and national identity

Attention to special educational need children	Special attention is given to learners with intellectual challenges and developmental challenges
Lesson 4	Title: Storage of coal
Learning objectives	By the end of this lesson, using real life examples, learners should be able to explain the means of storing coal properly.
Key words	Dead storage, Living storage, Means of coal storage, Coal transfer
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 5	Title: Transportation and storage of coal
Learning objectives	By the end of this lesson, using real life examples learners should be able to explain how coal is transported.
Key words	Dead storage, Living storage, Storage in coal heaps, Underwater storage, Coal transfer
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education

Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 6	Title: Transporting Natural Gas and crude oil
Learning objectives	By the end of this lesson, using real life examples learners should be able to explain the means of transporting natural gases and crude oil.
Key words	Gathering pipelines, Transportation pipelines, Distribution pipelines
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, communication, co- operation, interpersonal management and life, literacy, science and technology, citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges

Lesson 7	Title: Assessment 1
Learning objectives	By the end of this assessment using knowledge and skills gained from lesson 1 to lesson 6, learners should be able to relate the content with the real life experiences.
Key words	Fossil fuel, non-renewable energy Coal, Oil and natural gas Types of coal, Means of transporting coal, Dead storage, Living storage, Means of coal storage, Storage in coal heaps, Underwater storage, Gathering pipelines, Transportation pipelines, Distribution pipelines
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, problem solving
Attention to special educational need children	Special attention is given to learners with visual difficulties
Lesson 8	Title: Advantages and disadvantages of fossil fuels
Learning objectives	By the end of this lesson, using real life examples learners should be able to explain the advantages and disadvantages of fossil fuels properly.
Key words	Advantages and disadvantages of fossil fuels
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, literacy, science and technology, citizenship and national identity

Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 9	Title: Energy production using fossil fuels
Learning objectives	By the end of this lesson, using real life examples learners should be able to explain energy production using fossil fuels properly.
Key words	fossil-fuel power station, production of electricity, steam cycle, cooling towers
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 10	Title: Nuclear fuel and nuclear fission
Learning objectives	By the end of this lesson, using the knowledge of chemical reactions, learners should be able to explain nuclear fuel and nuclear fission.

Key words	Plutonium 239, uranium 235, fission chain reactions, exothermic reaction
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, literacy, science and technology, citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 11	Title: Controlled fission and
	uncontrolled fission reactions
Learning objectives	By the end of this lesson, learners should be able to explain Controlled fission and Uncontrolled fission properly.
Key words	Moderation, uncontrolled fission chain reaction, Controlled fission reaction
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges

Lesson 12	Title: Assessment 2	
Learning objectives	By the end of this assessment, using knowledge and skills gained from lesson 7 to lesson 11, learners should be able to relate the content with the real life experiences.	
Key words	Advantages and disadvantages of fossil fuels, fossil-fuel power station, production of electricity, steam cycle, cooling towers Plutonium 239, uranium 235, fission chain reactions, exothermic reaction, Moderation, uncontrolled fission chain reaction, Controlled fission reaction	
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education	
Competence developed	Critical thinking and problem solving	
Attention to special educational need children	Special attention is given to learners with Visual Difficulties	
Lesson 13	Title: Impacts of nuclear weapons	
Learning objectives	By the end of this lesson, using real life examples learners should be able to explain the impacts of nuclear weapons on environment and the lives of the people properly.	
Key words	nuclear explosion	
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education	
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity	

Attention to special educational need children Lesson 14	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges Title: Energy transformations in a
Learning objectives	nuclear power station By the end of this lesson, using block diagrams and energy flow, learners should be able to explain the working mechanism of nuclear power stations properly.
Key words	Nuclear Steam Supply System, Nuclear power plant
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 15	Title: Problems associated with the production of nuclear power
Learning objectives	By the end of this lesson, using real life examples, learners should be able to explain the problems associated with the production of nuclear power clearly.

Key words	nuclear power
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 16	Title: Environmental problems of fossil fuels
Learning objectives	By the end of this lesson, using real life examples, learners should be able to explain the environmental problems of fossil fuels and suggest their solution clearly.
Key words	Population Explosion, Global Warming, Greenhouse Effect, Ozone Layer, Acid Rain, Air Pollution, Water Pollution, Introduced Species, Biological Control, Biological Magnification, Soil Salinity
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity

Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 17	Title: Safety issues and risks associated with nuclear power
Learning objectives	By the end of this lesson, using real life examples, learners should be able to explain the safety issues and risks associated with nuclear power clearly.
Key words	Nuclear Meltdown, loss of pressure control, loss of coolant, power excursion, Radioactive Wastes
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Cooperation, interpersonal management and life, Literacy, science and technology, Citizenship and national identity
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties, gifted and talented learners, emotional difficulties, behavioural difficulties, learners with health challenges
Lesson 18	Title: Assessment 3
Learning objectives	By the end of this assessment, using knowledge and skills gained from lesson 1 to lesson 16, learners should be able to relate the content with the real life experiences.

Key words	Fossil fuels, Types of Fossil Fuels, Non fossil fuels, Storage and transportation of different types of fossil fuels, Types of coal storage, Means of coal storage, Transporting Natural Gas and crude oil, nuclear fission
Cross-cutting issues to discuss	Environment and sustainability, Gender, Peace and Values Education
Competence developed	Critical thinking and problem solving
Attention to special educational need children	Special attention is given to learners with Visual Difficulties

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Fossil fuels are hydrocarbons, primarily coal, fuel oil or natural gas, formed from the remains of dead plants and animals.

Types of Fossil Fuels

- Coal
- Natural Gas
- Oil (Petroleum)

Types of coal storage

- Dead storage
- Living storage

Means of coal storage

- Storage in coal heaps
- Underwater storage

Energy production using fossil fuels

A fossil-fuel power station is a power station which burns fossil fuel such as coal, natural gas or petroleum to produce electricity.

Nuclear fuel and nuclear fission

Nuclear fuel is any material that can be consumed to derive nuclear energy.

Controlled fission (power production)

A fission reaction which leads to a new fission reaction, which further leads to more reactions, and so on is called controlled fission. The amount of heat required is controlled by raising and lowering the rods in the reactor.

Uncontrolled fission (nuclear weapons)

A fission reaction whereby the reaction is allowed to proceed without any moderation (by removal of neutrons) is called an uncontrolled fission reaction. An uncontrolled fission reaction is used in nuclear bombs.

Problems associated with the production of nuclear power

- problem of radioactive waste
- High risks
- targets for terrorist attacks
- nuclear weapons
- Uranium is a scarce
- illusion to build new nuclear power plants

Environmental problems of fossil fuels

Climate Change / Global Warming and Greenhouse Effect

The earth's atmosphere allows a lot of sunlight to reach the earth's surface, but reflects much less part of that light back into space.

The result is a gradual increase in earth's temperature or Global Warming.

• 'Hole' in the Ozone Layer

Ozone acts to block of the sun's ultraviolet radiation which causes skin cancer and contributes to fluctuations in global climatic conditions that affect the environment.

• Acid Rain

When gases such as sulphur dioxide and nitrogen oxides react with water in the atmosphere they form sulphuric acid and nitric acid. This results in rain which can destroy vegetation.

• Air Pollution

Air pollution is the release of excessive amounts of harmful gases as well as particles into the atmosphere.

Other environmental problems of fossil fuels include

- Biological Control
- Biological Magnification
- Introduced Species
- Soil Salinity
- Population Explosion

UNIT 7

Electric field potential and gravitational potential

KNOW THIS

It is useful if students can recognise that fields are part of the model to explain forces acting at a distance and that they recognise how diagrams are used to represent the strength of these fields. Students will have some qualitative ideas about gravitational and electric fields, when they meet the idea of gravity and electrostatics. Useful demonstrations and videos can be used to clearly explain the concepts.

Key Unit Competence

By the end of this unit the learner should be able to analyze electric field potential and gravitational potential.

Unit description

This unit involves the use of mathematical derivations which needs the knowledge of integration and graphical illustrations. Learners should clearly analyse these graphics and derive necessary expressions. This unit deals with:

- 7.0. Introduction
- 7.1. Electric field and electric potential due to a point charge
- 7.2. Electric potential energy and potential difference
- 7.3. Equipotential Lines and Surfaces
- 7.4. Potential due to electric dipole
- 7.5. Conservation of electrical energy
- 7.6. Cathode ray tube
- 7.7. TV and computer monitors
- 7.8. Trajectory of a charge moving in a cathode ray tube
- 7.9. Electrodynamics
- 7.10. Gravitational field and gravitational potential
- 7.11. Escape velocity for a planet
- 7.12. Energy conservation in gravitational fields

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Explain electric	Derive an expression	Appreciate underlining
potential and electric	for electric potential	assumptions applied
potential energy	for one or more point	in derivation of escape
	charges.	speed
State the relation	Describe and sketch	Appreciate the effects
between equipotential	field patterns of	of electric field in
surface and electric	equipotential surfaces	a cathode tube of
field lines	due to one or two point	television set and
	charges	computer monitor
Define gravitational	Analyze relation	
potential and	between equipotential	
gravitational potential	surfaces and electric	
energy	field lines	
	Describe and sketch	
	the trajectory of a	
	charge moving in	
	cathode ray tube	
	Derive an expression	
	for gravitational	
	potential due to one or	
	more point masses	
	Derive an expression	
	for escape speed for a	
	planet	
	Compare electric and	
	gravitational fields	
	Analyze work done in	
	moving a point charge	
	between two points	
	in an electric field	
	independent of the	
	path	

Learning objectives

By the end of this unit, learners will be able to:

- list the properties of an electric and gravitational fields and the variation of potentials properly.
- explain the working mechanism of a cathode ray tube, TV tubes and computer monitors properly.
- explain the everyday applications of electric and magnetic fields.

SCOPE AND SEQUENCE

This unit will be delivered in 18 lessons each of 40 minutes.

Unit 7: Electric field potential and gravitational potential

Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson should cover:			
Introduction	Electric field and	Electric	Potential
	electric potential	potential energy	difference
	due to a point		
	charge		
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Equipotential	Potential due to	Assessment 1	Conservation of
Lines and	electric dipole		electrical energy
Surfaces			
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Cathode ray	TV and	Trajectory of a	Trajectory of a
tube	computer	charge moving	charge moving
	monitors	in a cathode ray	in a cathode ray
		tube I	tube II

Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Assessment 2	Electrodynamics	Gravitational	Escape velocity
		field and	for a planet
		Gravitational	
		potential	
Lesson 17	Lesson 18		
This lesson	This lesson		
should cover:	should cover:		
Energy	Assessment 3		
conservation in			
gravitational			
fields			

LESSON DEVELOPMENT

Lesson 1	Title: Introduction
Learning objectives	By the end of this lesson, with examples learners will be able to list the properties of an electric field properly.
Key words	Concept of electric field and gravitational field.
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners

Lesson 2	Title: Electric field and electric
	potential due to a point charge
Learning objectives	By the end of this lesson,
	mathematically, learners will
	be able to explain the difference
	between electric field and electric
	potential clearly.
Key words	Electric potential, point charge, electrostatic force
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication,
1	Co-operation, interpersonal
	management and life skills,
	numeracy
Attention to special educational	Special attention is given to
need children	learners with intellectual
	challenges, developmental
	challenges, speech and
	communication difficulties and
	gifted and ented learners
Lesson 3	Title: Electric potential energy
Learning objectives	By the end of this lesson,
	mathematically, learners will be
	able to calculate electric potential
	energy accurately.
Key words	Electric potential energy,
	conservative gravitational force
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal
	management and life skills,
	numeracy
Attention to special educational	Special attention is given to learn-
need children	ers with, intellectual challenges,
	developmental challenges, speech
	and communication difficulties and
	gifted and talented learners

Lesson 4	Title: Potential difference
Learning objectives	By the end of this lesson, mathematically, learners will be able to calculate potential difference accurately.
Key words	Electric potential difference
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
Attention to special educational	Special attention is given to
need children	learners with, intellectual challenges, developmental challenges, speech and
	communication difficulties and gifted and talented learners
Lesson 5	Title: Equipotential Lines and
	Surfaces
Learning objectives	By the end of this lesson, mathematically learners will be able to explain the equipotential points and surfaces clearly.
Key words	equipotential surface, equipotential lines
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
Attention to special educational need children	Special attention is given to learners with, intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners

Lesson 6	Title: Potential due to electric dipole
Learning objectives	By the end of this lesson, with examples learners will be able to explain the change in potential due to an electric dipole clearly.
Key words	Electric dipole
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 7	Title: Assessment 1
Learning objectives	By the end of this assessment, using knowledge and skills gained in lessons 1 to 6 lessons, learners will be able to relate the content with the real life experiences.
Key words	Concept of electric field and gravitational field, Electric potential, point charge, electrostatic force, electric potential energy, conservative gravitational force, Electric potential difference, equipotential surface, equipotential lines, electric dipole
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, problem-solving
Attention to special educational need children	Visual Difficulties

Lesson 8	Title: Conservation of electrical
	energy
Learning objectives	By the end of this lesson, mathematically, learners will be able to explain the variation of electric potential energy and kinetic energy properly.
Key words	Electric charge, kinetic energy, potential energy
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
Attention to special educational need children	Special attention is given to learners with, intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 9	Title: Cathode ray tube
Learning objectives	By the end of this lesson, using the diagram, learners will be able to explain the working mechanism of a cathode ray tube properly.
Key words	CRT, thermionic emission, electron gun, cathode rays
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
Attention to special educational need children	Special attention is needed to learners with, intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners

Lesson 10	Title: TV and computer monitors
Learning objectives	By the end of this lesson, using the diagram, learners will be able to explain the working mechanism of TV and computer monitors properly.
Key words	Color screens, scanning
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
Attention to special educational need children	Special attention is given to learners with, intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 11	Title: Trajectory of a charge moving in a cathode ray tube I
Learning objectives	By the end of this lesson, using the diagram, learners will be able to explain the parabolic motion of a charged particle in an electric field clearly.
Key words	Trajectory
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
Attention to special educational need children	Special attention is given to learners with, Intellectual Challenges, Developmental Challenges, Speech and Communication Difficulties and Gifted and Talented learners

Lesson 12	Title: Trajectory of a charge moving in a cathode ray tube II
Learning objectives	By the end of this lesson, mathematically learners will be able to explain the parabolic motion of a charged particle in an electric field clearly.
Key words	Horizontal and vertical motion of a charge in electric field, electron deflection
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, numeracy
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 13	Title: Assessment 2
Learning objectives	By the end of this assessment, using knowledge and skills gained in lessons 7 to 12 lessons, learners will be able to relate the content with the real life experiences.
Key words	Electric charge, kinetic energy, potential energy, CRT, thermionic emission, electron gun, cathode rays, Colour screens, scanning, Trajectory, Horizontal and vertical motion of a charge in electric field, electron deflection
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, problem-solving
Attention to special educational need children	Visual Difficulties

Lesson 14	Title: Electrodynamics
Learning objectives	By the end of this lesson, using the
	concept of electric and magnetic
	fields, learners will be able to explain
	the concept of electrodynamics
	clearly.
Key words	classical electrodynamics
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal
	management and life skills,
	numeracy
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech
	and communication difficulties and
	gifted and talented learners
Lesson 15	Title: Gravitational field and
	Gravitational potential
Learning objectives	By the end of this lesson,
	mathematically, learners will
	be able to explain the variation
	of gravitational potential in a
	gravitational field clearly.
Key words	Gravitational field, gravitational
	potential
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal
	management and life skills,
	numeracy
Attention to special educational	Special attention is given to
need children	learners with intellectual
	challenges, developmental
	challenges, speech and
	communication difficulties and
	gifted and talented learners

Lesson 16	Title: Escape velocity for a planet
Learning objectives	By the end of this lesson,
	mathematically, learners will
	be able to explain the meaning
	and the value of escape velocity
	accurately.
Key words	Escape velocity
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal
	management and life skills,
	numeracy
Attention to special educational	Special attention is given to learners
need children	with, intellectual challenges,
	developmental challenges, speech
	and communication difficulties and
	gifted and talented learners
Lesson 17	Title: Energy conservation in
	gravitational fields
Learning objectives	By the end of this lesson,
	mathematically, learners will be
	able to explain the conservation of
	energy in a gravitational field.
Key words	Kinetic and potential energy
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal
	management and life skills,
	numeracy
Attention to special educational	Special attention is given to
need children	learners with intellectual
	challenges, developmental
	challenges, speech and
	communication difficulties and
	gifted and talented learners

Lesson 18	Title: Assessment 3
Learning objectives	By the end of this assessment,
	using knowledge and skills gained
	in lessons 14 to 17 lessons, learners
	will be able to relate the content
	with the real life experiences.
Key words	Classical electrodynamics, gravita-
	tional field, gravitational potential,
	Escape velocity, kinetic and poten-
	tial energy
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, problem-solving
Attention to special educational	Visual Difficulties
need children	

MAIN CONTENTS AND CONCEPT TO EMPHASISE

Electric field and electric potential due to a point charge

The direction of electric field is taken to be the direction of the force it would exert on a positive test charge.

Potential
$$V = \frac{Work\ done}{Unit\ charge}$$
 Or Potential $V = \frac{Energy\ to\ be\ applied}{Unit\ charge}$
$$V = -\frac{q}{4\pi\epsilon_0 r}$$

Electric potential energy and potential difference

The work done by a conservative force in moving an object between any two positions is independent of the path taken. Hence we define the potential energy for electrostatic force mathematically as;

Potential Energy U = Work done on a charge

And the change in electrical energy between two points A and B is given by;

$$\Delta U = \frac{q^2}{4\pi\varepsilon_0 \varepsilon_r} \left(\frac{1}{r_A} - \frac{1}{r_B} \right)$$

$$U_B - U_A = -qED$$

$$\mathbf{126}$$

Equipotential Lines and Surfaces

An equipotential surface is the one on which all points are at the same potential. An equipotential surface must be perpendicular to the electric field at any point.

Potential due to electric dipole

Unlike electric field lines, which start and end on electric charges, equipotential lines and surfaces are always continuous and never end.

Conservation of electrical energy

At the instant at which the field is applied, the motionless test charge has zero kinetic energy, and its electric potential energy is at a maximum. Then, the charge accelerates, and its kinetic energy (from motion) increases as its potential energy decreases. The sum of energies is always constant.

$$E_{pot} + E_{kin} = constant$$

Cathode ray tube

The CRT is a vacuum tube in which a beam of electrons is accelerated and deflected under the influence of electric or magnetic fields.

These electrons, if left undisturbed, travel in a straight-line path until they strike the screen of the CRT which is coated with a material that emits visible light when bombarded with electrons.

TV and computer monitors

In TV and computer monitors, the CRT electron beam sweeps over the screen in the manner of carefully synchronized voltages applied to the deflection plates and is called scanning.

Trajectory of a charge moving in a cathode ray tube

The equation of motion of a charge in a field is calculated by considering vertical and horizontal displacements and is given by;

$$y = ax^2$$
 where $a = \frac{Ve}{2mdv^2}$

This equation shows that when electron is in the field, its path is parabolic and is called the *equation of trajectory*.

The vertical deflection D of electron on the screen from initial direction of motion can be obtained by using equation;

$$D = \frac{Velz}{mdv^2}$$

Electrodynamics

When the velocities of the charged particles under consideration become comparable with the speed of light, corrections involving the theory of relativity must be made; this branch of the theory is called relativistic electrodynamics.

Gravitational potential

The gravitational potential V at a point is defined numerically as equal to work done in taking a uniform mass from infinity to that point.

$$V = -\frac{GM_e}{R}$$

Escape velocity for a planet

If the rocket is fired from the surface of the earth with velocity v such that it just escapes from the influence of the earth's gravitational pull then this velocity is called *escape velocity*.

$$v = \sqrt{2gR_e}$$

 $v = \sqrt{2 \times 9.8 \times 6.4 \times 10^6} \sqrt{2gR_e}$
 $= 11.2 \times 10^3 \, m/s = 11.2 \, km/s$

Energy conservation in gravitational fields

Conservation of energy tells us that the total energy of the system is conserved, and in this case, the sum of kinetic and potential energy must be constant. This means that every change in the kinetic energy of a system must be accompanied by an equal but opposite change in the potential energy.

Total energy E = K + U

$$E = -\frac{GM_em}{2r}$$

SOLUTION TO ACTIVITIES

SOLUTIONS TO EXERCISE 7.1

1.(a) For the positive charge,

$$V = \frac{kq}{r} = \frac{(9.0 \times 10^9 \ N \cdot m^2 / C)(20 \times 10^{-6} \ C)}{0.50 \ m} = 3.6 \times 10^5 \ V$$

(b) For the negative charge,

$$V = \frac{kq}{r} = \frac{(9.0 \times 10^9 \ N \cdot m^2 / C)(-20 \times 10^{-6} \ C)}{0.50 \ m} = -3.6 \times 10^5 \ V$$

2. The absolute electric potential at the origin due to the first charge is

$$V_1 = \frac{kq_1}{x_1} = \frac{(8.988 \times 10^9 \ N \cdot m^2 / C^2)(6.0 \times 10^{-6} \ C)}{5.1 \times 10^{-2} \ m} = 1.06 \times 10^6 \ V$$

Likewise, the absolute electric potential at the origin due to the second charge is

$$V_2 = \frac{kq_2}{x_2} = \frac{(9.988 \times 10^9 \ N \cdot m^2 / C^2)(-5.0 \times 10^{-6} \ C)}{3.4 \times 10^{-2} \ m} = -1.32 \times 10^6 \ V$$

The net potential V at the origin is simply the algebraic sum of the potentials due to each charge taken in isolation.

Thus,
$$V = V_1 + V_2 = 1.06 \times 10^6 V - 1.32 \times 10^6 V = -2.64 \times 10^5 V$$

The work W which we must perform in order to slowly moving a charge from infinity to the origin is simply the product of the charge and the potential difference V between the end and beginning points.

Thus,
$$W = q_3 V = (2.64 \times 10^5 V)(-7.0 \times 10^{-6} C) = 1.85 J$$

- 3. (a) Since the charges are equal and placed symmetrically F = 0
 - (b) Since F = qE = 0 then E = 0

(c)
$$V = 2\frac{kq}{r} = \frac{2(8.99 \times 10^9 \ N.m^2.C^{-2})(2.00 \times 10^{-6} \ C)}{0.800 \ m} = 45.0 \ kV$$

SOLUTIONS TO EXERCISE 7.2

$$\begin{array}{ll} 1.\;k.e=3.2\times 10^{-6}\,J & e=1.6\times 10^{-19}\,C & D=2.1\,cm=2.1\times 10^{-2}\,m\\ \\ d=5mm=5\times 10^{-3}\,m\\ \\ k.e=\frac{1}{2}\mathrm{mv}^2 \end{array}$$

$$mv^{2} = 2k.e = 2 \times 3.2 \times 10^{-6} = 6.4 \times 10^{-6} \, kgm^{2}/s^{2}$$

$$z = \frac{1}{2} + 20 = 1 + 20 = 21 \, cm$$
From
$$D = \frac{V \, elz}{dmv^{2}}$$

$$V = \frac{dmv^{2}D}{elz} = \frac{5 \times 10^{-3} \times 6.4 \times 10^{-6} \times 2.1 \times 10^{-2}}{1.8 \times 10^{-19} \times 2 \times 10^{-2} \times 21 \times 10^{-2}} = 1.0 \times 10^{12} V$$
2.
$$V = 12V, \quad l = 4 \times 10^{-2} \, cm, \quad v = 1.0 \times 10^{6} \, m/s$$

$$\theta = \tan^{-1}\left(\frac{Vel}{dmv^{2}}\right) = \tan^{-1}\left(\frac{12 \times 1.8 \times 10^{11} \times 4 \times 10^{-2}}{(1.0 \times 10^{6})^{2} \times 4 \times 10^{-2}}\right) = 65.26^{0}$$

SOLUTIONS TO EXERCISE 7.3

1. Let m represent the asteroid's mass and M represent Earth's mass

($M_{_{o}} = 5.98 \times 10^{24} \; kg \;$). The asteroid is initially at distance $10 R_{_{e}} \;$ and finally

at distance R_e where $R_e = 6.37 \times 10^6 \, m$ is Earth's radius

Because we are to neglect the effects of the atmosphere on the asteroid, the mechanical energy of the asteroid–Earth system is conserved during the fall. Thus, the final mechanical energy (when the asteroid reaches Earth's surface) is equal to the initial mechanical energy. With kinetic energy K and gravitational potential energy U, and we can write this as

$$K_i + U_i = K_f + U_f \Leftrightarrow \frac{1}{2}mv_i^2 - \frac{GMm}{10R_e} = \frac{1}{2}mv_f^2 - \frac{GMm}{R_e} \Leftrightarrow v_f = \sqrt{v_i^2 + \frac{2GM}{R_e}}(1 - \frac{1}{10})$$

Substituting known values, we find

$$v_f = \sqrt{(12 \, m/s)^2 + \frac{2(6.67 \times 10^{-11} \, m^3/s^2 \cdot kg^2)(5.98 \times 10^{24} \, kg)}{6.37 \times 10^6 \, m} (1 - \frac{1}{10})} = 16 \, km/s$$

2. (a) The orbital radius must be

$$R = R_e + h = 6.37 \times 10^6 \cdot 0.350 \times 10^6 = 6.72 \times 10^6 \text{ m}$$

From the orbital energy,

$$E = \frac{GMm}{2R} = \frac{(6.67 \times 10^{-11} \ N \cdot m^2 \ / \ \text{kg}^2)(5.98 \times 10^{24} \ kg)(7.20 \ kg)}{2(6.72 \times 10^6 \ m)} = 2.14 \times 10^8 \ J$$

(b) On the launch pad, the ball is not in orbit Thus

$$E_0 = U_o = -\frac{GMm}{R_e} = \frac{(6.67 \times 10^{-11} \ N \cdot m^2 \ / \ \text{kg}^2)(5.98 \times 10^{24} \ kg)(7.20 \ kg)}{6.37 \times 10^6 \ m} = -4.51 \times 10^8 \ J$$

The increase in the mechanical energy of the ball from launch pad to orbit is $\Delta E = E - E_o = 2.37 \times 10^6 \ J$

3.
$$F_G = \frac{GM_e m}{(R_o + R_o)^2} = \frac{GM_e m}{R_o^2} = \frac{mg_e}{4} = \frac{(2\ 000\ kg)(59.80\ m/s^2)}{4} = 4\ 900\ J$$

The spacecraft is twice as far from the Earth's center as when it is at the surface of the Earth. Therefore, since the force of gravity decreases as the square of the distance the force of gravity F_G on the satellite will be only one-fourth its weight at the Earth's surface

ANSWER TO END OF UNIT QUESTION

1.
$$F = \frac{4\sqrt{2} Gm^2}{a^2}$$

$$2. \implies x = \frac{1}{2}$$

3.
$$\overrightarrow{F} = \overrightarrow{F} AC + \overrightarrow{F} AB = 1.67 \times 10^{-9} (\hat{i} + \hat{j}) N$$

4.
$$V = 2.1 \times 10^4 \ volts$$

5. (a)
$$U_{el} = 2.6 \, mJ$$

(b)
$$U_{el} = 0.50 \, mJ$$

6.
$$V_{\text{bottom}} = 1.33 \times 10^6 \, m/s$$

7. (a)
$$F = 33.8 \,\mu N$$
 at 60° above the

(b)
$$W_{AB} = 23.7 \, \mu J$$

(c)
$$\Delta EPE = 23.7 \, \mu J$$

(*d*)
$$\Delta V = -8.40 \ V$$

UNIT 8

Motion in Orbits

KNOW THIS

From a conceptual standpoint, orbital motion involves giving something enough horizontal velocity so that, by the time gravity pulls it down, it has travelled far enough to have Earth's surface curve away from it. As a result, it stays above the surface. An object in orbit is essentially falling around the Earth but going so fast that it never hits it.

Key unit competence

By the end the learner should be able to evaluate Newton's law of gravitation and apply Kepler's laws of planetary motion.

Unit description

This unit outlines the existing proofs of certain periodic orbits. Starting with the problem of two bodies a condition for existence of periodic orbits in a rotating coordinate system is derived. So learners should be familiar with mathematical derivations and their applications. This unit deals with:

- 8.1. Introduction
- 8.2. Newton's law of gravitation
- 8.3. Kepler's laws of planetary motion
- 8.4. Verification of Kepler's third law of planetary motion
- 8.5. Acceleration due to gravity at the surface of the earth
- 8.6. Variation of acceleration due to gravity with height
- 8.7. Variation of gravity with depth
- 8.8. Variation in g Due to Rotation of Earth
- 8.9. Variation of gravity g Due to Shape of Earth
- 8.10. Rockets
- 8.11. Spacecraft Propulsion
- 8.12. Satellites
 - 8.12.1. Orbital Velocity of Satellite
 - 8.12.2. Time Period of Satellite
 - 8.12.3. Height of Satellite

- 8.12.4. Geostationary Satellite
- 8.12.5. Angular Momentum of Satellite
- 8.12.6. Energy of Satellite
- 8.13. Types and applications of Satellite Systems
- 8.14. Cosmic velocity (first, second and third)
 - 8.14.1. The first cosmic velocity
 - 8.14.2. Second cosmic velocity (escape velocity)
 - 8.14.3. The third cosmic velocity

Summary of knowledge, skills, attitudes and values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Explain Newton's law	Apply Newton's laws of	Appreciate the
of gravitation	gravitation to explain	importance of earth
	the universe and solar	orbital motion to
	system	human life
Explain acceleration	Apply knowledge	Acquire knowledge of
due to gravity near	of Kepler's laws of	planetary motion and
earth's surface	planetary motion	use it to explain planet motion
Explain principles of satellites and rockets	Analyze and explain orbits and period of rotation of planets around the sun	Acquire capacity to observe the universe and identify planets
Explain universe and solar system	Evaluate the work done in gravitation fields	
State and explain	Describe the work	
Kepler's law of	done in gravitation	
planetary motion	and explain cosmic velocities	
	Solve problems	
	related to gravitation,	
	planetary motion and	
	cosmic velocities	

Relate th	ne orbital
motion of	the earth
to seasons	and other
phenomena	such as
eclipse	

Learning objectives

By the end of this unit, learners should be able to:

- use the Newton's law of gravitational motion to calculate the period and velocity of satellites in different orbits.
- apply Kepler's laws in different mathematical analysis.

SCOPE AND SEQUENCE

This unit will be delivered in 18 lessons each of 40 minutes.

Unit 8: Motion in Orbits			
Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson should cover:			
Introduction and	Kepler's laws of	Verification of	Acceleration due
Newton's law of	planetary motion	Kepler's third	to gravity at the
gravitation		law of planetary	surface of the
		motion	earth
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson should cover:			
Variation of	Variation of	Variation in g	Variation of
acceleration due	gravity with	due to rotation of	gravity g due to
to gravity with	depth	Earth	Shape of Earth
height			
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson should cover:			
Rockets and	Assessment 1	Orbital Velocity	Time Period of
Spacecraft		of Satellite	Satellite
Propulsion			

Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Height of Satellite	Geostationary Satellite	Angular Momentum of Satellite and Energy of	Types and applications of Satellite Systems
Lesson 17	Lesson 18	Satellite	
This lesson should cover:	This lesson should cover:		
Cosmic velocity (first, second and third)	Assessment 2		

LESSON DEVELOPMENT

Lesson 1	Title: Introduction and Newton's law of gravitation
Learning objectives	By the end of this lesson, using the concept
	of rotational motion, learners will be able
	to state the Newton's law of gravitation
	and mathematically apply it.
Key words	universal law of gravitation, gravitational
	force
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem-
	solving, communication, co-operation,
	interpersonal management and life skills,
	lifelong learning, numeracy, ICT, science
	and technology
Attention to special	Special attention is given to learners with,
educational need children	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners.

Lesson 2	Title: Kepler's laws of planetary motion
Learning objectives	By the end of this lesson, using diagrams and mathematical expressions, learners will be able to state Kepler's laws of planetary motion properly.
Key words	Ellipses, sun, focus, areas, periods of time, revolution of planets
Cross-cutting issues to discuss	Gender, peace and values education
Competence developed	Critical thinking, Research and problem- solving, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology
Attention to special educational need children	Special attention is given to learners with, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 3	Title: Verification of Kepler's third law of planetary motion
Learning objectives	By the end of this lesson, mathematically learners will be able to verify Kepler's third law of planetary motion accurately.
Key words	Gravitational force, Centripetal force
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem- solving, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology
Attention to special educational need children	Special attention is given to learners with, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 4	Title: Acceleration due to gravity at the surface of the earth
Learning objectives	By the end of this lesson, mathematically learners will be able to calculate the acceleration due to gravity at the surface of the earth accurately.

Key words	acceleration due to gravity
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem-
	solving, communication, co-operation,
	interpersonal management and life skills,
	lifelong learning, numeracy, ICT, science
	and technology
Attention to special	Special attention is given to learners with
educational need children	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 5	Title: Variation of Acceleration Due to gravity with Height
Learning objectives	By the end of this lesson, mathematically
	learners will be able to verify the variation
	of acceleration due to gravity above the
	surface of the earth accurately.
Key words	acceleration due to gravity, height
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem-
	solving, communication, co-operation,
	interpersonal management and life skills,
	lifelong learning, numeracy, ICT, science
	and technology
Attention to special	Special attention is given to learners with
educational need children	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 6	Title: Variation of Gravity with Depth
Learning objectives	By the end of this lesson, mathematically
	learners will be able to verify the variation
	of acceleration due to gravity below the
	surface of the earth accurately.
Key words	acceleration due to gravity, depth
Cross-cutting issues to discuss	Gender, Peace and Values Education

Attention to special educational need children	Critical thinking, research and problem- solving, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology Special attention is given to learners with,
educational need children	developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 7	Title: Variation in g Due to Rotation of Earth
Learning objectives	By the end of this lesson, mathematically learners will be able to verify the variation of acceleration due to gravity due to the rotation of the earth accurately.
Key words	acceleration due to gravity, centrifugal force
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem- solving, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology
Attention to special	Special attention is given to learners with,
educational need children	developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 8	Title: Variation of gravity g Due to Shape of Earth
Learning objectives	By the end of this lesson, mathematically learners will be able to verify the variation of acceleration due to gravity due to the shape of the earth accurately.
Key words	acceleration due to gravity, ellipses
Cross-cutting issues to discuss	Gender, Peace and Values Education

Competence developed	Critical thinking, research and problem- solving, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology
Attention to special	Special attention is given to learners with
educational need children	developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 9	Title: Rockets and Spacecraft Propulsion
Learning objectives	By the end of this lesson, using Newton's laws of motion, learners will be able to explain the motion of rockets and spacecraft propulsion properly.
Key words	Rocket, Spacecraft Propulsion
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem- solving, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology
Attention to special	Special attention is given to learners with,
educational need children	developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 10	Title: Assessment 1
Learning objectives	By the end of this assessment, using knowledge and skills gained in lessons 1 to 9, learners will be able to relate the content with the real life experiences.
Key words	universal law of gravitation, gravitational force, ellipses, sun, focus, areas, periods of time, revolution of planets, gravitational force, centripetal force, acceleration due to gravity, height, depth, centrifugal force, rocket, spacecraft propulsion

Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, problem-solving
Attention to special	Special attention is given to learners with
educational need children	Visual difficulties
Lesson 11	Title: Orbital Velocity of Satellite
Learning objectives	By the end of this lesson, using Newton's
	law of gravitational motion, learners
	will be able to calculate the velocity of a
	satellite accurately.
Key words	Satellite, Communication, Orbital
	Velocity
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem-
	solving, communication, co-operation,
	interpersonal management and life skills,
	lifelong learning, numeracy, ICT, science
	and technology
Attention to special	Special attention is given to learners with,
educational need children	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 12	Title: Time Period of Satellite
Learning objectives	By the end of this lesson, using Newton's
	law of gravitational motion, learners will
	be able to calculate the period of a satellite
	accurately.
Key words	planetary motion, periodic time
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem-
	solving, communication, co-operation,
	interpersonal management and life skills,
	lifelong learning, numeracy, ICT, science
	and technology
Attention to special	Special attention is given to learners with,
educational need children	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners

Lesson 13	Title: Height of Satellite
Learning objectives	By the end of this lesson, using Newton's
	law of gravitational motion, and
	mathematical derivations, learners will
	be able to calculate the height of a satellite
	in space accurately.
Key words	height of satellite
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem-
	solving, communication, co-operation,
	interpersonal management and life skills,
	lifelong learning, numeracy, ICT, science
	and technology
Attention to special	Special attention is given to learners with,
educational need children	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 14	Title: Geostationary Satellite
Learning objectives	By the end of this lesson, using Newton's
	law of gravitational motion, learners will
	be able to explain mathematically the
	behaviour of a geostationary satellite.
Key words	geostationary satellite
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem-
	solving, communication, co-operation,
	interpersonal management and life skills,
	lifelong learning, numeracy, ICT, science
	and technology
Attention to special	Special attention is given to learners with
educational need children	developmental challenges, speech and
	1
	communication difficulties and gifted and

Lesson 15	Title: Angular Momentum of Satellite and Energy of Satellite
Learning objectives	By the end of this lesson, using Newton's law of gravitational motion and mathematical derivations, learners will be able to calculate the angular momentum of a satellite accurately.
Key words	Angular momentum and energy of satellite
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem- solving, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology
Attention to special educational need children	Special attention is given to learners with developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 16	Title: Types and applications of Satellite Systems
Learning objectives	By the end of this lesson, using Newton's law of gravitational motion, learners will be able to explain the types of satellites and their applications.
Key words	Geo-stationary earth orbit, Medium earth orbit, Low earth orbit, Highly elliptical orbit
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, research and problem- solving, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology
Attention to special educational need children	Special attention is given to learners with developmental challenges, speech and communication difficulties and gifted and talented learners

Lesson 17	Title: Cosmic velocity (first, second and third)
Learning objectives	By the end of this lesson, using Newton's
	law of gravitational motion, learners will
	be able to calculate the first, second and
	third cosmic velocities accurately.
Key words	Cosmic velocity, gravitational force,
	centripetal force
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and problem-
	solving, communication, co-operation,
	interpersonal management and life skills,
	lifelong learning, numeracy, ICT, science
	and technology
Attention to special	Special attention is given to learners with,
educational need children	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 18	Title: Assessment 2
Learning objectives	By the end of this assessment, using
	knowledge and skills gained in lessons 10
	to 17, learners will be able to relate the
	to 17, learners will be able to relate the
	content with the real life experiences.
Key words	
Key words	content with the real life experiences.
Key words	content with the real life experiences. Satellite, Communication, Orbital Velocity
Key words	content with the real life experiences. Satellite, Communication, Orbital Velocity planetary motion, periodic time, height of
Key words	content with the real life experiences. Satellite, Communication, Orbital Velocity planetary motion, periodic time, height of satellite, geostationary satellite, Angular
Key words	content with the real life experiences. Satellite, Communication, Orbital Velocity planetary motion, periodic time, height of satellite, geostationary satellite, Angular momentum and energy of satellite, Geo-
Key words	content with the real life experiences. Satellite, Communication, Orbital Velocity planetary motion, periodic time, height of satellite, geostationary satellite, Angular momentum and energy of satellite, Geostationary earth orbit, Medium earth
Key words	content with the real life experiences. Satellite, Communication, Orbital Velocity planetary motion, periodic time, height of satellite, geostationary satellite, Angular momentum and energy of satellite, Geostationary earth orbit, Medium earth orbit, Low earth orbit, Highly elliptical
Key words Cross-cutting issues to discuss	content with the real life experiences. Satellite, Communication, Orbital Velocity planetary motion, periodic time, height of satellite, geostationary satellite, Angular momentum and energy of satellite, Geostationary earth orbit, Medium earth orbit, Low earth orbit, Highly elliptical orbit, Cosmic velocity, gravitational force,
·	content with the real life experiences. Satellite, Communication, Orbital Velocity planetary motion, periodic time, height of satellite, geostationary satellite, Angular momentum and energy of satellite, Geostationary earth orbit, Medium earth orbit, Low earth orbit, Highly elliptical orbit, Cosmic velocity, gravitational force, centripetal force
Cross-cutting issues to discuss	content with the real life experiences. Satellite, Communication, Orbital Velocity planetary motion, periodic time, height of satellite, geostationary satellite, Angular momentum and energy of satellite, Geostationary earth orbit, Medium earth orbit, Low earth orbit, Highly elliptical orbit, Cosmic velocity, gravitational force, centripetal force Gender, Peace and Values Education

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

"Together with learners, discuss what happens when two massive objects are brought together. Then relate learners' discussion to Newton's law of gravitation"

Newton's law of gravitation

This is also called the universal law of gravitation or inverse square law. It states that "the gravitational force of attraction between two masses m_1 and m_2 is directly proportional to the product of masses and inversely proportional to the square of their mean distance apart."

$$F = \frac{Gm_1m_1}{r^2}$$

Kepler's laws of planetary motion

1st Law: This law is called the law of orbits and states that planets move in ellipses with the sun as one of their foci. It can also be stated that planets describe ellipses about the sun as one focus.

2nd Law: This is called the law of areas and states that the line joining the sun and the planet sweeps out equal areas in equal periods of time.

 3^{rd} Law: The law of peiods states that the square of the periods T of revolution of planets are proportional to the cubes of their mean distances R from the sun.

Verification of Kepler's third law of planetary motion

Gravitational force of attraction of the sun and the planet

$$F_1 = \frac{Gm_1m_2}{R^2}$$

Centripetal force is responsible for keeping the planet moving in a circular motion around the sun.

$$F_2 = \frac{m_2 v^2}{R}$$

If $F_1 = F_2$ we get;

$$R^3 = kT^2$$

which is true that R^3 a T^2

Acceleration due to gravity at the surface of the earth

At the surface of the earth, acceleration due to gravity is given by;

$$g = \frac{GM}{R^2}$$

This value is constant and it's average value is taken to be $9.8 \ m/s^2$ on earth.

Variation of acceleration due to gravity with height

The acceleration due to gravity at a point above the surface of the earth is given by;

$$g' = g \left(\frac{R}{R+h}\right)^2$$

This value decreases as you move further from the surface of the earth.

Variation of gravity with depth

At a point below the surface of the earth, acceleration due to gravity is given by;

$$g' = \frac{4}{3}\pi\rho G(R - d)$$

The depth d is measured from the surface of the earth.

Variation in g Due to Rotation of Earth

As the earth rotates, a body placed on its surface moves along the circular path and hence experiences centrifugal force, due to it, the apparent weight of the body decreases.

By solving, the acceleration due to gravity is given by;

$$g' = g - \omega^2 R \cos^2 \lambda$$

Variation of gravity g Due to Shape of Earth

The value of acceleration due to gravity will vary depending on someone's position at the surface of the earth as;

At equator
$$g_e = \frac{GM}{R_e^2}$$
 At poles
$$g_p = \frac{GM}{R_p^2}$$

Rockets and spacecraft

A rocket is a device that produces thrust by ejecting stored matter. Spacecraft propulsion is characterized by its complete integration within the spacecraft (e.g. satellites).

Satellites

A satellite is an artificial body placed in orbit round the earth or another planet in order to collect information or for communication.

Orbital Velocity of Satellite

$$v = R \sqrt{\frac{g}{R+h}}$$

Time Period of Satellite

The period of a satellite is given by;

$$T = 2\pi \sqrt{\frac{R}{g}} \left(1 + \frac{h}{R} \right)^{3/2}$$

Height of Satellite

The height at which a satellite is launched is given by;

$$h = \left(\frac{T^2 g R^2}{4\pi^2}\right)^{1/3} - R$$

Geostationary Satellite

The satellite which appears stationary relative to earth is called geostationary or geosynchronous satellite, *e.g.*, communication satellite.

Angular Momentum of Satellite

The angular momentum of a satellite is given by;

$$L = \sqrt{m^2 GMr}$$

It is seen that angular momentum of satellite depends on both the mass of orbiting and central body as well as the radius of orbit.

Energy of Satellite

When a satellite revolves around a planet in its orbit, it possesses both potential energy (due to its position against gravitational pull of earth) and kinetic energy (due to orbital motion).

(1) Potential energy :
$$U = mV = \frac{-GMm}{r}$$

(2) Kinetic energy:
$$K = \frac{1}{2}mv^2 = \frac{GMm}{2r}$$

Total energy
$$(E) = \frac{-GMm}{2r}$$
 = constant

Types and applications of Satellite Systems

- GEO (Geo-stationary earth orbit)
- MEO (medium earth orbit)
- LEO (Low earth orbit) and
- HEO (Highly elliptical orbit)

COSMIC VELOCITY

The first cosmic velocity

$$v_1 = 7900 \ m/s$$

Second cosmic velocity

This is also called the escape velocity $v_2 = 11200 \text{ m/s}$

Third cosmic velocity

The third cosmic velocity is the initial velocity which a body has to have to leave the Solar System and its value is given by;

$$v_3 = 16.7 \ km/s$$

SOLUTIONS OF ACTIVITIES

Activity 8-1

1. Kepler's third law

$$T^2 \propto R^3$$

$$\therefore \ \frac{T_{Neptune}}{T_{Saturn}} = \left(\frac{T_{Neptune}}{R_{Saturn}}\right) = \left(\frac{10^{13}}{10^{12}}\right)^{3/2} = 10\sqrt{10}$$

2. We know
$$g = \frac{GM}{R^2} = \frac{GM}{(D/2)^2} = \frac{4GM}{D^2}$$

If mass of the planet = M_0 and diameter of the planet = D_0 . Then

$$g = \frac{4GM_0}{D_0^2}$$

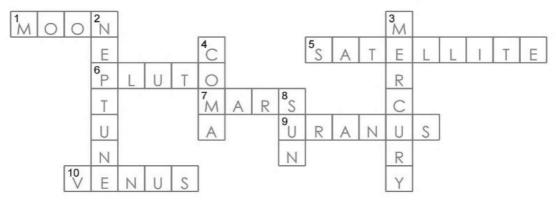
3. Weight of the body at height R,

$$W' = W \left(\frac{R}{R+h}\right)^2 = W \left(\frac{R}{R+\frac{R}{2}}\right)^2 = W \left(\frac{2}{3}\right)^2 = \frac{4}{9}W = \frac{4}{9} \times 72 = 32N.$$

4. Acceleration due to gravity at depth d,

$$g' = g \left[1 - \frac{d}{R} \right] = g \left[1 - \frac{100}{6400} \right] = 9.8 \left[1 - \frac{1}{64} \right] = 9.8 \times \frac{63}{64} = 9.66 m / s^{2}$$

$$5. \text{If } F \propto \frac{1}{R^{n}}$$


$$\text{Then } ; v \propto \frac{1}{\sqrt{R^{n-1}}} \qquad \text{here } n = 1 \quad \therefore v \propto \frac{1}{\sqrt{R^{1-1}}} \propto R^{0}$$

6. Orbital radius of satellite $r_{s} = 4r_{c}$ (given)

From Kepler's law

$$\begin{split} T &\propto r^{3/2} \\ &\therefore \frac{T_s}{T_c} = \left(\frac{r_s}{s_c}\right)^{3/2} = (4)^{3/2} \\ &\Rightarrow T_s = 8T_c = 8 \times 1 \text{ day} = 8 \text{ days.} \end{split}$$

Activity 8-2

Any constructive meaningful sentence constructed by students having any one of the words identified.

Activity 8-3

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			v	P	_	Т	-	3.7	-	-		т	0	D	T.F	$\overline{}$
A	A	A	Х	Р	0	1	E	N	Т	I	A	L	0	R	K	0
В	Q	С	V	I	Y	0	F	U	0	D	S	Т	W	0	R	K
С	A	S	С	С	В	Х	D	Y	0	Н	Х	L	I	Т	A	I
D	S	A	0	Е	Q	T	K	Ι	N	Е	T	I	С	A	D	S
E	P	T	S	С	L	G	R	Y	0	I	L	W	I	Т	I	V
F	S	E	M	Z	Y	E	N	Ε	R	G	Y	В	0	Ι	U	Е
G	P	L	I	0	P	A	R	0	В	Н	R	Н	P	0	S	L
H	A	L	С	K	N	R	V	A	I	T	Е	A	R	N	С	0
I	С	I	D	Е	Ε	T	М	О	T	1	0	N	V	Q	X	С
J	Е	T	Z	P	W	Н	I	G	A	I	V	0	T	I	Y	I
L	С	E	Ι	L	T	0	В	О	L	F	0	R	С	E	T	T
М	R	S	G	Е	0	S	T	A	T	I	0	N	A	R	Y	Y
N	A	X	M	R	N	Х	Q	Z	0	R	0	С	K	E	T	S
О	F	I	W	R	0	P	R	О	P	U	L	S	I	0	N	О
P	Т	P	L	Α	N	Е	T	A	R	Y	D	0	Х	В	В	S

ANSWERS OF END OF UNIT QUESTIONS

1.
$$\frac{T_1}{T_2} = \frac{1}{2\sqrt{2}}$$

2.
$$R = 1.87 \times 10^6 m$$
.

3.
$$\frac{H_{planet}}{H_{earth}} = \frac{g_{earth}}{g_{planet}} = 100 \, m$$

4.
$$x = \frac{9D}{10}$$

$$5. d = \left(\frac{n-1}{n}\right)R$$

6.
$$n = 1.02 \text{ km/sec} = 1 \text{km/s (Approx.)}$$

7.
$$T = 27 \times 2\pi \sqrt{\frac{R}{g}}$$

8.
$$\frac{T_1}{T_2} = \frac{1}{2\sqrt{2}}$$
.

UNIT 9

Atomic models and photoelectric effect

KNOW THIS

Atoms consist of several particles called subatomic particles like the proton, electron, neutron, positron, neutrino, meson etc. These form the basis of particle physics which is dominating in today's research in different domains. It is important to realise that a lot of what we know about the structure of atoms has been developed over a long period of time. This is often how scientific knowledge develops, with one person building on the ideas of someone else. We are going to look at how our modern understanding of the atom has evolved over time.

Key unit competence

By the end of this unit, the learner should be able to evaluate the atomic model and photoelectric effect

Unit description

This unit investigates students understanding of the photoelectric effect which is an important part of the atomic structure. This Unit describes at a very introductory level the fundamentals of quantum mechanics and needs understanding some basic concepts in chemistry. It deals with;

- 9.0 Introduction
- 9.1 Structure of atom
- 9.2 Rutherford's atomic model
- 9.3 Bohr's atomic model
- 9.4 Energy levels and spectral lines of Hydrogen
- 9.5 Thermionic emission (thermo electronic emission)
- 9.6 Applications of cathode rays
 - 9.6.1 Cathode ray oscilloscope
 - 9.6.2 TV tubes
- 9.7 Fluorescence and phosphorescence
- 9.8 Photoelectric emission laws'
- 9.9 Photoelectric effect
- 9.10 Factors affecting photoelectric emission

- 9.11 Photon, work function and Plank constant
- 9.12 Einstein's equation photoelectric effect
- 9.13~Application~of~photoelectric~effect~(photo~emissive~and~photovoltaic~cells)
- 9.14 Compton effect

Summary of knowledge, skills, attitudes and values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Recall duality nature	Evaluate excitation	Appreciate the
of light	and ionization of an	difference between
	atom.	fluorescent and
		phosphorescent
		materials.
Explain the structure	Analyse electric	Appreciate the use of
of the atom	current production	solar and photocells in
	when sun radiation	real life
	shines a metal surface	
Explain atomic	Investigate electron	Appreciate the use of
radiation spectra	deflection in electric	cathode ray tube in
	and magnetic fields in	television to display
	cathode tubes	images
Explain evidence of	Distinguish fluorescent	Recognize the types of
energy levels in atom.	and phosphorescent	rays using cathode ray
	materials	oscilloscope (C.R.O)
Identify factors	Evaluate applications	Appreciate the
influencing thermionic	of photoelectric effect.	importance of emitted
emission		rays
Explain how C.R.O	Explain why Compton	
and T.V. tubes function	effect fails when light	
	is considered as a wave	
Explain the		
photoelectric effect		
Explain factors		
affecting photoelectric		
emission		

Explain functioning	
of photo cells (photo	
emissive and	
photovoltaic cells)	

Learning Objectives

By the end of this unit, learners should be able to;

- describe different atomic models by explaining their concepts and drawbacks.
- explain the photoelectric effect and its applications in everyday life.

SCOPE AND SEQUENCE

This unit will be delivered in 20 lessons each of 40 minutes.

Unit 9: Atomic models and photoelectric effect					
Lesson 1	Lesson 2	Lesson 3	Lesson 4		
This lesson	This lesson	This lesson	This lesson		
should cover:	should cover:	should cover:	should cover:		
Structure of	Rutherford's	Bohr's atomic	Bohr's Orbits		
atom	atomic model	model			
Lesson 5	Lesson 6	Lesson 7	Lesson 8		
This lesson	This lesson	This lesson	This lesson		
should cover:	should cover:	should cover:	should cover:		
Energy levels	Thermionic	Cathode ray	TV tubes		
and spectral	emission	oscilloscope			
lines of					
Hydrogen					
Lesson 9	Lesson 10	Lesson 11	Lesson 12		
This lesson	This lesson	This lesson	This lesson		
should cover:	should cover:	should cover:	should cover:		
Fluorescence and	Assessment 1	Photoelectric	Photoelectric		
phosphorescence		emission laws'	effect		

Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Factors affecting photoelectric emission	Photon, work function and Planck's constant	Einstein's equation photoelectric effect	Stopping potential and photoelectric effect
Lesson 17	Lesson 18	Lesson 19	Lesson 20
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Application of photoelectric effect	Compton Effect 1	Compton Effect 2	Assessment 2

LESSON DEVELOPMENT

Lesson 1	Title: Structure of atom
Learning objectives	By the end of this lesson, learners will be
	able to explain the structure of an atom
	clearly.
Key words	Structure of atom, plum pudding model
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 2	Title: Rutherford's atomic model
Learning objectives	By the end of this lesson, using diagrams,
	learners will be able to explain the
	Rutherford's model of the atom clearly.

Key words	Rutherford's planetary model of the atom
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, communication,
	co-operation, interpersonal management
	and life skills, lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 3	Title: Bohr's atomic model
Learning objectives	By the end of this lesson, learners will be
	able to explain the Bohr's model of the
	atom clearly.
Key words	hydrogen atom, Bohr's postulates
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 4	Title: Bohr's Orbits
Learning objectives	By the end of this lesson, mathematically
	learners will be able to analyse Bohr's
	orbital radius and speed accurately.
Key words	Radius of orbit, Speed of electron

Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, communication,
-	co-operation, interpersonal management
	and life skills, lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
educational freed children	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 5	Title: Energy levels and spectral
	lines of Hydrogen
Learning objectives	By the end of this lesson, using diagrams,
	learners will be able to explain Energy
	levels and spectral lines of Hydrogen
	atom clearly.
Key words	Energy levels, spectral lines of Hydrogen
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, communication,
	co-operation, interpersonal management
	and life skills, lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 6	Title: Thermionic emission
Learning objectives	By the end of this lesson, using examples
	learners will be able to explain the
	concept of thermionic emission clearly.
Key words	Thermionic emission, discharge of
	electrons
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	

Competence developed	Critical thinking, communication, co-operation, interpersonal management and life skills, lifelong learning, numeracy, ICT, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 7	Title: Cathode ray oscilloscope
Learning objectives	By the end of this lesson, using diagram,
Learning objectives	learners will be able to explain the
	working principle of the Cathode Ray
	Oscilloscope clearly.
Key words	C.R.O tube, deflecting the beam
Cross-cutting issues to dis-	
cuss	
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 8	Title: TV tubes
Learning objectives	By the end of this lesson, using the
	concept of cathode rays, learners will be
	able to explain the working of TV tubes
	clearly.
Key words	The picture tube, phosphor stripes,
	electron guns
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	

Competence developed	Critical thinking, Communication,
competence developed	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 9	Title: Fluorescence and
	phosphorescence
Learning objectives	By the end of this lesson, learners will
	be able to explain the difference between
	fluorescence and phosphorescence clearly.
Key words	Fluorescence, Phosphorescence
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 10	Title: Assessment 1
T	By the end of this assessment using
Learning objectives	
Learning objectives	knowledge and skills gained in lessons
Learning objectives	•

Key words	Structure of atom, plum pudding, Rutherford's planetary model of the atom hydrogen atom, Bohr's postulates, Radius of orbit, Speed of electron, Energy levels, spectral lines of Hydrogen, Thermionic emission, discharge of electrons, C.R.O tube, deflecting the beam, The picture tube, phosphor stripes, electron guns, Fluorescence, Phosphorescence
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, problem solving
Attention to special	Special attention is given to learners
educational need children	with visual difficulties
Lesson 11	Title: Photoelectric emission laws'
Learning objectives	By the end of this lesson, learners will
	be able to state the laws of photoelectric
	emission clearly.
Key words	The photo current, intensity of light,
	kinetic energy, frequency
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 12	Title: Photoelectric effect
Learning objectives	By the end of this lesson, using the photon
	theory, learners will be able to explain the
	concept of photoelectric effect clearly.
Key words	Photoelectric emission

Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 13	Title: Factors affecting photoelectric
	emission
Learning objectives	By the end of this lesson, learners will
	be able to explain the factors affecting
	photoelectric emission clearly.
Key words	Intensity of Light, Frequency, Number
	of Photoelectrons, Kinetic Energy of
	Photoelectrons
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 14	Title: Photon, work function and
	Planck constant
Learning objectives	By the end of this lesson, learners will be
	able to define the photon, work function
	and Planck's constant clearly.

Key words	Photon, work function, Planck constant
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, Communication,
• •	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 15	Title: Einstein's equation
	photoelectric effect
Learning objectives	By the end of this lesson,
	mathematically, learners will be able to
	explain and apply the Einstein's equation
	of photoelectric effect clearly.
Key words	Photoelectric emission, Work function,
	Threshold Frequency
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
Laggar 16	talented learners Title: Stanning natantial and
Lesson 16	Title: Stopping potential and
	photoelectric effect

Learning objectives	By the end of this lesson, learners will
	be able to explain the effect of stopping
	potential on photoelectric emission clearly.
Key words	Stopping potential and photoelectric effect
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 17	Title: Application of photoelectric
	effect
Learning objectives	By the end of this lesson, learners will
	be able to explain the applications of
	photoelectric effect in everyday life clearly.
Key words	photovoltaic cells
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, Communication,
	Co-operation, interpersonal management
	and life skills, Lifelong learning,
	numeracy, ICT, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties and gifted and
	talented learners
Lesson 18	Title: Compton Effect 1
Learning objectives	By the and of this lesson using the
	By the end of this lesson, using the
	diagram learners will be able to explain

Key words	The energy conservation, The photon scattering, Compton Effect
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, numeracy, ICT, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 19	Title: Compton Effect 2
Learning objectives	By the end of this lesson, mathematically, learners will be able to explain the concept of Compton Effect, derive and apply the expression for the Compton shift clearly.
Key words	Compton shift
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, numeracy, ICT, science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 20	Title: Assessment 2
Learning objectives	By the end of this assessment, using knowledge and skills gained in lessons 11 to 19, learners will be able to relate the content with the real life experiences.

Key words	The photo current, intensity of light,
	kinetic energy, Photoelectric emission,
	Frequency, Photon, work function,
	Planck's constant, Threshold Frequency,
	Stopping potential, photovoltaic cells,
	Compton Effect, Compton shift
Cross-cutting issues to dis-	Gender, Peace and Values Education
cuss	
Competence developed	Critical thinking, problem solving
Attention to special	Special attention is given to learners
educational need children	with visual difficulties

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Structure of atom

An atom is a sphere in which are embedded positively charged particles called protons and negatively charged particles called electrons.

Rutherford's atomic model

Rutherford performed experiments on the scattering of alpha particles by extremely thin gold foils. From these experiments born a new model of the atom called Rutherford's planetary model of the atom. The following conclusions were made

- Most of the mass and all of the charge of an atom concentrated in a very small region is called atomic nucleus.
- Nucleus is positively charged and it's size is of the order of $10^{-15}m \approx 1$ Fermi.
- In an atom there is maximum empty space and the electrons revolve around the nucleus in the same way as the planets revolve around the sun.

Bohr's atomic model

Bohr's model is based on the following postulates:-

- Each electron moves in a circular orbit centered the nucleus.
- The centripetal force needed to the electron moving in a circle is provided by electrostatic force of attraction between the nucleus and electrons.

- The angular momenta of electrons are whole number multiples of $\frac{h}{2\pi}$ where h is the Planck's constant. i.e. $p = \frac{nh}{2\pi} = mvr$.
- When electron moves in its allowed orbit, it doesn't radiate energy. The atom is then stable, such stable orbits are called stationary orbits.
- When an electron jumps from one allowed orbit to another, it radiates energy. The energy of radiation equals energy difference between levels.

$$hf = \varepsilon_i = \varepsilon_f$$

Energy levels and spectral lines of Hydrogen

When hydrogen atom is excited, it returns to its normal unexcited (or ground state) state by emitting the energy it had absorbed earlier. Transition from different orbits cause different wavelengths, these constitute spectral series which are characteristic of the atom emitting them.

The spectral lines arising from the transition of electron forms a spectra series. Mainly there are five series and each series is named after it's discover as Lyman series, Balmer series, Paschen series, Bracket series and Pfund series.

Thermionic emission

Thermionic emission or discharge of electrons from heated materials is widely used as a source of electrons in conventional electron tubes (e.g., television picture tubes) in the fields of electronics and communications.

Applications of cathode rays

- Cathode ray oscilloscope
- TV tubes

Fluorescence and phosphorescence

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation.

Phosphorescence is a specific type of photoluminescence related to fluorescence. Unlike fluorescence, a phosphorescent material does not immediately re-emit the radiation it absorbs.

$$V_s = \frac{h}{e} (f - f_o)$$

Photoelectric effect

The photoelectric effect is the emission of electrons from the surface of a metal when electromagnetic radiation (such as visible or ultraviolet light) shines on the metal.

Photoelectric emission laws'

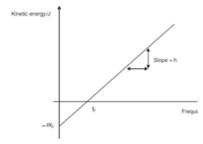
Law 1: The photo current is directly proportional to the intensity of light and is independent of frequency.

Law 2: The kinetic energy of the photo electrons is directly proportional to frequency and is independent of intensity.

Law 3: Photoelectric effect does not happen when the incident frequency is less than a minimum frequency (threshold frequency).

Law 4: There is no time lag between the incidence of photon and emission of electrons or photoelectric process is an instantaneous.

Factors affecting photoelectric emission

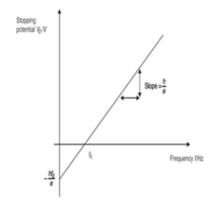

- Intensity of Light:
- Frequency:
- Number of Photoelectrons
- Kinetic Energy of Photoelectrons

Einstein's equation

Einstein suggested that the energy of the incident radiation hf was partly used to free electrons from the binding forces on the metal and the rest of the energy appeared as kinetic energy of the emitted electrons and his famous equation is;

$$hf = W_0 + K_{\text{max}}$$

From this equation, we can plot a graph of kinetic energy against frequency as shown below.



From the graph, it can be deduced that the slope of the graph yields plunks constant.

If the reverse potential difference applied on the circuit is increased until no electron reaches the anode, no current flows and this applied potential is called a stopping potential. This changes the Einstein's photoelectric equation to;

$$V_s = \frac{h}{e} (f - f_o)$$

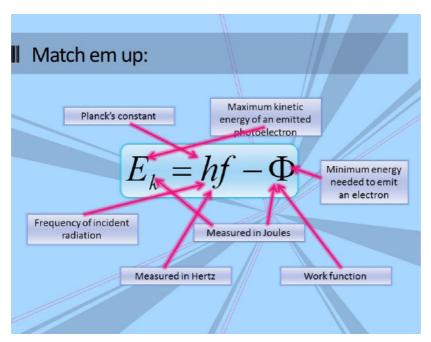
Emphasize use of the graph below to interpret the equation above

The slope multiplied by electronic charge gives plunk's constant.

Application of photoelectric effect

Photoelectric effect is applied in photoelectric cells or simply photocells. These cells change light energy into electric current. Photoelectric cell makes use of photoelectric effect and hence converts light energy into electrical energy. The strength of the current depends on the intensity of light falling on the cathode.

Compton effect


Compton effect says that when x-rays are projected on the target, they are scattered after hitting the target and change the direction they were moving.

The Compton equation (or Compton shift) is given by;

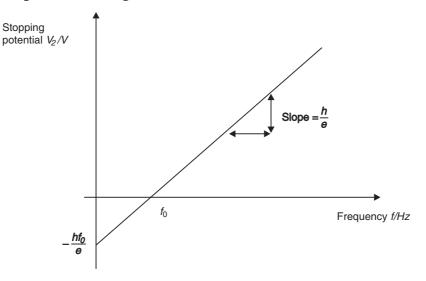
$$\lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$$

SOLUTIONS OF ACTIVITIES

ACTIVITY 9-2

ACTIVITY 9-3

(a) Equation 1-8 in the student's book is $V_s = \frac{h}{e} (f - f_o)$


The only variables we have are the stopping potential V_s and the radiation frequency f_i . So the equation takes the form y = ax + b where

$$y = V_s$$

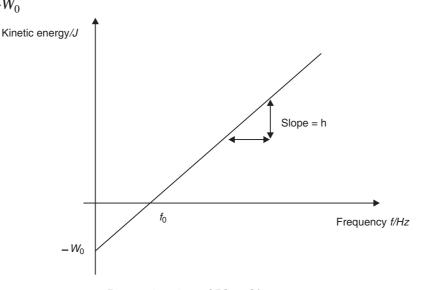
$$a = \frac{h}{e}$$

$$b = \frac{hf_0}{\rho}$$

And its plot is a straight line as shown below

9.1 Determination of Planck's constant 1

Planck's constant $h = e \times slope$


(b) As
$$K.e._{\text{max}} = hf - W_0$$

The only variables we have are the kinetic energy $K.e_{\max}$ and the radiation frequency f_i . So the equation takes the form y = ax + b where

$$y = K.e_{\text{max}}$$

$$a = h$$

$$b = -W_0$$

9-2; Determination of Planck's constant 2

ACTIVITY 9-3

- (a) The slope of the line is $\frac{\Delta E}{\Delta f} = 6.63 \times 10^{-34} \, \text{J/Hz}.$
- (b) Intercept on vertical intercept is $-1.04 \times 10^{-19} J$.
- (c) Equation of the line is $E = 6.63 \times 10^{-34} f 1.04 \times 10^{-19}$.
- (d) The vertical intercept is the work function.
- (e) The value of the slope of the line is the Planck's constant.
- (f) The Einstein photoelectric equation is $K.e_{max} = hf \Phi$.

SOLUTIONS OF EXERICISE 9-1

1.

Metal	Work	Work	Frequency	Maximum
	Function / eV	Function / J	used / Hz	KE of ejected
				electrons / J
Sodium	2.28	3.65×10^{-19}	6×10^{14}	0.35×10^{-19}
Potassium	2.30	3.68×10^{-19}	6×10^{14}	0.32×10^{-19}
Lithium	2.90	4.64×10^{-19}	$1. \times 10^{15}$	1.99×10^{-19}
Aluminium	4.10	6.56×10^{-19}	1.04×10^{15}	0.35×10^{-19}
Zinc	4.30	6.88×10^{-19}	1.2×10^{15}	1.12×10^{-19}
Copper	4.60	7.36×10^{-19}	1×10^{15}	0

For copper 1×10^{15} Hz is below the threshold frequency so no electrons are ejected.

2. a)
$$E = hf = 6.63 \times 10^{-34} \times 1.61 \times 10^{15} = 1.07 \times 10^{-18} \, J$$

b)
$$W_0 = hf - eV_s$$

= $1.07 \times 10^{-18} - 1.6 \times 10^{-19} \times 3$
= $5.9 \times 10^{-19} J$

$$c) \quad \frac{1}{2}mv_{\max}^2 = eV_s$$

$$v_{\text{max}} = \sqrt{\frac{2eV_s}{m}}$$

$$= \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 3}{9.11 \times 10^{-31}}}$$

$$= 1.02 \times 10^6 \, \text{m/s}$$

ANSWERS OF END OF UNIT QUESTIONS

- 1. The English scientist Thomson suggested that the atom, which is a neutral particle, was made of positive charge with 'lumps' of negative charge embedded in it rather like the plums in a pudding. For this reason it was known as the Plum Pudding theory of the atom.
 - Rutherford explained it this way. He knew that the alpha particles carried a positive charge so he said that the positive charge of the atom was concentrated in one place that he called the nucleus, and that the negatively charged particles, the electrons, were in orbit around the nucleus. Most of the mass was in the nucleus
- 2. Rutherford's prediction using the idea of Coulomb law repulsion was verified by experiment. It also enables experimental values of nuclear charge to be obtained, i.e. atomic number.
- 3. They would not have been repelled so it is unlikely that any would 'bounce back'. Some could be absorbed by the nucleus.
- 4. The charge on the nucleus is much smaller so deflection would be smaller.
- 5. Small, massive and positive.
- 6. a) $3.52x10^{33} eV$ b) $2.08 \times 10^{-19} J$
- 7. a) $\lambda = 0.017 \,\text{A}^{\circ}$ b) $\frac{\Delta \lambda}{\lambda} = 41.2\%$
- 8. a) 60.7° b) 13.0
- 9. a) Energy of the photon $4.74 \times 10^{-19} J = E = 2.9 eV$ b) 0.246 eV
- 10. Total Energy = Energy of positron + Energy of a electron Total Energy = $(K + mc^2) + (K + mc^2) = E + E$
 - b) E=0.511MeV each, l = 2.43 × $10^{-12}m$, $f = 1.24 \times 10^{20} \, Hz$
- 11. Hint $\left[p = \frac{h}{\lambda}\right] P = 1.33 \times 10^{-27} Kg.m/s$
 - b) $v = 1460 \ m/s$
 - c) Energy of electron $E=6.02\times 10^{-6} eV$, Energy of the photon 2.48 eV
- 12. a) $v = 4.36 \times 10^6 \, m/s$ b) 54.0eV

UNIT **10**

Analog and Digital Signals

KNOW THIS

In today's world, many different types of signals carry information that help us to communicate around us. The two types of signals that are used to transport information are analog and digital signals. Most communication uses both types of signals. Therefore, we need a way to be able to use each type efficiently, to ensure the information reaches its destination. This unit discusses digital and analog signals and their use in modern communication.

Key unit competence

To be able to differentiate analog from digital signals.

Unit description

This unit is more theoretical but engages the learners by using real-life examples in the use of digital and analog signals. This unit explains the block diagram of Information Transmission in a communication system and the Elements of Communication. It also discusses the advantages of digital technology and finally gives the basic knowledge on Logic Gates.

- 10.0. Introduction
- 10.1. Information transmission in a communication system
- 10.2. Communication Terms and Concepts
- 10.3. Elements of communication
- 10.4. Types of information and requirements
- 10.5. Simplex transmission
- 10.6. Half-duplex communications
- 10.7. Full-duplex communications
- 10.8. Bandwidth and signal Frequency
- 10.9. Analogue signal system10.9.1. Example of an analogue electronic system
- 10.10. Analog signals
- 10.11. Advantages and disadvantages of analog signals

- 10.12. Digital signals
- 10.13. Advantages of digital technology
- 10.14. Comparing digital and analog signals
- 10.15. Logic gates

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that the learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Explain types of	Explain terms used	Appreciate advantages
information used in	in communication	of digital over analog
communication.	systems	system
Differentiate digital	Analyse analogue and	Enjoy converting
and analogue system	digital systems	natural numbers to
of communication		digital system
Identify and explain	Evaluate and	
simplex, duplex	advantages and	
and multiplex in	disadvantages of	
communication	digital and analog	
State advantages of	Differentiate	
digital system over	simplex from duplex	
analogue. System	communication	
	systems	
State laws of digital	Judge which is the	
numbers and their	best system to use	
representation.	Solve problems	
	involving digital	
	numbers	

Learning Objectives

By the end of this unit, the learners should be able to;

- explain the transmission of information in a communication system.
- explain with examples the use of digital and analog signals in everyday applications.

SCOPE AND SEQUENCE

This unit will be taught in 18 lessons as distributed below;

Unit 10: Analog and digital signals

Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Information	Communication	Elements of	Types of
transmission in	Terms and	communication	information and
a communication	Concepts		requirements
system			
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Simplex	Half-duplex	Full-duplex	Bandwidth and
transmission	communications	communications	signal Frequency
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Analog signal	Assessment 1	Example of	Analog signals
system		an analogue	
		electronic	
		system	
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Advantages and	Digital signals	Advantages	Comparing
disadvantages of		of digital	digital and
analog signals		technology	analog signals
Lesson 17	Lesson 18		
This lesson	This lesson		
should cover:	should cover:		
Logic gates	Assessment 2		

LESSON DEVELOPMENT

Lesson 1	Title: Information Transmission in
	a Communication System
Learning Objectives	By the end of this lesson, using real-life examples, the learners will be able to explain the block diagram of information transmission in a communication system clearly.
Key words	Communication system, transmitting end propagation medium, receiving end
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, science and technology
Attention to special educational need children	Special attention is given to the learners with intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties, and gifted and talented learners
Lesson 2	Title: Communication Terms and
	Concepts
Learning Objectives	By the end of this lesson, using real- life examples, the learners will be able to explain the terms and concepts in a communication system clearly.
Key words	Communicator, Message, Code, Channels, Medium, Noise, Environment, Feedback, Levels
Cross-cutting issues to be discussed	Gender, Peace and Values Education, Standardization Culture

Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology
Attention to special educational need children	Special attention is given to the learners with intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners
Lesson 3	Title: Elements of communication
Learning Objectives	By the end of this lesson, using real-life examples, the learners will be able to explain the elements of communication.
Key words	Sender, Receiver, Message, Channel, Feedback
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology
Attention to special educational need children	Special attention is given to learners with intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners.

Lesson 4	Title: Types of information and requirements
Learning Objectives	By the end of this lesson, using real- life examples the learners will be able to explain the types of information and their requirements clearly.
Key words	creative information, Operational information, Communication information
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology
Attention to special educational need children	Special attention is given to the learners with, intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners
Lesson 5	Title: Simplex transmission
Learning Objectives	By the end of this lesson, using real-life examples, the learners will be able to explain the simplex mode of information transmission clearly.
Key words	Simplex transmission
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology

Attention to special educational need children Lesson 6	Special attention is given to learners with, intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners Title: Half-duplex communications
Learning Objectives	By the end of this lesson, using real- life examples, the learners will be able to explain the half-duplex mode of information transmission clearly.
Key words	Half-duplex
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology
Attention to special educational need children	Special attention is given to learners with, intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and Talented learners
Lesson 7	Title: Full-duplex communications
Learning Objectives	By the end of this lesson, using real- life examples the learners will be able to explain the full-duplex mode of information transmission clearly.
Key words	Full-duplex
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture

Competences developed	Critical thinking, Creativity and innovation
	Communication, Research and problem- solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology
Attention to special educational	Special attention is given to the
need children	learners with intellectual challenges,
	developmental challenges, hearing difficulties, speech and communication
	difficulties and gifted and talented
	learners
Lesson 8	Title: Bandwidth and signal
	Frequency
Learning Objectives	By the end of this lesson, using real- life examples, the learners will be able to explain the bandwidth and signal frequency in a communication system clearly.
Key words	Bandwidth and signal Frequency
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, hearing
	difficulties, speech and communication
	difficulties and gifted and talented
	learners

Lesson 9	Title: Analog signal system
Learning Objectives	By the end of this lesson, using real- life examples, the learners will be able to explain the concept of analog signal system clearly.
Key words	Analog signal
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology
Attention to special educational need children	Special attention is given to the learners with, intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners
Lesson 10	Title: Assessment 1
Learning Objectives	By the end of this assessment, using knowledge and skills gained from lesson 1 to lesson 9, the learners should be able to relate the content with the real-life experiences.
Key words	Communication system, transmitting end propagation medium, receiving end, Communicator, Message, Code, Channels, Medium, Noise, Environment, Feedback, Levels, Sender, Receiver, Message, Channel, Feedback, creative information, Operational information, Communication information, Simplex transmission, Half-duplex, Full-duplex, Bandwidth and signal Frequency, Analog signal

Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking and problem solving
Attention to special educational need children	Special attention is given to the learners with visual impairment
Lesson 11	Title: Example of an analogue electronic system
Learning Objectives	By the end of this lesson, the learners will be able to explain examples of analog electronic system clearly.
Key words	Public address system
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology
Attention to special educational need children	Special attention is given to the learners with, intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners
Lesson 12	Title: Analog signals
Learning Objectives	By the end of this lesson, using real- life examples, the learners will be able to explain the use of analog signals in information transmission system clearly.
Key words	Analog signals
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture

Competences developed	Critical thinking, Creativity and
	innovation
	Communication, Research and
	problem-solving, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, Literacy, ICT,
	science and technology
Attention to special educational	Specialattentionisgivestolearnerswith
need children	intellectual challenges, developmental
	challenges, hearing difficulties, speech
	and communication difficulties and
	gifted and talented learners
Lesson 13	Title: Advantages and
	disadvantages of analog signals
Learning Objectives	By the end of this lesson, using real-life
	examples, the learners will be able to
	explain advantages and disadvantages
	of analog signals clearly.
Key words	Analog signals
Cross-cutting issues to discuss	Gender, Peace and Values Education,
	Standardization Culture
Competences developed	Critical thinking, Creativity and
	innovation Communication, Research
	and problem-solving, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, Literacy, ICT,
	science and technology
Attention to special educational	
need children	learners with, intellectual challenges,
	developmental challenges, hearing
	difficulties, speech and communication
	difficulties and gifted and talented
	learners

Lesson 14	Title: Digital signals		
Learning Objectives	By the end of this lesson, using real- life examples, the learners will be able to explain the use of digital signals in information transmission system clearly.		
Key words	Digital signals		
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture		
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, science and technology		
Attention to special educational need children	Special attention is given to learners with, intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners		
Lesson 15	Title: Advantages of digital technology		
Learning Objectives	By the end of this lesson, using real- life examples, the learners will be able to explain the advantages of digital technology clearly.		
Key words	digital technology		
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture		
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, Science and technology		

Attention to special educational need children Lesson 16	Special attention is given to learners with intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners Title: Comparing digital and analog signals
Learning Objectives	By the end of this lesson, using real- life examples, the learners will be able to give the similarities and differences between digital and analog signals clearly.
Key words	digital and analog signals
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture
Competences developed	Critical thinking, Creativity and innovation Communication, Research and problem-solving, Cooperation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, science and technology
Attention to special educational need children	Specialattentionisgiventolearnerswith intellectual challenges, developmental challenges, hearing difficulties, speech and communication difficulties and gifted and talented learners
Lesson 17	Title: Logic gates
Learning Objectives	By the end of this lesson, learners will be able to compare logic gates and electrical circuits and give their truth tables accurately.
Key words	OR, AND, NOT, EXOR
Cross-cutting issues to discuss	Gender, Peace and Values Education, Standardization Culture

0 4 1 1	Q ::: 1
Competences developed	Critical thinking, Creativity and
	innovation Communication, Research
	and problem-solving, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, Literacy, ICT,
	science and technology
Attention to special educational	Special attention is given to the
need children	learners with intellectual challenges,
	developmental challenges, hearing
	difficulties, speech and communication
	difficulties and gifted and talented
	learners
Lesson 18	Title: Assessment 2
Learning Objectives	By the end of this assessment, using
Learning Objectives	By the end of this assessment, using knowledge and skills gained from lesson
Learning Objectives	
Learning Objectives	knowledge and skills gained from lesson
Learning Objectives	knowledge and skills gained from lesson 10 to lesson 17, learners should be able
Learning Objectives Key words	knowledge and skills gained from lesson 10 to lesson 17, learners should be able to relate the content with the real-life
	knowledge and skills gained from lesson 10 to lesson 17, learners should be able to relate the content with the real-life experiences.
	knowledge and skills gained from lesson 10 to lesson 17, learners should be able to relate the content with the real-life experiences. public address system, Analog signals,
	knowledge and skills gained from lesson 10 to lesson 17, learners should be able to relate the content with the real-life experiences. public address system, Analog signals, Digital signals, digital technology, OR,
Key words	knowledge and skills gained from lesson 10 to lesson 17, learners should be able to relate the content with the real-life experiences. public address system, Analog signals, Digital signals, digital technology, OR, AND, NOT, EXOR
Key words	knowledge and skills gained from lesson 10 to lesson 17, learners should be able to relate the content with the real-life experiences. public address system, Analog signals, Digital signals, digital technology, OR, AND, NOT, EXOR Gender, Peace and Values Education,
Key words Cross-cutting issues to discuss	knowledge and skills gained from lesson 10 to lesson 17, learners should be able to relate the content with the real-life experiences. public address system, Analog signals, Digital signals, digital technology, OR, AND, NOT, EXOR Gender, Peace and Values Education, Standardization Culture Critical thinking and problem solving
Key words Cross-cutting issues to discuss Competences developed	knowledge and skills gained from lesson 10 to lesson 17, learners should be able to relate the content with the real-life experiences. public address system, Analog signals, Digital signals, digital technology, OR, AND, NOT, EXOR Gender, Peace and Values Education, Standardization Culture Critical thinking and problem solving

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Information transmission in a communication system

The signals from information source are added to the carrier in the modulator. The modulated signal is sent along a channel in the propagating medium by a transmitter. The propagation medium is a channel through which information is transmitted. This may be a cable or a free space.

Communication Terms and Concepts

- Communication
- Communicator
- Message
- Code
- Channels
- Medium
- Noise
- Environment
- Feedback
- Levels

Elements of communication

- Sender
- Receiver
- Message
- Channel
- Feedback

Types of information and requirements

- · Constructional/creative information
- Operational information
- · Communication information

Simplex transmission

Simplex transmission is a single one-way base band transmission. Simplex channels are not often used because it is not possible to send back error or control signals to the transmit end.

Half-duplex communications

Half-duplex transmission is an improvement over simplex because the traffic can travel in both directions. Full-duplex networking technology increases performance because data can be sent and received at the same time.

Bandwidth and signal Frequency

The bandwidth of a composite signal is the difference between the highest and the lowest frequencies contained in that signal.

Mathematically, the bandwidth is given by;

$$BW = F_{USB} - f_{LSB}$$

Where $F_{\rm USB}$ and $f_{\rm LSB}$ stand for upper side band and lower side band respectively.

Analogue signal system

Analogue systems operate with values that vary continuously and have no abrupt transitions between levels. In Rwanda recently analogue systems were replaced by digital systems that provide greater capacity of data transfer and increased reliability and security.

Analog signals

Analog signal is a continuous signal that contains time varying quantities. An analog signal is a continuous wave denoted by a sine wave and may vary in signal strength (amplitude) or frequency (time).

Digital signals

Unlike analog technology which uses continuous signals, digital technology encodes the information into discrete signal states. Numerous and very successful applications of digital technology include the continuously growing number of PC's, the communication net work ISDN as well as the increasing use of digital control stations (Direct Digital Control: DDC).

Advantages of digital technology

- More capacity from the same number of frequencies
- Consistent voice clarity at low received signal levels near the edge of coverage
- Data is defined in the standard
- Secure transmissions

Logic gates

There are three basic logic gates each of which performs a basic logic function, they are called NOT, AND and OR. All other logic functions can ultimately be derived from combinations of these three.

Activity 10.1

Term description	
Receiver	1. A party to whom the sender
	transmits the message
Channel	Specific channel/pipeline used to
	transmit the message
Noise	Any interference to the message
	The process of sharing the messages through continuous flow of symbols
Code	Means a system suitable for creating/carrying message through specific medium

Activity 10.2

Sender: Anna Receiver: John

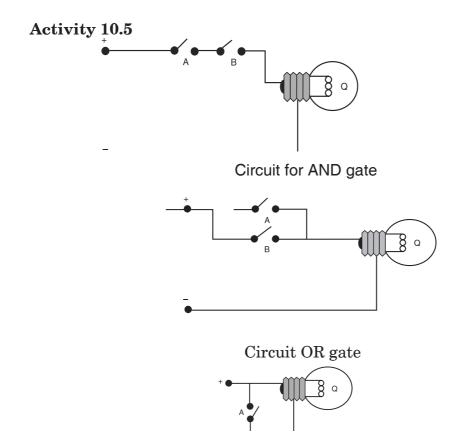
Message: John, are you OK? Feedback: No. I am a bit tired

Channel: free space

Answers to Activity 10.3

1.B

2.D


3.D

4.A

Answers to Question Exercise 10.4

Operation →		OR	AND	EXOR	Decimal
Position →	$1 \times 2^3 = 8$	$1\times 2^2=4$	$0 \times 2^{1} = 0$	$1 \times 2^0 = 1$	
0	0	0	0	0	=0
0	1	1	0	1	=8+4+1+0=13
1	0	1	0	1	=5
1	1	1	1	0	=14

Decimal	MSB	4 bir	nary	LSB
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Circuit for NOT gate

SOLUTIONS OF EXERICISE 10-1

A	В	С	P = A NOR B	Q = B AND C	X = P OR Q
1	1	1	0	1	1
1	1	0	0	0	0
1	0	1	0	0	0
1	0	0	0	0	0
0	1	1	0	1	1
0	1	0	0	0	0
0	0	1	1	0	1
0	0	0	1	0	1

A	В	A OR B	A AND	A NOR B	(A AND B) OR (A
			В		NOR B)
1	1	1	1	0	1
1	0	1	0	0	0
0	1	1	0	0	0
0	0	0	0	1	1

		~				~
A	В	\mathbf{C}	D = A OR B	E = B AND C	F = D OR E	C AND F
1	1	1	1	1	1	1
1	1	0	1	0	1	0
1	0	1	1	0	1	1
1	0	0	1	0	1	0
0	1	1	1	1	1	1
0	1	0	1	0	1	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

A	В	С	D = A XOR	E = B AND C	F = D OR E	F XOR C
			В			
1	1	1	0	1	1	0
1	1	0	0	0	0	0
1	0	1	1	0	1	1
1	0	0	1	0	1	1
0	1	1	1	1	1	0
0	1	0	1	0	1	1
0	0	1	0	0	0	1
0	0	0	0	0	0	0

UNIT 11

Mobile phone and radio communication

KNOW THIS

Like all other radio communication applications, mobile telephony uses radio waves to carry the information, like voice, text and images, through the air. Radio waves are a kind of electromagnetic fields (EMF) that are also called radio frequency fields or radio frequency energy. Electromagnetic fields are present in our every day life, both naturally and from man-made sources. Radio waves travel with the speed of light. They consist of an electric and a magnetic component, which vary periodically with time.

Key unit competence

By the end of the unit the learner should be able to distinguish mobile phone system from radio system of communication.

Unit description

The purpose of this unit of "Mobile phone and radio communication" is designed to provide students in level 5 the opportunity to explore and to solve problems about the physics of how Mobile phone and radio communication work. This unit is divided into sections which mostly discuss on Concepts of transmission system, Principle of cellular radio, Mobile communication systems and Modulation techniques. It deals with;

- 11.0 Introduction
- 11.1 Concepts of transmission system
- 11.2 Principle of cellular radio
- 11.3 Structure of cellular network
- 11.4 Principle of cellular network
- 11.5 Mobile communication systems
- 11.6 Modulation techniques
- 11.7 Post, telegraph and telephone (PTT)

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Recall the concepts of transmission systems	Explain exactly the simple cellular radio principles	Appreciate roles of telephone and radio transmission systems
Differentiate between telephone and radio transmission	Differentiate between the terms AM, FM and PM radio transmission operation	Appreciate types of modulations (AM, FM, and PM) applied in communication systems.
Identify and explain modulations used in communication		

Learning objectives

By the end of this unit, learners should be able to;

- explain the concept and principles of cellular radio network.
- explain the need for cellular system in modern mobile communication.

SCOPE AND SEQUENCE

This unit will be delivered in 18 lessons each of 40 minutes.

Unit 11: Mobile phone and radio communication

Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Introduction	Concepts of	Limitations	Principle of
	transmission	of digital	cellular radio
	system	communications	
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Structure of	Assessment 1	Principle of	Cells and clusters
cellular network		cellular network	in a network

Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson should cover:	This lesson should cover:	This lesson should cover:	This lesson should cover:
Cell splitting and frequency reuse	Handoffs in mobile communication	Mobile communication systems	Assessment 2
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson should cover: Need for	This lesson should cover: Frequency	This lesson should cover: Amplitude	This lesson should cover: Phase modulation
modulation Lesson 17	modulation Lesson 18	modulation	
This lesson should cover:	This lesson should cover:		
Post, telegraph and telephone (PTT)	Assessment 3		

LESSON DEVELOPMENT

Lesson 1	Title: Introduction
Learning Objectives	By the end of this lesson, using real-life
	examples, the learners will be able to
	explain the need for mobile and radio
	communication in every day activities
	clearly.
Key words	Concept of mobile and radio
	communication
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology

Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 2	Title: Concepts of transmission
	system
Learning Objectives	By the end of this lesson, using a
	block diagram, learners will be able
	to explain the concept of transmission
	system clearly.
Key words	Transmitter, Channel, Receiver,
	Digital communication, Analog
	communication
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and communication difficulties
1	communication difficulties
Lesson 3	Title: Limitations of digital
	Title: Limitations of digital communications
Lesson 3 Learning Objectives	Title: Limitations of digital communications By the end of this lesson, using real-
	Title: Limitations of digital communications By the end of this lesson, using real-life examples, the learners will be able
	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital
Learning Objectives	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital communication clearly.
Learning Objectives Key words	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital communication clearly. Sampling, Quantization, Coding
Learning Objectives Key words Cross-cutting issues to discuss	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital communication clearly. Sampling, Quantization, Coding Gender, Peace and Values Education
Learning Objectives Key words	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital communication clearly. Sampling, Quantization, Coding Gender, Peace and Values Education Critical thinking, Creativity and
Learning Objectives Key words Cross-cutting issues to discuss	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital communication clearly. Sampling, Quantization, Coding Gender, Peace and Values Education Critical thinking, Creativity and innovation, Communication,
Learning Objectives Key words Cross-cutting issues to discuss	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital communication clearly. Sampling, Quantization, Coding Gender, Peace and Values Education Critical thinking, Creativity and innovation, Communication, Cooperation, interpersonal
Learning Objectives Key words Cross-cutting issues to discuss	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital communication clearly. Sampling, Quantization, Coding Gender, Peace and Values Education Critical thinking, Creativity and innovation, Communication, Cooperation, interpersonal management and life, Lifelong
Learning Objectives Key words Cross-cutting issues to discuss	Title: Limitations of digital communications By the end of this lesson, using reallife examples, the learners will be able to explain the limitations of digital communication clearly. Sampling, Quantization, Coding Gender, Peace and Values Education Critical thinking, Creativity and innovation, Communication, Cooperation, interpersonal

Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 4	Title: Principle of cellular radio
Learning Objectives	By the end of this lesson, using real-
	life examples, the learners will be able
	to explain the principle of cellular
	radio clearly.
Key words	power transmitters, co-channel station
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 5	Title: Structure of cellular network
Learning Objectives	By the end of this lesson, using real-
	life examples, the learners will be able
	to explain the structure of cellular
	network clearly.
Key words	BTS, MSC, HLR, VLR, PSTN
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology

Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 6	Title: Assessment 1
Learning Objectives	By the end of this assessment, using
	knowledge and skills gained in
	lessons 1 to 5, learners will be able to
	relate the content with the real-life
	experiences.
Key words	Concept of mobile and radio
	communication, Transmitter, Channel,
	Receiver, Digital communication,
	Analog communication, Sampling,
	Quantization, Coding, power
	transmitters, co-channel station, BTS,
	MSC, HLR, VLR, PSTN
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking and problem solving
Attention to special educational	Special attention is given to learners
need children	with visual impairment
Lesson 7	Title: Principle of cellular network
Learning Objectives	By the end of this lesson, using real-
	life examples, the learners will be able
	to explain the principle of cellular
	network clearly.
Key words	principle of cellular network
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology

Attention to special educational need children	Special attention is given to learners with intellectual challenges,
need cimuren	developmental challenges, speech and
	communication difficulties
Lesson 8	Title: Cells and clusters in a
	network
Learning Objectives	By the end of this lesson, using real-
	life examples and diagrams, learners
	will be able to explain the difference in
	cells and clusters in a network clearly.
Key words	Cells, clusters
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 9	Title: Cell splitting and frequency
	reuse
Learning Objectives	By the end of this lesson, using real-
	life examples and diagrams, learners
	will be able to explain the need for
	cell splitting and frequency reuse in a
	network clearly.
Key words	Cell splitting, frequency reuse
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology

Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
22004 022242 022	developmental challenges, speech and
	communication difficulties
Lesson 10	Title: Handoffs in mobile
	communication
Learning Objectives	By the end of this lesson, using real-
	life examples and diagrams, learners
	will be able to explain the concept of
	handoffs in a mobile network clearly.
Key words	Handoffs
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 11	Title: Mobile communication
	systems
Learning Objectives	By the end of this lesson, using real-
	life examples, the learners will be
	able to explain the concept of mobile
	communication clearly.
Key words	Mobile communication
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology

need children	developmental challenges, speech and communication difficulties	
need children		
1 1 1 1	with intellectual challenges,	
Attention to special educational	Special attention is given to learners	
	technology	
	learning, Literacy, ICT, science and	
	management and life, Lifelong	
	Cooperation, interpersonal	
	innovation, Communication,	
Competences developed	Critical thinking, Creativity and	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
Key words	Modulation	
	mobile communication clearly.	
	explain the need for modulation in	
	examples learners will be able to	
Learning Objectives	By the end of this lesson, using	
Lesson 13	Title: Need for modulation	
need children	with visual impairment	
Attention to special educational	Special attention is given to learners	
Competences developed	Critical thinking and problem solving	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
	Handoffs, Mobile communication	
	Cell splitting, frequency reuse,	
Key words	principle of cellular network, Cells, clusters	
	experiences.	
	to relate the content with the real-life	
	lessons 6 to 11, learners will be able	
	knowledge and skills gained in	
Learning Objectives	By the end of this assessment, using	
Lesson 12	Title: Assessment 2	
	communication difficulties	
	developmental challenges, speech and	
need children	with intellectual challenges,	
	developmental challenges, sp communication difficulties	

Learning Objectives	By the end of this lesson, using examples, learners will be able to explain the need for frequency modulation in mobile communication
	clearly.
Key words	Frequency modulation
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 15	Title: Amplitude modulation
Learning Objectives	By the end of this lesson, using
	examples, learners will be able
	to explain the need for amplitude
	modulation in mobile communication
	clearly.
Key words	Amplitude modulation
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 16	Title: Phase modulation

Learning Objectives	By the end of this lesson using
Learning Objectives	•
	examples learners will be able to
	explain the need for phase modulation
77 1	in mobile communication clearly.
Key words	Phase modulation
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 17	Title: Post, telegraph and
	telephone (PTT)
Learning Objectives	By the end of this lesson, using
	examples, learners will be able to
	explain the need for posts, telegraphs
	and telephone in everyday life clearly.
Key words	Post, telegraph and telephone
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Creativity and
1	innovation, Communication,
	Cooperation, interpersonal
	management and life, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech and
	communication difficulties
Lesson 18	Title: Assessment 3
LOSSOII IO	11010.11000001110110 U

Learning Objectives	By the end of this assessment, using
	knowledge and skills gained in lessons
	12 to 17, learners will be able to
	relate the content with the real-life
	experiences
Key words	Modulation, Frequency modulation,
	Amplitude modulation, Phase
	modulation, Post, telegraph and
	telephone
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking and problem solving
Attention to special educational	Special attention is given to learners
need children	with visual impairment

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Concepts of transmission system

In telecommunication, a communications system is a collection of individual communications networks, transmission systems, relay stations, tributary stations, and data terminal equipment (DTE) usually capable of interconnection and interoperation to form an integrated whole.

Principle of cellular radio

The cellular concept is a major breakthrough in solving the problem of spectral congestion and user capacity. It involves dividing the area into small parts called cells and neighbouring base stations are assigned different groups of channels so that the interference between base stations (and the mobile users under their control) is minimized. It offered very high capacity in a limited spectrum allocation without any major technological changes.

Structure of cellular network

An overall cellular network contains a number of different elements from the base transceiver station (BTS) itself with its antenna back through a base station controller (BSC), and a mobile switching centre (MSC) to the location registers (HLR and VLR) and the link to the public switched telephone network (PSTN).

The BSC is often co-located with a BTS. The BSC interfaces with the mobile switching centre. This makes more widespread choices about the routing of calls and interfaces to the land line based PSTN as well as the HLR and

VLR.

Principle of cellular network

Because the amount of frequency spectrum available for mobile cellular use was limited, efficient use of the required frequencies was needed for mobile cellular coverage. In modern cellular telephony, rural and urban regions are divided into areas according to specific provisioning guidelines.

Modulation techniques

Modulation is a technique used for encoding information into a RF channel. There are a few general types of modulation; Frequency Modulation (FM), Phase Modulation (PM) and Amplitude modulation (AM).

SOLUTION TO ACTIVITIES

Expected answers for Activity 11.1

Any sensible story that involves at least 4 equipment given under this activity.

The story may base on

- How they are used
- How they transfer information
- Advantages of using one over another.
- How the equipment have transformed our society
- Etc.

ANSWERS TO THE END OF UNIT QUESTIONS

- 1. Amplitude modulation, the information signal is used to vary the amplitude of the carrier so that it follows the wave shape of information signal.
- 2. Modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal
- 3. Amplitude modulation (AM) (here the amplitude of the carrier signal is varied in accordance with the instantaneous amplitude of the modulating signal) Double-sideband modulation (DSB) ...
 - Angle modulation, which is approximately constant envelope.
- 4. Modulation is extremely necessary in communication system due to thef ollowing reasons :

- (i) **Practical antenna length.** Theory shows that in order to transmit a wave effectively, thelength of the transmitting antenna should be approximately equal to the wavelength of the wave.
- (ii) Operating range. The energy of a wave depends upon its frequency. The greater the frequency of the wave, the greater the energy possessed by it. As the audio signal frequencies are small, therefore, these cannot be transmitted over large distances if radiated directly into space. The onlypractical solution is to modulate a high frequency carrier wave with audio signal and permit the transmission to occur at this high frequency (i.e. carrier frequency).
- (iii) Wireless communication. One desirable feature of radio transmission is that it should be carried without wires i.e. radiated into space. At audio frequencies, radiation is not practicable because the efficiency of radiation is poor. However, efficient radiation of electrical energy is
- possible at high frequencies (> 20 kHz). For this reason, modulation is always done in communication systems.
- 5. Length of antenna is shortened, signal loss is reduced, ease of radiation, adjustment of bandwidth, shifting signal frequency of the assigned value. (as discussed in answers above)
- 6. Frequency modulation is when the frequency of carrier wave is changed in accordance with the intensity of the signal

Relativity concepts and postulates of special relativity

KNOW THIS

When the wavelike nature of light (and other electromagnetic radiation) was discovered at the 18th century, scientists assumed that there must be some kind of substance in which the waves move. They believed that space was filled with such a substance, and called it ether.

In 1887 Albert Michelson and Edward Morley carried out an experiment in which they tried to show the motion of Earth relative to the ether by measuring changes in light speed in different directions. To their astonishment they found no change in the light speed regardless of the relative motion between Earth and the source of light or the ether.

As a result of this experiment known as the Michelson-Morley experiment, the theory of ether, was abandoned by most physicists. In the absence of ether, there was also no absolute reference to determine what is at rest and what is moving in space.

This was where Einstein started his work on relativity. Along with quantum mechanics, relativity is central to modern physics. In particular, relativity provides the basis for understanding cosmic processes and the geometry of the universe itself.

Key unit competence

By the end of this unit the learner should be able to analyse relativity Concepts and postulates of special relativity.

Unit description

The purpose of this unit is to introduce the theory of special relativity in an easily understandable way. It reviews the basic issues in special relativity in a somewhat informal way, without the use of higher mathematics, so that anyone with a basic knowledge of physics can easily understand it. This unit deals with;

12.0 Introduction

- 12.1 Definition and concept of relativity
- 12.2 Postulates of special theory of relativity
- 12.3 Concept of space, time and mass
- 12.4 Concept of Frame of reference
- 12.5 Galilean equation of transformation
- 12.6 Concept of simultaneity

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Explain space, time,	Related space, time	Appreciate the
mass and frame of	and mass	significance of frame of
reference		reference.
Explain the two	Analyse Galilean	Acquire scientific
postulates of special	equation of	technique and
theory of relativity	transformation	reasoning to analyzing
State two postulates		theories and equations.
of the special theory of		
relativity		
	Interpret postulates	Acquire scientific
	of special theory of	reasoning and attitudes
	relativity	for interpreting
		simultaneity
	Describe the concept of	Problems on relative
	simultaneity	velocity and Galilean
		Equations of
		transformation
	Create simulations	
	to demonstrate	
	postulates of special	
	relativity	

Learning Objectives

By the end of this unit, learners should be able to;

• explain the concept of general and special relativity.

• explain the concept of the frames of reference and apply it in other theories.

SCOPE AND SEQUENCE

This unit will be delivered in 17 lessons each of 40 minutes.

Unit 12: Relativity concepts and postulates of special relativity

Lesson 1 | Lesson 2 | Lesson 3 | Lesson 4

Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Meaning of	The concept of	First postulate	Second postulate
relativity	relativity	of special theory	of special theory
		of relativity	of relativity
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Concept of Time	Time dilation	Assessment 1	Length
dilation	equation		contraction
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Mass and	Mass and	Concept of	Types of frames of
Momentum	energy	Frame of	reference
		reference	
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Assessment 2	Concept of	Galilean	Concept of
	Galilean	equation of	simultaneity
	transformation	transformation	
Lesson 17			
This lesson			
should cover:			
Assessment 3			

LESSON DEVELOPMENT

Lesson 1	Title: Meaning of relativity
Learning Objectives	By the end of this lesson, learners will be
	able to define relativity clearly.
Key words	relativity
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, ICT, Literacy,
	science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 2	Title: The concept of relativity
Learning Objectives	By the end of this lesson, learners will be
	able to explain the concept of relativity.
Key words	concept of relativity
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
uiscuss	
Competences developed	Critical thinking, Research and problem-
	Critical thinking, Research and problem- solving, Communication, Cooperation,
	solving, Communication, Cooperation,
	solving, Communication, Cooperation, interpersonal management and life
	solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy,
Competences developed	solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy, science and technology
Competences developed Attention to special	solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy, science and technology Special attention is given to learners
Competences developed Attention to special	solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy, science and technology Special attention is given to learners with intellectual challenges, hearing

Lesson 3	Title: First postulate of special
	theory of relativity
Learning Objectives	By the end of this lesson, with examples,
	learners will be able to state the principle
	of relativity clearly.
Key words	inertial frames of reference
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, ICT, Literacy,
	science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 4	Title: Second postulate of special
	theory of relativity
Learning Objectives	By the end of this lesson, with examples,
	learners will be able to explain the
	Principle of Invariant Light Speed
	clearly.
Key words	clearly. Speed of light
Key words Cross-cutting issues to	
	Speed of light
Cross-cutting issues to	Speed of light
Cross-cutting issues to discuss	Speed of light Gender, Peace and Values Education
Cross-cutting issues to discuss	Speed of light Gender, Peace and Values Education Critical thinking, Research and problem-
Cross-cutting issues to discuss	Speed of light Gender, Peace and Values Education Critical thinking, Research and problemsolving, Communication, Cooperation,
Cross-cutting issues to discuss	Speed of light Gender, Peace and Values Education Critical thinking, Research and problemsolving, Communication, Cooperation, interpersonal management and life
Cross-cutting issues to discuss	Speed of light Gender, Peace and Values Education Critical thinking, Research and problemsolving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy,
Cross-cutting issues to discuss Competences developed	Speed of light Gender, Peace and Values Education Critical thinking, Research and problemsolving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy, science and technology
Cross-cutting issues to discuss Competences developed Attention to special	Speed of light Gender, Peace and Values Education Critical thinking, Research and problemsolving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy, science and technology Special attention is given to learners
Cross-cutting issues to discuss Competences developed Attention to special	Speed of light Gender, Peace and Values Education Critical thinking, Research and problemsolving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy, science and technology Special attention is given to learners with intellectual challenges, hearing

Lesson 5	Title: Concept of Time dilation
Learning Objectives	By the end of this lesson, with examples,
	learners will be able to explain the
	concept of time of dilation clearly.
Key words	Time dilation
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, ICT, Literacy,
	science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 6	Title: Time dilation equation
Learning Objectives	By the end of this lesson, mathematically
	learners will be able to derive and use
	the equation of time of dilation clearly.
Key words	Time
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, ICT, Literacy,
	science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 7	Title: Assessment 1

Learning Objectives	By the end of this assessment using knowledge and skills gained in lessons 1 to 6, learners will be able to relate the
Key words	content with the real-life experiences. Relativity, concept of relativity, inertial frames of reference, Speed of light, Time dilation, Time
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking and problem solving
Attention to special educational need children	Special attention is given to learners with visual impairment
Lesson 8	Title: Length contraction
Learning Objectives	By the end of this lesson, mathematically learners will be able to explain length contraction clearly.
Key words	length contraction
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties and gifted and talented learners
Lesson 9	Title: Mass and Momentum
Learning Objectives	By the end of this lesson, mathematically learners will be able to relate mass and momentum of a particle clearly.
Key words	Mass and Momentum
Cross-cutting issues to discuss	Gender, Peace and Values Education

	Q 1.11 11 B 1 1 11
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, ICT, Literacy,
	science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and Gifted and Talented learners
Lesson 10	Title: Mass and energy
Learning Objectives	By the end of this lesson, mathematically,
	learners will be able to derive and use
	the equation of time of dilation clearly.
Key words	Mass and energy
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, ICT, Literacy,
	science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 11	Title: Concept of Frame of reference
Learning Objectives	By the end of this lesson, with examples
	learners will be able to explain the
	concept of frames of reference clearly.
Key words	Frame of reference
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
L	1

Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, ICT, Literacy, science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 12	Title: Types of frames of reference
Learning Objectives	By the end of this lesson, with examples,
	learners will be able to explain the types
	of frames of reference clearly.
Key words	Non-inertial, Inertial Frame of Reference
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, ICT, Literacy,
	science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 13	Title: Assessment 2
Learning Objectives	By the end of this assessment, using
	knowledge and skills gained in lessons 7
	to 12, learners will be able to relate the
	content with the real-life experiences.
Key words	length contraction, Mass, Momentum,
	energy, Non-inertial, Inertial Frame of
	Reference
Cross-cutting issues to	Gender, Peace and Values Education
discuss	

Competences developed	Critical thinking and problem solving	
Attention to special	Special attention is given to learners	
educational need children	with visual impairment	
Lesson 14	Title: Concept of Galilean	
	transformation	
Learning Objectives	By the end of this lesson, learners will	
	be able to explain the concept of Galilean	
	transformation clearly.	
Key words	inertial frames of references	
Cross-cutting issues to	Gender, Peace and Values Education	
discuss		
Competences developed	Critical thinking, Research and problem-	
	solving, Communication, Cooperation,	
	interpersonal management and life	
	skills, Lifelong learning, ICT, Literacy,	
	science and technology	
Attention to special	Special attention is given to learners	
educational need children	with intellectual challenges, hearing	
	difficulties, developmental challenges,	
	speech and communication difficulties	
	and gifted and talented learners	
Lesson 15	Title: Galilean equation of	
	transformation	
Learning Objectives	By the end of this lesson, learners will	
	be able to derive the equation of Galilean	
	transformation clearly.	
Key words	space and time coordinates systems	
Cross-cutting issues to	Gender, Peace and Values Education	
discuss		
Competences developed	Critical thinking, Research and problem-	
	solving, Communication, Cooperation,	
	interpersonal management and life	
	skills, Lifelong learning, ICT, Literacy,	
	science and technology	

Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 16	Title: Concept of simultaneity
Learning Objectives	By the end of this lesson, with examples
	learners will be able to explain the
	concept of simultaneity clearly.
Key words	frame of reference
Cross-cutting issues to	Gender, Peace and Values Education
discuss	,
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life
	skills, Lifelong learning, ICT, Literacy,
	science and technology
Attention to special	Special attention is given to learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties
	and gifted and talented learners
Lesson 17	Title: Assessment 3
Learning Objectives	By the end of this assessment, using
	knowledge and skills gained in lessons 14
	to 16, learners will be able to relate the
	content with the real-life experiences.
Key words	inertial frames of references, Galilean
	equation of transformation
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking and problem solving
Attention to special	Special attention is given to learners
educational need children	with visual impairment
	<u> </u>

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Definition and concept of relativity

This is a theory developed by Albert Einstein which says that the way that anything except light moves through time and space depends on the position and movement of someone who is watching. Einstein's special theory of relativity (special relativity) is all about what's relative and what's absolute about time, space, and motion.

Postulates of special theory of relativity

First postulate: the Principle of Relativity

This states that the laws of physics are the same in all inertial frames of reference.

This postulate relates to reference frames. It says that there is no preferred frame and, therefore, no absolute motion.

• Second postulate: the Principle of Invariant Light Speed

This states that speed of light c is a constant, independent of the relative motion of the source and observer.

Concept of space, time and mass

• Time Dilation

Time dilation is the phenomenon where two objects moving relative to each other (or even just a different intensity of gravitational field from each other) experience different rates of time flow. The total time is given by

$$t = \gamma t_0$$
Where $\gamma = \frac{1}{\sqrt{1 - v^2 / c^2}}$

• Length Contraction

If we turn our light beam clock to face in the direction of motion, time dilation implies length contraction.

$$L = L_0 \sqrt{1 - v^2 / c^2}$$

Activity

To explain the concept of space, time and mass, gather students in groups of 3 to 5 members and carryout activities found on; http://aether.lbl.gov/www/classes/p139/exp/gedanken.html

Concept of Frame of reference

A frame of reference is a set of coordinates that can be used to determine positions and velocities of objects in that frame; different frames of reference

move relative to one another.

Types of Frame of Reference

There are two types of frames of reference

- Inertial Frame of Reference
- Non-inertial Frame of Reference

Galilean equation of transformation

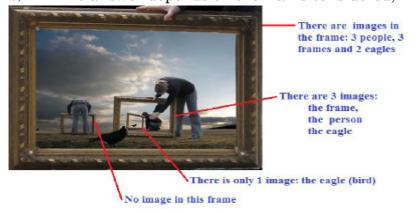
The set of equations shown below is known as the Galilean Transformation and enables us to relate a measurement in one inertial reference frame with another.

x = x' + vt

y = y'

z = z'

Concept of simultaneity


The concept of simultaneity says that two events that are simultaneous to one observer are not necessarily simultaneous to a second observer. Both observers are correct in their observations -- there is no best or preferred frame of reference.

SOLUTIONS TO ACTIVITIES

Activity 12-1

Answer:

- a) There are two answers to this question depending on the frame of reference considered. If we narrow the frame to be the seat or position of the passenger, all of them are not moving but if we consider the whole plane, all passengers are moving at the speed of the plane.
- b) The answer depends on the frame considered;

Solutions to exercise 12-1

$$1. KE_{rel} = \frac{9.11 \times 10^{-31} kg)(3 \times 10^8 m/s)^2}{\sqrt{1 - (0.1)^2}} - (9.11 \times 10^{11} - 31 kg)(3 \times 10^8 m/s)^2 = 4.13 \times 10^{-16} J$$

$$KE_{cl} = \frac{1}{2} (9.11 \times 10^{-31} kg) (0.1 \times 10^8 m/s)^2 = 4.10 \times 10^{-16} J$$

In this case the classical result and the relativistic results are nearly the same.

2. An electron volt is the kinetic energy that an electron would acquire if accelerated through a potential difference of 1 volt. This energy is eV, where $e=1.6\times 10^{-19}$ C and V = 1 volt. That is,

$$1 \; eV = (1.6 \times 10^{-19} \, C)(1V) = 1.6 \times 10^{-19} \, J$$

Then,

$$E_0 = (9.11 \times 10^{-31} kg)(3 \times 10^8 m/s)^2 = 8.20 \times 10^{-14} J$$

=
$$(8.20 \times 10^{-14} J)(1eV/1.6 \times 10^{-19} J) = 5.11 \times 10^{5} eV = 511 keV$$

3.
$$\Delta E = m_{He3}C^2 + m_D^2C^2 - m_{He4}C^2 - m_H^2C^2$$

= $2809.4 + 1876.1 - 3728.4 - 938.8 = 18.3 \text{ MeV}$

UNIT **13**

Interference of Light Waves

KNOW THIS

When two or more waves interact and combine, they interfere with one another. These waves may interfere constructively, resulting in a wave larger than the original waves. They may also interfere destructively, combining in such a way that they form a wave smaller than the original ones. Destructive interference also has some positive effects: without the application of destructive interference to the muffler on an automobile exhaust system, for instance, noise pollution from cars would be far worse than it is. Other examples of interference, both constructive and destructive, can be found wherever there are waves: in water, in sound, in light. This unit discusses the interference of light in detail.

Key unit competence

By the end of the unit the learner should be able to perform experiment on interference of light waves.

Unit description

In Physics, the net effect of the combination of two or more wave trains moving on intersecting or coincident paths is that of the addition of the amplitudes of the individual waves at each point affected by more than one wave. The concepts of interference in this unit are explained through numerous calculations and diagrams. The unit deals with;

- 13.0 Introduction
- 13.1. Nature of electromagnetic waves
 - 13.1.1 Producing electromagnetic waves
 - 13.1.2 Electromagnetic Radiation
 - 13.1.3 Electromagnetic spectrum
 - 13.1.4 Radiation Interaction with the Earth
 - 13.1.5 Radiation Interaction with the Atmosphere
 - 13.1.6 Atmospheric Absorption of electromagnetic waves
- 13.2 Conditions for interference to occur, given two sources of light
- 13.3. Principle of superposition

- 13.4. Interference patterns of two coherent point sources of light
- 13.5. Double-slit experiment
- 13.6. Intensity distribution of fringe pattern

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that the learners acquire the following skills, values and attitudes;

Knowledge	Skills	Attitudes and value
Explain the nature of	Analyse	Appreciate the
electromagnetic waves	conditions for	importance of light waves
	interference to	in life
	occur for given	
	two sources	
Explain regions of	Explain and	Acquire scientific
the electromagnetic	describe the	techniques, reasoning and
spectrum	principle of	attitudes in analyzing
	superposition	electromagnetic waves
Explain dispersion of EM	Analyse	Acquire scientific
waves	interference	reasoning and attitudes
	pattern produced	in interpreting the
	by two coherent	concepts of interference
	point sources	
Explain dispersion of	Carry out an	Acquire ability to logically
EM waves in relation	investigation	and systematically
to refractive index and	on double-slit	pursue a particular liner
wavelength	experiment	of thought
Distinguish between	Derive Young's	Acquire knowledge for
transmission, absorption	equation for	analysing and modelling
and scattering of	double slit	physical processes
radiation.	interference	
Identify examples of	Draw intensity	
transmission, absorption	distribution for	
and scattering of Em	fringe pattern	
radiation		
	Solve problems	
	involving two	
	interfering	
	sources of light	

Learning objectives

By the end of this unit, the learners should be able to;

- explain the concept of wave interferences and their applications in our daily life.
- explain the interaction of electromagnetic radiation with the earth.

SCOPE AND SEQUENCE

This unit will be delivered in 17 lessons each of 40 minutes.

Unit 13: Interference of light waves

Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Introduction	Nature of	Producing	Electromagnetic
	electromagnetic	electromagnetic	Radiation
	waves	waves	
Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Assessment 1	Concept of	Electromagnetic	Radiation
	Electromagnetic	spectrum	Interaction with
	spectrum		the Earth
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Radiation	Atmospheric	Assessment 2	Conditions for
Interaction	Absorption of		interference to
with the	electromagnetic		occur given two
Atmosphere	waves		sources of light
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Principle of	Interference	Double-slit	Intensity
superposition	patterns of two	experiment	distribution of
	coherent point		fringe pattern
	sources of light		

Lesson 17		
This lesson		
should cover:		
Assessment 3		

LESSON DEVELOPMENT

Lesson 1	Title: Introduction	
Learning Objectives	By the end of this lesson, using reallife examples the learners will be able to explain	
	the concept of interference properly.	
Key words	Interference of light waves	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
Competences developed	Critical thinking, Research and problem solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology	
Attention to special educational need children	Special attention is needed to the the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented the learners	
Lesson 2	Title: Nature of electromagnetic waves	
Learning Objectives	By the end of this lesson, using examples the learners will be able to explain the nature of electromagnetic waves clearly.	
Key words	Electric fields and magnetic fields	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology	

A.,	
Attention to special	Special attention is needed to the learners
educational need children	with intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties,
	specific and general learning difficulties and
	gifted and talented learners
Lesson 3	Title: Producing electromagnetic waves
Learning Objectives	By the end of this lesson, the concepts of
	electric and magnetic fields the learners
	will be able to explain how electromagnetic
	waves are produced clearly.
Key words	charged particles, electric field, magnetic field
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life skills,
	Lifelong learning, numeracy, Literacy, ICT,
	Science and technology
Attention to special	Special attention is needed to the learners
educational need children	with Intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties,
	specific and general learning difficulties and
	gifted and talented the learners
Lesson 4	Title: Electromagnetic Radiation
Learning Objectives	By the end of this lesson, using examples the
	learners will be able to explain the nature of
	electromagnetic radiations clearly.
Key words	electromagnetic radiation
Cross-cutting issues to be	Gender, Peace and Values Education
discussed	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life skills,
	Lifelong learning, numeracy, Literacy, ICT,
	Science and technology

Attention to special educational need children	Special attention is given to the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners	
Lesson 5	Title: Assessment 1	
Learning Objectives	By the end of this assessment using knowledge and skills gained in lessons 1 to 4, the learners will be able to relate the content with the real-life experiences.	
Key words	Interference of light waves, Electric fields and magnetic fields, charged particles, electromagnetic radiation	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
Competences developed	Critical thinning and problem solving	
Attention to special educational need children	Special attention is given to the learners with visual impairment	
Lesson 6	Title: Concept of Electromagnetic spectrum	
Learning Objectives	By the end of this lesson, using examples the learners will be able to explain the concept of electromagnetic waves clearly.	
Key words	Electromagnetic spectrum, wavelength	
Cross-cutting issues to discuss	Gender equality, Peace and Values Education	
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology	
Attention to special educational need children	Special attention is given to the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners	

Lesson 7	Title: Electromagnetic spectrum	
Learning Objectives	By the end of this lesson, using examples the learners will be able to explain the spectrum of electromagnetic waves clearly.	
Key words	Frequency, wavelength	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology	
Attention to special educational need children	Special attention is given to the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners	
Lesson 8	Title: Radiation Interaction with the Earth	
Learning Objectives	By the end of this lesson, using examples the learners will be able to explain the interaction of electromagnetic radiation with the earth clearly.	
Key words	Reflection, Absorption, Transmission	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology	
Attention to special educational need children	Special attention is given to the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners	

Lesson 9	Title: Radiation Interaction with the
	Atmosphere
Learning Objectives	By the end of this lesson, using examples,
	the learners will be able to explain the
	interaction of electromagnetic radiation with
	the atmosphere clearly.
Key words	Scattering
Cross-cutting issues to	Gender, Peace and Values Education
discuss	
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life skills,
	Lifelong learning, numeracy, Literacy, ICT,
	Science and technology
Attention to special	Special attention is given to the learners
educational need children	with Intellectual challenges, hearing
	difficulties, developmental challenges,
	speech and communication difficulties,
	specific and general learning difficulties and
	gifted and talented learners
Lesson 10	Title: Atmospheric Absorption of
	electromagnetic waves
Learning Objectives	By the end of this lesson, using examples
	the learners will be able to explain the
	atmospheric absorption of electromagnetic
	waves clearly.
Key words	Ozone, Carbon dioxide, Water Vapour
Cross-cutting issues to	Gender equality, Peace and Values
discuss	Education
Competences developed	Critical thinking, Research and problem-
	solving, Communication, Cooperation,
	interpersonal management and life skills,
	Lifelong learning, numeracy, Literacy, ICT,
	Science and technology

Attention to special educational need children	Special attention is given to the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners
Lesson 11	Title: Assessment 2
Learning Objectives	By the end of this assessment using knowledge and skills gained in lessons 6 to 10, the learners will be able to relate the content with the real-life experiences.
Key words	Electromagnetic spectrum, wavelength, Frequency, Reflection, Absorption, Transmission, Scattering, Ozone, Carbon Dioxide, Water Vapour
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking and problem solving
Attention to special	Special attention is to given the learners with
educational need children	visual impairment
Lesson 12	Title: Conditions for interference to occur given two sources of light
Learning Objectives	By the end of this lesson, using examples the learners will be able to explain the conditions necessary for interference to occur clearly.
Key words	Coherent sources, monochromatic waves
Cross-cutting issues to discuss	
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology
Attention to special educational need children	Special attention is needed to the learners with Intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners

Lesson 13	Title: Principle of superposition	
Learning Objectives	By the end of this lesson, using examples the learners will be able to explain the principle of superposition clearly.	
Key words	Displacement	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology	
Attention to special educational need children	Special attention is given to the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners	
Lesson 14	Title: Interference patterns of two	
Learning Objectives	By the end of this lesson, using examples, learners will be able to explain the interference patterns of two coherent point sources of light clearly.	
Key words	Young's double slits, coherent sources	
Cross-cutting issues to discuss	Gender, Peace and Values Education	
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology	
Attention to special educational need children	Special attention is given to the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners	

Lesson 15	Title: Double-slit experiment
Learning Objectives	By the end of this lesson, mathematically, the learners will be able to describe the conditions for dark and bright fringes clearly.
Key words	Fringe separation
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology
Attention to special educational need children	Special attention is given to the learners with intellectual challenges, hearing difficulties, developmental challenges, speech and communication difficulties, specific and general learning difficulties and gifted and talented learners
Lesson 16	Title: Intensity distribution of fringe pattern
Learning Objectives	By the end of this lesson, mathematically the learners will be able to describe the variation of intensity distribution of fringe pattern clearly.
Key words	Intensity, fringe pattern
Cross-cutting issues to discuss	Gender, Peace and Values Education
Competences developed	Critical thinking, Research and problem- solving, Communication, Cooperation, interpersonal management and life skills, Lifelong learning, numeracy, Literacy, ICT, Science and technology

Special attention is given to the learners
with intellectual challenges, hearing
difficulties, developmental challenges,
speech and communication difficulties,
specific and general learning difficulties and
gifted and talented learners
Title: Assessment 3
By the end of this assessment using
knowledge and skills gained in lessons 11
to 16, the learners will be able to relate the
content with the real-life experiences.
Coherent sources, monochromatic waves,
Displacement, Young's double slits, Fringe
separation, Intensity, fringe pattern
Gender, Peace and Values Education
Critical thinning and problem solving
Special attention is given to the learners
with visual impairment

MAIN CONTENTS AND CONCEPTS TO EMPHASISE

Nature of electromagnetic waves

Electromagnetic waves are transverse waves that transfer electrical and magnetic energy.

In other words electromagnetic waves have electric and magnetic fields varying perpendicularly.

Producing electromagnetic waves

Electromagnetic waves are produced by charged particles and every charged particle has an electric field surrounding it. The electric field produces electric forces that can push or pull on other particles.

Electromagnetic Radiation

All forms of electromagnetic radiation consist of mutually perpendicular oscillating electric and magnetic fields. Because the various kinds of electromagnetic radiations have the same speed (c), they differ in only wavelength and frequency.

Electromagnetic spectrum

Electromagnetic energy travels in waves and spans a broad spectrum from very long radio waves to very short gamma rays.

From memory you should be able to list the parts in order of energy (relate how that relates to frequency and wavelength) and know how they are produced, detected and their dangers and uses — a rough idea of their approximate wavelength is also useful!.

Radiation Interaction with the Earth

Radiation that is not absorbed or scattered in the atmosphere can reach and interact with the Earth's surface. There are three forms of interaction that can take place when energy strikes, or is incident upon the surface. These are: absorption (A); transmission (T) and reflection (R).

Radiation Interaction with the Atmosphere

The Earth's atmosphere acts as a filter to remove radiation such as cosmic rays, gamma rays, x-rays, UV rays, and large portions of the electromagnetic spectrum through the process of absorption and scattering by gases, water vapour, and particulate matter (dust).

Atmospheric Absorption of electromagnetic waves

In addition to the scattering of EM radiation, the atmosphere also absorbs electromagnetic radiation. The three main constituents which absorb radiation are Ozone, Carbon dioxide, and Water Vapour.

Conditions for interference to occur with two sources of light

- The sources of the waves must be coherent, which means they emit identical waves with a constant phase difference.
- The waves should be monochromatic they should be of a single wavelength.

Principle of superposition

The principle states that when two or more than two waves superimpose over each other at a common particle of the medium then the resultant displacement (y) of the particle is equal to the vector sum of the displacements $(y_1 \text{ and } y_2)$ produced by individual waves, i.e. $\overrightarrow{y} = \overrightarrow{y_1} + \overrightarrow{y_2}$

Double-slit experiment

Monochromatic light (single wavelength) falls on two narrow slits S_1 and S_2 which are very close together and acts as two coherent sources, when

waves coming from two coherent sources superimposes on each other, an interference pattern is obtained on the screen.

A bright fringe is obtained when the path difference is a whole number of wavelength.

$$r_2 - r_1 = n\lambda$$
 where $n = 0, 1, 2, 3, 4, ...$

A dark fringe is obtained when the path difference is an odd value of half wavelength.

$$r_2 - r_1 = \frac{m}{2}\lambda$$
$$x = \frac{m\lambda D}{2d}$$

Where m = 1, 3, 5, 7, ...

Intensity distribution of fringe pattern

Assuming that the two waves have the same amplitude E_0 , we can write the magnitude of the electric field at a point let say P due to each wave separately as;

$$E_1 = E_0 \sin \omega t$$
 and $E_2 = E_0 \sin(\omega t + \Phi)$

Since $I \propto E_p^2$, we can write the average light intensity at point P as;

$$I = I_{\text{max}} \cos^{2}\left(\frac{\Phi}{2}\right)$$

$$I = I_{\text{max}} \cos^{2}\left(\frac{\pi d \sin \theta}{\lambda}\right)$$

Guidance for this activity 13.1.

This activity has no direct answers. Base on learners' deductions and make a general conclusion.

Make sure to harmonize learners' suggestions/ideas/answers

Solutions to Exercise 13.1

1.
$$d = 5.0 \times 10^{-4} \,\mathrm{m}$$
 $\lambda = 5.89 \times 10^{-7} \,\mathrm{m}$ $d \sin \theta = m\lambda \Rightarrow \sin \theta = m\lambda/d \Rightarrow \theta = \sin^{-1}(m\lambda/d)$ $m = 1, \, \theta_1 = 0.0675^\circ$ $m = 2, \, \theta_2 = 0.135^\circ$ $\tan \theta = h/l, \, y_1 = h, \, \tan \theta = y_1/l \Rightarrow y_1 = l \, \tan \theta = 2 \times \tan(0.0675)$ $y_1(\mathrm{Height\ of\ lower\ fringe}) = 0.00236 \,\mathrm{m}$ $y_2(\mathrm{Height\ of\ upper\ fringe}) = 0.00472 \,\mathrm{m}$ $\Delta y = 0.00236 \,\mathrm{m}$

Where $\Delta y = \text{Difference}$ between two fringe locations.

2. $\tan \theta = h/l \Rightarrow \theta = \tan^{-1}(h/l) = 0.430^{\circ}$

Now that θ is known, you can use the formula with m=3 to find the wavelength.

$$d \sin \theta = m\lambda$$

$$\Rightarrow \lambda = d \sin \theta / m = 2.0 \times 10^{-4} \times \sin(0.430^{\circ}) / 3$$

$$= 5.00 \times 10^{-7} \,\mathrm{m}$$

3. First find the angle:

$$\tan \theta = y/L$$

$$\Rightarrow \theta = \tan^{-1}(y/L) = \tan^{-1}(1.73/11.2)$$

= 8.78°

Find the wavelength

$$d \sin \theta = m\lambda \Rightarrow \lambda = d \sin \theta / m = 6.8 \times \sin(8.78^{\circ}) / 1 = 1.04 \text{ km}$$

4. d = 247m

$$\lambda = 5.44$$
m

$$m\lambda = d \sin \theta \Rightarrow \sin \theta = m\lambda/d \Rightarrow \theta = \sin^{-1}(m\lambda/d)$$

$$\theta = \sin^{-1}(1 \times 5.44/247) = 1.262^{\circ}$$

Stellar Distance and Radition

KNOW THIS

Stars vary in their effective temperature and colour. A hot star radiates more energy per second per metre surface area than a cooler star. Does this then mean that a hot star appears brighter to us than a cooler one? The answer to this actually depends on a few factors. These are included in this unit.

Key unit competence

By the end of the unit the learner should be able to analyze stellar radiation and stellar distances.

Unit description

We can determine an amazing number of physical properties of stars, usually based only on a little bit of light. In this unit, "we" will talk about how the following properties are determined for stars: Distance, Luminosity, Brightness and Temperature. The unit deals with;

- 14.0 Introduction
- 14.1 Sun's atmosphere and interior
 - 14.1.1 The sun's interior
 - 14.1.2 The sun's atmosphere
- 14.2 Brightness and magnitude scale of stars
- 14.3 Star temperature, colour, and spectra
- 14.4 Types of stars
- 14.5 Hertzsprung-Russel diagram
- 14.6 Stellar distance and masses: Parallax, binary stars and massluminosity relationship.

Summary of Knowledge, Skills, Attitudes and Values

As you teach this unit, you should ensure that learners acquire the following skills, values and attitudes:

Knowledge	Skills	Attitudes and value
Explainsun's interior	Analyze eclipse	Appreciate the
and atmosphere	phenomena as part	importanceofthesun
	of sun-moon-earth	insupportinghuman
	system	life
Identify the stars	Describe and explain	Acquire knowledge
brightness and	relative positions of	of planetary motion
magnitude scale	the eight planets and	and apply it to planet
	the sun	behaviour
Identify star	Analyze stars and	Acquire skills to
temperature and	planets	observe the universe
colour from a spectra		and identify planets
		and stars
Explain stellar	Evaluatetheexistence	
distance and masses	of constellations	
	Analyzestar'sspectra	
	line	
	Evaluate and apply	
	celestial coordinates	

Learning Objectives

By the end of this unit, learners should be able to:

- explain the factors that affect the brightness of the star.
- explain types of stars, their masses and use Hertzsprung-Russel diagram.

SCOPE AND SEQUENCE

This unit will be delivered in 18 lessons each of 40 minutes.

Unit 14: Stellar distance and radiation

Lesson 1	Lesson 2	Lesson 3	Lesson 4
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Introduction	The sun's	The sun's	Brightness of
	interior	atmosphere	stars

Lesson 5	Lesson 6	Lesson 7	Lesson 8
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
magnitude scale	Star	Spectra of stars:	Spectra of stars:
of stars	temperature and	O, B, A, F	G, K, M
	colour		
Lesson 9	Lesson 10	Lesson 11	Lesson 12
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Assessment 1	Types of stars:	Types of stars:	Concept of
	Red Giants,	Variable Stars,	Hertzsprung-
	White Dwarfs,	Binary Stars,	Russel diagram
	Brown Dwarfs	Black Holes	
Lesson 13	Lesson 14	Lesson 15	Lesson 16
This lesson	This lesson	This lesson	This lesson
should cover:	should cover:	should cover:	should cover:
Interpretation	Stellar Parallax	Stellar mass-	Inverse-square
of Hertzsprung-		luminosity	law
Russel diagram		relationship	
Lesson 17	Lesson 18		
This lesson	This lesson		
should cover:	should cover:		
Stellar masses	Assessment 2		

LESSON DEVELOPMENT

Lesson 1	Title: Introduction
Learning objectives	By the end of this lesson, learners
	will be able to explain the concept
	of stellar distance and radiation
	clearly.
Key words	Solar system
Cross cutting issues to discuss	Gender, Peace and Values Education

Competence developed Attention to special educational	Critical thinking, Research and problem-solving, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, science and technology Special attention is given to learners
need children	with Intellectual Challenges, Developmental Challenges, Speech and Communication Difficulties and Gifted and Talented learners
Lesson 2	Title: The sun's interior
Learning objectives	By the end of this lesson, learners will be able to explain the interior parts of the sun clearly.
Key words	core, radiation zone, and convection zone.
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and problem-solving, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, science and technology
Attention to special educational need children	Special attention is needed to the learners with Intellectual Challenges, Developmental Challenges, Speech and Communication Difficulties and Gifted and Talented learners
Lesson 3	Title: The sun's atmosphere
Learning objectives	By the end of this lesson, learners will be able to explain the parts of the sun's atmosphere clearly.
Key words	the photosphere, the chromosphere, and the solar corona

Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
Proceedings of the second	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 4	Title: Brightness of stars
Learning objectives	By the end of this lesson, learners
	will be able to explain the variations
	of the stars' brightness clearly.
Key words	Brightness
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 5	Title: magnitude scale of stars
Learning objectives	By the end of this lesson, learners
	will be able to explain and assign the
	magnitude scale to stars' brightness
	clearly.
Key words	Brightness-magnitude scale

Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Specialattentionisneededtolearners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 6	Title: Star temperature and
	colour
Learning objectives	By the end of this lesson, learners
	will be able to explain the relation
	between the star temperatures and
	colour clearly.
Key words	Temperature, colour
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 7	Title: Spectra of stars: O, B, A, F
Learning objectives	By the end of this lesson, learners
	will be able to explain the O, B, A
77 1	and F spectra of stars clearly.
Key words	O, B, A and F spectra

Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 8	Title: Spectra of stars: G, K, M
Learning objectives	By the end of this lesson, learners
	will be able to explain the G, K and
	M spectra of stars clearly.
Key words	G, K and M spectra
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Specialattentionisneededtolearners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 9	Title: Assessment 1
Learning objectives	By the end of this assessment using
	knowledge and skills gained in
	lessons 1 to 8, learners will be able
	to relate the content with the real
	life experiences.

Key words Cross cutting issues to discuss	Solar system, core, radiation zone, and convection zone, the photosphere the chromosphere, and the solar corona, Brightness of star, Brightness-magnitude scale, Temperature, colour, O, B, A and F spectra, G, K and M spectra Gender, Peace and Values Education
Competence developed	Critical thinking and problem solving
Attention to special educational need children	Special attention is given to learners with visual impairment
Lesson 10	Title: Types of stars: Red Giants, White Dwarfs, Brown Dwarfs
Learning objectives	By the end of this lesson, learners will be able to explain the Red giants, white Dwarfs and Brown Dwarf stars clearly.
Key words	Red Giants, White Dwarfs, Brown Dwarfs
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and problem-solving, Communication, Co-operation, interpersonal management and life skills, Lifelong learning, Literacy, ICT, science and technology
Attention to special educational need children	Special attention is given to learners with Intellectual Challenges, Developmental Challenges, Speech and Communication Difficulties and Gifted and Talented learners
Lesson 11	Title: Types of stars: Variable Stars, Binary Stars, Black Holes
Learning objectives	By the end of this lesson, learners will be able to explain the Variable, Binary and black hole stars clearly.

Key words	Variable Stars, Binary Stars, Black
	Holes
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with intellectual challenges,
	developmental challenges, speech
	and communication difficulties and
	gifted and talented learners
Lesson 12	Title: Concept of Hertzsprung-
	Russel diagram
Learning objectives	By the end of this lesson, learners
	will be able to explain the concept
	of Hertzsprung-Russel diagram
	clearly.
Key words	Hertzsprung-Russel diagram
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
Priversion to special educational	
need children	with intellectual challenges,
	with intellectual challenges, developmental challenges, speech
	,

Lesson 13	Title: Interpretation of
	Hertzsprung-Russel diagram
Learning objectives	By the end of this lesson, learners
	will be able to locate different stars
	on Hertzsprung-Russel diagram
	clearly.
Key words	Hertzsprung-Russel diagram
Cross cutting issues to discuss	Gender equality, Peace and Values
	Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 14	Title: Stellar Parallax
Learning objectives	By the end of this lesson, learners
	will be able to explain the concept of
	stellar parallax clearly.
Key words	distance to the star, parallax
Cross cutting issues to discuss	Gender equality, Peace and Values
	Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology

Attention to appoint adventional	Consist attention is given to learn and
Attention to special educational	Special attention is given to learners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 15	Title: Stellar mass-luminosity
	relationship
Learning objectives	By the end of this lesson, learners
	will be able to interpret the stellar
	mass –luminosity curve clearly.
Key words	mass –luminosity curve
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology
Attention to special educational	Special attention is given to learners
need children	with Intellectual Challenges,
	Developmental Challenges, Speech
	and Communication Difficulties and
	Gifted and Talented learners
Lesson 16	Title: Inverse-square law
Learning objectives	By the end of this lesson, learners
	will be able to apply the inverse
	square law to determine the
	luminosity of the star clearly.
Key words	Luminosity
Cross cutting issues to discuss	Gender, Peace and Values Education
Competence developed	Critical thinking, Research and
_	problem-solving, Communication,
	Co-operation, interpersonal
	management and life skills, Lifelong
	learning, Literacy, ICT, science and
	technology

A44 - 41 - 4 1 41 1	C 1 - 44 41 1 4 - 1	
Attention to special educational	Special attention is given to learners	
need children	with Intellectual Challenges,	
	Developmental Challenges, Speech	
	and Communication Difficulties and	
	Gifted and Talented learners	
Lesson 17	Title: Stellar masses	
Learning objectives	By the end of this lesson, using the	
	knowledge of Kepler's third law, learners will be able to classify the	
	stellar masses clearly.	
Key words	Visual binary, Eclipsing binary	
Cross cutting issues to discuss	Gender equality, Peace and Values	
	Education	
Competence developed	Critical thinking, Research and	
	problem-solving, Communication,	
	Co-operation, interpersonal	
	management and life skills, Lifelong	
	learning, Literacy, ICT, science and	
	technology	
Attention to special educational	Special attention is given to learners	
need children	with Intellectual Challenges,	
	Developmental Challenges, Speech and Communication Difficulties and	
	Gifted and Talented learners	
Lesson 18	Title: Assessment 2	
Learning objectives	By the end of this assessment,	
	using knowledge and skills gained	
	in lessons 10 to 17, learners will be	
	able to relate the content with the	
	real life experiences.	
Key words	Types of stars, Hertzsprung-Russel	
	diagram, Stellar Parallax, mass-	
	luminosity relationship, Stellar	
	masses, Inverse-square law	
	inaccos, in order square law	

Cross cutting issues to discuss	Gender, Peace and Values Education	
Competence developed	Critical thinking and problem	
	solving	
Attention to special educational	Special attention is given to learners	
need children	with visual impairment	

MAIN CONTENT AND CONCEPTS TO EMPHASISE

Sun's atmosphere and interior

• The sun's interior

The sun's interior consists of the *core*, radiation zone and convection zone. Each layer has different properties.

The core is the innermost part.

The radiative zone is where the energy is transported from the superhot interior to the colder outer layers by photons.

The convection zone is the outermost layer of the sun's interior

• The sun's atmosphere

The visible solar atmosphere consists of three regions: the *photosphere*, the *chromosphere* and the solar *corona*.

Brightness and magnitude scale of stars

The brightness of stars is specified with the magnitude system. And is assigned a number starting with the brightest star starting at about -1 magnitude.

Star temperature, colour, and spectra

Stars are dense hot balls of gas so their spectra is similar to that of a perfect thermal radiator, which produces a smooth continuous spectrum. Therefore, the color of stars depends on their temperature---hotter stars are bluer and cooler stars are redder.

Types of stars

- Red Giants
- White Dwarfs
- Brown Dwarfs

- Variable Stars
- Binary Stars
- Black Holes

Hertzsprung-Russel diagram

The Hertzsprung-Russell (HR) diagram is actually a graph that illustrates the relationship that exists between the average surface temperature of stars and their absolute magnitude, which is how bright they would appear to be if they were all the same distance away.

ACTIVITY 14.1

16. rings

Across: 4	4. Uranus	6. Sun
7	7. Dwarf	8. thirteen
ę	9. Mars	12. none
18	3. diamonds	17. Gaea
18	3. Venus	19. two
20). side	
Down:	1. Luna	2. Earth
	3. Jupiter	5. wrinkled
	6. spot	9. many
	10. craters	11. volcano
	14. Saturn	15. lava

17. geo

ANSWERS TO END OF UNIT QUESTIONS

- 1. Stars are dense hot balls of gases which held together by their own gravity.
- 2. The absolute magnitude of stars are plotted against their temperature (color all of which are equivalent) when this is done it is found that most stars lie with in a wide band-called main sequence that runs from the upper left to the lower right of diagram. The sun is atypical main sequence star and lies about the midways along the main sequence.
- 3. A white dwarf is an average-sized star that has passed through the red giant stage of its life. After the star has used up its remaining fuel. At this point the star may expel some of its matter into space, creating a planetary nebula. What remains is the dead core of the star. Nuclear fusion no longer takes place. The core glows because of its residual heat. Eventually the core will radiate all of its heat into space and cool down to become what is known as a black dwarf. White dwarf stars are very dense.
- 4. Stare of class M spectra
- 5. Star B

6.

→ Main sequence

Temperature

Self attempt

7. Black Hole: An object whose matter has becomes so condensed that its gravitational field is strong enough to prevent light escaping from it. The radius of black hole resulting from the collapse of object.

$$R = \frac{2GM}{C^2}$$

a = universal gravitational

c =speed light

M =object mass

R = Radius

Neutron star: The result of the collapse of the remnant from a supernova explosion. It the mass exceeds Chandersekhar limit but is less then required for gravity to continue the collapse down to black hole. Its name desires form the fact that object is so condensed that most of the material is in the form of neuron star.

8. Gravity of the blackhole can be measured with the help of velocity and distance of gas orbiting the blackhole.