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FOREWORD

Dear Student,

Rwanda Basic Education Board (REB) is honored to present senior
six Mathematics book for students of advanced level where
Mathematics is a major subject. This book will serve as a guide to
competence-based teaching and learning to ensure consistency and
coherence in the learning of the Mathematics. The Rwandan
educational philosophy is to ensure that you achieve full potential at
every level of education which will prepare you to be well
integrated in society and exploit employment opportunities.

The government of Rwanda emphasizes the importance of aligning
teaching and learning materials with the syllabus to facilitate your
learning process. Many factors influence what you learn, how well you
learn and the competences you acquire. Those factors include the
relevance of the specific content, the quality of teachers’ pedagogical
approaches, the assessment strategies and the instructional materials
available. In this book, we paid special attention to the activities that
facilitate the learning process in which you can develop your ideas and
make new discoveries during concrete activities carried out individually
or with peers.

In competence-based curriculum, learning is considered as a process
of active building and developing knowledge and meanings by the
learner where concepts are mainly introduced by an activity, situation
or scenario that helps the learner to construct knowledge, develop
skills and acquire positive attitudes and values.

For efficiency use of this textbook, your role is to:
e  Work on given activities which lead to the development of skills;

e Share relevant information with other learners through
presentations, discussions, group workand otheractive learning
techniques such as role play, case studies, investigation and
research in the library, on internet or outside;

e Participate and take responsibility for your own learning;

e Draw conclusions based on the findings from the learning
activities.




To facilitate you in doing activities, the content of this book is self
explanatory so thatyou can easily use it yourself, acquire and assess your
competences. The book is made of units as presented in the syllabus.
Each unit has the following structure: the key unit competence is given
and it is followed by the introductory activity before the development
of mathematical concepts that are connected to real world problems
or to other sciences.

The development of each concept has the following points:

* |t starts by a learning activity: it is a hand on well set activity to
be done by students in order to generate the concept to be
learnt;

*  Main elements of the content to be emphasized;
e Worked examples; and

e Application activities which are activities to be done by the user
to consolidate competences or to assess the achievement of
objectives.

Even though the book has some worked examples, you will succeed
on the application activities depending on your ways of reading,
questioning, thinking and grappling ideas of calculus not by searching
for similar-looking worked out examples.

Furthermore, to succeed in Mathematics, you are asked to keep trying;
sometimes you will find concepts that need to be worked at before you
completely understand. The only way to really grasp such a concept is
to think about it and work-related problems found in other reference

books.

| wish to sincerely express my appreciation to the people who
contributed towards the editing of this book, particularly, REB staffs
and teachers for their technical support.

Any comment or contribution would be welcome to the improvement
of this text book for the next edition.

Dr. NDAYAMBAJE Irénée

Director General, REB

iv



ACKNOWLEDGEMENT

| wish to express my appreciation to the people who played a major
role in the development and the editing of senior six Mathematics book
for students of advanced level where Mathematics is a major subject. It
would not have been successful without active participation of different
education stakeholders.

| owe gratitude to Curriculum Officers and teachers whose efforts
during the editing exercise of this book were very much valuable.

Finally, my word of gratitude goes to the Rwanda Basic Education
Board staffs who were involved in the whole process of in-house
textbook production.

Joan MURUNGI

Head of Curriculum, Teaching and learning Resources Department




Table of Content

FOREWORD .....cccctteinecnnncnecneccaecseccscsssssccsessscsssssscssssssssssssssssssons s
AKNOWLEDGEMENT .....ccvceittitnenineccreccseccascssccssssssssssssssssssssssnnss \"/
UNIT 1: Complex Numbers.........cccceerrrerenniiiiccinnnnnnnneccscccnnnnnnnneeeenes 1
INtrodUCTOry @CHIVItY.........ueeiieiiiiiiiiiiii e 1

1.1.  Concepts of complex NUMDEIS .........ccccuuvuuiinniiiniiiiiiiiiiiiiaans 2

1.2. Algebraic form of a complex number............ccccvvvvrvinirnnnnnnns 4

1.3. Polar form of a complex NUMDbETr ...........cccvvvvvvvivviiiiiiinininnns 34

1.4. Exponential form of a complex number..............cccccceeeeenn. 60

1.5, Applications ......ccooveeiiiiiii s 63

End of unit assessment ... 80

UNIT 2: Logarithmic and Exponential Functions .......................... 85
INtrodUCTOry @CHIVILY.........ueeieiiii e 85

2.1, Logarithmic functionS...........ccceiiiiiiiiiiiiiee e 86

2.2. Exponential functions ..........ccccovviiiiiiiiie 108

2.3, ApPlcations ........coooiiiiiiiiii e, 128

End of unitassessment...........ccccoooeiiiiiiiii e, 146

UNIT 3: Taylor and Maclaurin’s EXpansions ...........ccccceeeeeennnnnnnne. 150
INtroduCtory ACHVILY ......coooiiiiiiiiiieee e 150

3.1. Generalities 0N SErES.......ccceeiiiiiiiiiiiiiice e, 151

3.2, POWEI SEIES .ouuuiiiiieiiieecee e 165

3.3, ApPlICAtioNS ....oeiieiiiiii e 175

End of unit assessment ..o 194

UNIT 4: Integration.......cccccceeeeiereninrnninnnecnsneicnsecscsseccsssessssecsssnes 197
INtroductory aCtiVity.........cooooiiiiii 197

4.2. Indefinite integrals ...........ceoeeiiiiiiiiii 202

4.3. Techniques of integration..............cccuviiiiiiiiiniiiiee e 206

4.4. Definite integrals..........ccccuiiiiiiiiiiii e 254

4.5, APPlCAtiONS ... 265

End of unit assessment ..........ccccceeiiiiiiiiiiiis 301

UNIT 5: Differential EQUations.........ccceeeeecceicenrnnnnneeeccccccennnnnnenenes 304
INtroductory actiVity.........coooiiiiiii 304

5.1. Definition and classification ............ccccccevveeiiiiiiiiiiieiinnnn... 305

5.2. First order differential equations .............ccccoccviiiiieeeninnn. 308

vi



5.3. Second order differential equations...........cccccccevveeiinennn. 317

5.4, ApPlICAtiONS .....eueiiiiiiiiiiii e 333

End of unit assessment .........ooouvveeiee e 342

UNIT 6: Intersection and Sum of Subspaces..........cccceeeerrrnnnnnneees 346
INtroductory aCtiVity.........ccooiiiiiiii 346

B.1.  DefiNItiON ..oeeeeeeeee e 347

6.2. Intersection and sum of two vector spaces ..................... 349

End of unit @ssessment .......c..ovveeeieei e 362

UNIT 7: Transformation of Matrices ....cccceeeeeeerecreceerereceeceeceeceenes 363
Introductory activity.........ccoooeiiiiiii e, 363

7.1. Kernel and range of a transformation ...........ccccccccevveeene. 364

7.2. Elementary row/column operations .........ccccccevvevveerieennenn. 368

7.3. Diagonalisation of matrices .........ccccccvvvreiiiiiiiiieiiieiieenee, 371

7.4, APPlICAtIONS ..oveeiiii e 383

End of unit assessment .........ooouvvieeee e, 402

UNIT 8: CONICS .cueurereeeeeieerererererecereresesessssesesssesesssesessssssssssssssssesess 405
INtrodUCTOrY @CHIVItY........uuueiiiiiiiiiiiiiiiiiiiii e 405

8.1. Generalities on coNOC SECLIONS.......oevveviieiiieieeeeeeeeeeen. 406

8.2, Parabola .......coooeeee e, 409

TG T = [[To YT 420

8.4, Hyperbola ... 431

8.5. Polar coordinates. ......ooueeeeeeee e, 440

8.6. ApPliCatioNS .....ueiiiiiiii 450

UNIT 9: Random Variables.......ccceeeceereieeeneeirerecrereseerececsecncsesecsenes 464
INtrodUCTOry @CHIVItY.........uueueiiiiiiiiiiiiieiiiie e 464

9.1. Discrete and finite random variables ............cccccoevvevnerennn.. 465

9.2. Continuous random variablesS..........ccceeeiieiieeeeieee, 490

End of unit assessment .........ooouvvieiee e, 510

Evaluation 1 ... 515

Evaluation 2.....c..oeeiieee e 518

Evaluation 3. ..o, 521

Evaluation 4 ..o 524

vii




Icons

To guide you, each activity in the book is marked by a symbol oricon to
show you what kind of activity it is. The icons are as follows:

Practical Activity icon
A
The hand indicates a practical activity such as curve

sketching, draw figures, to have a selection of objects
individually or in a group and then present your
results or comments.

Group Work icon
Group work means that you are expected to discuss

something in groups and report back on what your
group discussed. In this way, you learn from each
other, and how to work together as a group to
address or solve a problem.

Pairing Activity icon
This means that you are required to do the activity in
pairs, exchange ideas and write down your results.

‘ Research Activity icon
é Some activities require you to do research either by

reading textbooks or using the internet.
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“ Complex Numbers

Introductory activity

Solve in the set of real number the following equations:

1) x*+6x+8=0
2) x*+4=0
Does every quadratic equation have solutionin R ?

What happens to the equation x*+4 =0 if we conventionally accept a

number i such that i* =—17? Can now any quadratic equation be solved?

The history of complex numbers goes back to the ancient Greeks who
decided that no number existed that satisfies x*+1=0 in R. Many
mathematicians contributed to the full development of complex numbers.
The rules for addition, subtraction, multiplication, and division of complex

numbers were developed by the Italian mathematician Rafael Bombelli.

Objectives

By the end of this unit, a student will be able to:

. Identify a real part and imaginary part of a complex number.

. Convert a complex number from one form to another.

. Represent a complex number on Argand diagram.

. State De Moivre's formula and Euler’s formulae.

. Apply the properties of complex numbers to perform operations on
complex numbers in algebraic form, in polar form or in exponential
form.

. Find the modulus and the n'" roots of a complex number.

. Solve in the set of complex numbers a linear or quadratic equation.

. Use the properties of complex numbers to factorise a polynomial
and to solve a polynomial equation in the set of complex numbers.




. Apply complex numbers in trigonometry and alternating current
problems.

1.1. Concepts of complex numbers

Activity 1.1
1. Find two numbers, a and b, whose sum is 6 and product 18.

2. Considering that J-1=i , find again the value of @ and b.

3. Areaandbelementsof R?

From activity 1.1, we see that there are no real solutions since the square root
of a negative real number does not exist in set of real numbers, but if you
assume that /=1 =i you can find the solution. The numbers found in activity

1.1 are called complex numbers.

A complex number is a number that can be put in the form g+ bi, where

a and b are real numbers and i = +/—1 (i being the first letter of the word
“imaginary”).

The set of all complex numbers is denoted by C and is defined as

(C={z=a+bi:a,be]R and i2=—1}

The real number a of the complex number z=q+bi s
called the real part of z and denoted by Re(z) or R(z);
the real number b is called the imaginary part of z and denoted by Im(z)
or S(z)

Give two examples of complex numbers.

There are several answers. For example —3.5+2i and 4—6i , where j* =—1,
are complex numbers.

N



Show the real part and imaginary part of the complex number —3 + 4.

Re(-3+4i)=-3 and Im(-3+4i)=4
Remarks

a) Itis common to write a for a+ 0i and bifor 0 +bi .

Moreover, when the imaginary part is negative, it is common to write

a —bi with b> 0 instead of a+(—b)i , for example 3—4i instead of
3+(—4)i.

b) Acomplexnumberwhosereal partiszeroissaidto be purelyimaginary
whereas a complex number whose imaginary part is zero is said to be
a real number or simply real.

Therefore, all elements of R are elements of C; and we can simply write

RcC.

o Notice

© We can write g +ib instead of a+ bi (scalar multiplication between

b and i is commutative). Also, we can write bi + a instead of a + bi
(addition is commutative).

© In some disciplines, in particular electromagnetism and electrical
engineering, j is used instead of i, since i is frequently used for
electric current. In these cases, complex numbers are written as

a+bj.

© For comparison operations, only equality of complex numbers is

defined. The comparison using < or > are not defined for complex
numbers.

Application activity 1.1

1. Show the real and imaginary parts of the following complex numbers:
a) z=45i b) z=-3
c)z=-14+3i d) z=7i-10




2. Foreach ofthefollowing, sayif the complexnumberis purelyimaginary,
real or neither.

a) z=13 b) z=-4i
c) z=-Ti d) z=9i-18

1.2. Algebraic form of a complex number

Recall that the set of all complex numbers is denoted by C and is defined as

C:{z:aeri:a,beR and izz—l}.

z=a+bi is the algebraic (or standard or Cartesian or rectangular) form of
the complex number z.

1.2.1. Definition and properties of “i”

S

Using the fact that j> = —1, find the value of #*,i*, 7", i, i’, i* and i’

Find the general formula of calculating i*, k e N.

For a complex number z=a+bi,iis called an imaginary unit.

From activity 1.2, we get the important remark:
Properties of imaginary unit i

. . . .1 .0 . . .4
The powers of imaginary unitare: i' =i, i>=-1, i’ =—i, i* =1.
If we continue, we return to the same results; the imaginary unit, i, “cycles”

through 4 different values each time we multiply as it is illustrated in figure
1.1.

4

X { X (
-1 1
xX& . AU
Figure 1.1. Rotation of imaginary unit i
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Other exponents may be regarded as 4k+m, k=0,1,2,3,4,5,.

m=0,1,2,3.

Thus, the following relations may be used:

4k Akl . c4k42 4k+3
it=1, T =g i =1, Y =

. . . . 22775
Find the value of i*, *', ' and i

9

.48 4x12 .801 -4x200+1 .
I =1 = 1, 1 =1 ) =1,

—i

.142 -4x35+2 .22775 -4x5693+3
I =i =—1, i =i =—

..and

Application activity 1.2

Find the value of:

. 1213 22244
1. 2.1 3.1

46787 . 45687
4.1 5. 1% 6.1

1.2.2. Geometric representation of complex numbers

Activity 1.3

In xy plane, represent the points 4(1,2), B(-3,2),C(2,-1)
D(-2,-3).

and

A complex number can be visually represented as a pair of numbers
(a,b) forming a vector from the origin or point on a diagram called
Argand diagram (or Argand plane), named after Jean-Robert Argand,
representing the complex plane. This plane is also called Gauss plane. The
x —axis is called the real axis and is denoted by Re while the y—axis is

known as the imaginary axis; denoted Im as illustrated in fig.1.2.



a+bi

0 a
Figure 1.2. Geometric representation of a complex number

Re

The Argand diagram fig 1.2 represents complex number z =a +bi both as a
point P(a,b) and as a vector OP .

z= (a,b) is a geometric form of the complex number z.

o Notice

In complex plane, we will no longer talk about coordinates but affixes. The affix
z=a+bi of a point is plotted as a point and position vector on an Argand
diagram; a + bi is the rectangular expression of the point.

Example 1.4

Plot in the same Argand diagram the complex numbers

z,=1+2i, z,=2-3i, z, =-3-2i, z, =3i and z; =—4i.

ﬁ

|z, =3i

2 @z =1+2i

4 ® »=2-3

4@ s =4




Application activity 1.3

Represent on the same Argand diagram the complex numbers:

1)z, =2-2i 2) z,=3 3)zy=—1-i
4) z,=4i 5) zg =2+i 6) zg =—2-3i
7) z, ==5i 8) zg =3+3i

1.2.3. Modulus of a complex nhumber

Activity 1.4

Plot the following complex numbers in the Argand diagram and hence, for
each, find its distance from origin.

1. z=-8§ 2.z=2i 3.z=-3+71 4.z=3-4i

The distance from origin to the point (x,y) corresponding to the complex
number z=x4yi is called the modulus (or magnitude or absolute

value) of z and is denoted by |Z| or |x+iy|:. Thus, modulus of z is given by

r=|z|=w/x2+y2 .
Sonviers N coroc N

Find the modulus of 4-3; Find the modulus of i
[4-3]=+16+9 =5 | =~0%+1% =1
| Example 1.7 [N Example 1.8

Find the modulus of -3 Find the modulus of %(14_,’\/5)
Solution’ Solution
|_3|: /(_3)2+02 _3 ‘%(l+i\/§)‘=%‘l+i\/§‘

=l 1+3 =1
2



Properties of modulus

Let z,w be complex numbers different from 0, thus

a) [ =[R.(2)] +[Im(z)] b |} =27

c) Re(z)< Re(z)|£|z| d) Im(Z)S|Im(z)|S|Z|
o) fouf = = 0|zt
wl - |wl
g) |z+w|£|z|+|w| i) |Z—w|2|z|—|w|
Find the modulus of > Find the modulus of 2+
m 3-4 1-3i
5] 5] ‘2+i 2+
3-4i| [3-4il 1-3i  [1-3i]

S R _5 N2

V9+16 Jioo 2

Interpretation of |z, —z,|

Consider two complex numbers z, = x, +iy,, and z, = x, +iy, . The points
A and B represent z, and z,respectively.

Y a

o ——

=R

O

Then, z= (x2 —xl)+i(y2 —yl) and is represented by the point C. This
makes OABC a parallelogram.



From this, it follows that |ZB —ZA| =0C = \/(x2 —x1)2 +(y2 ] )2 .
That is to say, |ZB —ZA| is the length AB in the Argand diagram.

If the complex number z, is represented by the point 4, and the
complex number z, is represented by the point B,

then |ZB—ZA|=E,

Let 4 and B be the points with affixes z, =—1-1i, z; =2+2i.

Find AB.

AB=|z,—z,|=[3+3i|=/9+9 =32

Application activity 1.4

Find the modulus of each of the following complex numbers:

1) 2+i 2) —4+3i 3) > -
5 3—4
2+1i )
4 5)i+—— 6)(3+4i)(2—i
ey R ) (3+4i)(2-1)

Loci related to the distances on Argand diagram

A locus is a path traced out by a point subjected to certain restrictions. Paths
can be traced out by points representing variable complex numbers on an
Argand diagram just as they can in other coordinate systems.

Activity 1.5
Sketch the set of points determined by the condition

|z—1+3i|=2.

Hint: Replace Z by x+ yi and perform other operations.

Consider the simplest case first, when the point P represents the complex

number Z such that [z| = R. This means that the distance of OP from the
origin O is constant and so P will trace out a circle.



|z| = R represents a circle with centre at origin and radius R.

If instead |Z - Z1| = R, where 2z, is a fixed complex number represented by point
A on Argand diagram, then

|Z—Zl| = R represents a circle with centre z; and radius R.

Note that if |Z - Z1| < R, then the point P representing z cannot only lie on the
circumference of the circle, but also anywhere inside the circle. The locus of P is
therefore the region on and within the circle with centre 4 and radius R.

Now, consider the locus of a point P represented by the complex number z

subjected to the conditions |Z—Zl| = |Z—Z2

1

where z; and z, are fixed complex numbers represented by the points 4
and B on an Argand diagram. Then

|Z—Zl|=|Z—Zz| represents a straight line which is the perpendicular
bisector (mediator) of the line segment joining the points z, and z,.

Note also that if |Z—Zl| < |z—22|, the locus of z is not only the perpendicular
bisector of 4B but also the whole half line in which 4 lies, bound by this
bisector.

i z+2

=2 and point P represent z in the Argand plane,
z

show that P lies on a circle and find the centre and radius of this circle.

Let z=x+iy where x,y €R

Then z+2 =2 :>|Z+2|=2|Z|
z
:>|x+iy+2|=2|x+iy| :>|x+2+iy|=2|x+iy|

= (x+2)2 +y? =24x" +)’

= (x+2)2 +y? =4x* +4y° [squaring both sides]

10



= x> +4x+4+y° =4x’ +4y° = -3x" -3y’ +4x=-4

= 3x” +3)> —4x =4 which is the equation of a circle with centre at (%30)

and with radius of length 4 :

Determine, in complex plane, the locus M of affix z such that |Z—2i| :|Z+2|

Let z=x+yi, we have

|x+yi—2i|:|x+yi+2|
:>|x+i(y—2)|=|x+2+yi|
:>\/xz+(y—2)2 =\/(x+2)2+y2

=>x'+(y- 2)2 =(x+ 2)2 +y’ [squaring both sides]

=Sx +)y —dy+d=x"+dx+4+)°
= -4y =4x

=>y=—X

This is a straight line, mediator of the line segment joining the points z, =2i
and z, =-2. See the following figure.

11



w

= —x
z, =21
2%
/7
/7
/7
/7
/ 1
/ 1
//
z,=-2 // X
‘ol >
-3 -2 -1 0 ) 3

Application activity 1.5

2z+1

1. If =1 and P represent z in the Argand plane,

z
show that P lies on a circle and find the centre and radius of
this circle.

2. Determine, in complex plane, the set of points M of affix z such that:

a) |Z|:2 b) |Z|<2 c) |z|>2
d) |z+1]=1 e) |z+]=|z-1 f)|z-1+3i|=2

1.2.4. Operations on complex numbers

Equality of two complex numbers

(e,

1. Presentin the same Argand diagram the following complex numbers
3+2i—1and 2+4i-2i.
What is your observations?

From their real and imaginary parts, establish a condition for
Equality of two complex numbers.

12



2. Findxif x+2i=x+2xi-3i.
3. Findxandyif x+yi=3y—(2x—4)i.

If two complex numbers, say a+bi and c+di are equal, then their
real parts are equal and their imaginary parts are equal. That is,
a+bi=c+di <a=cand b=d.

Example 1.14

Given z=a+b—4i, w=2+bi.Find the valuesofaand bif z=w.

z=w<sa+b=2,-4=b

a-4=2=a=6

Thus, a=6,b=—-4

Application activity 1.6

Find the values of x and y if:

1. x+3i=4-yi 2. x+(x+1)i=5+yi

3. yi+x=3i+y 4. yi—6=x+9i

5. x+3+7i=(x+y)i+5 6. 14 xi=3i+y

7. x—=44+6i=2-yi 8.x—3—6i=(x—y)i+5

Addition and subtraction

Activity 1.7

Let z, =2+43i and z, =5-4i be two complex numbers.
1. Evaluate z,+z, and z,—z,.

2. State the real and imaginary parts of 2z +2z, and z —z,.

13



Consider the vectors OA and OB where A(a,b),B(c,d) with a,b,c,d e R.
In fig. 1.3, OX is sum of the vectors O4 and OB .

ydl
OX =0A+OB

B
L

o X

Figure. 1.3. Addition of two complex numbers

Addition or subtraction of two complex numbers can be done
geometrically by constructing a parallelogram (see Fig 1.3).

From activity 1.7, two complex numbers are added (or subtracted) by adding
(or subtracting) separately the two real and the two imaginary parts. That is
to say,

(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)—(c+di)=(a—c)+(b—d)i
Particular element:

(a,b)+(0,0)=(a,b)
(0,0)+(a,b)=(a,b)

Evaluate z, +z, if zy =3+4i and z, =1+2i

(3+4i)+(1+2i)=(3+1)+(4+2)i=4+6i

} = (0,0) is an additive identity.



Example 1.16

Evaluate z,—2z, if z, =1-2i and z, =9+3i

(1-2i)—-(9+3i)=(1-9)+(-2-3)i=—8-5i

Application activity 1.7

For each of the following pairs, evaluate z +z, and z,—z,.
1. z,=3i,z,=-12-3i 2. z,=12i-5,z,=5+4i

3. z,=3+4i,z,=2~i 4, z, =-23-14i, z, =21-10i

5. z=li,z,=—32i 6. z,=10i+3,z,=-5-2i

7. z,=13-14i,z,=22+i 8. z,=3-i,z,=1+10i

Conjugate and opposite

Activity 1.8

Let z, =4+3i, z, =4-3i and z; =—4-3i

1. PlotonArgand diagram complex numbers z,, z, and Z; and discuss
their relationship.

2. Evaluate
1
a) E(ZI+ZZ) b) —(z,-2,)

3. Comment on your results in 2.

The complex conjugate of the complex number z = x+ yi, denoted by z

or z , is obtained by changing the sign of the imaginary part. Hence, the
complex conjugate of z=x+yi isz=x—yi.

The complex number —z = —x — yi is the opposite of z=x+ yi,
symmetric of z with respect to 0.

15



Geometrical presentation of conjugate and opposite (negative) of
complex number

>

v z=x+yi

o

vd
7/
X
X R X

—Z==Xx-J)i

e z=x—yi

Figure 1.4. Geometrical presentation of conjugate and opposite of a complex number

Geometrically, figure 1.4 shows that z is the “reflection” of z about the real
axis while —z is symmetric to z with respect to 0. In particular, conjugating
twice gives the original complex number: z = z.

The real and imaginary parts of a complex number can be extracted using the
conjugate:

Re(z)=2(s+7) Im(z):%(z—f)

Moreover, a complex number is real if and only if it equals its conjugate.

Consider the complex number z=1+2i . Show that Re(z) = %(Z+E) and

Im(z):%(z—f)

1

=142, z=1-2i
Lizvn)=Larairi-2i)=L(2)=1=Re(2)
2 2 2

2%(2—2):%(1+2i—1+2i):2ii(4i):2:Im(z)
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o Notice

e  Conjugation distributes over the standard arithmetic operations:

i) z+w=z+w (i) zw=zw (i) (ij:z_
w

(iv) Im(z) = —Im(E) and Re(z) = Re(E)
e The complex number —-z=-x-yi is the opposite
z = x+yi, symmetric of z with respectto 0 and z+|-z| =0.

e -z=-x-Yi isthe opposite of z=x+ yi
z+(-z)=0

Example 1.18

of

Find the conjugate of z=u+w,if u=64+2i and w=1-4i.

Conjugate of z = (6+2i)+(1—4i) is

z=(6+2i)+(1-4i)=7-2i=7+2i

©)

r

7 =(6+21)+(1=4i)=(6-27)+(1+41)=7+2i

Example 1.19

Find the conjugate of z=u—w—t¢,if u=2-3i, w=—1-i and t =4+3i.

Conjugate of z=(2-3i)—(-1-i)—(4+3i) is

z=(2-3i)—(~1=i)—(4+3i)=—1-5i=—1+5i

Or

2=(2-3i) = (—1—i)—(4+3i) = (24+3i) = (~1+i) - (4=3i) = =1+ 5i

17



Application activity 1.8

Find the conjugate of:

1. z=-76 2. z=-9i

3. z=12-4i 4, z=3+i

5. z=(-9+7i)+(1+3i) 6. z=(4+i)—(1+2i)

7. z=(4-6i)—(1-i) 8. z=(-2-2i)-(1-4i)+(3i-2)

Multiplication

\8.

Let z, =2-3i and z, =3+2i.

1. Evaluate z;xz,.

2. State the real and imaginary parts of 2, Xz, .
From activity 1.9, the multiplication of two complex numbers z, = a +bi
and z, =c+di is defined by the following formula:
z, %Xz, =(a+bi)(c+di)

=(ac—bd)+(bc+ad)i

Alternatively, if z, (a,b),z2 (c,d) are complex numbers in geometric form,
thus, z, -z, =(ac—bd,bc+ad) .

In particular, the square of the imaginary unitis —1; sincej?> =jxj=—] orin

geometric form (0,1)(0,1) =(-1,0).

The preceding definition of multiplication of general complex numbers
follows naturally from this fundamental property of the imaginary unit.

Particular elements:

J (a+bi)1=a+bi and 1(a+bi)=a+bi =1 is the multiplicative
identity.

o (a+bi)i=—b+ai and i(a+bi)=-b+ai =i istheimaginary unit.

18




e [-i=—1 = ;> =_1 isthe fundamental relation.

Application activity 1.9

For each of the following pairs, evaluate z, -z,

1. 2z, =3i,z,=-12-3i 2. z,=12i-5,z,=5+4i
3. z,=34+4i,z,=2-i 4. z =i,z,=—10+3i
5. 21:11i+43 22:_3_2i 6 21:_3_2i,22:2+i

Inverse and division

\&.

Consider the complex numbers z, =2+i and z, =3-1.

1. Evaluate z, -z, . What conclusion do you draw from your result?

2. From result obtained in 1), find i
Z

3. Usingtheresultobtainedin2),deducetheformu|afori supposing
Z 1 Z,
that — =2z -—
) “

From activity 1.10, the inverse of z =a+bi is given by

1 Z — .
-1 _
—=Z = where a—bi

z ZXZ

19



Remark

The product zZ =a’+b* is called the norm of z=a+bi and is denoted

2 2
by || or |2["-

Thus,

1 z — .

—=—— where Z =a-bi

z
|l

Hence,

-1 _ z a b

2 =m0 T ol
a +b a +b° a +b

Also from activity 1.10, the division of two complex numbers is achieved by
multiplying both numerator and denominator by the complex conjugate of
the denominator.

If z, =a+bi and z, =c+di, then

445

- 2
|z
Or

z _ a+bi _[ac+bd]+i[bc—adj
z, c+di c+d? c+d?

2

Example 1.20

Find Lif z=4+2i

ﬁ[\]

1 1 4-2i 4 2. 1 1,

. 4+2i 4122 20 20 5 10

————i=———]

-1+

i+2

Evaluate

N
o



~1+i  —1+i (F140)(2-i)  -2+4142i+i —1+3i

i+2  2+i  (2+i)(2-i)  1+4 5

Find the real numbers x and y such that (x+iy)(3—-2i)=6-17i.

(x+iy)(3-2i)=6-17i

Dty 6-17i _(6-17i)(3+2i) 52-39i 43
3-2i  (3-2i)(3+2i) 13

Thus, x=4 and y=-3

Alternative method

(x+iy)(3—-2i)=6-17i

3x-2ix+3iy+2y=6-17i & 3x+2y+(—2x+3y)i:6—17i
3x+2y=6

<~
—2x+3y=-17

Solving this system, we get;

x=4 and y=-3

Remarks

1. Three distinct points 4, B and C with affixes z,, z, and z;
Z.—2Z

: : . L, ——42elR

respectively are collinear if and only if 7 — 7

2. The non-zero vectors AB and AC are perpendicular if and only if
Z,—2
€ ~4 is pure imaginary different from zero.

Zp T 24
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Let 4, B and C be the points with affixes z,=—-1-i, z, =2+2i and
z. =3+ 3i respectively. Show that they are collinear points.

ZC—ZA:(3+3i)—(—1—Z)
zy—z, (2+2i)—(-1-i)
4+4i 4(1+i) 4

= =—¢clR
343 3(1+i) 3

Thus, z,,z,; and z. are collinear.

Example 1.24

Let A, B and C be the points with affixes z, =2+i, z, =3+2i and
z. =1+2i respectively.

Show that AB and AC are perpendicular.

ZC—ZAZA—C;Z—I-I-i ZB—ZA=E:1+i
Zo-7, _-t+i_(-1+)(-1) 2
Z,~Z, 1+i (1+i)(1-i) 2

=i

This is pure imaginary different from zero. Thus, the vectors 4B and AC are
perpendicular.

Application activity 1.10

I 1
For each of the following pairs, evaluate —, —, 2
2 2y o
1. z=3i,z,=-12-3i z,=12i-5,z,=5+4i

SN

z,=1-3i,z, =-1+2i z,=1—-2,z,=-5+2i

2

2 =3+4i,z,=2—i 4 z,=-23-14i,z,=21-10i
6
8

7. le—1+i, 22:1—1' 21:—2+12i, 22:1+10i

N
N



1.2.5. Square root of a complex number

Activity 1.11

Considerthe complexnumber z = 8 — 6i .consideringthat (x+yi)2 =8-06i
, Determine the values of x and y such that x + yi is the square root of z.

In general, from activity 1.11, if a complex number x+ yi is a square root of

the complex number a+bi, thus, (x+iy)2 =a+bi:>|x+iy|2 :|a +bi| and
then

x:ig(ﬁm)
y=s L5 a)

Remark
If b#0,from activity 1.11, the sign cannot be taken arbitrary because the
product Xy has sign of b.Then,
e If b>0,we take the same sign.
e If <0, we interchange signs.

In each case, the complex number has two roots.

Find square roots of the complex number 3 +4; .
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Since b is greater than zero, we take the same signs.

=>3+4i=2+i or J3+4i=-2-1i.

We can write \/3+4i = i(2+i)

Alternative method

Let z =x+1iy be the square root of 3+4;.
Thus, (x+iy)2 =3+4i and |Z|2 =|3+4i|

Or x*—y?+2ixy=3+4i and x>+ > =/9+16
Or x*—y? +2ixy=3+4i and x’+)* =5.

From the above two equations and equality of complex numbers, we have
the simultaneous equations

x' -y =3
2xy =4
x2+y2=5

1% and 3 equations yield 2x? =8 and 2y° =2
= x* =4 and y2 =1, which gives x =42 and y=%1.

Since the product of x and y is positive, z=2+i or z=-2-—1i;

Hence, /3+4i =+(2+i)
Example 1.26

Find square roots of the complex number —3—4; .

y:i\/@ziﬁ=ﬁ
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Since b is less than zero, we interchange the signs.
=>V-3-4i=1-2i or V-3-4i=-1+2i.

We can write vV-3—4i = i(l—Zi)

Find square roots of the complex number —2i .

2
=+ |Z =4+
a=0 X _\J2 *l
b=-2<0 2
y:i 5:-'__1

As b is less than zero, we take the different signs.
=>2i=1-i or ~-2i=-1+i.
We can write ¥—2i =+(1—i)

Example 1.28

Find square roots of the complex number -2.

a=-2<0
b=0

x=0 and y:i\/z

=2 =42

Application activity 1.11

Find square roots of the following complex numbers:
1.14i 2.-24-10i 3.-20+48i 4.-91-60i
5.5+12i 6.32-24i 7.32+24i 8. —119+120:
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1.2.6. Equations in the set of complex numbers

Linear equations

Activity 1.12

Find the value of z in;
1. z+3i—-4=0 2. 4—i+iz=4z-3i
3. (1+i)(i+z)=4 4. (1-i)z=2+i

Recall that to solve the equation 3x+3=8 is to find the value of x that
satisfies the given equation. Here, we do the following:

3x+3=8=3x=8-3
5 ) ) 5
3x:5:>x:§ and then the solution set is S:{E}.

In complex numbers also, we may need to find the complex number z that
satisfies the given equation.

Example 1.29

Find the value of z if 4z+5i=12—-1.

4z+51=12—-i
4z=12—-i-5i

12— 6i
= of z=3——1

z

N
U
N | W

Example 1.30

Find the value of z if —1+i=(i+2)z.

—1+i=(i+2)z

N
o~



—14i_(Sli)(=i+2) i-241420 143

i+2  (i+2)(-i+2) 1+4 5

z=

Solve z=(1—i)Z+3+2i ,where Z is the conjugate of z .

let z=x+yi=>z=x-yi
x+yi=(1—i)(x—yi)+3+2i<:>x+yi=x—yi—ix—y+3+2i

S yi+yi+ix+y=3+2i< y+i(x+2y)=3+2i

y=3 x=-4
= =
x+2y=2 y=3

Thus, z=-4+3i and z=-4-3i

Application activity 1.12

Find the value of z in each of the following equations:
1. 2+43i—-z=i 2. 2—-i—z=3iz+13i
3. (1-zi)(i+1)=14i 4. (1+3i)z=2i+4i

Quadratic equations

Activity 1.13

Solve the following equations:
1. X’ +2x+3=0 2. X +2x+1+i=0

Recall that if ax* +bx+c =0 then, A =b*—4ac

From activity 1.13, let a, b and ¢ be real numbers (g # 0), then the equation
az’> +bz+c=0 has either two real roots, one double real root or two
conjugate complex roots.
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Remarks

1.

If A>0,there are two distinct real roots:

—b+JA _-b-+A
zj=———— and z, =——.
2a 2a
If A=0,thereis adouble real root:
=y ——i
1= 2 2a

If A<0,thereisno real root.In this case, there are two conjugate complex

roots:
—b+iNv-A d —b—iN-A
Z1 =-—  an Z2 = .
2a 2a
Where
A=b*—4ac
b
Z+z,=——, 2,2, =

Solvein C: z*+z+1=0

A=1-4=-3<0

Z

Thus,

S:

|

_—LHJ§ Z__—Lng

2 ? 2

2 2

-4—i3-4+h6}

Solvein C: z*=2(cos B)z+1=0, felR



A=4cos’ f—4 :4(0032,8—1) = —4sin”
2cos f—2isin B 2cos f+2isin
Zl = . 22 =
2 2
z,=cos f—isin B3, z, =cos f+isin
Thus,
S ={cos f—isin B,cos +isin B}

Example 1.34

Solve in C:Z2+(\/§+i)2+1=0

A=(V3+i) ~4(1)(1) =3+2VBi-1-4 =24 23

JA =-2+243i
VA =1+3i or A =-1-3i

Now,
—(\/§+i)+(1+\/§i) 1—\/§+(—1+\/§)i
1= 9 - 2
~(VBi)=(14431)  —1-vB-(14453)i
2= 2 - 2

We could also use \/_z—l—\/gi:

—(\/§+i)+(—1—\/§i) —1—\/5—(1+\/§)i

zZ, = > = 5
(i) =(-1-431) 1B (-1+4B);
2= ) - 2

Solvein C:z* —iz=4+2i
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2 —iz=4+2i

&z —iz-4-2i=0

A=(=i) —4(1)(~4-2i)=-1+16+8i =15+8i
VA =+(4+0)

i+4+i , i—4-i
Z, = =240,z = =-2

Hence, S = {2 +1i, —2}

Application activity 1.13

Solve, in complex numbers, the following equations:

2

1. 3z2°+10=4z 2. %zsz_n
3. Z+§=3 4. 224+zJy3+1=0

z

1.2.7. Polynomials in set of complex numbers

1. Expand
a) (z—2—3i)(z+3+i) b) (Z—i)(z+3i)(z—4i)
2. Show that P(Z):Z3 +(—2—i)22 +(2+2i)z—4 is divisible by z+1

and hence, by using synthetic division, factorise completely P(z).

3.  Find the value of z such that P(z) =0 if
P(Z) =z-2z2 +(7+2i)z—6(2—i) .

Given any complex number z and coefficients aq,...,qa,,
then the equation a,z" +....+a,z+a, =0 has at least one complex solution
z , provided that at least one of the higher coefficients, 4,,...,a,, is non-zero.

The process of finding the roots of a polynomial in set of complex numbers
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is similar for the case of real number remembering that the square root of a
negative real number exist in set of complex numbers considering /-1 =i .

We need the important result known as the Fundamental Theorem of Algebra.
Fundamental Theorem of Algebra

Every polynomial of positive degree with coefficients in the system of complex
numbers has a zero in the system of complex numbers. Moreover, every such
polynomial can be factored linearly in the system of complex numbers.

Example 1.36

Factorise the polynomial P(Z) =3z'-522+52"-5z+2

First, we need to find the values of z satisfying 3z' =52° +52° =52+42=0
Fundamental theorem states that a 4” degree function has 4 roots.

z =1 is zero (one of the roots) of P(z) since P(1)=3-5+5-5+2=0
=3z" 522 +52° -5z+2= (Z—l)(3z3 -2z’ +3Z—2)

Factorising R.H.S further, we get

324 =52 +52° -5242= (z—l)[i&z(zz +1)—2(z2 -I-I)] = (z—l)(22 +1)(3Z—2)

The factor z> +1 is factorised as follows:
Z241=0=>z"=—-1=z=i or z=—i
:>Zz+1=(Z—i)(Z+i)

Thus, P(z) =(Z—1)(z—i)(z+i)(3z—2)

Solve the equation z*=1=0.

To solve the equation z*—1=0 is the same as to find 4” (fourth) roots of
unity, as we can write zt=1.
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Or we can work as follows:
Factorise z* —1 in order to find the roots.
z=1is one root, then z* —1= (Z—l)(z3 +z? +Z+l).

Factorising R.H.S further gives

z* —1:(2—1)[2(22 +1)+(z2 +1)]:(z—1)(z2 +1)(z+1)
Thus,

z'=1=0

&z-1=0=z=1 or

Z2+l=0=z=ior z=—iorz+1=0=>z=-1

Then, S = {—1,1,—1',1'} )

Example 1.38

Factorise completely P(z)
solve the equation P(z)=

Factors of =5 are 1,5
P(1)=1"-4(1+:)(1*)+12i(1*)-8i(1+1)(1)-5
=1-4-4i+12i-8i+8-5=0

Then, 1 is one of the four roots.

z*—4(1+i)z* +12iz> —8i(1+i)z—5 and hence

ol

Using Synthetic division, we have

1 —4-4i 12i —8i+8 -5
- 1 3-4i 348 |
13-4 348 s o

Now P(z) becomes;
P(z)=z"'-4(1+i)z’ +12iz> -8i(1+i)z -5
=(z-1)(z" +(-3-4i) 2" +(3-8i)z+5)

32



iis also aroot

Again using synthetic approach we have;

1 3-4i 348 5
i \ i 3-3i \ -3
\ 1 ~3-3i 5i \0

P(z) becomes;

P(Z)=Z4—4(1+i)Z3+12i22—8i(1+i)2—5
=(z—l)(z—i)(22+(—3—3i)z+5i)

Now, z* +(—3—3i)z+5i is factorised as follows:

A=(-3-3i) =20i=9+18i —9-20i =—2i — JA =2 =1-i or—1+i
343i+1—-i 4+2i ) 3+3i—-1+i 2+4i
z= = =2+jo0rz= = =
2 2 2

Then, 22+(—3—3i)z+5i:(2—1—21')(2—2—i) and

P(z)=z"'-4(1+i) 2’ +12iz° =8i(1+i)z -5
=(Z—l)(z—i)(z—l—2i)(z—2—i)

Now, P(z)=0< (z-1)(z-i)(z-1-2i)(z-2-i)=0

z—1=0=z=1

1+2i

z—i=0=>z=i
z-1-2i=0=>z=1+2i

z=2-1=0=>z=2+i
Hence, S={1,i,1+2i,2+i}

Application activity 1.14

1. Factorise the polynomials given below and hence find the zeros of each
polynomial.

a) P(z) =2z +6z+420
b) Q(z) =z —6z"+132z-10
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c) R(Z)=Z4—Zz+44Z+26
d) M(z):23+(—l—i)22 +(10—2i)z—24+8i

2. Find the values of the real numbers a and b if the complex number
5—2i is a zero of the polynomial f(z)=2z"-222"+az* -68z+b.

3.  The polynomial p(Z) has degree 3. Given that p(1+2i) = O,p(2) =0
and p(0)=20, write p(2) inthe form az’ +bz> +cz+d .

4. Solve the equation (l+i)z2 +(3—2i)z—21+7i= 0

1.3. Polar form of a complex number

1.3.1. Argument of a complex number

\8

Let; z, =1+, z,=1-i, z; =—1+i,z, ==1-1i, z, =1 and z, =—i.
Present in Argand diagram, affix of each given complex number and

determine the value of angle @ for which affix of z,,k=1,2,...,6 makes
with positive direction of real axis.

Hint: Use the definition; tan@, =

An alternative way of defining points in the complex plane, other than using
the x and y coordinates, is to use the distance of a point P from the origin
together with the angle between the line through P and O and the positive
part of the real axis. This idea leads to the polar form of complex numbers.

The argument or phase @ (or amplitude) of z is the angle that the radius r
makes with the positive real axis, as illustrated in figure 1.5, and is written as

arg(z).

As with the modulus, the argument can be found from the rectangular form
X+ yi.
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<

1 zZ=Xx+Yyi
B

Q
L&

Figure 1.5. Modulus and argument of a complex number

Generally,
arctanl, if x>0
X
7r+arctan1, if x<0,y>0
X
—7z+arctan£, if x<0,y<0
arg(z)z X

z, if x=0,7>0
2

- if x=0, <0

Undefined if x=0andy=0

The value of arg(z) must always be expressed in radians. It can change by
any multiple of 27 and still give the same angle. Hence, the arg function
is sometimes considered as multivalued. Normally, as given above, the

principal argument in the interval (—7?,7[] is chosen. The polar angle for the
complex number 0 is undefined.

Example 1.39

Find the principal argument of the complex number z=1+i
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x=1>0
arg(z) = arctan (lj =z
1) 4

Example 1.40

Find the principal argument of the complex number z=1-i

x=1>0

arg(z)=arctan (_Tl) =—

Example 1.41

NG

Find the principal argument of the complex number Z = ~1+i3

x=-1<0,y=3>0

L%
;”/
S
_|_
|
Wy
N
I

w
B
W
B
I
)

arg(z) =7+ arctan(

Example 1.42

Find the principal argument of the complex number Z = —9/3-9i

x=-93<0,y=-9<0

( -9 J T —bm+m -Srm
arg(z) =—r +arctan ——r+i= _ 7

Example 1.43

Find the principal argument of the complex number z = 2i

w
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x=0,y>0

arg(z):%

0 Notice

The following relations are true:
x
NESE
. sin(arg z) -

Jx*+y?

o tan(argz)= e
x

o cos(argz)=

Let M be a point different from 0 with affix z . We denote @, the argument of
z.

The symmetric of M with respect to the real axis has affix z with
argument —6.

The argument of the affix of symmetric of M with respect to 0 is
O+r.

Application activity 1.15

Find the principal argument of the following complex numbers:

1. 14-14i 2. 93 -9i 3.242
4. 3J3-9i 5. 6-2i3

Loci related to the angles on Argand diagram

L0

Let z=x+ yi. In Argand diagram, sketch the loci satisfying the
conditions,

1.arg(z)=% 2. arg(z—4)=%
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The simplest case is the locus of P subject to the condition that arg(z) =40,
where 6 is a fixed angle.

This condition implies that the angle between OP and Ox is fixed so that the
locus of Pis a straight line.

arg(z) =6 represents the half line through O inclined at an angle 8 to
the positive direction of x—axis .

Note that the locus of P is only a half line; the other half line, shown dotted in
figure 1.6, would have the equation arg(z) =60+ 7, possibly add or subtract
27 if 6+ 7 falls outside the specified range for arg(z).

y

=]
Sy

Figure 1.6. Locus as a half line through 0

Similarly, the locus of a point P satisfying arg(z—zl) =@, where z; is the affix
of a fixed point 4, is a line through 4.

arg(z—z1 = @ represents the half line through the point z, inclined at
an angle @ to the positive direction of x —axis .

Note again that this locus is only a half line; the other half line would have the
equation arg(z—zl) =60+, possibly adding or subtracting 27 if 8+ & falls
outside the specified range for arg(z) (as illustrated in the figure 1.7).

Yy

N
=]
0
><‘F’

Figure 1.7. Locus as a half line through point different from zero

38



Finally, consider the locus of any point satisfying QSarg(z—zl)S,B. This
indicates that the angle between AP and the positive x-axis lies between 6
and [, so that P can lie on or within the two half lines as shown in the figure
1.8.

Figure 1.8. Locus lies between two half lines

Example 1.44

Sketch on Argand diagram the region where arg(z—l) =

. . . T
At point (1,0), we trace a half-line inclined at an angle — to the

N

positive direction of x-axis. The needed region is given by all points lying on
that half-line.

27 /

PTRTS
=

A
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Example 1.45

Sketch on Argand diagram the region satisfying both |Z—1—i| <3 and

T
O<argz<—
£ 4

First |Z—1—i| <3 is the region on and within the circle of centre 1+i and

radius 3.

/4 .
0 <argz <— represents all points whose arguments are between or equal

to 0 and E.

4

LA
=l

The required region is the shaded part.

Application activity 1.16

1.

2.

Sketch the loci satisfying these equations:

4

a) arg(z—2—i)=—% b) arg(z—4) >

On the same Argand plane, sketch the loci of points satisfying:

a)

|z+3+i|:5; arg(z+3)=—377Z

From your sketch, explain why there is only one complex number
satisfying both conditions.

b) Verify that the complex numberis —=7—4i .
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1.2.2. Polar form of a complex number

\8.

Given complex number z=5+i
1. Plotzinthe Argand diagram.
2. Find modulus, r of z.

3. Findthe angle, @ the line segment 0z makes with the positive real
axis.

4. From trigonometry and using the graph obtained in 1), express z in
terms of 7 and @ .

From activity 1.17, r and @ can be calculated.
Generally, if 7 and @ are the modulus and principal argument
of complex number z respectively, then z =7(cos@+isin8).

This form is called polar form or modulus-argument form or trigonometric
form of a complex number zZ .

z= r(cos0+isin 6’) is sometimes abbreviated as z =rcisf.

Where cis@ indicates cos@+isin@ (or ¢ for cosine, i for imaginary unit and
s to denote sine).

...........................................

Figure 1.9. Change of a complex number from algebraic to polar form

From figure 1.9 and definition of trigonometric ratios, we have
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sinfd =

{y:rsinﬁ
=

x=rcosd
cosf =

SRS

And then, z=x+iy=z=rcos@+irsind or z=r(cosf+isind).
For brevity, r(cos@+isin@) can be written as (r,0) or r£6.
Properties

1. Two complex numbers are equal if their modulii are equal and the
difference between their argument is a multiple of 27 .

If z=rcis@ and z'=r'"cisf’

r=r'

0=0'+2kr kel

2. If z=r(cos@+isinB), its conjugateis z =r(cos@—isin@) and its
opposite is —z = r(cos(0+7z)+isin(9+7z)).

Example 1.46

Express the complex number z=1+i in polar form.

 Solution
=2

arg(z) =arctanl :%

Then, Z=Z'<:>{

Polar form of z is

z =\/§ cos£+isinZ
4 4

Or Z:\/Ecis% or ﬁé%

Example 1.47

Express the complex number w=—/2 +iV2 in polar form.




2[=2, arg(z):7z+arctan(—1):7z—%:37”
Polar form: Or
.3
z=2 cos3—7[+isin3—7Z z=2cis2 %
4 4 4

o Notice

Having a polar form of a complex number, you can get its corresponding
algebraic form.

Example 1.48

. T
Convert Cls(—gj in algebraic form.

) ( ﬂj ( 71') . T 1 \/5
cis| — |=cos| —— |+isin| —— |=——i—
3 3 3 2 2

Example 1.49

Convert 2cis (—%j in algebraic form.
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Application activity 1.17

1. Express the following complex numbers in polar form.

a) 4 b) 2i c) —2 d -5

e \3+i  HB-3i 9 3-i3

2. Convert the following complex numbers in cartesian form.

a) 2CiS(£J b)4cis3—7[ c)\/icis(—zj
3 4 4

(5
d) 3cis[%) e) 4cisx f)ms(—?ﬂ) 9) 20is(—%)

1.2.3. Multiplication and division in polar form

\8.

Given two complex numbers z, =1-i and z, =\3-i,

1. Express z,z, in algebraic form and hence in polar form.

2. Express z, and z, in polar form and hence evaluate %2 .

What can you say about resultin 1) and 2)?

4. Express A in algebraic form and hence in polar form.
)
5. Using the polar forms of z, and z, in 2), evaluate i
2
6. What can you say about the resultin 4) and 5)?
Given two complex numbers zZ, =1 (cos 0, +isin 491) and

Z, =T, (Cos 0, +isin 492),from activity 1.18, the formula for

multiplication is
2,2, =hF, (cos (6,+86,)+isin (6, +6, ))

Provided that 277 must be added to or subtracted from 6, +6, if 6,+6, is
outside the permitted range of the principal argument.
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Similarly, division is given by
z

_lzi(cos(é’1 —6,)+isin (6, _92))

Z, L

With the provision that 27 may have to be added to, or substracted from
0, -0, if 8 —0, is outside the permitted range of the principal argument.

Example 1.50

Determine the product of the complex numbers z=1+1i and w=~3+i in
both cartesian and polar forms.

Cartesian form: Polar form:
= (1+)(V3 +i)
=3+i+i3-1
:\/§_1+l-(1+\/§) zw:2x/§cis(%+%j

_2\/5 S37[+27Z’_2\/§ IS—
12 12

. T .
2 cis—, w:2c1sg

Alternatively, the polar form of zw can be determined as follows:

w=+/3- 1+i(1+\/_)
|2l = \/ 1+J— =3-23+1+1+23+3=8=22
1+J§_57z

SH-1 12

arg(zw) = arctan

Hence,

zZw= 2\/5 Cis?—;[

4
(1-143)
Consider the complex number z =-———.
(1+1)
a) Expresszin algebraic form and polar form.

b) Deduce the exact value of cos% and sin%.
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(1-i3)
a) z=~—
(1+1)
1-4i3-18+12i\3+9  —8+i83 —4+i43
1+3i-3-i —-2+2i —1+17
_(_4”4‘/5)(_1_") 444i-id3+43
- . - s

:2+2\/§+i(2—2\/§)

Thus, the algebraic form of z is z= 2+2\/§+i(2—2\/§)

Now,
B =\/(2+2J§)2 +(2-243) =42
0 =arg(z) =arctan itzﬁ = —%

Alternatively, z in polar form can be obtained as follows:
Let 2, =(1-i"3) and 2, =(1+1)
2 =(1-i3 )4

2]=(V1+3) =16

arg(5) = 4arctan(~3) =27

z, =(1+i)3

2 =(VI+1) =22
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arg(zz) =3x arctan(l) = —

|Z2| 2\2
0 =arg(z)
=arg(zl)—arg(zz)=—4—ﬂ—3—ﬂ= —16—97[2_25%
3 4 12 12
Since we need the principal argument in the interval (—71',72'], we take

2 .
_ﬁ+ 27 because the value is

large, negative and is not in the desired interval.
=257+ 247 _ _ 7 thus, arg(z) = -
12 12 12

Then, the polar form of z is

I (RLARY oo
12

12 sin(—a)z—sina

This gives

V4 . T
To deduce the exact value of COSE and smE, we

equate the polar form of z and algebraic form of z:

2 2 [
4\/5(cosa—zsma)—2+2\/§+z(2 2\/§)

4x/§cos%=2+2\/§

—4x/§sin%:2—2\/§

cos T 2423 2242423 V2446

. 12 42 4x2 4
7z 2-23 2y2-223 2++6

12 -42 —4x2 4
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2 4
7 _N6-2
SIn—=

2 4

Addition and subtraction in polar form of complex number is not possible
directly as it is the case in multiplication and division. For addition and
subtraction of complex numbers to be possible, each complex number has
to be converted in to Cartesian form first.

Application activity 1.18

1. In each of the following , express zw and Zin polar form.
w
2
a) z=1+i, w=—3+i b)z=2—2i\/§, w:cisTﬂ
c) z=1+i, w=~/3+i d)z=2-2i, w=—/3+3i
I 1
Z=————i\3, w=—1+i
) 2 2

fy z=i-1, w=i+l1

(-1+1)(v3-3i)
—3+i\3

2. Express in polar form.

1.2.4. Powers in polar form

\8.

Given a complex number z = \/§+i;

1. Expresszin polar form.

2. Given that z* =z-z, find the expression for z* in algebraic and in
polar form.

3.  Find the expression for z° = z* - z in algebraic form and hence in polar
form.
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4. Using results from 1 to 3, deduce the expression for z" in polar form.

From activity 1.19, Power of a complex number z = r(cos@—i—isin@) is given
by:

z" =(r(cos€+isin9))n =r"(cosn@+isinnb); neZ,

Theorem 1.1: De Moivre’s theorem

From the power of a complex number, if »=1 , we have De Moivre's
theorem:

(cos@+isin9)n =(cosn9+isinn6’), for positive and negative integers
and fractional values of 7.

Application activity 1.19

1. Express the following in Cartesian form:

a) (%+%i\/§j b) (J§+i)6 o) (1-i)"

d) [1_;\6) e) (%Jm f) (1+i\/§)9

9) (2+2i)5

2. Find the positive integers m for which (\/g"‘i)m _(\/g_i)m =0

1.2.5. n' roots of a complex number

A

Given z=4
1. Expresszin polar form.

2. Letz, =r'cis@' for k=0,1,2,3 be the four 4” roots of z. Using result in
1) and the expression (zk )4 =z, find all four 4" roots of z in polar form.
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From activity 1.20,

If (zk )n =z for z =rcis@, then

zZ, = x/;as(e—‘_z,{ﬂj k=0,1,2,3,......,n—1
n

Here, 4/; is the usual (positive) n™ root of the positive real numberr.

) h
Determine the 4" roots of -4

|—4| =4 and arg(—4) =rm+arctan0=rx

=z ={‘/Z(cis”+jkﬂj; k=0,1,2,3
z, =\/5(cos—+zs1n4j \/_(gﬂiJ_

\/E(COS—+ZSIn—]=\/_(—£ l%} —1+i

2
z, =\/§(cos—+zsm5—ﬂ)=ﬁ(—%—ig]=—1—z
z, =ﬁ(cos%+zsm%)=ﬁ(%—i%}=1—i

Then, the 4" roots of -4 are 1+i,—1+i,—1—i, and 1—i.

Special case: n'' roots of unity

Here, z=1 and |Z|=1, arg(z)=0
Then,
Z, = 1 cis 0+2kz = cis—2k7[

n n

And then, the n' roots of unity are given by

_ciszk—” k=0,1,2,3,...n-1

n
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This shows that the first root among the n' roots of unity is always 1.
| Notice

1. The n* roots of unity can be used to find the n* roots of any complex
number if one of these roots is known.

If one of the n roots of a complex number z is known, the other roots
are found by multiplying that root with n* roots of unity.

2. The sum of n* roots of unity is zero.

Find cubic roots of unity

z=1n=3
2k
zk:cis—ﬂ; k=0,1,2
3
z,=cis0=1
. 27 1 3 . 4r 1 3
z, =CiS—=——+i— z,=Cls—=———i—
3 2 2 3 2 2

Example 1.54

Using cubic roots of unity, find the cubic root of -27, given that -3 is one of the
roots.

We have one of the cubic roots of -27, which is -3.

We have seen that the cubic roots of unity are:

z, =1
VA R
1——E+17>:>k2=(;zk:0
1 .3
I S
2 2

Then, cubic roots of -27 are:

51



Using 5" roots of unity, find the exact value of cosz?ﬂ.

2k
The 5™ roots of unity are given by z, = cisTﬂ, k=0,1,2,3,4.
zy=1
.27 2r .. 2«
Z, =ClS— =Ccos—+isin—
5 5

L4 4r .. 4rx
Z, =Cls— = Ccos—+isin—
5 5 5

. br 6r .. o1m
Z, =Cls— = cos—+isin—
5 5 5

. 87 87 .. 8«
z, =ClS—=C0S—+isin—
5 5 5

The sum of these roots must be zero, then,
2r .. 2”& dr . 4rx 6r .. orx qr .. 8«
1-I-COS—+lS1n—+COS—+lSIIl—+COS?+lSln?+COS?+lSIH?=0

2 4z 6r 87 (. 27 . 4r . 61 . 87
1+cos—+cos— +cos— +coS—+1i| sSin—+sin—+sin—+sin— |=0
5 5 5 5 5 5 5 5

Taking only the real parts, we have;
2 4 6 8
1+cos—ﬂ+cos—ﬂ+cos—”+cos—7[:0 (1)
5 5 5 5
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We know that cosar =cos(27—a), then,

67 67 10r—-6r A
cos— =cos| 27 —— |=cos =C0S—
5 5 5 5

2 4 4 27
(1) becomes, 1+c0s?+cos?+cos?+cos?=0 and

we have;
1+200s2—ﬂ+20034?”:0 <:>1+2cosz?”+2cos2[2?ﬂj:0
2r , 21 2
<:>1+2cos?+2 2cos ?—1 =0, as cos2a=2cos” a—1
<:>1+200s2—7[+4c0s22—”—2:0
5 5
27

<:>400522—7Z+200s——1:0
5 5

27
Let f = COS? ,we have;

47 +2t—-1=0

A=4+16=20

. 24420 2425 5-1
! 8 8 4
L 2720 2-25 —5-1
: 8 8 4

2r . . : . .
But — is an angle in the first quadrant. Thus, the cosine of this angle must

is to be ignored.

27 AJ5-1

Hence, the exact value of COS? is )

4

be positive. Thus, ¢ =
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Application activity 1.20

1. Solve the equation z* =j.

2. Find the five fifth roots of 32.
3. Find five fifth roots of 1.
4

Find four fourth roots of 8+8i\/§.

. 27
5. Using 5™ roots of unity, find the exact value of Sln?.

Graphical representation of n™ roots of a complex number

W

1. Find five fifth roots of 4.
2. Representthe roots obtained in 1) on Argand diagram.

3. Use arulerto join the obtained points in 2.

The n rootsofacomplexnumberare equally spaced aroundthe circumference
of a circle of centre 0 in the complex plane.

If the complex number for which we are computing the n” roots is z = rcis6
, the radius of the circle will be R =%/r and the first root z, corresponding to
k =0 will be at an amplitude of ¢ = Q.This root will be followed by the n—1
remaining n

roots at equal distances apart.

2
The angular amplitude between each rootis f=—.
n

Now, if z=1, the radius of the circle is 1.

Thus, n” roots of unity are equally spaced around the circumference of a unit
circle (circle of centre o and radius 1) in the complex plane.

Example 1.56

Represent graphically the 4" roots of z = 8(1—1\/5)
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|z|=8V4 =16

arg z = arctan _82;/5 = arctan (—\/5 ) = —%

The roots are given by:

—5 +2kxz —7+6kr
z, =~/16 cis 3 :2cis(—) where k =0,1,2,3.
4 12
This is;
. (11
z,=2cis L z,=2cls -
12 12
) . (17
z,=2cis B z, =2cCls T
12 12

In this case, the circle will have radius 2.

N
—
.
/]

Represent graphically the n” roots of unity for n=2, n=3 and n=4.
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n
n=2:z,=1, z=-1
n=3:z,=1, Zl=—l+l£’ Z2=—l—i£
2 2 2 2

Zo




Z

z, Zo X

=}

23

We can see that the n” roots of unity for n > 2 are the vertices of a regular

polygon inscribed in a circle of centre 0 and radius 1.

Application activity 1.21

On Argand diagram, represent:
1.  The three cube roots of -27.
2. The four fourth roots of -4.
3. The cube roots of 8i.

4. The fourth roots of -1.

Construction of regular polygons

A regular polygon is a polygon that is equiangular (all angles are equal in
measure) and equilateral (all sides have the same length).

As illustrated in figure 1.10, we call apothem, the perpendicular distance
from the centre (the interior point) to any side. We can draw a line segment
from the centre to one of the vertices. The length of this segment is called the
radius of the polygon.
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Figure 1.10.Regular polygon

W

Find cube roots of unity.
Represent the roots obtained in 1) on Argand diagram.

Using a ruler, join the points obtained in 2).

> W =

What can you say about the figure obtained in 3)?

Recall that the n™ roots of unity are given by:

zo=cis 2 k=012, 1.
n

The n" roots of unity for n>3 are the vertices of a regular polygon with n
sides inscribed in a circle of centre 0 and radius 1. The vertices of a polygon
are the points where its sides intersect. The angle at the centre is given by
2

n

To draw a regular polygon with n sides, the essential steps are:

e Start by drawing a unit circle in Argand diagram. The radius and
the centre of this circle will be the radius and centre of the regular

polygon.

e Around the circle, place the points with affixes
.2
z, = msﬁ, k=0,1,2,......,n—1.Those points are the
n

vertices of the polygon.
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e Using a ruler, join the obtained points around the circle.

e The obtained figure is the needed regular polygon.

Example 1.58

Construct, in Argand diagram, a square.

A square is a regular polygon with four sides.

. krx

.2
We have four vertices: z, = Clsﬁ =cis—; £=0,1,2,3

. LT . . 3T
z,=cis0=1, 21201s3:z, z, =cisr=-1, Z3=c137=—z

/

N 0

4

)
Z

Example 1.59

Construct, in Argand diagram, a regular pentagon.

A regular pentagon has 5 sides.

. 2k
We have five vertices: z, = CIST”; k=0,1,2,3,4

. .27 . 4r
z,=cis0=1, 212015?’ z, =CIs

. 6r . O
, Z3=CIS?, Z4=CIS—
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o

Application activity 1.22

In Argand diagram, construct the following polygons:

1. Aregular hexagon 2. Aregular heptagon

3. Avregular octagon 4. Aregular nonagon

1.4. Exponential form of a complex number

W

Consider the following infinite series expansions:

N x2 X3 x4 XS X6 7
e€=l+x+—+—+—+—+—+—+

20 31 41 5t 6! 7!

z x4 x6 3 x3 xs x7
cosx=l-—+—-——.. and SINX=X—"T"+———

20 41 6l 31 51 T
1. In expansion of ¢*, replace x with i@ and write the new expansion.

2. Rearrange the terms obtained in 1) and use expansions of cosx and
sin x to find new the expression of e* in terms of cosx and sinx.

3. What can you say about the new expression obtained in 2)?
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From Activity 1.23, we can write;
e’ =cos@+isinf

Thus, the exponential form of a complex number z whose modulusis r and
argumentis @, is
z=re"

Example 1.60

Express the complex number 3 +iin exponential form.

‘\/§+i‘:2, arg(\/§+i)=£

6
Thus, /3 +i = 2eig

Example 1.61

Express the complex number —1+i\/§ in exponential form.

‘—1+i\/§‘ =2, arg(—1+i\/§) ZZT”
Thus,

2
“1+if3=2¢°

The formulae for product, quotient and power become;

i0

P N re roio-g

' 6+6 -0

a) reé?r'e? =pp'e%?) b) —% =)
r'e r

. n .
C) (relﬁ) — rnezna
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o Notice

From exponential form of a complex number, we can find real part and
imaginary part as follows:

e’ =cos@+isinf (1)
e =cos@—isind (2)
(1)+(2) gives eie +€_i6 =2cosf = cosf = l(eig +e—i0)

(1)—(2) gives €” —e™ =2isin@ =>sinf = 2i(e"g —e‘ig)
i

The formulae
cosf = %(e’y 4 e"ﬂ)
sin@ = 2%_(59 — e"p)

are called the Euler's formulae.

The Euler's formulae are used to linearise trigonometric expressions. This
method is called linearisation. We will see this in applications of complex
numbers.

Application activity 1.23

Express the following complex numbers in exponential form.

1. i 2. _1+4i3  3.2-2i 4.3-i3
5. 5 6. 3+3i 7. 3+4i 8. —5-12i
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1.5. Applications

1.5.1. Trigonometric numbers of a multiple of an angle

We know that De Moivre's formula is given by

(cosx+isin x)n =cosnx+isinnx (a)

1. Use the Newton binomial expansion to expand (cosx+isinx)n to
get expression (b).

2. In relation (a), replace the left hand side with its corresponding
expression obtained in 1.

3. Rearrange the terms of relation obtained in (b) to obtain the
expression equivalent to cosnx and another expression equivalent
to sinnx. (Recall that two complex numbers are equal if and only
if their real parts are equal and their imaginary parts are equal).

From Activity 1.24,
n n n n-2 -2 n n—-4 - 4
cosnx = "c,cos" x—"c,cos" " xsin” x+ "¢, cos" " xsin” x +.....

sinnx = "¢, cos"' sin x — "¢, cos"” xsin’ x + "¢ cos” xsin’ x +....
In general,

cosnx= Y "C,i*cos"™" xsin* x; foreven valuesof k

0<k<n

isinnx= " "C,i* cos"* xsin‘ x; forodd valuesof k

1<k<n

n!

k!(n—k)!

Example 1.62

Express cos3x and sin3x interms of cosx and sinx.

and "C, =
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Method 1 (use of De Moivre's formula and binomial expansion)

(cosx+isinx)3 = cos3x +isin3x, by De Moivre's formula.
By binomial expansion, we have
(cosx +isin x)3 =cos’ x +3cos’ x(isin x)+3cos x(isin x)2 +(isin x)3
=cos’ x+3icos® xsin x—3cos xsin” x —isin’ x
=cos’ x —3cos xsin’ x+i(3 cos” xsin x —sin’ x)
Then, €08 3x+isin3x =cos’ x—3cosxsin’ x+i(3 cos” xsin x —sin’ x)
Equating parts, we have:
cos3x =cos’ x—3cosxsin’ x (real parts)
sin3x =3cos’ xsinx—sin’ x  (imaginary parts)
Simplifying the RHS of each expression, we have:
cos3x =cos’ x —3cosx(1 —cos’ x)
=cos’ x—3cosx+3cos’ x

= ) . [since cos’x+sin‘x=1
s1n3x:3(l—sm x)smx—sm X

L1

=3sinx—3sin’ x—sin’ x

Thus,

cos3x=4cos’ x—3cosx

sin3x =3sinx —4sin’ x

Method 2 (use of the general formulae)

y: ki k
cosnx = z "C,i" cos" " xsin” x; for even valuesof k
0<k<n

.. J —k -k
isin nx = Z "C,i" cos" " xsin" x; forodd valuesof k

0<k=<n
. . .2 1 c a2
cos3x = °C,i’ cos’ xsin’ x + *C,i* cos' xsin’ x

s 3,71 2 | 3 -3 0 : .3
isin3x = "Cji’ cos” xsin x+ "C,i” cos” xsin” x
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From the above, we obtain;

=

cos3x =cos’ x—3cosxsin® x
.. . P . ..
isin3x =3icos® xsin x—isin’ x

Simplifying the RHS of each expression, we have:

U

isin3x=i 3(1 —sin® x)sinx—sin3 x}

cos3x =cos’ x—3cosx+3cos’ x

U

{cos 3x=cos’ x— 3cosx(1 —cos’ x)

isin3x =i| 3sin x —3sin’® x —sin® x}

U

{cos3x =4cos’ x—3cosx

sin3x = 3sinx —4sin’ x as before.

Example 1.63

Express tan46 interms of tan@.

sin460

cos460
of sin@ and cos@ must be first established as shown below:

{cos 40 = *C,i’ cos* @sin” 6 + *C,i* cos® @sin® O+ *C,i* cos’ Osin” 0

isin40 = *C,i' cos’ @sin' @+ *C,i’ cos' Osin’ O

tan 460 = , so, expressions for sin4@ and cos46 in terms

- {cos 40 = cos* @ — 6cos” Osin> @ +sin’ 0

isin46 = 4icos’ Osin @ —4icosfsin’

sin46 = 4cos’ Osin @ —4cosfsin’ 0

Now,

{cos 460 = cos* 0 —6cos’ Osin’ O +sin* O
-

sin 460 4cos’ @sin @ —4cosBsin’ 0
tan 46 = =— A2 2
cosd4@ cos"@—6¢cos” @sin“ @+sin” 0

Dividing every term in both numerator and denominator by cos* @ gives;
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sin @ sin® 9
cosd cos’® _ 4tanf—4tan’ O
sin@ sin*@ 1-6tan*@+tan’ 9
l-6—5—+—
cos“ 6 cos" @

4

Thus,

4tan @ —4tan’ 6
1-6tan’ @+ tan* @

tan 460 =

Application activity 1.24

1. Express COS2xX interms of COSX only.

Determine Sin2x in terms of COSXx and SIN X .

Express tan3x interm of cotx
Express cot3x interms of cotx only.
Establish tanSx in terms of tanx only.

Evaluate cos6x interms of cosx only.

N oA W N

Determine sin 6x in terms of cosx and sinx.

1.5.2. Linearisation of trigonometric expressions (product to
sum)

J  Activity 1.25

Using Euler's formulae, find the sum equivalenttothe product sin’ x cos x

Recall on page 58 we mentioned that the formulae used in linearisation of
trigonometric expressions are Euler’s formulae.

Example 1.64

Linearise 2sinxcos y

) ix _-ix iy+ —iy
2s1nxcosy:Z(e ¢ J(e © ]

2i
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2i 2i
=sin(x+ y)+sin(x—y)

Example 1.65

Linearise sin xcos” x

) 5 etx _e—tx etx +e—1x ezx _e—zx esz +e—21x +2
sinxcos” x = : = -
2i 2 2i 4

eSix + e—ix + 2eix _ eix _ e—3ix _ 2e—ix
81

1 e3ix _e—3ix eix _e—ix 1 ' '
=— —+ : =—(sin3x+sinx)
4 2i 2i 4

Application activity 1.25

Linearise the following expressions:

1) COSXCOS ) 2) sin xsin y 3) sinxcos x
4) sin® x 5) cos” x 6) sin’ x
7) cos’ x 8) sin” xcos” x
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1.5.3. Solving equation acosx+bsinx=c a,b,ceR (a,b#0)

2

Consider the following equation: cosx—\/gsinx =-1.
Comparing the given equation to the equation acosx+bsinx =c;

1. Form the complex number z=a+bi.

2. Find the modulus of z, i.e, ‘Z‘=\/a2+bz .

3. Find the principal argument of z, i.e, arg(z)=6.

4. Rewrite the given equation in the form Va’ +b” cos (Q—X) =c¢ and

hence solve for x.

To solve the equation acosx+bsinx=c, a,b,ceR (a,b # 0),
we first need the reduction expression for acosx+bsinx.

From activity 1.26, to reduce acosx+bsinx a,be R, the steps followed
are:

1. Formthe complex number z=a+bi.
2. Find the modulus of z, i.e, ‘Z‘ =\a’+b* .
3. Find the principal argument of z, i.e, arg(z)=6.

4. The reduction formulais gcosx+bsinx =+a* +b* cos(@—x).

Indeed, considering two complex numbers z=cosx+isinx and z'=a+bi
and their presentation on Argand plane is in figure 1.11.

F'S

S v adlng / L ,,,,,,,,,,,,,,,,,,,, .

x i H x

¢ ! a cos X

Figure 1.11.Reduction form of q cos x + bsin x
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To get the expression equivalent to acosx+bsinx, we use dot
product expressed in terms of angle 6@—x that is between two vectors

W:(cosx,sinx) and Wz(a,b), and then

acosx+bsinx =va’ +b* cos(6—x).
To solve acosx+bsinx =c, we use the new equality

acosx+bsinx=+a’+b* cos(6-x).

a’+b* cos(0-x)=c < cos(6—x <
Va4t eos(6-2) S v

If
° ;>1 or ;<—1,the equation has no
solutions.
c

e 1< ﬁ <1, the equation has many solutions in
a +b

set of real numbers.

Example 1.66

Solve, in R, the equation cosx + \/gsinx = ﬁ

z:1+i\/§,

z| =2, arg(z) =arctan~/3 = z

) s
= COS X+ 3s1nx:2cos(x——j

T T \/5
—— |= =Ccos| x—— |=—
:>2cos(x 3) \/3 (X 3j )

£+2k77
, kel

sx-Z=2Z42kr =x= -
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Example 1.67

Solve, in R, the equation cosx +sinx = \/E
V4

z=1+i, z| =2, arg(z)=arctan1 = J

= COSX+sinx = 2cos(x—%]:> 2cos(x—%J:x/§

:cos(x—%jzlzx—%:ﬂm :x:%+2k7z, kel

Application activity 1.26

Use complex numbers to solve:

1. cosx+ 3sinx:\/§ 2. cosx+sinx:\/§
3. cosx—sinx=-1 4. \J3cosx+sinx=+2
5. 2sinx+\/§cosx=1+sinx 6. \J2secx+tanx =1

1.5.4. Alternating current problems

In electrical engineering, the imaginary unit is denoted by j to avoid confusion
with i which is generally in use to denote electric current.

If Z=R+ joL+ , express Z inthe form (a+jb) when

joC
R=10,L=5C=0.04, w=4and j=+-1

Where Z denotes impendance, R is resistance, L is inductance, Cis
capacitance and @ indicates the phasor for inductance or capacitance.

In electrical engineering, the treatment of resistors, capacitors, and inductors
can be unified by introducing imaginary frequency-dependent resistances
for the latter two (capacitor and inductor) and combining all the three in

a single complex number called the impedance. This approach is called
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phasor calculus. The imaginary unit is denoted by to avoid confusion with i
which is generally in use to denote electric current.

Since the voltage in an AC circuit is oscillating, it can be represented as
V=Ve™
=V, (coswt + jsin wt)

which denotes Impedance, V, is peak value of impedance and w=27xf
where f isthe frequence of supply.

To obtain the measurable quantity, the real part is taken:

Re(V)=V,coswt and is called Resistance while imaginary part denotes
Reactance (inductive or capacitive).

The effect of multiplying a phasor by j isto rotate itin a positive direction (i.e.
anticlockwise) on an Argand diagram through 90° without altering its length.
Similarly, multiplying a phasor by —;j rotates phasor in a negative direction

(i.e.clockwise) on an Argand diagram through —90° without altering its length.
These facts are used in alternating current theory since certain quantities in

the phasor diagrams lie at 90° to each other.

Briefly, the current, I(cosine function) leads the applied potential difference

(p.d.), V(sine function) by one quarter of a cycle i.e. 7 radians or 90°.

A L A c
il Ve Vv, [ ik Ve Vo
[l £ e &
v v
Phasor diagram Phasor diagram
Vi

I
|
|
v
(a) b
For example, in the Resistance and Inductance ( R — [ ) series circuit shown
in (a), ¥, leads above figure, | by 90° (i.e. | lags ¥, by 90° and may be
written as jV, , the vertical axis being regarded as the imaginary axis of an
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Argand diagram. Thus, Vy+jV, =V as Vy =1IR,V, =IX, (where X, is the
inductive reactance, 2nf L ohms) and V =IZ (where Z is the impedance), then,
R+jX, =7.

Similarly, for the Resistance and Capacitance ( R — C ) circuit shown in above
figure (b), R—C lags | by 90°(i.e. | leads V_ by 90°) and V, — jV. =V, from
1

which R— jX. =7 (where X, is the capacitive reactance ohms).

Example 1.68

Determine the resistance and series inductance (or capacitance) for each of
the following impedances, assuming a frequency of 50 Hz:

2x fC

a) 4+ /7 Q b) =j20 Q  ¢) 15cis(-60°) Q

a) Impedance, Z=4+ j7 Q hence, Resistance is 42 and Reactance
7 Q.

Since the imaginary part is positive, the reactance is inductive,

e. X, =7 Q

Since X, =2x fL, then inductance,

— XL _ 7
2rf  2mx50

b) Impedance, Z=—;20 Q,ie. Z=0-;20 € hence Resistance is 0
and Reactance 20Q).

=0.0223H or 22.3mH

Since the imaginary part is negative, the reactance is capacitive,

1
ie. X.=20 Q andsi X, = , then,
i.e c and since X, 27 fC en
capacitance,
6
! ! 10 UF =1592uF

“27fX,  27(50)(20)  27(50)(20)
c) Impedance,

Z =15cis(~60") = 15[cos(—6o° )+ jsin(—6o°)} =75-7.5/\3
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Hence, resistance is 7.5Q and capacitive reactance,
X, =7.5{3=12.99Q
1
2x fC
1 1 _ 10°
T2nfX,  272(50)(20)  272(50)(12.99)"

Example 1.69

An alternating voltage of 240V, 50 Hz is connected across an impedance of
Z =60—-;100 Q. Determine:

Since X = , then, capacitance,

F =245uF

a) The resistance.
b) The capacitance.
c) The magnitude of the impedance and its phase angle.

d) The current flowing.

a) Impedance Z=60-;100 Q.
Hence, resistance is 60Q

b) Capacitive reactance, X, =100Q;

as X, =

, then capacitance,

27
1 1 10°

O o px,  22(50)(100)  22(50)(100)

MF =31.83uF

c) Magnitude of impedance;

12| =[60— 7100 Q| =/(60)’ +(~100)" =116.62

-1
Phase angle, arg(Z) = tan™' [WOO] =-59.04°

. 0
d) Currentflowing; [ :K 240cisQ

zZ 116.6cis(~59.04°)

= 2.058cis(59.04°)A
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Application activity 1.27

1. Determine the resistance R and series inductance L (or capacitance
C) for each of the following impedances assuming the frequency to

be 50 Hz.
a) (3+,8)Q b) (2-,3)Q
o Jjl4Q d) 8cis(—60")Q

2. Two impedances, Z, :(3+j6)Q and Z, :(4—j3)Q are
connected in series to supply a voltage of 120V. Determine the
magnitude of the current and its phase angle relative to the voltage.

3. If the two impedances in Problem 2 are connected in parallel,
determine the current flowing and its phase relative to the 120V
supply voltage.

Hint: For the n-branch parallel circuit, Impedance Z is given by:
1 _Z”: 1
Z D7,
4. A 2.0H inductor of resistance 80Q) is connected in series with a
420€2 resistor and a 240V, 50Hz supply. Find;
a) The currentin the circuit.

b) The phase angle between the applied p.d. and the current.

5. For a transmission line, the characteristic impedance Z, and the
propagation coefficient ¥ are given by:

, _ [Rejol
G+ joC
and
y :\/(R+ja)L)(G+ja)C) .

Determine, in polar form, Z, and 7, given that R =25€,

L=5x10"H, G=80x10°S, C=0.04x10"° and 7
=2000m rad/s.
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1. Concepts of complex numbers

A complex number is a number that can be put in the form a + bi,
where a and b are real numbersand i = +/-1.

The set of all complex numbers is denoted by (C and is defined as

(C:{z=a+bi:a,beR and izz—l}-

The real number a of the complex number- = g + b is called the real
part of Z, and the real number b is often called the imaginary part. A
complex number whose real part is zero is said to be purely imaginary,
whereas a complex number whose imaginary part is zero is said to be a
real number or simply real.

2. Algebraic form of a complex number

4k Akl . Ak42 4k+3
=1, " =i, " ==1, """ =

Powersof j: i , —i

z=(a,b) is a geometric form of the complex number z and
z=a+bi isthe algebraic (or standard or Cartesian or rectangular)
form of the complex number z.

If two complex numbers, say a+bi and c+di are equal,
then, both their real and imaginary parts are equal. That is,
a+bi=c+di <a=cand b=d.

The addition and subtraction of two complex numbers a+bi and
c+di is defined by the formula:(a+bi)i(c+di) = (aic)+(bid)i.

The complex conjugate of the complex number z=x+yi
, denoted by 7 or z, is defined to be Z=x—Ji.

The complex number Z = —X — }is the opposite of = X + },
symmetric of Z with respect to 0.

The multiplication of two complex numbers a+bi and ¢+ di is defined by

the formula: (g + bi)(c+di)=(ac—bd )+ (bc+ad)i

-1 z
The i fz=a+biisgivenby —=2 =
e inverse of z=a+bi is given Y 21D
) . + bi +bd bc—ad
If zy=a+bi and z, =c+di then,i=a l_= af = |+ f a2 i
z, c+di c +d c +d
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If a complex numberX + Viis a square root of the complex number a + bi,
|

xzi\/g(a+\/a2+b2)
1l 70

Let a, b and ¢ be real numbers (a # 0), then the equation az®> +bz+c¢ =0 has
either two real roots, one double real root or two conjugate complex roots.

then

a) If A>0,there are two distinct real roots:

—b+~/A _—b-+/A
zj=————— and z, =——.
2a 2a
b
2a
c) If A<O0, there is no real roots. In this case, there are two conjugate

complex roots:
—b+id— —b—iN-A
:M and z ;

b) If A=0,thereisadoublereal root: Z, =2, =—

4 2a : 2a
Where A =b* —4ac

b -
Zi+z,=——, 2,-2, =—

a

Every polynomial of positive degree with coefficients in the system of
complex numbers has a zero in the system of complex numbers.

Moreover, every such polynomial can be factored linearly in the
system of complex numbers.

3. Polar form of a complex number

The absolute value (or modulus or magnitude) of a complex number

z=x+Yyi is r=|z|:\/x2+y2

Principal argument of a complex number z =x+ yi
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arctanl, if x>0

X
y .
m+arctan—, if x<0,y2>0
X
—7z+arctanl, if x<0,y<0
arg(z): X
1, if x=0,y>0
2
—%, if x=0,y<0

Undefined if x=0and y=0

Polar (or modulus-argument) form is z = V(COS 6 +isin 49) or z=rcisé

Given  two  complex  numbers z, =r,(cos 6, +isin «91) and
Z, =1, (COS 0, +isin (92), the  formulae  for  multiplication  and
division are Z,z, =nn, (COS (‘91 + 02)+isin (‘91 + 92)) and
z,

1

— :_(005(91 ~0,)+isin(6, -6, )) respectively.
2y

Power of a complex number z is given by
" =(r(cos@+isind)) =r"(cosnf+isinnd); neZ,

If (z, )n =z for z=rcisf , then
0+2k
z, =4/;cis(—7[j k=0,1,2,3,....n—1
n
To draw a regular polygon with n sides, the steps followed are:

» Start by drawing a unit circle in Argand diagram. The radius and the centre
of this circle will be the radius and centre of the regular polygon.

» Around the circle, place the points with affixes

. 2krm
z, =cis—, k=0,1,2,...,n—1.
n
» Those points are the vertices of the polygon.
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»

»

4.

5.

»

»

»

Using a ruler, join the obtained points around the circle.
The obtained figure is the needed regular polygon.

Exponential form of a complex number

The exponential form of a complex number Z whose modulus is 7 and
. . 1

argument is 9, IS7 = rel.

Euler's formulae (these formulae are used to linearise trigonometric

expressions):

cosf = %(e’p + e"g)

c L/ w i
sinfd=—I|e" —¢'
5 )
Applications

Formulae for trigonometric number of a multiple of an angle

.k —k -k .
cosnx = Z "C,i" cos" " xsin” x, with even k values

0<k<n '
. Kook : n!
isinnx= Y. "C,i* cos"" xsin‘ x, with odd k values "C, = —————
0<k<n k!(l’l—k)!

To solve the equation acosx+bsinx = ¢, solve the equation

C

Alternating current

cos(x—0)= , O=arg(a+bi)

Resistance and Capacitance (R-C)

Let a p.d. V' be applied across a resistance R and a capacitance Cin series. The
same current I flows through each component and so the reference vector will
be that representing I. The p.d. VR across R is in phase with 1, and V. , that
across C, lags on current I by 90°.
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Vector sum of V, and V. is

R o called Impedance and equals
) — « " the applied p.d. J/;
Ve Ve :
Le L Z=Vy+jV. where V, and
v VC are known as resistance
Phﬂﬁﬂrdiﬂgrﬂ?ﬁ | and reactance respectively.
2 | But ¥, =IR and V, =IX,
: where X is the capacitive
VeY_______> LL reactance of (C and equals
1

F:gure'show:'ng Rgs:stance and o
Capacitance in series

Resistance and inductance (R-L)

The analysis is similar but
here, the p.d. ¥, across L
leads on current / and the
p.d. V, across R is again in
phase with [ .

Z=V,+ jV, where V, and

V, are known as resistance
and reactance respectively.

Figure showing Resistance and
Inductance in series

But ¥, =IR and V, = IX, where X, is the inductive reactance of L and
equals wL

orw=2rf.
1 &1

For the n-branch parallel circuit, Impedance Z is given by: — = A
k=1 |
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End of unit assessment

1. Forthe complex numbers z =3 —iandw =1+2i, evaluate;

a) 2z—3w b) zw
c) ZZW(E)2 d) z
w

2. Solve the following equations in @+ bi form:
a) Z2+4 =0 by zZ2+z +1=0
c) z'+ 6z + 11=0 d z2-1=0

3. Plot the following complex numbers on the Argand plane and express
them into polar form.

a) 1 b) i c) —3i
d) 1—-1i e)2+i f)-3-2i
g) —3+2i
4. Convertinto Cartesian form;
a) 2cis0 b)3cisx
c) cisz d)3cis3—7[
2 4

5. By conversion to polar form and use of De Moivres’ theorem, evaluate;
. S A\
a) i’ b) (1+1) o) (\/5—1)

6. Findin @ + bi form and plot on Argand diagram;
1
a) the three values of (i)3.

1
b) the four values of (1+i)z.

N

. (T 0 T zZ .
If z, =cis| — | and z, =cCIS| —— |, evaluate — in polar
4 3 s

and Cartesian form.
T

Deduce the exact value of cos 7_7[ and sin| — |.
12 12
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8. Find the modulus of &

-1

9. Show that (eig) =e”

10. Show that the sum of n'" roots of unity is zero.

T
11. Using 10" roots of unity, find the exact value of COSg.

12. Determine the set of complex numbers, z, such that z = z* + 3z + 4 is
a real number.

13. Solve the equation z’+3z°+4z+12=0

\/gJZOOI

: . 1
14. Simplify | —+i—
plity [2 >

15. Consider the points A and B with affixes 1-i and 1+i
respectively. Let @ be a real number of interval ]0,27T[,

— . T
distinct from 7, and r rotation of centre 0 through angle —.

Note: if M is the point with affix 1 + 7€', then M ' is the image of
M by rotation .

a) Show that M is a point circle of diameter AB.

b) Show that the points B, M and M ' are collinear.

16. Find the values of number x for which [10—x+i(2+x)](x—i) is
real.

17. In each case, determine the set of points of M of complex plane, with
affix z such that;

a) |z=2|=|z+1 b)z-2i|=|z+2| o)]z—1+3i|=2
d) z+z+2(2)=0 e)Im(z’)=2 fHRe(z*)=0

18. Determine two complex numbers such that their sum is 2 and their
product is 9.

19. Determine complex number(s) z different from zero such that z* and
z8 are conjugates.
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20. Determine real part, imaginary part, modulus and argument of

21. Determine the modulus and argument of
1+cos@+isin@
= 0+ 2k

l—cos@+isin®’

22. Determine complex number(s) z such that z—i, iz—i and z—iz have
the same modulus.

z—4

23. Determine complex number(s) z such that ;
Z—

-

24. In complex plane, the points 4, B and C are with affixes z, =1+2i,

z, =4-2i,and z, =1-6i respectively. Show that the triangle 4ABC is
isosceles triangle.

25. a) Determine (i) (;EI/%J (ii) ﬁf;+£12_z]

b) How can you choose a natural number n different from zero

such that the number (\/5—1')” is
(i) real?

(i)  pure imaginary?

n+2
b) Show that (1+) +(1—i)' =2 2 cos%

26. Consider the equation z° +2z° +2z+1=0
a) Show that -1 is a root of equation.

b) Determine real numbers a, b and ¢ such that
z2 4222 —0—22—0—1:(2—0—1)(az2 —O—bz—i—c)

c) Solve the equation E in C.

27. Consider the four points 4, B, C and D, on a complex plane with

affixes 2—-3i, % 1+4i and 4+ 2i respectively.

a) Plot these points on complex plane.

82



28.

b) Calculate the affixes of vectors AB and BC.

c) Determine the affix of point E such that ABCE is a
parallelogram.

Given two complex numbers z =1+i and z, = NER

a) Write ? in algebraic and polar forms.

29.

30.

31.

32.

b) Deduce the exact values of Cos% and SinE.

c) What is the lowest positive value of integer n such that (ij is

Sr

real? Z

Determine the magnitude and direction of the resultant of the three
coplanar forces given below, when they act at a point.

Force A, 10N acting at 450 from the positive horizontal axis.

Force B, 8N acting at 120 from the positive horizontal axis.

Force C, 15N acts at 210 from the positive horizontal axis.

Determine, using complex numbers, the magnitude and direction of
the resultant of the coplanar forces given below, which are acting at a
point.

Force A, 5N acting horizontally, Force B, 9N acting at an angle of 135°
to force A, Force C, 12N acting at an angle of 240° to force A.

A delta-connected impedance Z, is given by:

_Z2Z,+72,2,+7,7,

Zy

ZA

Determine Z, in both Cartesian and polar form given

Z,=(10 +,0), Z,=(0-,10)Q and Z, =(10 + j10)Q.

In the hydrogen atom, the angular momentum, p, of the de Broglie
wave is given by: p!//=(%j(ijml//)

Determine an expression for p.
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33. A series circuit consists of a 12Q resistor, a coil of inductance 0.1H and
a capacitance of 1160uF Calculate the current flowing and its phase
relative to the supply voltage of 240V,50Hz

34. For the circuit shown in the figure below, determine the current |
flowing and its phase relative to the applied voltage .

X,=20Q R =30Q

11 [
II ) S |
R, =400 X, =50Q
o—1 1 Y —g
R, =25Q
[ |' |' 0]
1A
O-=% @)
V=200V

35. For the parallel circuit shown in the figure below, determine the value
of current /, and its phase relative to the 240V supply, using complex

numbers.
R=4Q  X,=3Q
— 1 N
R, =100
1 -
: R, =12Q X =50
A
b= ')

240V, 50Hz
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Logarithmic and Exponential
Functions

Introductory activity

Let's look at the following problem: “The population P of a city increases

according to the formula P =500e” where t is in years and t=0
corresponds to 1980. In 1990, the population was 10000. Discuss how to
find the value of the constant a and approximate your answer to 3 decimal
places.”

You must have met many different kinds of functions. You know that each one
can be used to model some kind of situation in the real world. Exponential
and logarithmic functions are no exception! Much of the power of logarithms
is their usefulness in solving exponential equations. Some examples of this
include sound (decibel measures), population growth, earthquakes (Richter
scale), the brightness of stars, and in chemistry we have the (pH balance,
which is a measure of acidity and alkalinity).

Objectives

By the end of this unit, a student will be able to:

e  Find the domain of a given logarithmic or exponential function.
*  Evaluate the limit of a given logarithmic or exponential function.
e Differentiate a given logarithmic or exponential function.

e  Find relative asymptotes of a given logarithmic or exponential
function.

*  Apply logarithmic or exponential function in real life problems.

From this problem, if =0 corresponds to 1980, then 1990 corresponds
to t =10 and this gives the following equation: 500¢'%* =1000 or €'°* =2
. The calculation of the value of a leads to the introduction of logarithms. The
question is how can logarithmic function be applied. In this unit, you will see
how you can solve such kind of problem.
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2.1. Logarithmic functions

2.1.1. Natural logarithm

Domain and range of natural logarithmic functions

Activity 2.1

Use calculator to complete the following tables:

& In x & In x & In x
-0.8 0.2 1.5
-0.6 0.4 2
-0.4 0.6 2.5
-0.2 0.8 3
0 1 3.5

1. Using the tables, give your observation for
(i) negative x values and zero.
(i) x values between 0 and 1.
(i)  x values greater than 1.

2. Plotagraphof y=Inx for x>0.

The Natural logarithm of x is denoted Inx or log, x.
From Activity 2.1,

In x is defined on positive real numbers, ]O,+oo[ and its range is all real
numbers.

Particularly,

e Ifx=1,thenlnx=0.Thatis, In1=0

e Ifx>1,thenlnx>Inl orInx>0
e fO<x<l,thenlnx<Inl orlnx<0

It means that: Vax & [1,400[ , Inx >0 and Vxe]oal[, Inx <0

Properties

Vx,y € ]0,+o0]
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1
a) Inxy=Inx+lny b) In—=-Iny
y

c) lnizlnx—lny d) Inx"=rlnx
y

Therefore, the range of f(x) =lnxis ]—00,+oo[ or R.

o Notice

:I:he number e:

The equation Inx =1 has, in interval ]O, +oo[ , @ unique

solution, a rational number 2.718281828459045235360..... This number
is denoted by e.

Thus, e=2.718281828459045235360....

Hence, if Inx =1 then x=e.

The number e is defined to be the limit of the sequence (1_,.1] asx
X

tends to 4+o0.Thatis, Iim (1+—) =e or 1im(1+x); =e (it will be
proved later). o X 0

Find the domain of definition of f(x)=In(2x-3)

Condition: 2x—-3>0

2x—3>0<:>x>%

Thus, Domf = :|%,+oo|:

Find the domain of definition of f(x) = 1n(x+3)(x+2)
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Condition: (x+3)(x+2) >0
(x+3)(x+ 2) >0if xe ]—oo, —3[ U]—2, +oo[ (sign table can be used)
Thus, Domf = ]—00, —3[ u]—2, +oo[

Application activity 2.1

1.  Find the domain of definition of:

a) f(x)=h1% b) f(x)zln(4x—x2)

c) f(x)=ln|4x—x2| d) f(x)=In(3-x)+In|4—x|
. . P 5
2. The decibel gain n of an amplifier is given by: n = 1010g?

where B is the power input and P, is the power output.1 Find the

power gain i when n=25 decibels.
1

2.1.2. Limit and asymptotes for natural logarithmic functions

Activity 2.2

let y=Inx

1. Fromthe domainof y =Inx, doesthe lim In x exist? If NO explain,
if YES give its value. =0

2. If x takesonvalues closerto 0 from the right, what can you conclude
about the values of Inx. Deduce limInx. Deduce asymptote, if
any. x—0

3. Given that x takes on values of the form 10" (n € N),
In10" =nIn10~2.30n andlet n take onvalues 1,2, 3,4,5,6,7,8,

9,10, ..., what can you conclude about the values of Inx. Deduce
lim In x and asymptote, if any.
X—>+0

88



From Activity 2.2,

lim Inx =+ 3nd limInx=—-x

X—>+0 x—=0"

From lim Inx =400, we deduce that there is no horizontal

asymptote.
1 1
Rememberthat In—=—Inx or Inx=-In—
X X
. . 1 o1
Imlnx=1lim| -In— =—In| llm — =—0
x—0" x—0" X x>0 X

. |
[smce lim — = +o0
x—0" X

Then, lim Inx =—o0

x—0"

From this limit, we deduce that there exists a vertical asymptote with
equation VA=x=0.

Keep in mind that lim In x does not exist because the left of 0

x—0"
is notincluded in the domain.

Inx

Evaluate lim —
X—>+00 X

[indeterminate form |

1
— lim X {from Hopital rule, later we will seehow (Inx)'= %}

Thus, lim E =0

X—>+o  x

8¢9




Example 2.4

Evaluate lim xIn x
x—0"

lim xlnx = 0(—oo)

S
_limBX_— .
w>0° 1 top [indeterminate form|
X

1
= lim Ll [from Hopital rule, later we will seehow (Inx)'= %}

2
= lim (—x) =0

x—0"

Hence, Iimxlnx=0
x—>0"

Application activity 2.2

Evaluate the following limits:

. 1+2Inx . 1+2Inx
1. lim— 2. lim ——
x>0 X X—>+00 X
3. 1im1n(x2—4x+1) 4. 1im1n(x2—4x+1)
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Derivative of natural logarithmic functions

Activity 2.3

1. Using definition of derivative, find the derivative of Inx.

2. Consider u a differentiable function of x. Use resultin 1) and rule
of differentiating composite functions to find the derivative of Inu
. Refer to the fact

£1(x) = tim LB/ (), lim(1+x)x = e

h—0 h x—>0

(feg)=r"(2)g
Form Activity 2.3,

1

Inx)'=—

(1nxy =1
Also, if u is a differentiable function of x then,

u'
1 '—

Find the derivative of f(x) =Invx*+1

Diovion
£1(x)= (1 1) ()

2x
_2 x4+l _ i _ = 2x
Vel (Jee)
. X
Thus, f (x):x2+1
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Example 2.6

Differentiate the function g(x) = ln(x + cos x)

g'(X)=[ln(x+cosx)]v =(x+c05x)' _ 1-sinx

X+CoSx X+cosx
Thus, g'(x):%i;ls);
Application activity 2.3
Find derivative of the following functions:
1. f(x)=(Inx)’ 2. g(x)=In(tanx)
3. h(x):lnm 4. k(x)zln:—i
5. f(x):@ 6. g(x)=Inx+In(cosx)
7. h(x):tanx—% 8. k(x :@

Variation and curve sketching of natural logarithmic functions

Activity 2.4

Let f(x)=Inx
1. From the domain of definition of f(x) evaluate limits at the

boundaries of the domain of f(x) and hence deduce relative
asymptotes, if any.

2. Determine the first derivative and variation of f(x) Deduce the
extrema, if any.

3. Determine the second derivative and concavity of f(x) Deduce the
inflection points, if any.
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4. Complete the following table
X o .. 1 e | € ]... 400
Sign of f'(x)
Sign off"(x)
Variation of f(x)

Concavity of f(x)

5. Find the intersection of f(x) with axes of co-ordinates.

6. Find additional points and hence sketch the curve of f(x)

From activity 2.4, the curve of the function f(x) =Inx is given in figure 2.1.

VA=x=0

Figure 2.1. Natural logarithmic function

Example 2.7
1+2Inx

Given the function f(x) = ————_ Find relative asymptotes

(if any), study the variation, concavity and sketch the curve.

Asymptotes

First, we need domain of definition:

Condition: x>0 = Domf =R

23




) —o0
lim f(x) = o =—0 = x =0 is a vertical asymptote

x—0"
lim f(x)= lim 220 % e
X—>+00 X—>+00 X o0
2
= lim % [Hopital rule]
-0

= y =0 is horizontal asymptote.

Since thereis horizontal asymptote for x — +00, thereisno oblique asymptote
for x = +00.

Variation

First derivative

2

=x—(1+2Inx) -2
= 2

)=

X X

with x>0

Roots of first derivative

Fi(x)=0e 220X _4

X
=1-2lnx=0 ©1-lhx’=0 ©ohx’=1 o x’=e = x=+/e
As x>0, x=—\/; (is to be rejected).

Thusrootof f'(x)=0 s x=\/;

0 0 Je +o0
f' (x) + 0 -

2
f(x) / Ve \0

For x e :|O, \/2[ f(x) increases while for x € :|\/E, +oo|:, S (x) decreases.
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Concavity

Second derivative

1—21nx}'_ (1-2Inx) x* —2x(1-21nx)

=2 :

X X

B —2x—2x(1—21nx)_ 4xlnx—4x_ 4inx—4

4 4 3
X X X

Roots of second derivative

Fr(x)=0eo=dr74
X

=4Inhx-4=0=hx-1=0=x=¢

The root of f"(x)=0 isx=e

X 0 400

~
=
QW oln

Variation table

x 0 J; e +0
S (x) B 0 -
(%) = 0 k:
2
Je
/\
£() 5 ?
\_/
-0
Curve

Intersection with coordinates axes:
Intersection with x —axis ;

f(x)=0=1+2Inx=0
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1 1
<:>1nx:—§:>x=e 2

Thus, £ (x)ox = {e_;, o]}

Intersection with y —axis ;

f (O) = % which is impossible

Thus, no intersection with y —axis .

Additional points:

HA=y=0
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x 0.1 04| 07 10 13| 1.6/ 19| 22| 25 28
f(x) | -36.05 -2.08/ 0.40| 1.0| 1.17| 1.21/1.20| 1.17|1.13| 1.09
x 31 34| 37| 40| 43| 46 49 52 55 58
F(x) | 1.05 1.01 097 0.94 091 0.88 0.85 0.82 0.80| 0.77
Thus, the sketch becomes
Ty
. VA=x=0
’ _1+2In




Application activity 2.4

For each of the following functions, find relative asymptotes (if any),

study the variation and concavity of the function and hence sketch the
curve;

1. f(x):ln(xz) 2. g(x)=In(x+1)
3 ()= 4. k(x)=ln(x-3x+2)

2.1.3. Logarithmic function with any base

Domain and range of logarithmic function with any base

For each of the following functions, determine the domain of definition
and range.

Inx Inx

1. f(x):— 2. g(x)=—
In2 1 1

o)

We call logarithm of a real number x with base a the number denoted
log, x, defined by log, x = E_za xeRy, aeR;\{1}
VxeRy, log, x=y o x=a’

Special cases:

e If a=10, wesimply write logx and we call it decimal logarithm.

Inx
e If a=e,wehave log, x =1 Inx and this is a natural logarithm.
ne

Note that, log, 1=0, log a=1, a"** =x

Properties

Vx,y €]0,+00[ ,a € 0,400 \{1} :
a) log,xy=log, x+log,y b) log, 1 —log, y
Y

c) log, L2 log, x—log, y d) log,x" =rlog, x
y
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0 Notice
2

Recall that Ina < Ofor]O,l[ and Ina > 0f0r]1,+oo[ Thus,

f(x) =log, x is increasing in ]1,+oo[ and f(x) =log, x is decreasing
in ]0,1[;

e f xe]O,l[,logax<logay<:>x>y
o If xe]l,+0o[,log, x<log, y <= x<y
e log,x=log,yox=y.

Example 2.8

Example 2.9

Find the domain of f(x)=1log, (1—x)+log, x

Conditions: 1—=x>0 and x>0
l-x>0=>x<1
Domain is the intersection of x <1 and x>0

Thus, Domf =10,1]

Example 2.10

Find the domain of f(x) =log, [ﬂj
x+1

Jx

Conditions: x>0, x+1#0 and _x>0

x+1
x+120=>x=-1
X —0 ‘ -1 ‘ 0 + 00
\/; 0 +
x+1 - 0 |+ + +




x+1

Thus, Domf = ]O, +oo[

Let y =log, x, express ) as a function of log,

1o x_lnx _Inx Ing _Inx lna _Inx 1
YRS YT, b g Ing Inb  Ing Inb
Ina
1
-~ (log, x) _log, x
log, b log, b
log,x _ = .
Thus, log, x = oo b (This relation is used to change logarithm
0g,

from one base to another).

Change log, (x+1) to base 2

log, (x+1) _log, (x+1) _log, (x+1) _ llog (x+1)
log, 4 log, 2° 2log,2 2 °°

log, (x+1)=

Application activity 2.5

Find the domain of definition for each of the following functions:

1. f(x)=log,Vx 2. f(x)=log, (x2 —1)

+1
3. f(x)=log, = 4. f(x)=log,
2 x—4

N
X +7x+10
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Limit of logarithmic function with any base

Activity 2.6

In x
Let f(x):log3x=E—;c and g(x):k)g;x:hl_l

1. Evaluate limits at the boundaries of the domain of f(x). Hence
deduce the asymptotes, if any.

2. Evaluate limits at the boundaries of the domain of g(x). Hence
deduce the asymptotes, if any.

From activity 2.6 and considering f(x) =log’
lim f(x) ={

-0 if a>1

x—0"

+o0 if O<a<l1

There is a vertical asymptote VA=x=0

{+oo if a>1

lim /()= _, if 0<a<l

X—>+00

There is no horizontal asymptote. In addition, no oblique asymptote.

!
Evaluate !gr(};loga (1+x)

1
limlloga (1+x)= lin&loga (1+ x)i =log, [lim(l + x)f}

x>0 x x—0

. 1Y
We saw that llm(1+—) =e

X—>®© X

1 1
let y=—=>x=—_.1f x >0, y—>0
X y
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1 y
= lim(1+x)x = lim (l+lj =e
x—0 X—>+00 y
1

Then, log, [lim(1+ x)x} =log, e

x—0

.1
Therefore, lim—log, (1+x)=log, e
x=0 x

Application activity 2.6

Evaluate the following limits:

. 1 . +1
1. limlog, — 2. lim logzx
x—0" X x—>-2" X
x+1
. lim 1 . lim 1
> fimlog, ¢ Jim log,

Logarithmic Differentiation

Let f(x)=log, x

1. Find the derivative of f(x)

2. If u=x" is another differentiable function in x, use the rule for
differentiating composite functions (fog)'zf'(g)g' to find the
derivative of g(x) =log,u.

|
From activity 2.7, as log, x =11nn—x if f(x) nx

1 a' " Ina
then f'(x)=
f( ) xlna
Therefore, (log, x)'=
erefore ( g ) Ina
Also, if u is another differentiable function of x, then

'

ulna

(log,u)'=
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Example 2.14

Find the derivative of log, (4x2 —3x)

(4x2 —3x)' 8x—3
2 ' —
[IOgZ (4x 3x)] (4x2 —3x)1n2 (4x2 —3x)1n2

Find derivative of log, (ln|sin x|)

Droion
[1oga (1n|sinx|)] _ ( (1n|sinx|)

1n|sin x|)lna - (ln|sin x|)1na

|cot x|

Application activity 2.7

Differentiate each of the following functions:

1, f(x)=1og(x2+2x+1) 2. g(x)=10g2x_5

3. h(x)=log, Vx"+2x-8 4, k(x)=10g3(c03x/;)

2

Further Logarithmic Differentiation

Activity 2.8

x+1
x—3

1. Introduce In on both sides and apply the laws of logarithms.

Let Yy =

2. Using derivative of logarithmic function, find the derivative of

expression found in (1) and deduce the value of ﬂ

dx
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For certain functions containing more complicated products or quotients,
differentiation is often made easier if the natural logarithm of the function is
taken before differentiating. This technique, called ‘logarithmic differentiation’
is achieved with knowledge of the:

a) laws of logarithms,

b) derivative of logarithmic functions, and

c) differentiation of implicit functions.

Example 2.16

Jx=2
Find derivative of ¥ = 2 with respectto X and
(x+1) (2x—1)
hence evaluate ﬂ for x=3.
dx

From y = , taking In on both sides gives

Iny=1In
T ) ()

Using logarithms laws, we get
Iny=Inx—2~In(x+1)" ~In(2x~1) which gives
lny=%ln(x—Z)—21n(x+1)—1n(2x—1)

ldy 11 2 2

Differentiating with respectto X yields y dx 3x-2 x+1 2x-1

Rearranginggives,ﬂzy 1 _2 2
dx 3(x=2) x+1 2x-1

dy _ Yx-2 [ 1 2 2 J
= . _ _
Substituting for ¥ gives dx (x+1) (2x—1) 3(x—2) x+1 2x-1

dy  B-2 1 2 2
dy T

For x=3, = - _ _
dx  (3+1) (6-1) 3-2) 3+1 6-1

103




111 2)_1(10-15-12)_ 17
803 2 5) sol 30 240

Application activity 2.8

Use logarithmic differentiation to find the derivative of each of the
following functions:

N Gt (o)) , _ (2x-1)Vx+2

Y= -
(x=1)(x+3) (x=3)y/(x+1)
3
3. y=30sinfcosb = xx11.12x
e" sin x
5 _ 2x" tan x
e tan x

Variations and curves of logarithmic function of any base

Activity 2.9

1. Let f(x):]ogzx
a) From the domain of definition of f(x), evaluate limits at the

boundaries of the domain. Hence deduce relative asymptotes, if
any.

b) Determine the first derivative and variation of f(x) Deduce the
extrema, if any.

c) Determine the second derivative and concavity of f(x). Deduce
the inflection points, if any.

d) Find intersection of f(x) with axes of co-ordinates.
e) Find additional points and hence sketch the curve of f(x).

2. Repeat proceduresin 1) for g(x) =log, x
2

From activity 2.9, by letting @ =2, we have f(x) =log, x.

The curve is on figure 2.2.
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“+y 1
e ezo y=log,x
//
X
2 ) 4 5 ¢ 7 8 ) 10
Figure 2.2. Logarithmic function with base 2
1
By letting @ = —, we have f(x) =log, x.
2 2
The curve is given by the figure 2.3.
X
2 1 0 2 3 4 5 7 8 ) 10
y=log, x
=2 5
2 \\
VA=x=0 T

Figure 2.3. Logarithmic function with base —
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Example 2.17

Find relative asymptotes (if any), study the variation, concavity and sketch

the curve f(x) =log, vx+1.

Asymptotes

Domain:

x+1>0=>x>-1

Domf = |-1,+0[

lim f(x)= lim log, Vx+1=—o0

x—-1
x =—1 is a vertical asymptote.

lim f(x)= lim log, vx+1 =+

X—>+0

No horizontal asymptote

f(x) i J0ga Vx+1 _ oo

lim —= = lim —=———=— [F
D x>+ X e
lim 8L L Thopital rule]
x40 x x40 2 (x+1)In2
~0

No oblique asymptote.

Variation

f'(x)= (log2 M)'

_ Blog2 (x+1)] =m

Since ¥ € Domf, x+1>0 and In2>0 then Vx € Domf, f'(x)>0

Hence, Vx € Domf f(x) increases.
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Concavity

f :[;J =—;<O,Vxe]—1,+oo[

2(x+1)n2 ) 2(x+1)’In2

Thus, f(x)=1log,Vx+1 is concave down Vx e -1 +o[ -

Variation table

X -1 0 +00

/(%) +

S (%) -

f(x) B /0/_\/' +00
Curve

Intersection with axes:

Intersection with x — axis :

f(x)=0<log,vx+1=0 or log,vx+1=log, 1

Orvx+1=1=x=0
Thus, f(x)ﬁox={(0,0)}

Intersection with ¥ — axis :
£(0)=log,vV0O+1=0

Thus, f(x)r\oy = {(0,0)}
Additional points

X -0.6 |-0.6 |-0.4 |-0.2 |0 1 2 3 4 5

y 1.7 1-0.7 |-04 [-02 |0 |05 |08 |1 |12 |13
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VA=x=-1

f()c)=logZ \/x—i-—

—_

Application activity 2.9

For each of the following functions, find relative asymptotes (if any),
study the variation concavity of the function and hence sketch the curve.

1. f(x)=log,(x+1) 2. g(x)=log,(2x-4)
3. h(x)=log, x’ 4. k(x)=logl\/;

2 2

2.2. Exponential functions
2.2.1. Exponential function with base "e"

Domain and range of exponential functions with base "¢"

Activity 2.10

Let f(x)=Inx.

Suppose that g(x) isthe inverse function of the function. Using properties
of inverse functions, find the domain and range of g(x).

The function ¥y =Inx admits an inverse function called “Exponential
function with natural base” denoted by ¥y =exp(x) or y =¢*.

From activity 2.10,
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The domain of definition of y =¢€* is ]—oo, +oo[ and its range is ]0,+00[.

Then, Vx € |0, +o0[, y € ]-0,+0[: y=Inx & x=¢".
Note that:

e VxeR, Ine*=x and Vye]0,+0[, e ™=y

. €' =1
. e=e
Properties
a) e‘e’=¢e" b) (e“ )n =e"
c) La =e“ d) é ="
e e

Example 2.18

Find the domain of f(x) =

Condition: x>0

Thus, Domf =0, +00]

Example 2.19

x+1

Find the domain of g(x) = e*2

Condition: x—2#0=>x#2
Thus, Domg =R \{2}

Example 2.20

2

Find the domain of h(x) =V !
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Condition: X’ —1>0=x e ]—oo,—l] u[l, +oo[

Thus, Domh = ]—oo,—]] U[l, +oo[

Application activity 2.10

Find the domain of the following functions:

2x 4x+7
1. f(x) — e’ -Tx+0 D g(x) — pr—x+10
3x+1 e +1
3. h =—= 4. k Be————=
(x) l—eJ§ (x) log(em)

Limit of exponential functions with base "e"

Activity 2.11

let y=¢"
1.  Complete the following tables:
X ex X ex
-1 1
-2 2
-5 5
-15 15
-30 30

: 7 .
2. Fromthetablesin 1), deduce lim e* gnd lim e* . Also deduce
. a X—>—o X—>+00
relative asymptotes, if any.

3. Plotthe graph of y=e¢".

From activity 2.11,

lime* =0 and lim e* =+

X—>—00 X—>+©

There exists horizontal asymptote: H.A=y =0

. e . e
lim — =0, lim — = +o0

X—>—0 ¥ X—>+0o ¥
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There is no oblique asymptote.

6e4x _e—2x
Evaluate lim ——————
x40 8™ — o™ 3
) 6e** —e " 0—0
hm 4x 2x —x = IF
xot0 8™ —e™" 4 3e w—00+(
. 6e’ —e . e (6 —e )
lim — —= lim . > -
x>t0 8™ — ot + 3 x—>°°ex(8—e_x+3e_x)

4 2
Eval lim be” —e
valuate
4 2 _
x>0 8™ —e™ +3e7"

. 6e —e* 0—o0
lim ——— — = IF
o0 8™ —e +3e  0—0+00
. 6e*" —e " . e’ (6esx - e_x)
lim ——— — = lim .
x>0 8™ — ™" 4+ 37" x—>—°°e_"(865x—ex+3)
6e” —e™* 0—o0
=lim —4—————= =—0
w8’ —e*+3  0-0+3
Application activity 2.11
Evaluate:
Px-1 e _ 4o
1. lime *! 2. lim —; Y —
52 > e” —5e +e
1
.1 .1 1
3. lim —xe™ 4. lim —xe*" 5 lim<
x40 ) x>0 ) x>0y
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Derivative of exponential functions with base "e"

Activity 2.12

1. Use the method of logarithmic differentiation to find the derivative
of y=e".

2. If u is another differentiable function of x, use the result obtained
in 1) and the rule for differentiating composite functions to find the
derivative of y=¢".

Remember that this is the following:

'x:;,were = x)and (feg)'=f" '
/(%) 0) here y = f(x) and (f°g)'=/"(2)g

From activity 2.12,

() -e
And if u is another differentiable function of x,

(e“)'zu'e”

1 2 x+l1

Find the derivative of the function f(X) = Ex e

—_—
—

F(x) =5 (20)e 422 (e = xe (x+2)

Example 2.24

1
Find the second derivative of the function f(x) =e*!




"y :z(x_l)eﬁ_ 1 _ 1 exl—l
f(x) (x—l)4 (x—l)z( (x—l)2 J

1
2x—2 L vl (2x—1)ex!

— x—1

T ) ey

Application activity 2.12

Find the derivative of:

L re)-e 2 g(s) e e
tan x ex
3. h(x)=e 4. k(x)=|x_1|

Variation and curve of exponential functions with base "e"

Activity 2.13

From the curve of f(x) =Inx (see activity 2.4), reflect it about the first
bisector (the line y = x ) to obtain new curve.

From activity 2.13, since e" is the inverse of Inx, the curve of g(x) =e' s
the image of the curve of f(x) = In x with respect to the first bisector, ¥y = x .

The coordinates of the points for f(x)zlnx are reversed to obtain the

X

coordinates of the points for g(x) =e .
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The curve of g(x)=e¢" is as follows:

VARES

|/

w

/

(3]

oq

un
s
v
=)

A

Figure 2.4. Exponential function with base e

1,
Given that f(x) = Exze "' Find relative asymptotes (if any),

study the variation and sketch the curve.

Asymptotes

First, we need domain of definition: Domf =R
. . 1 2 +1 .
= e = = , no horizontal
}L%f(x) xll)l}—}ozx ¢! =(+0)(+00) =+o0

asymptote at X — +00

lim M = lim lxe“l — +o00, NO oblique asymptote at X —> +00

x>0y x—>+0

lim f(x)= lim lxze"+1 = +00x ()

X—>—00 x—>—0 )

114




Remove this indeterminate case:

: o1, 2 ] —o0

lim f(x)= lim —x’e™ _Ljim = - =——IC.
x—>—0 x——0 2 x—>—0 @ 7 2 40

. 1. X
fim £(x) =5 Jim 2=
By Hopital's rule

. l .. 2x . x —00

lim f(x)== lim - = lim - =—IC.
X—>—0 2 x>0 _p~ x>0 _p ¥ 400

Applying again Hopital's rule
1

—-x—1

lim £ (x)= lim

X—>—00 x—>-0 o

=0

There is horizontal asymptote ¥ =0 for x — —00. Hence, no oblique
asymptote.

Also, there is no vertical asymptote according to the boundaries of the
domain.

Variation

\ PSRN DA SRR R
f(x):52xe 1+5xze 1:56 1(x2+2x)

f'(x)>0= x*+2x>0o0r xe J-o0,—2[ W ]0, o0

f'(x)<0e x*+2x<0 or xe|-2,0]

Thus, if xe]-00,—2[U]0,400[, f(x) increases and if xe]-2,0[,
f(x) decreases.

Curve

Intersection with axes of coordinate:

Intersection with x —axis ;
1 2 x+l1
f(x)=0<:>§xe =0=>x=0

Thus, intersection with x — axis is {(0,0)}.
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Intersection with y —axis ;
1
/(0)

— _02 eO+l — 0
Thus, intersection with y —axis is {(0,0)}.

Additional points

X | -5.00| -4.70| -4.40| -4.10| -3.80 | -3.50| -3.20| -2.90| -2.60 | -2.30| -2.00
f(x)| 023] 027 032 038 044 050 0.57| 0.63| 0.8 0.72| 0.74
X | -1.70| -1.40  -1.10| -0.80| -0.50/ -0.20| 0.10| 0.40| 0.70| 1.00
f(x)| 072 066 055 039 021 004 002 032 134 3.69
Curve
l 2 _x+l
f(x)==xe 1
T ) 2 1
--"""'"———_
i S| im0
5 4 3 2 -1 q v

Application activity 2.13

For each of the following functions, find relative asymptotes (if any),
study the variation of the function and sketch the curve:

L f(R)=ge 2 g(x)-=
. h(x)=e k(x)=-%
3. h(x)=c O
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2.2.2. Exponential function with any base

Domain and range of exponential functions with any base

Activity 2.14

Suppose that g(x) is the inverse function of the function log, x. Using
properties of inverses functions, find the domain and range of g(x).

The logarithmic function with base @ admit a reciprocal function called
exponential function with base a denoted by f(x) =a".

From activity 2.14,

The domain of f(x) =a’" issetof real numbers and itsimage is the positive
real numbers.

Note that, y=a" < x=1log, y andfor xeR, log, a" =x.

Properties

Vx,y €R,Va,beR;\{l}, we have

a) a'a’=a" b) (ax )y =a” c) (ab)x =a'b"
L1 a a) a
d) a =— e)_y:a y f)(_j =
a a b bx

Example 2.26

Find the domain of f(x) =M

Condition: x>0

Thus, Domf =0, +x]

Example 2.27
x+1

Find the domain of f(x) =32
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Condition: x—-2#0=>x#2

Thus, Domf =R\ {2}

Example 2.28

Find the domain of f(x) _ g

Condition: X’ —4>0=xe ]—oo, —2] ) [2, +oo[

Thus, Domf = ]—oo, —2] u[2, +oo[

Application activity 2.14

Find the domain of the following functions:

_ 4 3x+1
1. f(X) — 3x2+7x+10 2. g(x) _ 2x2—x+10
x+1 ,
3. h(X) =4 x-3 a k(X) _ 310g(x +5x+6)

Limit of exponential functions with any base

Let y=2"
a) Complete the following tables:
X -1 -2 -5 -15 -30
2x
X 1 2 5 15 30
2x

b) From the tables in a), deduce lim 2% and lim 2",

X——0 X—>+0

Also, deduce relative asymptotes, if any.
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1X
2. lLety=|—
ety (2)

a) Complete the following tables:

X -1 -2 -5 -15 -30
l X

2

X 1 2 5 15 30

. (1Y &
b) From the tables in a), deduce lim —j and lim (lj .Also,

xo—w\ D xX—>+o0

deduce relative asymptotes, if any.

From activity 2.15,

lfa>1, limax=0 and lim @¢* = +o0
X—>—00

X—>+00

fO0<a<l, lima* =40 and lima* =0

X——00 X—>+00

Horizontal asymptote is y =0.

No vertical asymptote since the domain is the set of real numbers. In addition,
there is no oblique asymptote.

Example 2.29 Solution ]

I 1
Evaluate lim 2* lim 2x =2° =1

X—>—00 X—>—0

Example 2.30

1
Evaluate lim3~!
x—l
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1
lim3*! =3

x—1

(=R

In this case, we can easily evaluate the limits by use of the table of values

below:
1 1
X 31 X 31
0 0.33 1.1 59049
0.2 0.25 1.2 243
0.4 0.16 1.4 15
0.6 0.06 1.6 6
0.8 0.004 1.8 3.9
0.9| 0.00001 2 3

1 1

Now, lim3*! =0 and lim3*! =40

x—1" x—1*
1

Hence, lin113x‘1 does not exist.
X—>

Indeterminate form 0°,1°,and o’

_ g(x)
These indeterminate forms are found in functions of the form V = [f(x)] .

To remove these indeterminate forms, we change the function in the form
g(x) x)In f(x
y=[/ (] =

then, lime/("s0) = Jim (et
x—

Show that lim [1+l) =e

X—>+0 X

lim (1+lj =1 IF

X—>+00 X
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lim (1 N ljx . exln(l+§) _ eil_r&xm(u J
X

X—>+00 X—>0

But,

Ne—
8
(e
S

lim xIn [1 + l =
X—>+0 X

! 1n(1+1j 0
1+—)= lim —’“:6 IF

lim xln(
X—>+00 x X—>+00 l
X
1n(1+ ! ) _Lz
lim % = lim : X : [By Hopital rule]
T &)
x x )\ x
= lim —— ! I =1
X—>+00 1 1
X
Thus, lim [1 + j =
xX—>+o0
Evaluate limx”
x—0
limx*=0° IF
x—0
lim x* = lim e = e _ g0 =] [since limxInx=0]

Alternative method

When finding limits of the function of the form yz[f(x)]gm,

the following relation may be used:

tim[ £ (x) ] = Tim /0%

x—k x—k
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Now lets look at example 2.31 using an alternative method.

limx*=0° IF

x—0

_ lim(x—l)x
. . 1
limx* = lime™ ™ = = =e"=1 as before.

x—0 x—0

x+2
. X
Evaluate lim | —
x40\ x4 1

x+2 X
lim (Lj ~ lim e(E—IJ(JHZ) . e(x;il—l)(x+2)

X—>+00
X—>+00

—x=2 . =x=2
= lim e **! = e‘L*w o= ! {since lim x—2 = —1} = l
X—>+0 xo+0 x4+ 1] e
Application activity 2.15
Evaluate:
x2 -1 i: X 4 L
1. lim| = 2. lim| —— 3. lim 1+ %7 )1
x—o| x° 41] x>0\ xy—1 x—0
1 Y 1)
4. 1im(1+x)x 5, lim(1+—) 6. lim(1+—)
x—0 X0 X X—>0 X
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Derivative of exponential functions with any base

Activity 2.16

1. Use the derivative of 10g; X and the rule of differentiating inverses
functions to find the derivative of y =3".

2. If u=cosx, use the result obtained in 1) and rule for
differentiation of composite functions to find the derivative of

y = 3COS)€ )

Hint: f"(x) :(1;

Gy e 7= ) ene (fo2)'=r"(g)e’

From activity 2.16,
(ax)' =a"'lna
Also, if u is another differentiable function of x, we have,

(a“)'zu'a” Ina

Example 2.34

Find the derivative of f(x) =34+

f(x)=(4x+2)'3*? In3=(41n3)3*"2

Find the derivative of f(x) =

2]nx

f'(x)=(Inx)'2"" In2=="—In2
X
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Remarks

1.

The functions; exponential of x and natural logarithm of x being

reciprocal, one of another, we have Yy >0, y =" . In particular to

X
o
a* =e™ means g* =™,

To study the function y=u" is the same as to study the function

In .
y=e " where u and v are two other functions.

Whenever an expression to be differentiated contains a term raised
to a power which is itself a function of the variable, then logarithmic
differentiation must be used. For example, the differentiation of
expressions

X 1-x2 sinx
such as |x ,(l—x) , N x+23(x) can only be achieved using
logarithmic differentiation.

Example 2.36

Find the derivative of f(x) =x".

We have f(x)= e
f'(x) = (e““")' = (xlnx)'e"l“x =(I+In x)e"lnx = (l +1nx)xx

Application activity 2.16

1.

2.

Find the derivative of the following functions:

a) f(x)=—2(0.3)x b) g(x)=10"Inx

c) k(x)=%x—%x0052x d) k(x)=x2 (4)lnx

Evaluate:
a) i(2“‘“’“) atx=0 b) i(eex +eeex) at x=0
dx dx
c) %("x—2) at x=34d) %("x—l) at x=2
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Variation and curve of exponential functions with any base

Activity 2.17

1.  Fromthe curve of f(x) =log, x, reflect it about the first bisector (the
line ¥ = X)to obtain a new curve.

2.  From the curve of f(x) = logl X, reflect it about the

2
first bisector (the line ¥ = X ) to obtain a new curve.

From activity 2.17, since a”’ isthe inverse of loga X, we can obtain a curve of
a* by symmetry with respect to the first bisector ¥ =X .

Let g(x) =2" theinverse of f(x) =log, x, the curves are as follows;

STV
y=X
(X)—'?E}FL—___
)= DY g
s\t =2
|4
5 4 3 2 1 2 3 : )’
P =5

Figure 2.5. Exponential function with base 2

1 X
Let g(x) = (E) , the inverse of f(X) = logl X, the curves are as follows;

2
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Figure 2.6. Exponential function with base %

Example 2.37

If f(X) =2 find the relative asymptotes (if any), study the variation and
hence sketch the curve.

Asymptotes

Domain of definition: Domf =R

lim f(x) = 1lim 2> =0, there is a horizontal asymptote

X—>—00 X—>—00

y =0 and no oblique asymptote at X —> —o0.

lim f(x) = lim 2°*% = +o0, no horizontal asymptote at x —> +00

X—>+00 X—>—00
f(x) 2 .
lim ——~ = lim —— =400, no oblique asymptote at x — +00.
x40y x40y

Also, there is no vertical asymptote according to the boundaries of the
domain.
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Variation

fv(x):(25x—2)v:(51n2)25x—2
Vx e Domf, f(x)>0 since In2>0 and 277 >0

Thus, Vxe R, f(x) increases.

Curve

Intersection with axes:

(i) Intersection with x — axis ;

f(x) =0 < 2°? =0 which is impossible. No intersection

with x — axis
(ii) Intersection with y —axis ;

L1
f(0)=27=

Thus, intersection with y —axis is {(O,%j}

Additional points:

X -1.2 -1 -0.8] -0.6| -04| -0.2 0| 0.2] 0.4 0.6
Y 10.004 0.01] 0.02| 0.03| 0.06| 0.13| 0.25/ 0.50| 1.00| 2.00
f()()zzsxfz
/
/
///
..._--—/ X
1 0 4
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Application activity 2.17

For each of the following functions, find relative asymptotes (if any),
study the variation of the function and sketch the curve:

1. f(x)=2"" 5 g(x)=3—x2+l
3. h(x)=GTx a. k(x):(%)xzm+3

2.3. Applications

We have already seenin senior five, that logarithmic and exponential functions
are useful where complicated calculations are involved. Now lets look at how
useful they are in solving real life situations.

2.3.1. Compound interest problems

.18

Using the library or internet if available, find out how exponential and
logarithmic functions are used to solve compound interest problems.
Hence solve the following problem:

If you deposit 4,000 FRW into an account paying 6% annual interest
compounded quarterly, how much money will be on the account after 5
years?

If P isthe principal, 7 isthe number of years, ¥ isthe interest rate per period,
k is the number of periods per year, and A the total amount at the end of

in
periods, then A:P(1+%j )

Example 2.38

A 1,000 FRW deposit is made at a bank that pays 12% compounded annually.
How much will be on the account at the end of 10 years?
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, kn
A:P(l+—j
k

P=1000, »r=12%, k=1,n=10
A4=1000(1+0.12)" =1000(3.1058)=3105.8

Therefore, 3,105.8 FRW will be on the account at the end of 10 years.

Now ifthe compound interest is paid monthly for the same number of principle,
we can compute the sum as follows:

In this example, the compounded is monthly, so the number of periods is

k=12.
P=1000, r=12%, n=12

O 12 12x10
A:1000(1+i_2) :1000(3.3004):3300.4

Therefore, 3,300.4 FRW will be on the account at the end of 10 years.

Application activity 2.18

1. If you deposit 6,500 FRW into an account paying 8% annual interest
compounded monthly, how much money will be on the account after
7 years?

2. How much money would you need to deposit today at 9% annual
interest compounded monthly to have 12,000 FRW on the account
after 6 years?

3. Ifyoudeposited 5,000 FRW into an account paying 6% annual interest
compounded monthly, how long will you wait until there is 8,000
FRW on the account?

4. Ifyoudeposited 8,000 FRW into an account paying 7% annual interest
compounded quarterly, how long will you wait until there is 12,400
FRW on the account?

5. At 3% annual interest compounded monthly, how long will it take to
double the amount of money deposited in question 4?
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2.3.2. Mortgage amount problems

Using the library or internet if available, find out how exponential and
logarithmic functions are used to solve mortgage amount problems.
Hence, solve the following problem:

Suppose you wanted to take out a mortgage for 100,000 FRW with monthly
payments at 9%, but you could only afford 800 FRW per month payments.
How long would you have to make payments to pay off the mortgage, and
how much interest would you pay for this payment period?

Thereisarelationship betweenthe mortgage amount,the numberof payments,
the amount of the payment, how often the payment is made, and the interest

M
n

1—(1+rj
n

P = the payment , » = the annual rate, M = the mortgage amount

rate. The following formula illustrates the relationship: P =

Where

t = the number of years and 7 = the number of payments per year .

The payment P required to pay off a loan of M Francs borrowed for n
payment periods at a rate of interest i per payment period is

P=M ;_n where i=£
1-(1+i) n

Example 2.39

a) What is the monthly payment on a mortgage of 75,000 FRW with an 8%
interest rate that runs for

(i) 20 years (ii) 25 years?

b) How much interest is paid in each case?
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a) (i)20years
™

}D = a —nt
1—(1+r)
n
M =75000, r =8%, t =20, n=12
We are solving for P (the monthly payment for the 20 years)
0.08x75000

pP= 12 —627.33

—12x20
1_(“ 0.08)
12

The monthly payment will be 627.33 FRW

After 20 years of payments (20x12 months), you will have paid
20x12x627.33=150,559.20
(ii) 25 Years
rM

p=— 1
1—(1+r)
n
M =75000, r=8%, =25 n=12

We are solving for P (the monthly payment for the 25 years)
0.08x 75000

12
P= 0,08 =578.86
- 1+——

12
The monthly payment will be 578.86 FRW.

After 25 years of payments (25x12 months), you will have paid
25%x12x578.86=173,658.

b) (i) Everything overthe initial 75,000 FRW is interest.
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Therefore, after 20 years, you will have paid

150,559.20 FRW —75,000FRW =75,559.20 FRW in interest.

(i)  Everything over the initial 75000 FRW is interest.
Therefore, after 25 years, you will have paid

173,658 FRW —75,000FRW =98,658 FRW In interest.

Application activity 2.19

1. A person borrowed 1,200,000 FRW for the purchase of a car. If his
monthly payment is 31,000 FRW on a 5-year mortgage, find the total
amount of interest.

2. Ifahouseissold for 3,000,000 FRW and the bank requires 20% down
payment, find the amount of the mortgage.

3. Mr Peter bought a car. After paying the down payment, the amount
of the loan is 400,000 FRW with an interest rate of 9% compounded
monthly. The term of the loan is 3 years. How much is the monthly
payment?

4. Suppose you need to take out a mortgage of 100,000 FRW. All you
can afford for monthly payments is 800 FRW. You will retire in 25 years;
therefore, the longest you can make these payments is 25 years. What
interest rate would you need to take out a mortgage of 100,000 FRW
and pay it back in 300 monthly payments of 800 FRW.

2.3.3. Population growth problems

.20

Using the library or internet if available, find out how exponential and
logarithmic functions are used to solve population growth problems.
Hence, solve the following problem:

Betty is investigating the growth in the population of a certain type of
bacteria in her flask. At the start of day 1, there are 1,000 bacteria in flask.
The population of bacteria grows exponentially at the rate of 50% per day.
Find the population of bacteria in her flask at the start of day 5.

If F, is the population at the beginning of a certain period and 7% is the

constant rate of growth per period, the population for n periods will be
P =F(1+r)".
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Example 2.40

The town of Grayrock had a population of 10,000 in 1960 and 12,000 in 1970.

a) Assuming an exponential growth model, estimate the population in 1980.

b) Whatis the doubling time for the town'’s population?

a) Forexponential growth model P, = F (1+r)n .
Letin 1960, have £, =10,000 .
Thus, in 1970, we have B =12,000 while in 1980, we have P, .
P, =12,000 < 12,000 = P, (1+7)"

& 12,000 =10,000(1+7)"

e 12=(1+r)"

S WY2=1+r

= r=0.018399376

P, =B (1+r) = B, =10,000(1.018399376)" =14,400

The population in 1980 is 14,000.

b) The doubling time for the town'’s population means the time for which
P,=2F,

P, =2R 2P =F(1+r) < (1+r) =2

In2

~ (i)

= n =38 years

Hence, the doubling time for the town’s population is 38 years.
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Application activity 2.20

1. The population, P, of an island t years after January 1t 2016 is given
by this formula P = 4200x (1.04)’
a) What was the population of the island on January 1st 20167
b) What is the constant rate?
c) Work out the population of the island on January 15t 2021.
2. The population of a city increased by 5.2% for the year 2014. At the
beginning of 2015 the population of the city was 1,560,000. Betty

assumes that the population will continue to increase at a constant
rate of 5.2% each year. Use Betty's assumption to;

a) Estimate the population of the city at the beginning of 2017. Give
your answer corrected to 3 significant figures.

b) Work out the year in which the population of the city will reach
2,000,000.

2.3.4. Depreciation value problems

.21

Using the library or internet if available, find out how exponential and
logarithmic functions are used to solve depreciation value problems.
Hence, solve the following problem:

During an experiment, a scientist notices that the number of bacteria

halves every second. If there were 2.3x10* bacteria at the start of the
experiment, how many bacteria were left after 5 seconds. Give your answer
in standard form corrected to two significant figures.

Depreciation (or decay) is negative growth. If ¥ is the value at a certain time,
and r% is the rate of depreciation per period, the value V, at the end of ¢

periodsis | =/, (1_;»)t . t

Example 2.41

If you start a biology experiment with 5,000,000 cells and 45% of the cells are
dying every minute, how long will it take to have less than 1,000 cells?
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Using the equation, V, =V (1 - r)t ;
V. =1,000, V, =5,000,000, » = 0.45
=1,000 = 5,000,000 (1— 0.45)t

1,000

@ _—

5,000,000

= 0.0002 = (0.55)

=(1-0.45)

=1n0.0002=1n(0.55)  [taking In both sides]

=1n0.0002 =¢1n 0.55

,_1n0.0002
In0.55

=t=~142

It will take about 14.2 minutes for the cell population to drop below a 1,000
count.

Application activity 2.21

1. In a certain experiment, the number of bacteria reduces by a quarter
each second. If the number of bacteria initially was X, write a formula
that can be used to calculate the number of bacteria, ¥, remaining
after ¢t seconds.

2. The population of a particular town on July 1, 2011 was 20,000. If the
population decreases at an average annual rate of 1.4%, how long
will it take for the population to reach 15,3007

2.3.5. Earthquake problems

.22

Using the library or internet if available, find out how exponential and
logarithmic functions are used to solve earthquake problems. Hence, solve
the following problem:

How many times stronger is an earthquake with a magnitude of 8 than an
earthquake with a magnitude of 6?
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In 1935, Charles Richter defined the magnitude of an earthquake to be
1
M = logE where [ is the intensity of the

earthquake (measured by the amplitude of a seismograph reading taken
100/km from the epicentre of the earthquake) and S is the intensity of a
“standard earthquake” (whose amplitude is 1micron =10"*cm ).

S
The magnitude of a standard earthquake is M=10g§=10g1:0.

Richter studied many earthquakes that occurred between 1900 and 1950.
The largest had magnitude of 8.9 on the Richter scale, and the smallest had
magnitude 0. This corresponds to a ratio of intensities of 800,000,000, so the
Richter scale provides more manageable numbers to work with.

Example 2.42

Early in the century, the earthquake in San Francisco registered 8.3 on the
Richter scale. In the same year, another earthquake was recorded in South
America that was four times stronger. What was the magnitude of the
earthquake in South America?

_ 1 ISan Francisco __ 8 3
San Francisco — S -

M

I San Francisco — 83

lo
S

_ 1 I South America

M South America —
ISouth America = 41San Francisco
M _ 1 41 San Fransisco
South America ~— 0og
S
Solve for M

South America '
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4]
=log

San Francisco

M

South America S
= log 4ISan Francisco log S
- log 4+ log ]San Francisco lOg S= log 4+ 10g San Pranciseo
=log4+8.3=8.90205999133
M =8.9

South America

The intensity of the earthquake in South America was 8.9 on the Richter scale.

Example 2.43

A recent earthquake in San Francisco measured 7.1 on the Richter scale. How
many times more intense was the San Francisco earthquake described in
Example 2.427

The intensity of each earthquake was different. Let I, represent the intensity

of the early earthquake and I, represent the latest earthquake.

First: 8.3 :logi
S

Second : 7.1= log%

1
What you are looking for is the ratio of the intensities: —.

I I ?
log—-—log—%+=8.3-7.1

ORI
= log I, —log S —(log I, —log §)=1.2
=log/, —logS—logl, +logS§ =12

=logl, —logl,=12= logf—1=1.2

2

1 1
= logl—lz log10"* = L =10"" :£z162>12 ~161,

2 2 2
The early earthquake was 16 times as intense as the later earthquake.
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Application activity 2.22

1. An earthquake monitoring station measured the amplitude of the
waves during a recent tremor as being 100,000 times as large as A,
the smallest detectable wave. How high did this earthquake measure
on the Richter scale?

2. An earthquake is measured with a wave amplitude 392 times as great
as A,. What is the magnitude of this earthquake using the Richter
scale, to the nearest tenth?

3. The San Francisco earthquake of 1989 measured 6.9 on the Richter
scale. The Alaska earthquake of 1964 measured 8.5.

a) How many times as intense as the San Francisco earthquake was
the Alaska earthquake?

b) Calculate the magnitude of an earthquake that is twice as intense
as the 1989 San Francisco earthquake.

4. How much intense is an earthquake measuring 6.5 on the Richter
scale than one measuring 6.47

2.3.6. Carbon-14 dating problems

.23

Using library or internet if available, find out how exponential and
logarithmic functions are used to work out the age of organic material.
Hence solve the following problem:

If you had a fossil that had 10 percent carbon-14 compared to a living
sample. How old is that fossil?

Carbon dating is used to work out the age of organic material — in effect, any
living thing. The technique hinges on carbon-14, a radioactive isotope of the
elementthat, unlike other more stable forms of carbon, decays at a steady rate.
Organisms capture a certain amount of carbon-14 from the atmosphere when
they are alive. By measuring the ratio of the radio isotope to non-radioactive
carbon, the amount of carbon-14 decay can be worked out, thereby giving an
age for the specimen in question.

The half-life of a substance is the time it takes for half the original amount of
that substance to decay. Itis only a property of substances that decay at a rate
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proportional to their mass. Through research, scientists have agreed that the
half-life of Carbon-14 is approximately 5,700 years.

A formula to calculate how old a sample is by carbon-14 dating is:

N
IHLJ\[f}
=— 97 »¢

t= 1
~0.693  +

N
where —L s the percent age (fraction) of carbon-14 in the

0
sample compared to the amount in living tissue, and ¢, is the half-life of
carbon-14 which is 5,730 + 30 years. 2

Example 2.44

14
A scrap of paper taken from the Dead Sea Scrolls was found to have a ==
ratio of 0.795 times that found in plants living

today. Estimate the age of the scroll.

In(0.795
t= M x 5,700 =1,887 years old

|
o
o
Ne)
@

Example 2.45

A chemist determines that a sample of petrified wood has a carbon-14 decay
rate of 6.00 counts per minute per gram. What is the age of the piece of wood
in years? (The decay rate of carbon-14 in fresh wood today is 13.60 counts per
minute per gram, and the half life of carbon-14 is 5,730 years).

ln(6°00

t= LJX 5,730 =6,766 years old

Example 2.46

|
L
o
Ne)
@

Using dendrochronology (a technique that uses tree rings to determine age),
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tree materials dating back 10,000 years have been identified. Assuming you
had a sample of such a tree in which the number of Carbon-14 decay events
was 15.3 decays per minute before decomposition, what would the decays
per minute be in the present day?

=-1.21

In
( o] N, 10,000x(~0.693)
:>10,OOO=WX5,730:>1n —

5730

0

N
In [—fJ =(-1.21)Ine; since Ine=1

N,

N N
= ln[—f} =lne™ = L= o N, = Ny

0 N, e
But N, =15.3
Then, Ny =2 = 4.6
e
N =12 53

Application activity 2.23

1. The carbon-14 decay rate of a sample obtained from a young tree
is 0.296 disintegration per second per gram of the sample. Another
wood sample prepared from an object recovered at an archaeological
excavation gives a decay rate of 0.109 disintegration per second per
gram of the sample. What is the age of the object?

2. The Carbon-14 content of an ancient piece of wood was found to have
three tenths of that in living trees (indicating 70% of the Carbon-14
had decayed). How old is the piece of wood?

3. Carbon-14is used to determine the age of ancient objects. If a sample
today contains 0.060 mg of carbon-14, how much carbon-14 must
have been present in the sample 11,430 years ago?
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4. A living plant contains approximately the same isotopic abundance
of Carbon-14 as does atmospheric carbon dioxide. The observed
rate of decay of Carbon-14 from a living plant is 15.3 disintegrations
per minute per gram of carbon. How much disintegration per minute
per gram of carbon will be measured from a 12900-year-old sample?
(The half-life of Carbon-14 is 5730 years.)

5. All current plants have a Carbon-14 count of 15.3 cpm. How old is a
wooden artifact if it has a count of 9.58 cpm?

6. You read that a fossil dinosaur skull has been found in Montana and
that it has been carbon-14 dated to be 73 million years old. Provide
two (2) scientifically-based reasons to explain why Carbon-14 dating
cannot do this.

The other applications of logarithms are in many scientific contexts. Some of
which include:

a) Measure of Sound

Sound is measured in a logarithmic scale using a unit called a decibel.

P
The formula looks similar to the Richter scale; d = IOIOg(—) where
P isthe power or intensity F,

of the sound and E) is the weakest sound that the human ear can hear.

Example 2.47

One hot water pump has a noise rating of 50 decibels. One dishwasher,
however, has a noise rating of 62 decibels. Determine how many times the
dish washer more intense than the hot water pump noise.

50=1010g(£}<::>105 —:>h 10°P,

R,

< 62=10log 4 & 6.2=1log 4 <::>106'2:i:>d:106‘2]’O
F, R, 0

Then,

12106.23) :101.2

h 10°PR
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Thus, the dishwasher's noise is 10'? (or about 15.85) times as intense as the
hot water pump.

b) Measure of acidity

The measure of acidity of a liquid is called the pH of the
liquid. This is based on the amount of hydrogen ions,
H* inthe liquid.

The formula for pH is pH=—10g[H+] where | H" | is the
concentration of hydrogen ions, given in a unit called mol/L

(“moles per litre”; Recall that one mole is 6.022 x10% molecules
or atoms).

Liquids with a low pH (below 7) are more acidic than those with
a high pH . Water, which is neutral (neither acidic nor alkaline, the
opposite of acidic) has a pH of 7.0.

Example 2.48

If lime juice has a pH of 1.7, what is the concentration of hydrogen ions (in
mol/I") in lime juice, to the nearest hundredth?

pH=—log[H+}

1.7=-logx < -1.7=log x < x=10"" < x=0.02

The concentration of hydrogen ions in lime juice is 0.02.

Unit Summary

1. Logarithmic function

¢ Domain of definition and range

The Natural logarithm of X is denoted asIn x or log, x and defined on
positive real numbers, ]0,+00[ , its range is all real numbers.

Vx e ]l,4o0[, Inx>0 and Vxel0,][, Inx<0
The equation Inx =1 has, in interval ]0,+OO[,

a unique solution, a rational number2.718281828459045235360....
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This number is denoted by e.

Hence, hx=1l<x=e.

: 1Y
Generally e=lim|1+—

X—>+00 X

Limits on boundaries

Logarithmic function f(x)=Inx being defined on 10, o[,
lim Inx =+00 and lim Inx = —o0

X—>+00 x—0"

From, lim Inx =+, we deduce that there is no

X—>+00

horizontal asymptote.

From lim In x = —o0, we deduce that there exists a
x—0"

vertical asymptote with equation V4=x=0.

Derivative of natural logarithmic functions or logarithmic
derivative

C1 .
xe ]RS,(]nx) =— and (lnx) >0
X
Also, if u is differentiable function at X then,

nu) =4
(1nu) =~

With certain functions containing more complicated products and
quotients, differentiation is often made easier if the logarithm of the
function is taken before differentiating.

Domain and limits on boundaries of a logarithmic function with
any base

Logarithm function of a real number X with base @ is
a function f* denoted f(x) =log, x and defined by

logax=hl—x, xeRj, aeRy\{1} .
Ina

VxeRy, log, x=y o x=a’

lim f(x):{

x—0"

-0 if a>1
+oo if O<a<l
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There is a vertical asymptote VA=x=0

{+oo if a>1

-0 if 0<a<l

lim f(x)=

X—>+00

There is no horizontal asymptote nor oblique asymptote.

Logarithmic Differentiation

it £(x)=log, x ,then f'(x)= xlim

Also, if U is another differentiable function of x,
then,

1

u
ulna

(log, u)'=

Exponential functions

Exponential function with base "¢"
Domain and range of exponential functions with base"e";

The domain of definition of y=¢* is —00 + 00| and its range is
10, oo .

Then, Vx € ]0,400[, y € |-o0,40[: y=Inx < x=¢.
Limit of exponential functions with base "e¢"

lim e* =0 and lim e* =+o0

X—>—00 X—>+00

There exists horizontal asymptote: H. A=y =0
Derivative of exponential functions with base " ¢"
VxeRR, (ex)':ex

If uis another differentiable function at x,

(eu)!:uveu
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Remarks

c)

In
a) Vy>0,y=e"
. Ina* In
In particular, a* =e"* means a* =e""".

Hence, to study the function y =u" is the same as to study the
function y =e"™ where u and v are two other functions.

b) Wheneveranexpressionto be differentiated containsatermraised
toapowerwhichisitselfafunction ofthevariable, then, logarithmic
differentiation must be used. For example, the differentiation of

. 1-x? sin
expressions such as |xx ,(l—x) t \"/)c+2,(x)1 " and so on can
only be achieved using logarithmic differentiation.

Population growth

If P0 is the population at the beginning of a certain period and r%
is the constant rate of growth per period, the population after n

periods will be P, =Po(l+r)n.

d) Depreciation value

e)

f)

Depreciation (or decay) is negative growth. If VO is the value at a
certain time, and % is the rate of depreciation per period, the value

V. atthe end of { periodsis V, =V, (l—r)t :

Earthquake

Charles Richter defined the magnitude of an earthquake to be
M = logé where [ isthe

intensity of the earthquake (measured by the amplitude of a
seismograph reading taken 100 km from the epicentre of the
earthquake) and § is the intensity of a “standard earthquake” (whose

amplitude is 1micron =10"cm ).
Carbon-14 dating

Carbon dating is used to work out the age of organic material —in
effect, any living thing. By measuring the ratio of the radio isotope
to non-radioactive carbon, the amount of carbon-14 decay can be
worked out, thereby giving an age for the specimen in question.
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Through research, scientists have agreed that the half-life of Carbon-14
is approximately 5700 years.

A formula to calculate how old a sample is by carbon-14 dating is:

N
ln[]vf}
M),

t=
—0.693 >

2

N
where —L is the percent of carbon-14 in the sample

0
compared to the amount in living tissue, and £, is

the half-life of carbon-14 which is 5,730 £+ 30 ilears.

End of unit assessment

In questions 1-8, find the domain of definition.
1. f(x)=In(x’-1)-4In(4x—1)+2In2

2. f
3. S

1 1 1

1
7 f(x =2 2
2
=
8. f(x) =ex!
In questions 9-22, evaluate the given limits.
1 X
o — o e
9. lime*! 10. lim
x—1~ x—1" x —
. ex . X
11. lim 12. lim ln(e —1)
X—>—00 l_x X—>+00
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ln(ex—l) ”

13. lim
X—>+00 X X—>+0
15. lim 10g(x2—9)
. (1jx+2
17. lim | —
x—>—0| 3
. 2
19. hrg! 1
3+4~
21. lim (l—ij
X—>+0 3x

lim ln(e" —1)—x

16. lim 32

X—>-

X+ +x
l)C
2
x—1
1+ ! j
—3n2+2

S5n-3

18. Iim ——

x>+

20 lim

T x>+

x+2

2n?

3n+1

22. lim

n—>+0

In questions 23-30, find the derivative of each function.

23. f(x)=(x*-2x+2)e"

( —) 0<x<2x

In lnx

(
e

f(x

24. f(x)=1
25. f(x)=
(x)=

26. In

~

27.

()
28.

29.

30. f(x)=(cosx)’

x+a) aeR

In questions 31-34, find relative asymptotes (if any) , study the variation of

the function and sketch the curve.

31. f(x)=xe"

e

33. f(x):|—

xX—]

32. f(x) = 2x2_
2 f(x)= 4—Inx

Y2
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35. Suppose that you are observing the behavior of cell duplication in a
laboratory. If in one of the experiments, you started with 1,000,000
cells and the cell population decreased by ten percent every minute.

a) Write an equation with base (0.9) to determine the number of cells
after t minutes.

b) Determine how long it would take the population to reach a size of
10 cells.

36. A city in Texas had a population of 75,000 in 1970 and a population
of 200,000 in 1995. The growth between the years 1970 and 1995

followed an exponential pattern of the form f(t) = Axe™ .
a) Find the values of 4 and .
b) Using the given model, estimate the population for the year 2010.

37. An $1000 deposit is made at a bank that pays 12% compounded
weekly. How much will you have on your account at the end of 10
years?

38. What is the monthly payment on a mortgage of $75000 with an 8%
interest rate that runs for 30 years? How much interest is paid over 30
years?

39. Suppose a bank offers you a 10% interest rate on a 20-year mortgage
to be paid back with monthly payments. Suppose the most you can
afford to pay in monthly payments is $700. How much of a mortgage
could you afford?

40. Suppose that you are observing the behavior of cell duplication in a
laboratory. If in one of the experiments, you started with one cell and
the cell population is tripling every minute.

a) Write an equation with base 3 to determine the number of cells
after one hour.

b) Determine the number of cells after one hour.

41. Suppose that you are observing the behavior of cell duplication in a
lab. In one experiment, you started with 100,000 cells and observed
that the cell population decreased by half every minute.

a) Write an equation (model) with base l

2
to determine the number of cells (size of population) after t
minutes.

b) Determine the number of cells after 10 minutes.
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42. In 1946, an earthquake struck Vancouver Island. It had an amplitude
that was[ Q7" times AO.

a) What was the earthquake's magnitude on the Richter scale?

b) The strongest earthquake in Canada struck Haida Gwaii, off the BC
coast, in 1949. It had a Richter reading of 8.1. How many times as

great as Ao was its amplitude?

43. The 2011 Tohoku earthquake, which occurred off the coast of Japan,
measured 9.03 on the Richter scale. Calculate the magnitude of an
earthquake that is one-quarter as intense as this earthquake. Round
off to the nearest hundredth.

44. A common ingredient in cola drinks is phosphoric acid, the same
ingredient found in many rust removers.

a) If acoladrink has a pH of 2.5, what is the hydrogen ion
concentration of the cola drink?

b) Milk has a pH of 6.6. How many times more acidic than milk is a
cola drink? Round off to the nearest whole number.

45. Refer to the decibel scale in the figure below, how many times as
intense as the sound of normal conversation is the sound of a rock

concert?
0 dB Threshold for human hearing

10 dB
20 dB Whisper
30 dB Quiet library
40 dB Quiet conversation
50 dB
60 dB Normal conversation
70 dB Hair dryer
80 dB
90 dB Lawnmower

100 dB

110 dB Car horn

120 dB Rocket concert

46. Sounds that are utmost 95,000 times as intense as a whisper are
considered safe, no matter how long or how often you hear them. The
sound level of a whisper is about 20 dB. What is the maximum sound
level that is considered safe? Round off to the nearest decibel.
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Taylor and Maclaurin’s
Expansions

Introductory activity

Suppose that we need to complete the table below.

Angle, X 0° 1° 20 30 40 50

sin x

For x =0 is very easy since this angle is a remarkable angle. But, what

about other angles; 1°,2°.3°,4°,5° 2 How can we find their sine without
using sine button on scientific calculator?

A series is a summation of the terms of a sequence. Finite series is a
summation of a finite number of terms and an infinite series has an infinite
number of terms and an upper limit of infinity.

Taylor series is a representation of a function as an infinite sum of terms
that are calculated from the values at a single point. The concept of a Taylor
series was formally introduced by the ENGLISH Mathematician BROOK
TAYLOR in 1715. The special case of Taylor series is Maclaurin series.

Objectives

By the end of this unit, a student will be able to:

e  Find the sum of a given series.
e Find the Taylor series of a given function.
e  Find the Maclaurin series of a given function.
e Use Maclaurin series to;
»  calculate limits,
»  approximate the values of some constants,
»  approximate an irrational number,
»  approximate logarithmic number,
»  approximate trigonometric number of an angle,
»  approximate the roots of a given equation.
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Maclaurin's series is used when finding limits of some functions,

approximate irrational number like V2, finding trigonometric number of
anangle, ...

3.1. Generalities on series
3.1.1. Finite series

Activity 3.1

n
Suppose we want to find the sum, ZLtk , of a series
k=1
u, +u, +...+u, where the terms follow a certain pattern.

1. fu, =f(k)—f(k+1), where f (k) is some function of k.
For k=1, u = f(1)-f(2)
Fork=2,u,=f(2)-7(3)

Continue in this way up to k=5 . Find the general relation for
k=n-1and k=n.

2. Add the terms obtained in 1) to obtain the sum of the series.

The sum of a number of terms where the terms follow a definite pattern is
called series. If the terms are finite, then the series is said to be finite and
if they are infinite the series is said to be infinite.

A finite series is an expression of the form u, +u, +u, +...4+u, orin sigma

n
notation we write Zuk , where the index of

k=1
summation, k, takes consecutive integer values from the lower limit, 1, to
the upper limit, n. The terms u,,u,,u;,...,u, are called terms of the series

and the term u, is the general term.

We saw, in senior five, how to find the sum of n terms of an arithmetic
progression and sum of n terms of a geometric progression. Arithmetic
and geometric series are standard series. But now the question is how can
we find the sum of a series which is not a familiar standard series? In this
case, the method of difference is usually used.

From activity 3.1, we can write:
Zun =f(1)—f(n+1)
k=1
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Find the sum of the series %+%+L+...+ !

12 n(n+1)

Clearly, this is not a familiar standard series, such as an arithmetic or
geometric series. Therefore, we apply the method of differences to obtain
the required sum.

Now, the k™ term, u,, is given by . We now need to try to split

up u, .

k(k+1)
1

k(k+1)

The only sensible way to do this is to express in partial fractions.

1 A B
k(k+1) k k+1
The constants A and B are used because k and k+1 are linear factors.
Then,
1 A(k+1)+Bk
k(k+1)  k(k+1)
< 1=A4k+ A+ Bk
< 1=k(A+B)+4

Let

Comparing the coefficients of k, A+ B =0 and comparing the constants,

A=1.
1 1 1

k(k+1) k k+1

From which we see that;

1
f(k):% and f(k+1)=m

Now, writing down the series term by term we have;

Hence, B=-1 and
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k=1 1 _L1
2 1 2
k=2 1 _11
6 2 3
=3 s _1 1
12 3 4
P R S
(n—l)n n—1 (n—1)+1
k=n S S O

n(n+1) n n+l
Adding, some terms will be canceled and we remain with

4 1 1 n
E :1— =
k(k+1)

= n+l n+l

1 1 1 1 n
Thus, —+—+—+...+ =
2 6 12 n(n+1) n+l1

1
Find the sum of the series §+—+—+

TR (2n-1)(2n+3)

1
(2k—1)(2k+3)

1
(2k—1)(2k +3)
1 4 B
(2k—1)(2k+3) 2k—1 2k+3

1 _ A(2k+3)+B(2k-1) ~
(2k-1)(2k+3)  (2k-1)(2k+3) & 1=4(2k+3)+B(2k-1)

Let u, =

Now expressing in terms of partial fractions,

we have;

Comparing the coefficients of k, 24+2B =0, so A=-B.Comparing the
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1
constants terms, 1| =34—B . Hence, A=— and

B=—1.

4
1 1 1

e (2k—1)(2k+3)  4(2k—1) 4(2k+3)

Now substituting for » =1,2,3,...; we obtain

k=1 1 1.1
5 4 20
k=2 1 1 1
21 12 28
k=3 LI T
45 20 36
k=4 LI
77 28 44
1 1 1
k=n-2 = -
" (2n-5)(2n—1) 4(2n-5) 4(2n-1)
k=n_1 1 _ 1 3 1
(2n-3)(2n+1) 4(2n-3) 4(2n+1)
. 1 1

(2n—1)(2n+3) 4(2n—1) 4(2n+3)

Adding, some terms will be canceled:

1 1 1 1 1 1 1 1
+

+
5 21

"5 (2n-2)(2n+3) FRET 4(2n+1) 4(2n+3)

(1 1 1 1,1 ( 1 1 j
=—|14== - =—|14+—- +
403 2m+1 2n+3j 4 3 (2n+1 2n+3

] 1 ((@a+3)+(2n+1))] 1[4 uhd)
—z_“g‘( Cr1)(2n3) H‘Z{T{(z"“)@"”)ﬂ
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zé_[(2n+’11)4(_21n+3)J

Thus L, L, 1 1 1 n+l
5 21 45 (2n-2)(2n+3) 3 ((2n+1)(2n+3)

Application activity 3.24

Find the sums of the following series:

n 1 n 1
i Z (r+1) 2 Z4r2—1

r=1 ¥ r=1

n n 1
3. 4. -

;r(r+1)(r+2) 2

3.1.2. Infinite series

7 7 7 7 7
Considerthe series S, =—+—F+—+—F+...+—+...

10 10> 10° 10 { 10"
1. Multiply both sides of the given series by 10

2. Subtract the series obtained in 1) from the given series to find
the expression of S, interms of n.

3. Evaluate limit of the S obtained in 2)as n — +00.

The purpose here is to discuss sums U, +u, +u; +...+u, +... that contain
infinitely many terms. The most familiar examples of such sums occur in
the decimal representation of real numbers.

1 .
For example, when we write § in the decimal form we have;

l=0.3333...
3

=0.3+0.03+0.003+0.0003 +...

W | —
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Since it is impossible to add up infinitely many numbers, we will deal with
infinite sums by means of a limiting process involving sequences.

An infinite series is an expression of the form u, +u, +u, +...4+u, +... or

+00

in sigma notation Z”n .The terms u,,u,,u,,... are called terms of the
series. n=l

To carry out this summation process, we proceed as follows:

Let s, denote the sum of the first n terms of the series. Thus,
S =U
S, =u, +u,

Sy =U; T U, T U,

n
S, =y Uy Uy R, = U

=1

The number s, is called the n” partial sum of the series and the

400, .
sequence {S’l}n—l is called the sequence of partial sums.

3 3 3

3
What are the partial sums of the series E+ + + +...

10> 10° 10*

The partial sums are

3
S =—

10
oo, 3
10 107

3 3 3
S

=—+—+—
10 10° 10°
3 3 3 3

s, =—+

+—+
10 10> 10° 10
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As n increases, the partial sum §, =u, +u, +u, +...+u, includes more
and more terms of the series. Thus, if §, tends towards a limit as 7 — +00
,itis reasonable to view this limit as the sum of all the terms in the series.
This suggests the following definition:

+00
Let {Sn} be the sequence of partial sums of the series Zuk .

k=1
If the sequence {Sn} converges to a limit §, then the series is said to
converge and S is called the sum of the series. We denote this by writing

If the sequence of partial sums of a series diverges, then the series is said to
diverge. A divergent series has no sum.

Geometric interpretation of a convergence series and a divergence
series: graphical approach.

© 1 © 2
Consider two series U, = Z— andv, = ) ——.
k k-1 k
k=1 3 =1 k+1
= 1
e The series u, = z T converges to 0 since lim = 0,
B ke—+o0 3%
k=1
..... 5 .
1__....... &
k
—F :
of 1 2 3 4 5 6 T 8 % 10 1 12 13

The graph of u, shows that as kincreases, 1, is 0.
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0 k2 k2

e Theseries Yk = Z .1 divergessince lim

= 400

12 L2 — 7
19 n
19
14
1 e
160
1v

0

7

Q.

(o]

.

7

6 ()

\J

5 (©]

4 (*]

2 (]}

J

N )

r4

(]
1
° k
1
o ! | 4

The graph shows that as k increases, v, also increases.

Example 3.4
3 3 3 3

Find the sum of the series %+ + + +...+ +...

10> 10° 10° 10"

Here, the n" partial sum is s, =

2i3 0303043 (1)
10 10> 10° 10* 7 10"

The problem of calculating the limit is complicated by the fact that the
number of terms in (1) changes with n.

1
First, we multiply both sides of (1) by 0 to obtain

1 3 3 3 3 3
— =

+—+ + +.t 2
10" 10> 10° 10* 10° 10" (2)

And then subtracting (2) from (1) we obtain;
1 3 3

§ ——S§ =—-—

" 10" 10 10"
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Now, taking the limit we have;

S=lims, = lim+[1-—]=1
n—+0o n—+0 3 10" 3

Thus,%+ 3 + 3 + 3 +...+ 3 +..=

102 10°  10°* 10F 3

o Notice

The series in above example is a geometric series with initial

3
term U, =— and common ratio r=—. We can also find
10 10
3 3 3
the sum s, =—+ + using the method

= + 3 aF = = oo »
10 10© 10° 10 10
we saw, in senior five, on the sum of n terms of a geometric sequence and
then find the limit there after.

That is,

s, =
1-r
AR RS 3[,_1
10 10 100 10" _i( IJQ
- 1 9 100 10") 9
- 10
I
3 10"
And then,
S=1IlimS§, = liml[l— ! ):l
n—>+o0 n—+o 3 10" 3

Determine whether the series 1-1+1—-14+1-1+... converges or diverges.
If it converges, find the sum.
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The partial sums are 5, =1,5, =1-1=0,s, =1-1+1=15, =1-1+1-1=0
and so forth.

Thus, the sequence of partial sumsiis 1,0,1,0,....

Since this sequence is divergent, the given series diverges and
consequently it has no sum.

Example 3.6
+00 1

Determine whether the series Z

T k(k+1)

diverges. If it converges, find the sum.

converges or

First, we find the n' partial sum of the series which is

1 1 1 1
R I A TR

From example 3.1, we have seen that z; = 1—L
k(k+1) n+l
So §=lim (1— ! ]=1
n—>+w n+1
+00 1

And therefore, z

Se(k+1)
o_ Notice
|

Recall that, in senior five, a geometric series u, +u1r+u1r2 +...+ulrk_ +...
, u, #0 converges if |r| <1 and diverges if |r| >1.

U
1-r7

In case of convergence, the sum is

— u
Thatis, , +ur +ur’ +...+ur" 1+...=1—1 for |r|<1.

—-r
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Example 3.7

The series S+—+—+...+ +... is a geometric series with

4k—1

u = 5 and r =—. Find the sum of the series.

N
1w

1] 1
Since |r| = ‘Z‘ :Z <1, the series converges and the sum is

u, _ 5 20
3

_1
4

Example 3.8

Find the rational number represented by the repeating decimal

0.784784784...

Here, we can write (0.784784784...=0.784+0.000784 +0.000000784 +...

So the given decimal is the sum of geometric series with #, =0.784 and

r=0.001.
Thus,
u 0.784 B 0.784 B 784

0.784784784...= = = =
l-r 1-0.001 0.999 999

[since |r| < 1]

Application activity 3.25

1. Find the sums of the following series:

a) Zn:r by 2.1
r=l1

c) Zn:r3 d) Zr(r+1)
r=1
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2. Find the rational number represented by each of the following
repeating decimal:

a) 0.27272727... b) 0.8333333...
c) 0.1237373737...

Tests for convergence of series

Activity 3.3

1. Evaluate:

. u ! .
a) Hm—% for 4 _ 3l b) llmﬂ for un=i

n—o u, 5" n—o k%

0

2. Consider the series Z . Find a series zb,, such that
1 n=1 272—1 n=l1

<b .
2n—1 "

Comparison test

Let Zan be a series with positive terms;

n=1

0 0
a) Za,, converges if there exists a convergent series an

n=1 n=1
such that a,<b, for all n> N, where N is some positive
integer.

b) Za,, diverges if there exists a divergent series ch

n=1 n=1
such that a,=c, for all n> N, where N is some positive
integer.

Limit comparison test

If the series Zan and Zb,, are two series with positive

n=1 n=1

.oa, . .
terms, and lim—* is finite, both series converge or both diverge.

n—w b
n
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The ratio test

Let Zu be a series with positive terms and let lim—~ D L,

n=1 n—>»0 un

then,
a) the series convergesif L<1
b) the series divergesif L >1

c) theseriesmayormaynotconvergeif L =1 (i.e.thetestisinconclusive).

The n” root test

Let Zu be a series with positive terms and let lim§/u, =L,

n—w
n=1

then,
a) the series convergesif L <1
b) the series divergesif L >1

c) thetestisinconclusive L=1.

Example 3.9

S2n+1(1) .
Use the comparison test to show that the series z — | is
convergent. o \2

2n+1(1) <3( j and 23( ) is a convergent geometric

n \2
series converging to 3.

2n+1

Therefore, the series Z

n=1

n
Example 3.10
) ] 2
() is

Use the ratio test to determine whether or not the series z
convergent. = (2n)!

1 n
(Ej converges by comparison.
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Uy ((+)) (41" (2n)!
u, (n)yY  (2(n+D) (n)
(2n)!
_ (n+1)(n+2) _ n+1
(2n+2)(2n+1) 2(2n+1)
lim 2228 = Jim ntl :l<1 and so the series converges.

ey, >0 2(2n+1) 4

Use the n™ root test to determine whether or not the series Z
convergent. = nt2"

lim ‘"/ :j - =lim 3 > :2>1 and so the series does not
n—wo \[ p 2 n_)wZ(Q/;) 2

converge.

Application activity 3.26

Use either the ratio orthe n” root test to determine which of the following
series converges or diverges.

o n4 © n5 o 23n
. i 2. YL
b4y Z5 > Z 3"

= n! = pnl 2 (n+1) n+2)
Yy 5';(2n+1)z DT
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3.2. Power series

Activity 3.4

1. Use n™ root test to determine the condition for x for which the

o - n+l x" q
series Z(—l) — (I8 convergent.
n=l1 n
n

: : L e X
2. Use ratio test to determine whether the series z— converges
or not. n=0 1

Power series is like an infinite polynomial. It has the form
ian (x—c)n =a,+aq, (x—c)+a2 (x—c)2 +..+a, (x—c)n +...
n=0

Here, ¢ is any real number and a series of this form is called a power
series centred at c.

Let f(x) =

series. f(x) is only defined if the power series converges, so we will
consider the domain of the function f to be the set of x values for which
the series converges. There are three possible cases:

M

a, (x—c)n be the function defined by this power

3
Il
=]

e The power series converges at x=c. Here the radius of
convergence is zero.

e The power series converges of all x,i.e ]—oo, +oo[. Here the radius
of convergence is infinity.

e There is a number R called the radius of convergence such
that the series converges for all c—=R <x<c+ R and the series
diverges outside this interval.

X

Find the radius of convergence of Z '
n

n=0 .

n
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First, note that this is a power series centred at ¢ =0, and the coefficient
1
a =—.
" nl
We will use ratio test to find the radius of convergence:

n+l

X
. n+1)! X X
hm( ) =lim|——=0
n—oo xn n—oo n+1

n!

Since the ratio test implies that the series converges and final answer, i.e. 0
does not depend on x, we see that the series will converge for all x and
thus the radius of convergence is infinite.

Find the radius of convergence of i (_1) (x—2)

n=0 3"

. . _ -1)
This is a power series centred at ¢ =2, and the coefficient a, = ( ) .

3n
(_1)n+1 (X _ 2)n+1

lim ‘

e | =22
ol () (=2 | 3 T

37
The series will converge if x-2 1 orif |x—2|<3.

From which the radius of convergence R =3 and the series converge to
Vx such that —=1<x <5 since

c—R<x<c+R
S2-3<x<24+3
S -—-1<x<ks
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Application activity 3.27

For each of the following power series, determine the values of x for
which the series converges and the radius of convergence.

T D (x+2) 2.in(3x+1)" 32 "(2x+3)’

27 ), L 3
£ " 2 ai (R+1)x"
. 3 ni(x3) 10 3y
n=0 n=l1

3.2.1. Taylor and Maclaurin series

Activity 3.5

Suppose that f(x) is any function that can be represented by a

power series: f Zc x a or

F(x)=c,+a (x-a)+e,(x-a) +e,(x-a) +¢,(x-a) +.+¢, (x-a) +.. (1)

1. Find f(a)

2. Find f'(a)

3. Find f"(a). Deduce, using factorial notation, the value of ¢,
4. Find f"'(a) . Deduce, using factorial notation, the value of ¢;.
5. Find f(iv) (a). Deduce, using factorial notation, the value of ¢,
6. Find f(iv) (a). Deduce, using factorial notation, the value of ¢,
7.

From results obtained in 1) to 5), deduce the value of f(")(a).
Deduce the value of ¢, .
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8. Substitute the values of ¢, ¢, ¢,, ¢;, ¢,,...,C,, obtained in 1) to
6), in relation (1) to obtain new relation.

From activity 3.5, if f(x) is a function defined on the open interval ]a,b[
,and which can be differentiated (n +1) times on ]a,b[ , then the equality

f(x):f(x0)+f'(xo)(x—x0)+%);°)(x—x0)+...+m(x—xo)n +Rn+1(x),

n!
xeR and x, € |a,b]

is called Taylor’s formula; where n! denotes the factorial of n, f(”) (xo)

denotes the n” derivative of f(x) evaluated at point x, and R, (x)
denotes remainder function.

The polynomial

/(%)

(=) +...+

S(x)= 1 (x)+ 7 (%) (x =% )+
is called the n” degree Taylor polynomial of f at x,.
If im R, (x) =0 for some terms in x, then the infinite

n—oo

o0 (")
fe) =Ly

is called the Taylor series for f(x).

0 Notice

For special case x, =0, the Taylor series becomes

/0,

n=0 n!
fﬂ(O) , fm(o) ;

f'(O)x+ X+ X +..+
1! 2! 3! n!

f(x)
() ,

X +...

= f(0)+

This case arises frequently enough and is given the special name
Maclaurin series.
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Example 3.14

Write the power series x* —5x° + x> —=3x+4 in terms of (x—4) .

Let f(x)=x4—5x3+x2—3x+4,

First, we WiII find the first 4 derivatives at x=4;

( ) 5x3+x2—3x+4:>f(4)=—56
f(x)=4x"-15x" +2x-3= [ (4) =21
(x):12x —30x+2:>f( ) 74

£ (x)=24x-30=> " (4) =66
f(x)=24
Therefore, power series of f'(x ) is
74 66 24

56+21(x— 4)+2—(x 4) + 3'(x 4)3+Z(x 4’

The power series in terms of x—4 is

f(x)=-56+21(x—4)+37(x—4) +11(x—4) +(x—4)’

Find the Taylor series of the function f(x)=e" at x, =2

f(x)=e":>f(0)=1
S'(x)=1"(x)=f"(x)= s (x) == [ (x) =€
=/(2)=/"(2)=/"(2)=1"(2)-.= " (2)=
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f(x)=e
SRR e ) Il L
o o (1o2)
:Z(; (n! )
Find the Maclaurin series of order n for the function f(x) :ﬁ.

ocl)err(ijvearti(\)/fe Derivative Value at x =0
1 -1
0 =—=(1- 1
f(x) == =(1-%)
1 f'(x):l(l—x)_2 1
2 f(x)=2-1(1-x)" 2:1=2!
3 fm(x)=3-2-1(1-x)" 3-2:1=3
4 Y (x)=4-3-2-1(1-x)" 4.3.2-1=4!
n f(")(x)zn-(n—1)...4-3-2-1(1—)6)_"_1 n-(n-1)..4-3-2-1=n!

2x% 31X 41x*
+ +

f(x)=1+x+ TR 2

f(x)=l+x+x"+X° +x* +..+x"
:Zxk
k=0
Example 3.17

n!x"

n!

Find the Maclaurin series of the function f(x) = (1 +x)m where meR.
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Solution

F(x)=(1+x) = 7 (0)=1

() =m(ex)" = £(0)=m
Fr(x)=mlm-1)(14x) = £7(0)=m(m-1)

£ =mlm-1)(m=2)(1+2)" = £7(0) = m(m-1)(m-2)

f(")(x)=m(m—1)(m—2)...(m—n+1)(1+x)m_n 3f(")(O)=m(m—1)(m—2)...(m—n+1)
Then,
f(x)=(1+x)"
:1+mx+m(m—l)x2 +m(m—1)(m—2)x3 +m(m—1)(m—2)(m—3)x4
! 3! 4!
m+m(m—l)(m—2)(m—3)...(m—n+l)x"

n!

+

+..

From which we can write;

1+x = +Z m 2)(m—3)-..(m—n+1)x"

n!
Example 3.18

Find the Maclaurin series for the function f(x) = 1n(1+x) )

f(x)=In(1+x)= f(0)=0
/(%) m=>f( )=1
[ (x)=

-1
(1+x)

= /1(0)=-1
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_ 2!
(1+x)

= f"(0)=2!

3

Thus, the required series is

X=Xt
p—rr n! 2 3 4 n

i(—l)"“(n—l)! \ ¥ ox X +(_1)n+1x"

Application activity 3.28

Determine the Taylor series for each of the following functions at given
value of a.

a) f(x)=x—x" ata=-2

b) f(x)%atpz

!
2
d) f(x)=sinx at az%

9 flx)=e™ata=

Taylor series by using Maclaurin series

Activity 3.6
1. Find the Maclaurin series for:

a) sinx b) cosx c) In(1+x)

2. From the resultsin 1) or otherwise, find Maclaurin series for
sin2x, cos2x and In(1+2x).

It is possible to find the Taylor series for other functions by using

Maclaurin series (xo = O) without necessarily using Taylor's formula.
These are some important Maclaurin series
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2 3 n

X X
1. ef=l+x+—+—+--+—+---
o3l n!
3 5 2n-1
2. sinx:x——+x—+---+(-1)"‘1 X .-
3! 5! (2n—1)'
2 4 2n
3. cosx:l—x—+x—+---+(_1)" * +ee
2! 4! (Zn)'

4. If —1<x<1,then

(1+2)' e =) w1 (m=2) o m{m=1)(m=2)-(m=n+1)
2!

3! n!

n

X +..

Particularly, if |x| <1, then we can write;

L:I—x+x2—x3+...+(—l)n X"+
1+x

2 3 _1 n=1 5,
Thus if —=1<x<1, then ln(1+x):x—x7+x?+...+()—x

Example 3.19

Find the Taylor series for;

+...
n

(i) f(x):ezx at x, =0 (ii)f(x)zlnx at x, =1

(i) Let 2x =t , and recall that t > 0 as x — 0. Using the series

for e*, we have

2 t3 n
e = =l —F—t. A —F...
2! 3! n!
2 3 n
2x 2x 2x
—1+2x+( ) +( ) + +( ) +..
3! n!
2 2n
=14+2x+—+—X ...+ X"+
! n!
Therefore,
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n

4 2
e’ =1+2x+2x2+§x3+---+—'x”+---
n

(ii) f(x)zlnx=1n(1+(x—1))
Llet x—1=¢,sincet—>0as x—1

Using the series 1n(1+x) for the above, we have

2

Inx=In(1+(x-1)) =In(1+1¢) =t_%+.__+(_1)n_1ﬁ+m

2 3 _ n-1 5,
(Since ln(1+x):x_x?+x?+m+( )" x

n

:(x—l)—(x_l)2 +...+(—1)"_1 (x=1) ...

rence, £ (x) =t =(e-1) -y

Application activity 3.29

1. Write down Taylor series for each of the following functions at the
given value of a.

b) f(x)= X ’xioatxoz
I, x=0
Siﬂ, #0

c) f(x)z X , X, =0
I, x=0

. TX
d) f(x):smT at Xo =2
2. Determine the Maclaurin series for each of the following functions:

a) f(x):coszx b) f(x):xze"
o) f(x)=v1-x° d) f(x)=1

X

e

—X
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3.3. Applications
Maclaurin series has several applications which include:

3.3.1. Calculation of limits

Activity 3.7

1—cos4x+ xsin3x
2

Suppose that we need to evaluate lim
x—0 X

1. Find the Maclaurin series of order 3 for cos4x and sin3x .

2. Replace the series obtained in 1) in the expression
1—cos4x+xsin3x

2
X

. 1—cos4x+xsin3x
lim

x—0 x2

and hence evaluate

The n” order Maclaurin polynomial can help us to evaluate limits of
some functions as illustrated in the following examples.

Example 3.20

.. sinx—Xx .. e ?—cosx
Calculate; (i) im——— (i) lm ———
x—0 X x—0 x sinx

3

. . . . X
(i) For n =3, the Maclaurin series of sinx is sinx =x—-—

2

Then,
x3
sin x — x X=X
lim~————= = lim—%
x—0 X x—0 X
3
X x3
i 6 . X 1
:11m—6 =lim 36 :—11m—3:——
x—0 x3 =0 x x>0 Gx 6

175




(i) Forn=4

2 3 4

e =t
21 31 4!
_Lz 2 _x2 3 _x2 4
£ e 2 2 2
e ? =1+ — + +
2 2! 3! 4!
x22 2 e e ¥
e ?=l-—+ - +
2 4.2! 8-3! 16-4!
x3
sinx=x——
6
2 x4
cosx=l-——+—
2 24
x2 x4 xé X8 .X'2 x4
i -+ - + -+
. e ?—cosx .. 2 4.2! 8-3! 16-4! 2 24
hm—3 ; =lim -
x—0 X sinx x—0 3( X j
x| x——

x x* x° x® N x* x!

I-——+ e "
—lim—2 4-2! 8-3! 16-4! 2 24

x—0 x3 x_i
6

4 6 8 4 1 ¥ X 1
x X X X x4£—+ _
=lim

S 43 384 24 8§ 48 384 24

=lim
x—0 3 x—0 2
o x— X xH 1= X
6 6

1_£+ 1
_im 348 384 24 1 1 _3-1_ 1
2
0 X 8 24 24 12
6
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Application activity 3.30

Using Maclaurin series, evaluate:

L lim(—ln(Hf )_x] 2 lim(—_x”anx)

x—0 sin” x =0\ X—sinx

. e —-1—-x . (1 1
3. lim———— 4. lim| ————
x—0 X =0\ x Sin x

3.3.2. Estimation of the number e

Activity 3.8

In Maclaurin series of order n for e, replace x with 1 and hence
estimate the value of number e to 8 decimal places.

By putting x =1 in the development of e, we can easily estimate the value
of the number e to desired decimal places.

Estimate the value of number e to 3 decimal places.

1 1 1
In series e=1+1+—+—+—+...4+ —, the general term
21 31 41 n!

is i Since we need number e to 3 decimal places,
n!
we need to find the smallest value of n first such that

1

(n+1)!

Here, n=6 since 1<0.001(7!)<1<5.04

<0.001 or 1<0.001(n+1)!

Then,

I 1 1 1 1
exl+l+—+—+—+—+—

21 31 41 51 6!
~2+0.5+0.167+0.042+0.008+0.001

~2.718
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Estimate the value of number e to 5 decimal places.

: 1
In series e=14+1+—+—+—+...4+—, the general term is —.
21 31 41 ! n!

Since we need number e to 5 decimal places,

we need first to find the smallest value of n such that

1
(n+1)!
Here, n =8 since 1< 0.00001(9!)<:> 1<3.6288
Then,

<0.00001 or 1< 0.0000l(n +1)!.

1 1 1 1 1 1 1
exl+l+—+—F+—+—F+—+—+—

21 31 41 51 6! 7! 8!
~2+0.5+0.16667+0.04167+0.00833 +0.00139 +0.00019 + 0.00002

~2.71827

Application activity 3.31

Estimate the value of number e to:

1. 2 decimal places 2. 4 decimal places

3. 6 decimal places 4. 10 decimal places

3.3.3. Estimation of the number =

Activity 3.9
1. Find the Maclaurin series for arctan x .

2. Solve tanx=—3, 0<x<Z.
3 2

178




From activity 3.9,

3 5 7 2n+1
x X "

arctanx = x——+——"—+..+(-1)"
3 5 7

T 3
Also, — = arctan —
6 3

NG

Then by setting 5 in (1) we have;

L (5 L) )

6 3 3 5 7 2n+1
Or
(ﬂ (ﬂ (ﬂ (ﬂ
3 3 3 3
7z:6£—6 +6 -6 +ot (1) 6——+
3 3 5 7 2n+1

Estimate the value of number 7 to 2 decimal places.

 Solution
[ ﬁ}
1y 6L

3 5] [
ﬂ=6i§—6 . +6 . -6 .
3 2n+1

3 5 7

ﬁ 2n+1
NED

2n+1

+...+

The general term is (—1)"

We need 7 such that

2(n+1)+1 2n+3
S5
3 3 | |
<0.01 since we need two decimal places.

2(n+1)+1 2n+3
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=0.003<0.01

Here, n =2 since

Then,

5
3
6 =3.46-0.38+0.07
=3.15

Application activity 3.32

Estimate the value of number e to:

1. 3 decimal places 2. 5 decimal places

3. 7 decimal places 4. 9 decimal places

3.3.4. Estimation of trigonometric number of an angle

Activity 3.10
1. Find the Maclaurin series of order n for sinx.

. T . . . T
2. Byletting x=— in 1), estimate the value of sz to

4 decimal places.

X being expressed in radians, we can approximate the value of any
trigonometric number using the series of trigonometric functions.

Example 3.24

. T .
Estimate the value of cosg to 3 decimal places.

: ) ) ) T
We first need to obtain Maclaurin series for f(x) =cosx where x=_.
6

The Maclaurin series of order n for f(x)=cosx:
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f(x)=cosx = f£(0)=1
f'(x)=-sinx = 1'(0)=0
f"(x)=—cosx = f"(0)=-1
f"(x)=sinx = £(0)=0
Y (x)=cosx = f¥(0)=1

2 3 4 2n
cosx=14 28 X 0% X +(-1)" al
12t 31 4l (2n)!
Or
2 4 2n
cosx=1-2—+>+ +(-1)" ol
4! (2n)!
/4
Putting x—g we have
2n
@, .,
B 6 n\ 6
COS__ 2! et D) (2n)!

,,(’;J“

(2n)!

cos£ to 3 decimal places, we need the value of n such that
6

(ﬂ' jZ(nH)
6 <0.001

(2(n+1))!

. Since we need the value of

The general term is (1)

( )2(2+1)
Here, n=2 because 297 _0.00002 < 0.001

2(2+1))!
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Thus,

2 4

& )

cosZax1-200 N6 1 013740.003 ~0.866
6 21 4

Application activity 3.33

Using Maclaurin series, estimate:

1. The number sin1’ to 6 decimal places.

.2
2. The number smTﬂ to 3 decimal places.

vs

The number c0s65° to 4 decimal places.

B

The number cos(—1350) to 5 decimal places.

3.3.5. Estimation of an irrational number

Activity 3.11

Suppose that we need to estimate the value of V2 to 6 decimal
places.

1. Write down the squares of natural numbers (as we need square
root).

2. Multiply eachterminthe obtained sequencein 1) by the radicand
(here radicand is 2).

3. Take two numbers from sequence in 1) and another
from sequence in 2) such that their ratio is close to 1.

4. Using the obtained numbers from 3), transform the radicand so
that it differs a little from 1.

Using the Maclaurin series of (1+x)m, we can estimate any irrational

number like \/5, \/5, i/g,

Estimate the value of V2 to 6 decimal places.
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From activity 3.11, we can take the numbers 49 and 50. Note that when
extending the series, we can find other numbers such that their ratio is
closed to 1.

Then,

e \/2;5222;9_7\/2@5 \/7 F ( J

Now, recall that the Maclaurin series of (1+x)" is

S U CRIICE (R MR

, 1
Putting x=— and m =
49

brls) (Gl
——n+l|| — ——n|l——
The general term is 2 49 - 2 49

n! n!
Since we need the value of v/2 to 6 decimal places, we need the value of
n such that

n+l
)
<0.000001

(n+1)!

4
e,
=0.00000002 < 0.000001

Here, n =3 because

Then,
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T5049) s T 21 3]

aetprtl ol sla] sl

~ %(1 +0.010204 —-0.000052 + 0.000005) ~1.4142198

Example 3.26

Estimate the value of ¥/5 to 2 decimal places.

In this case, write down cube of natural numbers starting from 1 as below:

1;8;27; 64;125; 216; ... (1)

Now, multiplying each term in sequence by 5 we obtain:
5; 40; 135; 320; 625; 1080; ... (2)

Taking two numbers from sequences (1) and (2) such that their ratio is
closeto 1i.e. 125 and 135

Then,
\/— /5><27><125 /5><2 f 10
27x125 125 12
:E I+— 10 :§(1+ij3
3 125 3 25

. . . m .
Now, using Maclaurin series for (1+x)" i.e.

(1+x)"= +z (m=2)(m=3)..(m=n+1)x"

n!

1
Putting x:zi5 and m =— we have;

(l+ij;=1+§i(;‘ljﬁ—2)@—3j...(;_n+lj@jn

25 o n!




) G)E)
——n+l|| — ——nl|l —
The general term is 3 25) _\3 25

n! n!

Since we need the value of é/g to 2 decimal places, we need the value of
n such that

(-]

(n+1)!

<0.01

2
)
3 ‘ —0.002<0.01

Here, n=1 because

Then,

1( 2
1
%z§(1+i)3z§ 1+3(25j
3

1!

z§(1+0.03)z1.71

Application activity 3.34

Estimate:

1. \/5 to 3 decimal places.
2 \/g to 4 decimal places.
3. %/E to 6 decimal places.
4 %/Z to 6 decimal places.
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3.3.6. Estimation of natural logarithm of a number

Activity 3.12

1.  Find the Maclaurin series of order n for ln(1+x) )

2. In the result obtained in 1), replace x with —Xx to obtain the
expansion series for ln(l—x).

3. Subtract the result obtained in 2) from the result obtained in 1) to

1+
find the expansion for In—2"

l-x
Remember that Inx—Iny = n2

From activity 3.12,

3 5 2n+l1 0 2n+1
lnH—x=2 PRI :22 d
1—x 3 5 o 2n+1

This relation helps us to estimate In of any positive number.

Example 3.27

Estimate: (i) In2 to 4 decimal places.

(i) In6 to 3 decimal places.

(i)LetlnH—x=1n2<:>1+—x:2:>x:l
1-x 1-x 3
Then,
RGO
In2=2 l+3—+3—+...+ 3 s
3 5 2n+1

1 2n+l
(3) . Since we need the value of
2n+1

The general term is
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In2 to 4 decimal places, we need the value of n such that

( 1 JZ(n+l)+l
N3 <0.0001

2(n+1)+1

1

( j2(2+1)+1
Thus, n =2 because 3 =0.00006 < 0.0001
Then,

2(2+1)+1
1 1

6).6)
n2~2 %+3T+3? ~2(0.3333+0.0123+0.0008) ~ 0.6928

(i) Let lnl—i_—len6<:>1+—x=6:>x=é

1-x 1-x
Then,
(thﬂ
n6= 2 l+ + 7 +

(ST (Sjs
7 7
+...
3 3 5 2n+1

+

(5)2n+1
7 . Since we need the value of

2n+1
(IJZ(WA)H
A3 <0.001

2(n+1)+1

The general term is

In 6 to3decimal places,weneedthevalueofnsuchthat

5

( j2(2+1)+1
Thus, n =5 because AT =0.0009 < 0.001
2(2+1)+1
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Then,

N AGEGNERGNC)

3 5 7 9 11

~2(0.714+0.121+0.037+0.014 +0.005 + 0.002) ~ 1.786

Application activity 3.35

Using Maclaurin series, estimate:
1. In3 to 4 decimal places.

In 0.8 to 3 decimal places.

2
3. In7 to5 decimal places.
4. 1n0.2 to 2 decimal places.

3.3.7. Estimation of roots of equations

Activity 3.13

Consider the equation ln(l + x) +x=0

Find the second order Maclaurin polynomial of 1n(1+x) .
Put the result obtained in 1) in the given equation.

Solve for x in the new equation obtained in 2).

o WY =

Check if the value(s) of X obtained in 3) satisfies the given equation,
ln(l +x)+ x =0 and hence write down the solution set.

From activity 3.13, the n” order Maclaurin polynomial can help us to
estimate the roots of a given equation involving transcendental functions.

Example 3.28

Solve in R, the equation 1n(1—x)+ex =1
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Maclaurin polynomial of ln(l—x) is ln(l—x) =—X————-

2 3
. : . X
Maclaurin polynomial of e* is e* =1+x+7+—+...

Now,

2 3 2 3
In(1-x)+e* Sl x-Sl =1
2 3 2 6

3 3 A3, 3
@—%+1+%=1 @%ﬂ o -x'=0=x=0

Check if this is a root of the given equation:
LHS=In(1-0)+e" =(In1)+1=1 and RHS=1
Since LHS=RHS=1; x=0

Therefore, § = {0}

Application activity 3.36

Using Maclaurin polynomial, estimate the roots of the following
equationin R :

1. cosx—=2x>=0 2. x—e*=0

3. 1n(x2+3x+1):x 4. e —3x=-5
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1.

190

Generalities on series
Definitions

Afinite series is an expression of the form u, +u, +u, +...+u, orin

n
sigma notation Zuk ,
=1
where the index of summation, k, takes consecutive integer values

from the lower limit, 1, to the upper limit, 1. The terms u,,u,,u,...,u,

are called terms of the series and the term U, is the general term.

To obtain Zn:”n , the method of difference is

=10
usually used'i.e.

iun =f(l)—f(n+1) where u, =f(k)—f(k+1),
v]\C/T’ih f(k) some function of k.
Convergence and divergence of a series

Let {Sn} be the sequence of partial sums of the

+00
series Zuk . If the sequence {S,,} converges to a
k=l
limit S, then the series is said to converge and S'is called the sum of

~+00
the series. We denote this by writing S = Zuk :

=1
If the sequence of partial sums of a series diverges, then the series is
said to diverge. A divergent series has no sum.

Comparison test

Let Zan be a series with positive terms.

n=1

0
a) Zan converges if there exists a convergent series

n=1

an such that @, <b, forall n> N, where N is

n=1

some positive integer.

b) Zan diverges if there exists a divergent series

nzl

ch such that a, =2 ¢, forall n> N ,where N is

n=1



some positive integer.

Limit comparison test

If the series Zan and an are two series with
n=l1 n=1
. a,
positive terms, and lim— g finite, both
n—wo b
n
series converges or both diverges.

The ratio test

Let ZMn be a series with positive terms and let

n=1

. u
lim—L =L |, then:

n—>0 un
a) the series convergesif L <1,
b) the series divergesif L >1,

c) the series may or may not converge if L =1 (i.e., the test is
inconclusive).

The nth root test

Let Zun be a series with positive terms and let
p=
lim ¢/u, =L, then,

n—»0
a) the series convergesif L <1

b) the series divergesif L >1

c) thetestisinconclusiveif L=1.
Power series

Power series is like an infinite polynomial. It has the form
- n 2 n
Yoa,(x-c) =a,+a(x—c)+a,(x—c) +..+a,(x—c)" +...
n=0

Here ¢ is any real number and a series of this form is called a power
series centred at C.

Let f(x) = Zan (x—C)n be the function defined by
n=0
this power series. f&x) is only defined if the power series converges,
t

so we will consider the’"domain of the function { to be the set of X
values for which the series converges. There are three possible cases:
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»  ThepowerseriesconvergesatX = C.Heretheradiusof convergence
is zero.

» The power series converges for all X, ie ]—oo,+oo[.
Here, the radius of convergence is infinity.

»  Thereisanumber R called the radius of convergence such
that the series converges forall c— R < x <c+ R and the series
diverges outside this interval.

3. Taylor and Maclaurin series

If fix) is a function defined on the open interval (a, b),
and which can be differentiated (n S 1) times on

(a, b), then the equality

0 (n)
(x)= Z %(x —X)" +R,,,0

for any values of x and x, in (a, b) is called Taylor’s formula.
R

The resulting function (without R, _ | (x) ) is called the Taylor expansion of
fix) with respect to x about the point x = x, of order n.

- (x) is called the remainder function.

One of the most common forms of the remainder function is the Lagrange
form:

_M (n+1) B
R, (x)= 11Dl S (x +0(x—x,))

where 0 <0 <1.

If lim R, (x)=0 forsome terms,then the

infinite series

f(”)( Xo)

fx)= f(X)+Z (x—2x,)"

is called the Taylor series for 7(y).

A Maclaurin series is a Taylor series with x, =0 .
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Note that if /(%) is a polynomial of degree n, then it will have utmost
only n non-zero derivatives; all other higher-order derivatives will be
identically equal to zero.

The following series are very important. All of them are Maclaurin series

Xy = =0 and, itis possible to find the Taylor series for other functions by
usmg these formulae without necessarily using Taylor's formula.
2 3 n

b = A At

3 5 2n—1

b) sinx=x—2 4 4ot (=1)y" +e
3t 5! =1 2n—1)!

) x2 4 2n

) cosx=l-—t 4ot
21 4 = (2n)!

d) If-1< x <, then

m(m—l) 5 m(m—l)(m—2)x3

(1+x)" =1+mx+ X+ oo

2! 3!
+m(m—1)(m—2)...(m—n+1)x" o

n!
Particularly, if |x| <1, then
L=1—x+x2—x3+...+(—1)"x”+...
1+x
2 3 _ n-1 _,

If —1<x<1,then 1n(1+x):x—x?+x?+...+(l)Tx+..
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End of unit assessment

1. In questions a-e, sum the given series:

n n

a) Zr(r+4) b) Z:(r+2)3

r=1 r=1

c) Z ! d) ir(2+r)

r+3 r+6) pry

& 1
= ,Z:;r(r+1)(r+2)

2. In questions a-c find the rational number represented by the
repeating decimal.

a) 0.235 b) 0.50 ) 0011

3. In questions a-f, determine both the radius of convergence and the
interval of convergence.

a Z - b) Zn3x"
n=0 4 n=1
0 xn 0 nzxn
) L < Z(; 2"
= xn - n+l (zx)”
— f -1
O3S DN

4.  Write down the first 4 terms of the Taylor series for the following
functions:

a) Inxcentredatg=1

b) — centredata =1
x

. VA
c) SInx centred atg = Z

5. Determine the first three terms of the Taylor series for the function

. 1
sin rx centred at ¢ = —. Use your answer

(7T 7
to find an approximate value to Sln(5+wj.
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10.

11.

12.

13.

14.

15.

16.

Determine the Taylor series for the function x* +x—2 centred at
a=1

Obtain the Taylor series for (x—l)ex near x = |.

Write down the first three terms in the Maclaurin series for:

a) sinx b)) X _ o xe* d) 2 5
1= x2 1+x

Determine the Maclaurin series for ln(l + x) and hence that for

1+x
In—.

1—x
If function ln(] +x) is approximated by the first three terms of its
Maclaurin series, estimate the maximum value of X for which the

approximation agrees with the exact value to 3 decimal places.

By using a suitable Maclaurin series in the text, find the sum to infinity
of the following series:

~ e et e

a) T——+———+.. b) l——+———+
3t st 7! 2! 4! 6!

Determine the Maclaurin series for x SIn X.

The kinetic energy of a relativistic particle is given by K = (7/—1)m62
1

where 72—2. Here, m is the

v
==
c

constant mass of the particle, V its speed and ¢ is the constant

speed of light. Use the Maclaurin series for T to show that for
1 l1-x
v<ec, K= Emv2 i

Obtain the first three terms in the Maclaurin series for cos(sin x) .
1-cos(sinx)

Hence or otherwise, evaluate lim >

x—0
Determine the first three terms in the Maclaurin series for

x—sin(sinx)

sin(sinx). Hence or otherwise, find lim -

x—0 X

The equation e " =3x* has a root near x = (). By using a suitable

polynomial approximation to ¢ >, obtain an approximation to this
root.
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17.

18.

19.

20.

21.

22.

23.

24

Write down the Maclaurin series for the function f(x) = ln(1+x)
In(1+x)

. )
Determine the first 3 terms in the Maclaurin series for /1 —x + x>

and hence, obtain the series for f(x) =

Write down the Maclaurin series for the function - by using
partial fractions or otherwise. -

: . : : x+1 ,
Determine the Maclaurin series for the function ————— by first
finding the partial fraction x —5x+6

decomposition of the function.

Obtain the first three non-zero terms of the Maclaurin series for
2 . .
f(x) =¢ " sinx.Hence or otherwise,

- f(x)-x
evaluate 11m—3.

x—0 X
Determine the Maclaurin series for the functions ¢* and sin x, and
hence expand "™ up to the term in x*.

The Maclaurin series for e¢” converges for all z including the
case when z is a complex number. Using this fact, write down
the Maclaurin series for ¢ and hence prove Euler’s formula
€ =cos@+isin@. Also, deduce the extraordinary relation
e”"+1=0.

. Consider the infinite series Z(\3/n3 +1 —n).

n=1
a) Give the first three terms of the Maclaurin expansion of the

function f(x)=%1+x .

b) Use your result in a) to show that for a large n, the general term

o . 1
of the given infinite series behaves as —

n
c) Hence, show that the given infinite series converges.
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Integration

Introductory activity

Two groups of students were asked to calculate the area of a quadrilateral
field BCDA shown in the following figure:

f(Ey==

f

The first group calculated the difference of the area for two triangles EDA
and ECB

A = area(AEDA) —area(AECB), The second group with high critical
thinking skills used a function F(x) that was differentiated to find f(x)=x

(whichmeans F'(x) = f(x) andthe x-coordinate d of D and the x- coordinate
c of Cin the following way: 4, = F(d)—F(c).
1. Determine the area 4, found by the first group.
2. Discuss and determine the function F(x) used by the second group.
What is the name of F(x) if you relate it with f(x)?
3. Determine 4, he area found by the second group using F(x)

4.Compare “hand “. Discuss if it is possible to find the area bounded by

a function f(x), the x-axis and lines with equation x=x, and x=x,?
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Objectives

By the end of this unit, | will be able to:

e  Define the differential of a function.
* Interpret geometrically the differential of a function.
e List the differentiation formulae.

e  Clarify the relationship between derivative and anti-derivative of
a function.

e |llustrate the use of basic integration formulae.
e  Extend the concepts of indefinite integrals to definite integrals.

e Use integrals to find area of a plane surfaces, volume of a solid
of revolution and length of curved lines.

4.1. Differentials

Without using scientific calculator, determine;

. ) V4
a) approximately how much the value of sinx increases from Z to

3
%+0.006.

b) to 3 decimal places the value of Sin(%+0.006j.

If one quantity, say ¥, is a function of another quantity x, thatis, y = f(x)
, we sometimes want to know how a change in the value of X by anamount
Ax will affect the value of y.

Thevariationinxis Ax anditiscalledincrementofx whilethe corresponding

variation iny becomes Ay = f(x+Ax)— f(x).

The increment of y = f(x) is Ay= f(x+Ax)— f(x) . This can be found in
the other way.
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The exact change, Ay in ), is given by Ay=f(x+Ax)—f(x) as it is
shown in figure 4.1.

But if the change Ax is small, then we can get a good

approximation to Ay by using the fact that % is approximately the
derivative ? . Thus, we can write
X
Ay oW
A :—sz—Ax: ! X A.x
Y Ax dx 4 ( )

If we denote the change in x by dx instead of Ax, then the change, Ay
in ¥, is approximated by the differential 0y, thatis Ay=dy = f'(x)dx.

The differential of a function f(x) is the approximated increment of
that function when the variation in ¥ becomes very small. It is given by

dy = f'(x)dx .

Yy
L ERT N e — ’A’_
/() 2
K X }x+Ax

Figure 4.1. Change in the value of x andy

Example 4.1

Find the differential of f(x) =x*+1

f'(x) =2x
Then the differential of f(x) =x"+1is d[f(x)] = f'(x)dx = 2xdx
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o Notice

Whenever one makes an approximation, it is wise to try and estimate how
big the error might be.

e Relative changein x is AX

X

® Percentage changein X is IOOXE.

X
Example 4.2

By approximately what percentage does the area of a circle increase if the
radius increases by 2% ?

The area 4 of a circle is given in terms of the radius r by 4 = zr>

Now; Ad=056A~ Z—Aé'r =27ror
r

Dividing this approximation by 4 = zr*> gives an approximation that links
the relative changesin 4 and r:
A4 _6A 2mrér _ Or

=22
A A r? r

2 4

2
If 7 increases by 2% ,then dr=——r,so ﬂz Ix— —_1
100 A 100 100
Thus, 4 increases by approximately 4% .

Example 4.3

The deflection atthe centre of aroad of length /and diameter d supported

at its ends and loaded at the centre with a weight w varies as wli*d ™.
What is the percentage increase in the deflection corresponding to the
percentage increase in W,/ and d of 3,2 and 1 respectively?

Let the deflection of the road at the centre be D.

3
:>D:kv:1—l4
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Introducing natural logarithm on both sides of the expression we have;

3
lnDzlnkvc‘:,—l4
AD A Al Ad
—~InD=Ink+lnw+3In/-4Ind == =22 4320 429
D w / d
10022 Z1002% 1 31002 _4x10024
D w / d
=34+3x2—-4x1=5%
Application activity 4.1
1. Find the differential of:
2—x

a) f(x)=x2—3x b) f(x)
4 f(x)z%m

2. Find the percentage error in the area of a rectangle when an error of
+1 per centis made in measuring its length and breadth.

[
3. Theperiod T of asimple pendulumis T =27 |—.

:2+x

g
Find the maximum errorin T due to possible errors up to 1%

in/ and 2.5% in &.

4. The diameter and altitude of a can in the shape of a right circular
cylinder are measured as 40 cm and 64 cm respectively. The possible
error in each measurementis +5%. Find approximately the maximum
possible error in the computed value for the volume and the lateral
surface. Hence obtain the corresponding percentage error in each
case.
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4.2. Indefinite integrals
4.2.1. Definition
For each of the following functions, find function g(x) such that

g'(x)=1(x).

a) f(x)=3x by f(x)=x
0 ()= ) 1(x)=

An integral or an anti-derivative of function f'(x) is the function F (x)

whose derivative is equal to f(x) .Thus, we say F(x) is an anti-derivative
of f(x) and write

F'(x)=f(x).

The process of solving for anti-derivatives is called anti-differentiation
(or integration) which is the opposite operation of differentiation (process
of finding derivatives).

Example 4.4

The function F(x) =Inx is the primitive of f(x) zl since (ln x)' :l.
X X

1
Also, F(x)zlnx+5 is the primitive of f(x)=; since
1 1
| 5))=—+0=—-
(Inx+5) —+0=—

Recall that the derivative of a constant is zero.

1

Also, F(x):lnx—20 is the primitive of f(x)z— since
X
1 1
Inx-20)'=——0=—-
(Inx—20) . .

Thus, every correct integral of f'(x) has the form F(x)+c wherecisan
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arbitrary constant and F'(x) = f(x)

Example 4.5

The primitive function of f(x)zcosx is F(x):sinx+c since
F'(x)=(sinx+c)'=cosx.
Notation

The anti-derivative of f(x) called the indefinite integral of f(X) is
denoted by

jf(x)dx so that If(x)dx=F(x)+c
where

is the integral sign, f (X)dx is called the integrand, x is the variable

of integration, F'(X) =f(X), ¢ is the constant of integration as its
value is not known, unless we have further information.

Such integrals where we add an arbitrary constant to every correct result
are called indefinite integrals.

Example 4.6

dx
1+x2

Find I

§ﬁ

1
j —=arctanx+c. Indeed (arctanx+c)':
1+x 1+x

Example 4.7

Find dex

2 2 '
dexzx—+c. Indeed (x_+cJ —x
2 2
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Application activity 4.2

Find each of the following integrals:

1. I(4x—5)dx 2. _[

3. j(x3+x2+x)dx a

o

5. Ide

7. I(x2+1)(2x2—5)dx 8. j

9. I(x—2)3 dx

4.2.2. Properties of integrals

8

1. For f(x)=COSX, find the derivative of If(x)dx. Give your
observation.

2. For f(x) =sinx, find the integral of the differential of f(x) . Give
your observation.

3. For f(x) =3x, find J3xdx . Compare your result with 3dex :

4. For f(x):x3+3x—1 and g(x)=x2+2x+2,ﬁnd
If(x)dx+jg(x)dx and j[f(x)+g(x)]dx, Give your
observation.

5. Find dicos(2x+3).Deduce [[=sin(2x+3)]ax.
X

6. Hence, write down the formula that could be used to find

_[f(ax—lrb)dx, a,beR, a#0 when F(x) is the integral of
/().

From activity 4.3, we get the following important properties:

1. The derivative of the indefinite integral is equal to the function to be
integrated.
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L[ f(x)de=1 (%)

2. The integral of differential of a function is equal to the sum of that
function and an arbitrary constant.

J.df(x) :f(x)+c
3. Each constant function may be pulled out of integral sign.
ka(x)dx=kjf(x)dx

4. The indefinite integral of the algebraic sum of two functions is equal
to the algebraic sum of the indefinite integrals of those functions.

[/ (x)£g(x)]dr=[ £ (x)dc [g(x)dx
5 If F(x) is an indefinite integral of f(x) then, the integral

J.f(ax+b)dx:lF(ax+b)+c a,b,ceR,a#0
a

Example 4.8 w

Find jcos 3xdx

Icos 3xdx = lsin 3x+c¢

Bohion)
Find [ e*dx e dee Lo o
Find %jmdx %jﬁdx:m

ouion
Find Id\/x2+3 Id\/x2+3=\/x2+3+c
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Application activity 4.3

If If(x)dx=x2+2x+c, Ig(x)dx:x3—3x2—4x+k find:
1. 4] f(x)ax 2. %j[g(x)—qu

3. I[f(x)+3g(x)]dx 4. %I[Zf(x)—3g(x)]dx

4.3. Techniques of integration

4.3.1. Integration by substitution#

Consider the integral J.est'2 dx . By letting u =5x+2 and

differentiating u with respect to x, find this integral.

Integration by substitution is based on rule for differentiating composite
functions. The formula for integration by substitution is

[ £ (x)abe = [ £ (x(e))x'(¢)dt

Basic integrals of exponential functions

From the knowledge of differential calculus, we can give the following
results:

n+l

1. Ix”dx: al

+c,n#-1 2. _[e"dx:ex+c
n+l

P

3. Ia"dx=a +c

Ina

Example 4.12

Find Iezxdx
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Let t=2x, so dt:2dx:>dx:%dt

We have, Iezxdx = J.e’dt = %ez" +c

Example 4.13

INH

Find [ (2x+1)" dx

Let t=2x+1,s0 dt =2dx= dxzédt
We have,

5
[(2x+1)" dx =%jt4dt=%£%j+c =%(2x+1)5 e

Example 4.14

—
=
w
J—

lett=x—-1=x=t+]1,sodt=dx=dx=dt
We have,

x° = (Z‘+1)3
I(x_1)2d I £ d

3 2
" +3t +3t+1dt

t =f -
:J.(t+3+%+ti2jdt :jtdt+_|‘3dt+j%dt+j%2dt
2

2 —
:t—+3t+3ln|t|—t_l +c = (1) +3(x_1)+31n|x_1|_L+c
2 2 x-—
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Application activity 4.4
1. Evaluate;
3 2
a) I(e’“ —xe)dx b) Ix2€x dx c) j(e" +1) dx
1
Ie—dx e) Ie" cos(e")dx f) Ie“"szx sin 2x dx
x3
cos(Inx 3 L)
9) I#dx h) I(4x —12) x“dx
X
2. A particle moves in a straight line such that its velocity at time ¢
100z _
seconds is given by v=———=ms "
(t2 +1)
Find the distance travelled by the particle in the first two seconds of
motion.

4.2.2. Integration of rational functions

A function f(x) g( ) , where g (x) and h(x)+0 are
polynomials, is calleé’g)fgtlonal function. When integrating a rational function,
we need to check if there is a relationship between the numerator and the deriv-

ative of the denominator.
Basic integrals of rational functions

From the knowledge of differential calculus, we can give the following table
of results:

jldx=1n|x|+c 2. I dezzlarctan£+c
X a +x°  a a

dx 1 X
3. —j —— =—arccot—+c
a +x- a a
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Numerator can be expressedinterms of derivative ofthe denominator

From derivative of reciprocal functions and logarithmic derivative, find;

X 2x—1
" I(1_)52)2dx & j3x —3x+1

Since (lnu)':u— and (l) :—u—z,thus,
u u u

I dx Ilnu dx—lnu+candj dx——iﬁ-c

In activity 4.5, the following basic integration formulae are most helpful:

dx = arctanu +c

J‘%dlen|u|+c,_[Z—2'dx=—i+c and qu n

Example 4.15

Findj 2-3x° +l— 4 dx
x x*+1

2 2

I(2—3x2+l—x ) jdx j2dx I3x2dx+_[ dx — Ix4+1dx
X

—2Idx 3J‘ 2a’x+J‘—abc 4.[ )
x’

=2x-x’ +ln|x|—4arctanx+c

Example 4.16

x+1
x> +2x+3

Find J-
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Here, (x2 +2x+3)':2x+2:2(x+1)

We can write

1
S (2x+2) +2x+3
j—2x+1 de= (2= _j X2 )dx
X +2x+3 X +2x+3 X +2x+3

:%ln‘x2 +2x+3‘+c =InVx*+2x+3 +c
Example 4.17

—dx
Find J.x +2x+1

Here, x2+2x+1:(x+1)2. But (x+1)'=1

We can write

I ! dxzj.( ! )zdxzj.(x+1)'dx=—L+c

X +2x+1 x+1 x-|-1)2 x+1
Application activity 4.5
Evaluate:
AL NS 2 [
(x2+2x+3) (l—xz)
2
3. [—X 4 0 [— X
J.(2x3+5)2 * (xz+2x+5)3 g

Numerator being not expressible in terms of derivative of the
denominator

An improper rational fraction (where the degree of the numerator is
greater than or equal to the degree of the denominator) can be expressed
as a sum of simpler fractions (partial fractions) whose denominators are of

the form (ax+b)" and (ax2 +bx+c)n, n being a positive integer.
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Two cases arise:

Case 1: Degree of the numerator is greater than or equal to the
degree of the denominator

Recall that if quotient of the division

) ()
@ 29

Use long division to write the equivalent expression for

remainder is r(x),then,

1 2x+4 5 x> =3x+2
5x-3 x*+1

3 x*+1 4 X +2x—4
x—1 x> +2

Hence, deduce their anti-derivatives.

To integrate a rational function where the degree of numerator is greater
than or equal to the degree of denominator, we proceed by long division.

Example 4.18 Example 4.19

x2 . x+1

: d Find | ——dx
Find J.x+1 o x—1
x—1 1
S —
x+1 * x—1 x+1
2
XX —x+1
x+1
1 x+1:1+ 2
5 x—1 x—1
= =x—1+——
X+ x+1
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Then,

2

1
J.xx+1dx=J.(x—l+dex

= dex —de+_fﬁdx
2

=X——x+1n|x+1|+c
2

Then,

1 2
J'i—ildxzj‘(Hdex
=J‘dx+jﬁdx

:x+21n|x—1|+c

Application activity 4.6

Evaluate the following integrals:

X =2 x* -2 x*+1
-[x2+1 J‘xz+x—2 J.6x—9xz *
5 3 1
4. E s 5 (X g
J.x3—a3 * '[x2+7x+12

Case 2: Degree of the numerator is less than degree of the
denominator

In this case, we reduce the fraction in simple fractions. The first step is to

factorise the denominator.

In this case, the following situations my arise:

A. The denominator is factorised into linear factors

Lo,

Factorise completely the denominator and then decompose the

given fraction into partial fractions:

x—2
x> +2x
2
x> =1

1.

3.

2. 2;
X +3x+2

4 2x-3
X —x=2

Hence or otherwise, find their anti-derivatives.
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To each factor ax+b occurring once in the denominator
of a proper rational fraction, there is corresponding single

. ) A .
partial fraction of the form - where A is a constant to be
ax+b

found. But to each factor ax+b occurring ntimes in the denominator of a
proper rational fraction, there corresponds a sum of n partial fractions of
the form

4 4 A

n

— ..t =
ax+b (ax+b) (ax+b)

where A4, are constants to be found.

Example 4.20

Fin dj‘ x+3
x* —5x+4

We need to factorise x> —=5x+4.Thatis, x> —5x+4 = (x—4)(x-1)
Then,

x+3 x+3
dx = d
st I(x_4)(x_1) )

x+3 A B
(x—4)(x 1) X— 4 x—1

Let

x+3 :A(x—1)+B(x—4)
(x—4)(x-1) (x—4)(x-1)
< x+3=A(x-1)+B(x-4) < x+3=Ax— A+ Bx—4B

< x+3=(A+B)x—A—4B
A+B=1
~A-4B =3

—3B:4:>B:—§

<~
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And
7 —4
x+3 _ 3 +?
(x—4)(x—1) x—4 x-1
Now
7 4
J.zxidxz‘[ 3 +i dx
x —5x+4 x—4 x-1
7
:—I —— —dx ——ln|x 4|——1n|x 1|+c
xX— 4 x—1
:%1n‘(x—4)7 —%ln‘(x—1)4‘+c =In|? (x—4)7‘—ln 3 (x—l)4 +c
7
:1n3(x_4) +c

Example 4.21

><I\J
s
S

Since x? —4=(x—2)(x+2),
1 A B
(x—2)(x+2) X — 2 x+2

< 1=A(x+2)+B(x—-2)

Take x=—2,
1= A(-2+2)+B(-2-2)

<:>1=—4B:>B:_T1
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Take x=2,
I:A(2+2)+B(2—2)

<:>1:4A:>A:%

Lo

1
Then, — —_4 + 4
x—4 x-2 x+2

-1

jx_ —j 4 dx+j 4 S dx

1 1 _
=Zln|x—2|—zln|X+2|+C:ln\4/x—2—ln\4/x+2+c :ln4x 2+C
x+2

Alternative method

J- dx
x* -4
J- dx _J~ dx
x* -4
dx 1 xX—a
But =—1In +c
N J-xz—a2 2a |x+a
Then,
dx 1. [x— x—2
_[2 >=—1 +c=In} +c
-2 4 |x+2 x+2
Example 4.22
Fin dJ' 2x+2
X +2x+1

Since x2+2x+1:(x+1)2,

2x+2 _ 4 . B 2x+2  A(x+1)+B

= - & = — o 2x+2=A(x+1)+B
(x+1) x+1 (x+1) (x+1) (x+1)
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<:>2x+2:A(x+1)+B S 2x4+2=Ax+ A+ B

A=2
A+B=2=B=0

2x+2 2
Then, — =
x +2x+1 x+1
I 22x+2 dx:I 2 dx:21n|x+1|+c:ln(x+1)2+c:ln(x2+2x+1)+c
x°+2x+1 x+1

Alternative method

We see that (x2 +2x+1)' =2x+2
Then,

I Ix+2 _J. X +2x+1)
x*+2x+1 X2 +2x+1

Example 4.23

Fin dij 16x+1dx
8x*+16

Xt -8x? +16=(x-2) (x+2)’

dx:1n|x2+2x+1|+c

8x’ —16x+1 A B C D

(—2f(x+2) a2 (x-2) w42 (x+2)

&8 —16x+1=A(x=2)(x+2) +B(x+2) +C(x+2)(x=2) + D(x-2)’

&80 ~16v+1= A(x' +20" ~4x-8)+ B(x’ +4x+4)+ C(x' -2 ~4x+8)+ D(x’ - 4x-4)
& 8x’-16x+1=(A4+C)x’+(24+B-2C+D)x* +(-44+4B-4C—4D)x+(-84+4B+8C-4D)
A+C =8
2A+B-2C+D=0
—44+4B-4C—-4D=-16
—8A4+4B+8C+4D =1
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From which we get;

127 33 129 . 3l

3277160 3277 16
Thus,
127 33 129 31
J-8x3—16x+1 _J~ + L3216 |
x* —8x” +16 )2 x+2 (x+2)

_12_7 dx +£ dx +129-'- dx 31 dx
327x=-2 16 (x_2)2 32x+2 16 (x+2

127 1 129
31|_|_ (x—zj 5o bt ( j

1271 | —2|+1291n| | 31( 1 J ( j
16\ x+2

Application activity 4.7

Find:

1 [ 2 [
x =1 X +3x+2

x—3

3. — - dx 4, S —
I—x2+2x J.x2+2x+1

e J~23—xdx 6. J-8x —19x I
x —4x+4 3x° +4

B. The denominator is a quadratic factor

&)

Recall (in senior four) that, fora # 0,b,c € R,

p ( b jz b* —4ac
ax“ +bx+c=a|| x+— | — >
2a 4q
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Using this relation, transform denominator of each of the following
integrals and then integrate

(] J— 2 [ 3 -
x*+3x+2 X' —4x+4 X’ —6x+18
Consider the following :
* Ineachcase putu=x+—
2a

From activity 4.8, by taking the integral of the form .[ZL
ax” +bx+c
U If b2—4ac:(),theh
dx 1 dx
j 5 =— 7 andwe let u=x+—.
ax“+bx+c a ( b j 2a
x+—
2a
e If b*—4ac>0,then
J- dx _l dx
ax’ +bx+c a ( bjz b* —4dac
X+ |+
2a 4q
2
We let u =x+i, K :b# and use the standard
2a 4a
dx 1 x—k
integral | ———=—1In +d
d Ixz—kz 2% |x+k
e If b*—4ac<0,then,
_[ dx _l dx
ax’> +bx+c a ( b jz b* —4dac
Xt— | =
2a 44°
2
-4
We let u =x+i, —k* :b—zac and use the standard
2a 4q

integral i=larctan£+a’.
x4k ok k
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o Notice

e |If there are other factors, to each irreducible quadratic factor
ax’ +bx+c occurring once in the denominator of a proper fraction,

Ax+ B

there corresponds a single partial fraction of the form —
ax” +bx+c

where A and B are constants to be found.

e To each irreducible quadratic factor ax® +bx + coccurring n times in
the denominator of a proper fraction, there correspnds a sum of n
partial fractions of the form

Ax+B, N A,x+B, - Ax+B,
x' +bx+c (ax2+bx+c)2 (ax2+bx+c)

where A, and B, are constants to be found.

Example 4.24

Find Ix .

a=1,b=-1,c=1
A=(-1)"=4(1)(1)=-3<0

b 1
X+—=x——
2a 2
P IS N N
4a 4 4 2
1
j dx = ! arctanx_5+c—iarctan _ +
x—x+1 ﬁ ﬁ V3 V3
2 2
2 J3(2x-1)
= ——arctan +c
3 3
Example 4.25
3
Find I—dx
X +2xr+1
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x4+2x2+1=(x2+1)2
X :Ax+B+ Cx+D
(x2 +1)2 X’ +1 (x2 +1)2

= =(Ax+B)(x2+1)+Cx+D

S =Ax + Ax+Bx*+B+Cx+D
< X’ =A4Ax* +Bx* +(A+C)x+B+D

A=1 A=1

B=0 B=0

j—

A+C=0 |C=-1

B+D=0 D=0
Then,

X
J.x“+2x2+1a’x:'|.xz+1

+1)
1
2x 2 ' 2 '
_[ dx j 2( )dlej.(xz——kl)dx—lj(x——kl)zdx
x> +1 +1) 2¢ x"+1 2 (x2+1)
:lln| +1|+— +c=Invx+1+ L e
2 2 x* +1 2(x" +1)
Find j.x +2 dx

x3—1:(x—1)(x2+x+1)

x> +2 A Bx+C

(x—l)(x2+x+1) B x—1+x2+x+1

& x*+2=A(x" +x+1)+(Bx+C)(x-1)
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Take x=1,

3=34=4=1

Take x=0,

2= A(1)+C(-1)
&2=4-C&(C=4-2=C=-1

Take x=2,

6= 4(7)+(28+C)(1)

& 6=T4+2B+C < 2B=6-7T4+C=>B=0

Then,
2
x +2 dx dx dx
dx = + =nlx-1|-| —
J‘x3—1 J-x—l JAx2+x+1 | | jx2+x+1
We need to calculate J > d
x +x+1
a=b=c=1
A=1"-4=-3
1
X+—=x+—
2a 2
Let ké—%:ijk:ﬁ
4a” 4 2

1
J- dx | x+5 23 \/§(2x+1)+

m:farctanﬁ-l-c :Tarctan c
2 2
Hence,
2 3(2x+1
Jx3+2dx:1n|x_1|_&arctanw+c
X’ - 3 3
Example 4.27

. dx
Find j.6962 —5x+1
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a=6,b=-5,c=1
b*—4ac=25-24=1>0

b’ -4 1
Let u=x+i:x—i:>du:dx, k* = 2ac:
2a 12 4a 144
J' dx :l du _l du
6x° —5x+1 6 uz—i 6 oo iz
44 12
1
=l>< ! In 112 +c zln‘iu_i +c
6 2 x ‘u+ u
12 12
12 x—i -1
12 12x-5-1
:ln 3 +cC ZInﬁ—kc
12(x—j+1 oo
12
6(2x—1
=In —( X )+ =In 2x_1><g+c
4(3x-1) 3x-1" 4
2x—1 6
=In +In—+c¢
3x—1 4
=In 2x—1 +d since lné 1s another constant
3x—1 4
Application activity 4.8
Find:
1 X
1. .y 2. | ———dx
Ix2+x+2 o -[9x2+6x+2
2 —
3 J' 6x x—i2-5 I 4 J‘ X 42 d
(x-2)(2x* +1) (2x+1)(x* +2)
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4.3.3. Integration of trigonometric functions
Basic integrals of trigonometric functions

From the knowledge of differential calculus, we can give the following table
of results:

1. Isinxdx=—cosx+c 2. jcosxdx:sinx+c

3. Iseczxdxztanx+c 4. ~[csczxdx:—cotx+c

5. jtanxdx:—ln|cosx|+c 6. jcotxdx:1n|sinx|+c

7. Jsecxdx:1n|secx+tanx|+c 8. J.cscxdx:—ln|cscx+cotx|+c
9. jsecxtanxdx:secx+c 10.J.cscxcotxdx=—cscx+c

Integrals of the form Isin mx cos nxdx or Icos mx cos nxdx
or Isin mx sin nxdx ; m and n are constants

For each of the following functions, transform the product into sum and
hence find the integral If(x)dx.
1. f(x)=sin2xcosx 2. f(x)=sinxsin5x

3. f(x)=cos2xcos3x 4. f(x)=sinxsin3xsin4x

To evaluate the integral of the form Isin mx cos nxdx

or ICOS mx cos nxdx or Isin mxsin nxdx , we use the corresponding
identities:

: 1. .
sin Acos B :E[sm(A—B)+sm(A+B)]

sin Asin B =%[COS(A—B)—COS(A+B)]
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cos Acos B = %[cos(A—B)+cos(A+B)]

Example 4.28

Find Icos 3xsin Sxdx

ﬁ

cos3xsinSx = E[sin 8x —sin (—2x)} = %(sin 8x+sin 2x)
Then,

Icos 3xsin Sxdx = J.%(sin 8x +sin 2x) dx

1¢ . 1¢.
=— I sin 8xdx + —_[sm 2xdx

2 2
=l(—lc038xj+(—lc032xj :—icos8x—lC052x+c
20 8 2 16 4

Example 4.29

Find I sin x sin 2x sin 3xdx

) ) 1
sin xsin 2x = E(COS X —COS 3x)

. . . 1 )
sin xsin2xsin3x = E(COS X —CoS 3x) sin3x
1

(cosxsin3x —cos3xsin3x)

- l{l(sin 4x —sin (—2x)) - l(sin 6x —sin O)}
212 2

= lsin4x+lsin 2x—lsin 6x
4 4 4
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Then,

f sin x sin 2x sin 3xdx = l f sin 4xdx + l f sin 2xdx — l f sin 6xdx
4 4 4

:—Lcos4x—lcos2x+icos6x+c
16 8

Example 4.30

Find I cos’ x cos xdx

) 1+cos2x COS X +C0S2XCOS X
COS™ XCOSX =—————COSX =
2
1
cosx+5(cos3x+cosx) 1 1

= =—COSX+—C0S3Xx+—CoSx
2 2 4 4

3 1
=—CcosSx+—cos3x
4 4
Then,

Icosz xcosxa’x:%J.cosxdx+%_[cos3xdx :isinx+isin3x+c

Application activity 4.9

Find:

1. jsin 3xcos2xdx 2. Isin 2xcos3xdx
3. Isin 3xsin3xdx 4. jsinxcosxdx
5. Icos 3xcos3xdx 6. Icosxcos 7x dx
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Integrals of the form Isin’” xcos” xdx (m,neZ")
1. Byletting u =cosx, find Isinxcosz xdx

. 1
2. Use the identities sin® x = E(I—COS 2x) and

1 )
cos’ x = E(l +cos 2x) to find Ismz xcos® xdx

If m or nis odd, save one cosine factor (or one sine factor) and
use the relation cos® x =1-sin®x (or sin’> x =1—cos> x ). Then let

u =sin x = du = cos xdx (or let u =cos x = du = —sin xdx).
. . ) 1
If m and n are both even, we use the identities: sin” x = E(l—cos 2x) and

1
cos’ x = 5(1+COS 2x). It is sometimes helpful to use the identity

sinxcosx:ESin2x.

Example 4.31

Find jsin3 xcos” xdx

Isin3 xcos” xdx = _[sinz x cos” xsin xdx
= I(l —cos’ x) cos” xsin xdx

Let
U =cosx = du = —sin xdx

= sin xdx = —du
Then,
J.sinB x cos® xdx = I(l —uz)u2 (—du)

:—I(Lt2 —u4)du :—JuzdquIusa’u
3

u’ cos’x cos’
=—— 4—tc=— + +c
5 3 5
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Example 4.32

Find J.coss xdx

Icos5 xdx = jcos“ X cos xdx
) 2 .2 - 4
= I(l—sm x) cos xdx= J.(1—2s1n X +sin x)cosxdx
= _[cos xdx — 2J. sin? x cos xdx + J.sin4 X cos xdx
Let u =sin x = du = cos xdx
Then,

Icoss xdx = sin x — 2Iu2du + Iu“ cos xdx
3 5
) ) 2 .5 |
:smx—2—+?+c:smx—§sm x+§s1n xX+c

Example 4.33

Find Isin“ xcos® xdx

Both powers are even.
2
sin* xcos? x = [%(1 —cos 2x)j %(l +c0s 2x)
1 ) 1
:—(1—2cos2x+cos 2x)—(1+cost)
4 2
= é(l —2¢082x +cos* 2x + cos2x — 2 cos> 2x + cos’ 2x)
= l(l—cos 2x —cos’ 2x + cos’ 2x)
8
1 1 1
=3 1—cost—5(1+cos4x)+5(1+cos4x)0052x

_1 1—c052x—l—lcos4x+10052x+ (cos2x+cos6x)
8 2 2 2

o |~
N | —
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:l l—lcos2x—lcos4x+lcos2x+lcos6x
g8l2 2 2 4 4

:l l—lcos2x—lcos4x+lcos6x
g\2 4 2 4

=Lc0s6x—Lcos4x—Lcos2x+L
32 16 32 16

Then,
.4 5 1 1 1 1
Ism X COS xdx:—Icos6xdx——Icos4xdx——_[costdx+—fdx
32 16 32 16

=Lsin6x—isin4x—isin2x+i+c
192 64 64 16

Alternative method

. . . s 4 2
Linearise the expression SIn” xcos™ X :

4 5 eix _efix 4 eix +efix 2
sin” xcos” x = -
2i 2

e4ix _4e31‘c —ix +6621x —2ix 4elx -3ix +e—4ix +2elxe ix + e
16 4

B e4ix _4e2ix +6_4ef2ix +e4ix th +2+e 2ix
16 4

(661')6+2e4ix+62ix_4e4ix_862ix_4e()+662ix+12 J

+6e7 —4e” —8e " —4e™ e 4 2e e

" =26 e —4+12-¢7" —4 -2 +)

—_— —_— —_—
Q
o
=
+
Q
&
b
[\
A
.J>
Q =y
S
+ N
§<
~—
/—\
m
=
+
N
\_/
+
B
~——
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Then,

Jsin" xcos’ xdx = chos 6xdx — Ljcos Axdx — LJ.cos 2xdx + LJ‘dx
32 16 32 16

:ésin6x—isin4x—6l—4sin2x+%+c
Application activity 4.10
Find:
1. Icos3xsinxdx 2. Ism 2xcos2xdx
3. Isin3xdx 4. J.cos 4x dx
5. _[ sin’ x cos’ x dx 6. Icos 2xsin’ 2x dx

Integrals of the form J.tan’” xsec" xdx (m,neZ")

te)

1. Byletting u =tanx,find [tan’ xdx

2. By using the identity tan” x =sec’ x—1 and letting u =secx , find
j.tans xdx .

If the power of secant is even, save a factor of sec’ x and use the identity

sec’ x =1+tan’ x to express the remaining factors of secant in terms of
tan x and then use the substitution u =tanx.

If the power of tangent is odd, save a factor of secxtanx and use the

identity tan® x =sec’ x—1 to express the remaining factors of tangent in
terms of secx and then use the substitution u =secx .

Example 4.34

Find J.tan5 xsec’ xdx

4
I tan’ xsec’ xdx = J. tan® xsec’® xsec x tan xdx
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2
= J(secz x—l) sec® xsec x tan xdx
= I(sec“ x—2sec’ x+ l)sec6 xsec x tan xdx

= j(seclo x—2sec® x +sec’ x)secxtan xdx

Let u =secx = du = sec x tan xdx
Then,

Jtans xsec’ xdx = I(ulo -2u® +u6)du

Tl sec’' x 2sec’x sec’ x
=—-2—+—+c= - + +c
9 7

11 11 9 1

Example 4.35

Find Itan“ xdx

Let
du
u:tanx:>du:seczxdx:(1+tan2x)dx:(1+u2)du:>dx: >
l+u
Then,
du u’
tan” xdx = | u* = du
I I 1+u? J.1+u2
4
. u 1
By long division; =u’ -1+
1+u’ 1+u’
u' u’
I—zd :juzdu—jdu+j ~du=——u+arctanu +c
I+u 1+u
Hence,
. tan’ x tan’ x
Itan xdx = —tanx+arctan(tanx)+c: 3 —tanx+x+c

Example 4.36

Find J.tan3 xdx
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Let u =secx

= du =sec x tan xdx

dy du _du

secxtanx wutanx

jtan3 xdx = J.tan2 xtan xdx = j(secz x—l)tanxdx
:j(zt2 —l)tanxutanx

:J.(ﬁ—l}iu =Iudu— du :lu2—1n|u|+c
u 2

u u

:lsec2 x—1n|secx|+c
2

Application activity 4.11

Find;

1, Isec2 x tan x dx 2. Isecxtanz x dx
3. Isec3 x tan x dx 4. Isec3 xtan® xdx
5. Isecz xtan® x dx 6. Isec“ xtan® x dx

Integrals containing sin x,cosx,tan x on denominator

Recall (in senior 5) that:

X X X
2tan = 1—tan? 2tan =
sin x = — COS X = tan x = —2x
1+tan?= 1+ tan® = l—tan® =
2 2
dx
By using these identities, find I ;
sinx+cosx+1

X X
Hint: Using substitution; u = tanE = arctanu = —
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From activity 4.12, forintegral containing sin x, cos x, tan x on denominator,
we use identities;

X X
2tan — l—tan* = 2tan —
sin x = 2 , COsSXx = i,tanx—
1+tan® = 1+tan25 l-—tan*=
X X
and we let u = tanE:> arctan u 25

Example 4.37

dx

sin x

Find I

2tan = | l+tan® =
sinx = = —=
1+ tan’ SINX Dtan =
I l+tan* =
AﬂdJ. - dx
sin x 2 tan >
Let
X X du dx 2du
U =tan— = arctanuy = — = s=—= Z:dx
1+u 2 1+u
, X
I+tan 2 1+u® 2du  du
—a’xzj >= —:1n|u|+c
2 tan > 2u 1+u u
2
Hence,
dx X
——=In{tan—|+c¢
sin x 2
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Example 4.38

dx
sinx+cosx+2

2tan£ l—tam2£ 2‘[an£+l—tan2£+2+2tanzf
sinx+cosx+2= 2x+ x+2: 2 2x 2
l+tan*=  1+tan’ = 1+tan* =
2 2 2

Find I

2tan >+ tan® > +3
2 2

x
1+tan*=

X
dx 1+tan” —

I ; = dx
sinx+cosx+2 2tan)2€+tan2;+3

Let

X X
uztanE:arctanu:E: =—=dx=

X
1+ tan® =

i :J- 1+u’ 2du _[ du

2 X 2 2
2tan;+tan2;+3 ut+u”+3 1+u ur+2u+3

= I ! arctanﬁ(u+1)+c:\/Earctanﬁitan£+lj+c
u+1 \/5 2 2 2

Thus,

I - dx = 2arctan£ tan£+1 +c
siInx+cosx+2 2 2
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Application activity 4.12

Find the following integrals:

1. j$ 2, IL
2+CcoSx 3-2sinx
dx dx
_— 4. -
-[2+sin2x I5—3cosx
5 j- dx. 6. I dx
3cosx+4sinx+6 3cosx—4sinx+5

Integrals containing sin” x,cos” x on denominator

)

. 1
Express cosx and sinx interms of tan x, hence integrate I ——dx
Cos” x
. . tan x
Hint: cosx = and sinx =
secx S

Letting u = tanx = x = arctanu

From activity 4.13, for integral containing sin” x, cos’ x on denominator,
tan x

1 :
we use the identities COSX = ————= and SINX = ————
\1+tan? x \I1+tan? x

and we let u =tanx = x = arctanu

Example 4.39

dx 1+tan” x
I — :f 5 dx
sin” x tan” x
du
Let u =tanx = x = arctanu and dle 5
+u
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J‘ dx J‘1+u2 du _ @ :J'u'du

sinx ¢ u? 1+4’ u’ u’

1 1
=——+C=———+c=-Cotx+c

u tan x

Example 4.40

dx
FindI —
sin” x

J. dx J. (1 +tan’ x)2 dx

sin® x tan® x

du
1+u

Let u =tanx = x = arctanu and dx =

2

=7 =4 _zdu =Iu_4du+ju_2du

u* u’ u’

u? u 1 1 1 1
=—+—+4Cc =——5——4C =T +c
-3 -1 3uw u 3tan’ x tanx

cot’ x

=— —cotx+c
3

Application activity 4.13

Find the following indefinite integrals:

1 1 1 1
1) d 2) dx 3) dx 4) dx
J.cos“x * J.cos6 X * J‘sin‘sx * J‘cosg x

o Notice

Sometimes it is useful to use trigonometric identities and then use standard
integrals.
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Example 4.41

2
Find J(sinﬁ +Cos fj dx

[\
™o
[\

I sinX+cos ™ dx:I sin? X + 2sin X cos X +cos? X |dx
2 2 2 2 2 2
:I(Sin2£+2sin£cos£+cos2ijdx :J.(1+2sin£cos£jdx
2 2 2 2 2 2
:J.dx+.|'2sin£cos£dx since 2sin£cos£:sin2£:sinx
2 2 2 2

:jdx+jsinxdx:x—cosx+c

Example 4.42

Find _[tanz xdx

Nﬁ

sin” x 1—cos® x
Itanz xdx:j- > dx =I—2dx
cos” x Ccos” x
1 cos’ x
:_[ > dx—J —=tanx-x+c
COS™ X CoS” X

4.3.4. Integration of irrational functions
Standard integrals of irrational functions

From the knowledge of differential calculus, we can write;

X
.|. = arcsm +cC
\ a - x

1.

2. —I —arccos£+c
\/a —x?

3. I :larcsecx+c
x\/x

4.

1 X
I ——arccsc +c
xxt—a®
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Integrals containing ¢ax+b, a#0

L

3L

.

Ny

By letting u” =3x—1, find I\/3x—1dx

When finding integral containing {ax+b, a#0.welet 4" =ax+b.

Example 4.43

Find j 33x+1dx

let u’ =3x+1=>u=33x+1

= 3u’du = 3dx < udu = dx

I\3/3x+1dx=juu2du
4 3 3
=Ju3du :u4 te _uu _(3x+1)\/3x+1

= T+C = +c
Example 4.44

4
xZ

V2x+1

let u’ =2x+1=u=~2x+1

2

dx

Find J‘

= x= —1 = dx =udu

u’ -1 ’
J‘( 2 judu :J‘u4—2u2+1

u

Ix—zdx:
N2x+1

u’ u’ du wouw o ou
:j—du—j—du+ — =———+—+4cC
4 2 4
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20 6 4
(J2x+1)4 J2x+1 (\/2x+1)2 Vx+1 fora]
20 - 6 + +c

4
(4x” +4x+1)v2x+1 (2x+1)«/2x+1+‘/—2x+1+
= C

20 6 4

2 —_— —
:m[lbc +12x+36020x 10+15j+c

(Vzxe1)  (Vax+1) R

2 2
:4I2x+1 M +c =2x+1 M +c

Application activity 4.14

Find:

1. j\/6x+3dx 2. J.,/(Sx—2)3 dx
1 1

3. J.de 4. Imdx

5. I\/2x+ Sdx 6. I\3/3x —8dx

dx 8

4 2
7. Im . j—mdx

Integrals containing vax’ +bx+c, a#0

\8

Recall (in senior four) that, for a #0,b,c € R,
> bY b*—dac
ax"+bx+c=al| x+— | — >
2a 4a

Using this relation, transform denominator of each of the following
integrals and then integrate

1. jL % IL 3, IL
\/x2—2x+] «/x2_5x+6 \/x2—6x+18
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Recall (in senior four) that, for a #0,b,c € R,

> bY b*—dac
ax“ +bx+c=a|| x+— -
2a 4a

Using this relation, transform denominator of each of the following
integrals and then integrate

1. IL 2. IL 3. IL
\/xz—z_x—l—l «[x2_5x+6 Vx2—6x+18
Consider the following:

e |neachcase letu=x+—
2a

® Use, where necessary, the formulae

u dx
J;du:1n|u|+d and J‘mzln|x+\/xzik2

+d Where d is

constant.
From activity 4.15, for the integral of the

dx
Nax? +bx+c

e If b>—4ac=0,then

form I ifa>0

j' dx = II dx andweletu:x+i
Jax’ +bx+c a x+£ 2a
2a
e If b2 —4dac>0,then
J‘ dx 1 j‘ dx
Nax* +bx+c Ja ( bT b* —4ac
X+— | +—5—
2a 4a
b* —4dac

b
Weletu=x+—, k* = >
2a 4a

zln‘x+\/x2ik2 +d

and use the integral

dx
I
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e If B*—4dac<0,then

J- dx _ 1 J- dx
Nax* +bx+c Ja ( sz b* —4ac
X+— | ——
2a 4a’
_b2—4ac

b
Welet u=x+—, k’ =
a 4a

:ln‘x+\/x2ik2 +d

-— and use the integral

J‘ dx
VXt kP

dx
Find | —
" J’\/x2+2x—15

b*—4 64
u:x+i=x+1:>du=dx,k2= Zac:_:16
2a 4q 4
J~ dx :J- du
\/x2+2x—15 \/uz—k2
=Inlu+vu’-k*|+c =Ihlx+1+ (x+1)2—16 +c

=In

x+1++/x? +2x—15‘+c
Example 4.46

Find I

dx
N2x +x+1
_b2—4ac 7

u:x+i=x+l:>du:dx,k2= > —
2a 4 4a 16
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dx 1 du 1 S —
— — 1 2 k2‘
'[ 2x" +x+1 \/EJ‘ u' +k’ V2 SR

x+%+\/x2+2x+1
0 Notice

Sometimes, we will need trigonometric substitution and we can change
back to the original variable afterwards.

e  Forintegral containing VA — x*, we put

x=ksin@ = dx=kcos@dO

:Lln

V2

+cC

x:ksin9:>sin(9:%

From the definition of trigonometric ratios, we
construct a right angle triangle whose opposite
side to angled @ is x and hypotenuse is k . k

X
From Pythagoras rule, the adjacent side will be
[12 .2
ke—x". 9
N
Xx=ksin@
Vk* = x* =k|cos 6|

For integral containing v/x* +k* ,weput x =ktanf = dx =k sec’ 6d0

x=ktan0 = tan6?=i

From the definition of trigonometric
ratios, we construct a right angled
triangle whose opposite side to angle m X
@ is x and adjacent side is k. From
Pythagoras rule, the hypotenuse side

. [0
will be \/x2+k2. %
x=ktan@
VX +k* =klsecd)

e Forintegral containing \/xz —k?*, we put

x=ksecl = dx=ktanOsecddob

x:ksecH:se00=%
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From the definition of trigonometric ratios, we construct a right angled
triangle whose hypothenuse side to angle @ is X and adjacentside is k.

From Pythagoras rule, the opposite side will be \/x? — 2.

NE

k
x=ksecO

Vx® —k* =k|tan 6]
Example 4.47
ln‘x+\/x2 +a’

+k, k 1s aconstant

dx
ShOW that IW =

Let x=atan@ = dx =asec* 6d0O

J' _J~ asec’0d0o :J.M
\/x +a’ \/a tan’ @ + a* av'tan’ 0 +1
sec’0do
—j ocd :jsecﬁdﬁ

=InlsecO+tan6|+c [ from standard integrals|

Recall that we made the substitution x =atan @
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From the left triangle,

Ja® +x?

X
tan@d =—, secl =

Hypotenuse = /4% + x? X a a
Then,
0 dx NJat+xr x
a j =In +—|+c
Nx*+a’ a a
Va* +x* +x
=In——|+c
a
1 1
=In—Wa*+x* +x|+c =hNa®+x* +x]+In—+c
a a

=In

Ja* +x? +x‘+k

Therefore, I +k

—dx =ln‘x+\/x2+a2
Vxt+a?

Example 4.48
Find J.x3\/x2 —4 dx

Let x=2secld = dx =2tanO@secOd O

Ix3\/x2 —4a’x:J‘88e:c3 OV4sec’ @ —4(2tanFsecHddo)
= J‘32sec3 Osec’ O —1(tanOsecHdo)

= 32_[ sec’ @ tan O (tan @sec 6 dO)

= 32_[ sec’ Otan’ OsecHdo

- 32I sec’ @tan’ 0d0O
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= 32.[ sec’ @sec’ Otan” 0 d6O

= 3S2J.sec2 9(1+ tan” Q)tan2 0do

= 32J‘(tan2 Osec’ O+ tan” Osec’ 49)d6’

= 32_[ tan’ @sec’ 49d¢9+32_[ tan* Osec’ 0 dO

Let u = tan @ = du = sec” 0d 0

32_[ tan” @ sec’ (9d(9+32jtan4 Osec’ 0d6 = 32Iu2du +32Ju4du

320 32u°
= +
3
32tan’ @ 32tan’ @
== + ; +c

+c

Since we made the substitution x:2sec9:>cos0=g
X

From the left triangle,

2 2 2
tan@z\/x —2 :\/x —4

> x> =27 2 2
0
2
Then,
3 5
32tan’ @ 32tan’ O 32(“x2_4) 32( x2—4)
+ = +
3 5 3x8 5x32
4(x*—aWxr -4 (P -4) V-4
4 e
3 5
(- a) e —a| 22
3 5
2
(-4 -4 20437 -12
15
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(¢ ~4)Vx* -4 (32> +8) (3x' 427 ~32)x’ 4

15 15

3xt—4x? =32)Wx* -4
Therefore, Ix3Vx2—4dx:( i i ) ! +c

15
Example 4.49
Find j\/az — x> dx

Let x=asin@ = dx =acos0d0
[Va* - x* dx = [Va’ —a’sin® 0 (acos 0d0) = [ av1-sin’ 0 (acos 0 dO)

= azj.cosé’cosé’dﬁ :azj.coszﬁ do

2

:a—j(c0s20+1)d9, cos’ H:M
2 2
2 : 2 .
:%(51n220+9j+c :%(2s1n2c0s0+9j+c
2

:%(sin0c0s0+¢9)+c

) ) X
But x=asind = sinf =—

a
From the left triangle,
2 2
— ) X X
cosf = , Sinf = — = @ = arcsin —
a . a a a
Then,
2
a , .
5 I\/az—xz dx:7(sm€cosé?+6’)+c

a —x a’| xva*=x* X
=—|= +arcsin= |+c¢
2| a a a
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2
a 2

X [2_ 2 X X [ 5. a . X
:?[? a —Xx +arcsm—}+c =5 a’—x? +?ar051n_+c

a a
o Notice

For integrals of the form I

dx
—— a<0,weuse
Jax? +bx+c

the result J.\/i = arcsm al +d
—u
Example 4.50

Find IL
V=x"+x-1
J dx

V=x?—x+1
Here,

—xz—x+1:—(x2+x—1)

Al
SANOR G

1
Let u=x+5:>du=dx

2
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. dx .X
Using the result I— = arcsmEer ,we have
2

.u
=arcsin—+d

NG

2
2(x+;j 2rtl
+d :arcsinx—++d

=arcsin————=%
NG J5

Application activity 4.15

Find;
1 I dx 5 _[ dx
‘ Nx2+2x+5 ‘ N4-2x—-x*
dx dx
> '[\/x2+4x+2 * J.\/636—362—5
5. J.,/x(l—x)dx

4.3.5. Integration by parts

Let f(x)=(x-1)e".

1. Differentiate f(x) using the product rule.

2. From 1), determine the value of Ixexdx.

3. lsittrue that Iuvdx =Iudxjvdx?

From activity 4.16, we see that the integral of a product of two functions
does not equal the product of the integrals of the two functions.

To develop a rule, we start with the product rule for differentiation:
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d(uv) du +uﬂ

dx dx dx

Integrating both sides with respectto X yields

uv = J'v@dx+J.uﬂdx
dx dx
= Ju%x =uv—J.v@dx
dx dx

Or Iuﬂdx =uv—jvﬂdx
dx dx

This is the formula for integration by parts.

To apply the integration by parts to a given integral, we must first factor its
integrand into two parts.

dv

An effective strategy is to choose for 22 the most complicated
factor that can readily be integrated. 'Idﬁen, we differentiate the other part,
u, to find du.
dx
The following table can be used:
u !
Logarithmic function Polynomial function
Polynomial function Exponential function
Polynomial function Trigonometric function
Exponential function Trigonometric function
Trigonometric function Exponential function
Inverse trigonometric function Polynomial function
Find jlnxdx
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Here, we can write flnxdx:fl-lnxdx

1
letu=Inx=>du=—dx and dv=dx=>v=x

X
Then,
jlnxdx=x1n|x|—jxﬂ:xln|x|—jdx :xln|x|—x+c.

Example 4.52

I><

Find Ixexdx

Let u =x = du =dx and dv=exdx:>v=_[e"dx=ex
Then,

Ixe"dx = xe" —Ie"dx =xe* —e" +c.

Example 4.53

Find Ie" sin x dx

Let u =x = du =dx and dv:siandx:v:—%cos2x

Then,

stin 2xdx = —icos2x—j—lcos 2xdx
2 2

|

I
(@]
=}
w2
[\
=
_|_

I%costdx: —£c0s2x+%sin2x+c

Example 4.54

Find J.e" sin 2xdx

let u =sinx = du=cosxdx and dv=e'dx=>v=¢"
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Then,

Iex sinxdx =e" sinx — Iex cos xdx
X

We need to calculate Ie cos xdx

let u=cosx=>du=-sinxdx and dv=e'dc =>v=e¢e"

je" sinxdx =e" sinx — Ie" cos xdx
Ie" sin xdx = e* cos x — (e" sin x + je" sin xdx)
Iex cosxdx=e' ' sinx—e" cosx—J.ex sin xdx

Clearly, we see that the original integral has reappeared on the RHS. Thus,
by collecting like terms we have;

Ie" sin xdx +J.e’C sinxdx =e" sinx—e" cos x
2_[6" sinxdx =e"sinx—e" cosx
Thus,

. 1 .
Je" sin xdx = E(ex sinx—e”* cosx)+c

Example 4.55

Find J-arcsin xdx

We can write f arcsin xdx as f 1-arcsin xdx

dx
NI

) i 1 xdx )
Iarcsm xdx = xarcsin x — —J- = xarcsinx++1—-x* +¢

27 J1-x?

Let u = arcsinx = du = and dv=du=v=x

Application activity 4.16

Use the method of integration by parts to find the following:
1. _[xcos2xdx 2. jxe“ dx 3. J.xsin4xdx

4. Ilenxdx 5. J(2x+3)e2xdx 6. jxe_zxdx
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Integration by reduction formulae

Let [, = Ix'” cosbxdx, J, =Ix’" sinbx dx .
Apply the method integration by parts to integral J, to show that

bJ,—ml, , =—x"cosbx.

Knowing integral /,,, we can establish a general relation, by integration by
parts, which will help usto find 1,1, ,,1 W1y

m-2°%"m-3% **
Example 4.56

Let 1, :Ixmeaxdx. Show that al, +ml, , =x"e" and hence

deduce the value of I, and .

Let u = x" = du = mx™"

ax

and dv:e”dx:v:le

a
Then,

1 m __ax m m—-1 _ax
[ =—x"e" —— | x""e"dx

a a

1 m

_ m _ax

I, =—x"e" ——1I

a a

Now,

1
From the relation I, = —(xme“x —m]m_l), we can write
a

1, :;(xze‘”‘ —2[1) and I, =é(xe”x —10)

1
But [, = Ixoe“xdx = Ie“dx =—e" +c
a
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1 1 axj

- “——e +c
a a
1[ 2 e
—_— _e —_—

a

Example 4.57

Giventhat [, = Ixm In xdx . Show that

I, (m+1) = "t (mx_Lj with m € Z\{-1} . Deduce the
m+1

value of _[xlnxdx and jlnxdx.

Let u:mx:du:@ and dv=x"dx=>v= il

m+1

X m+1
i ] ml m
L= m+1l x_J'erl‘ic ::1+llnx_-|.;+)16%
_ " 1 i = x™ Inx— il
et T )
Thus

1
Thus, 1, (m—l—l):x’”+1 [lnx— 1];as required

m—+

From I, expression, we see that;

2

For m=1, I, =%(lnx—%j and 1, = [ xIn xdx

2
Then, J.xlnxdx:x?(lnx—%j+c
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Also,
Form=0, I, =x(Inx—1) and I, zjlnxdx

Then, J.lnxdx =x(Inx—1)+c

Application activity 4.17

Use the method of integration by parts to derive the reduction formula
for:

1. 1, =jx"e“x dx
2. I = jtan" x dx and hence find jtans x dx
3. I, :J.sin” X dx 4.1, =jcos” xdx 5.1, :J'(lnx)n dx

4.3.6. Integration by Maclaurin series

.Co.r-%sider the function f(x) = ln(l —|-x) . Find the;

1. Maclaurin polynomial for f(x)
2. Integral of the polynomial obtained in 1).

For some integrals, we can use Maclaurin series of the function to help in
their integration.

Example 4.58
Find by Maclaurin series Ix3ll+x+x2dx

. . . 2x°
The Maclaurin series of 1+ x+x* is Y1+ x+x’ :1+§+ ;C + ..

Then,

2 3

2
J.31+x+x2dx:j PP S (PR S S
3 9 6 27
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Example 4.59

Find by Maclaurin series Jln(l—t)dt

2

The Maclaurin series of In(1—1¢) is ln(l—t):—t—%—%—tz—...
Then,
¢ e A

J.ln(l—t)dt:‘[[—t—z ————— j = Te T e
Application activity 4.18

Use Maclaurin series to find;

1. [eax 2. [ sin xdx 3. [ cos xdx

4. Itanxdx 5. J.de

4.4. Definite integrals
4.4.1. Definition

Consider the function f(x) =x>—2x+3.

1. Find the indefinite integrals F(x) of f(x)
2. Evaluate F(l)—F(—l).

We define the definite integrals of the function f(x) with respect to x
from ato b to be

[ () ~[F ()], =F()-F(a)

where F(x) is the anti-derivative of f(x)

We call a and b the lower and upper limits of integration respectively.
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1. The definite integral of a function f(x) which lies above the x-axis
can be interpreted as the area under the curve of f(x)

2. Let us find that area enclosed by the curve y=f(x) and the lines
x=a and x =b asillustrated in figure 4.2.

'S

¥y

Figure 4.2. Definite integral of a function

The area §, of the strip between x, | and x; is approximately equal to
the area of a rectangle with width /=Ax and length L:f(x[.) ie.
S, =f(x,)-Ax.

The total area 4 is Zn:S,. :Zn:f(xl.)-Ax or Azlimzn:f(xl.)-Ax;
P noena

i=1

this is known as Sum of Riemann.

b
If fis continuous on [a,b] ,then 4= If(x)dx.

o Notice

Integration constants are not written in definite integrals since they always
cancel out.

Consider; Iabf(x)dx =[F(x)]z

= (F(5) +¢)~(F(a) +¢) =F(b) +e~F(a)—c
=F(b)-F(a)

Remark: J-af(x)dx =0 and Iade =0
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Example 4.60

2
Determine the value of the definite integral L x’dx

. 3 x4
First, we calculate IX dx :T

AT 20 1 16 1 15
4 4 443

Then, sz3dx = {T

2 15
Therefore, L x’dx =

Example 4.61

I-';

1
Evaluate IO x2dx

wﬁ

Ixzdx = x?

3
Example 4.62

Work out J._22|x—1|dx

Since |x—1|=x—1 for x>1 and |x—1|=—x+l for x<1,then

Ji|x—1|dx = I_lz(—x+1)dx +J‘12(x—1)dx

] {5
=(—%+1)—(—2—2)+(2—2)—G—1)=5
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Example 4.63

3

Evaluate I|3x—5|dx

0

5
—-3x+5, x<—
As |3x—5| = , we split the integral into parts
3x—-5, x>—
3

at the point where |3x—5| changes from =3x+5 to 3x—35, namely at

x =—, then
3

(3x—5)dx = (—3x+5)dx+ (3x—5)dx

- [—%xz +5x}: J{%x2 —Sx};
8o for-so [ 3 ()

025 3.25 25 3 41

O C—y
O G | 0
W | U Sy 00

6 2 6 3 2 6

Example 4.64

4
Evaluate ”x3 —5x* +6x| dx
0

We split up our integral depending on where x* —5x” + 6x is non-
negative

x=5x2 +6x=x(x2 —5x+6)=x(x—2)(x—3)
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Table of sign:

X 0 2 3

X + + | + +
(x—2)(x—3) + 0| — 0|+
x3—5x2+6x=x(x—2)(x—3) n 0l — 0| +

From the table of sign, we get

|x3 s +6x| _ —(x3 —5x° +6x),ifx € |-, 0[ U 2,3
x*=5x* +6x, if x€[0,2]U[3,+]

Now, we can integrate, using definition of absolute value

4

”x3 —5x7 +6x|dx:

0

2 4

'x|dx:-[(x3—5x2+6x if x’—=5x° +6x +I( 3—5)c2+6x)dx
2

[___x L3¢ J

4

3

8 5 (16 9)
=—+—+| ——=| =
3 12 \ 3 4

Application activity 4.19

Evaluate the integrals;
3 2 2
1. IO xdx 2. L (x> —x)dx 3. _[1 (3x* —6x)dx

4. J‘_zl(x3 +3x7 —4)dx 5. j:|2x2 —8| dx 6. IOZ”|sinx| dx

7. [\ x| 6. |22 + 244 dx
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4.4.2. Properties of definite integrals

s

Consider the function f(x) — %
1. Determine IO f(x)dx and I_3f(x)dx Give your observation
: . . : :
N 0 > 2 3 ,
2. Also, obtain _[ x“dx and J. X dx+I x“dx . Give your
=5 -2 0
observation.
From activity 4.20, we remark the following:

1. Permutation of bounds: If f(x) is defined on (a,b) except may
be at a finite number of points, then Ibf(x)dx = —j: f(x)dx .

2. Chasles relation: For any arbitrary numbers a and b, and any

cela,b]
Jj S (x)dx = _f: S (x)dx +Lb F(x)dx

3. Positivity: Let f be a continuous function on intervallz[a,b]; the
elements of 1

b
If f20 onZandif a<b,then [ f(x)dx>0

b b
Also, if f(x)< g(x) on [a,b] , then I S (x)dx SI g(x)dx .
Theorem 4.1: Mean value theorem

Let /' be a continuous function on interval [a,b] , there exists a number
1 b

CE [a,b] such that f(o)= b—J. f(x)dx-
_a a

This value f(c) is called the average value of f(x) on [a,b] and is
denoted as f(x)-

Example 4.65

Find the average value of f(x) =sinx on [0,7[]
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m:ﬁjonsinxdx:%[—cosx]g:—%[cosx]g:—%(—1—1):_%(_2):%

Example 4.66

Show that: 4£dx:jzﬁdx+j4£dx
12 12 12

2 4
LHs=.[4fdx: x| _16 115
12 4] a4 4

2 4
2 x 4x x* x* 4 1 16 4 16 1 15
RS- S+ 5""=H H SRRy

Since RHS=LHS= L as required

4
o Notice

Techniques of integration

The methods of integration of definite integrals are the same as for indefinite
integrals but in changing the variable remember to change the bounds.

Example 4.67

-4 xdx
Evaluate: ]=I —_—
O J1+3x°

Lot 143x> =#2 = 6xdx = 2tdt = xdx = %dt

fx>—-4t>7 alsoif x—>0,t—>1

dt 1
1= I W L”;:Ef

Or we can say, without changing the bounds,

I ¢7 I, 47
Zgjl dr==1),

—2(1-1)=2

260




But £ =1+3x’
Therefore, / = %[\/1 37 T = %(7 “1)=2

0

Application activity 4.20

Evaluate:

1. I02ﬂ|cosx|dx 2. ij|x|dx
Il arctan x dx 4. jl arcsin x dx
0 14x° 2

4.4.3. Improper integrals

b
The definite integral J. f(x)dx is called an improper integral
if one of two situations occurs:
e Thelimit a or b ( or both the bounds) are infinites.

® The function f(x) has one or more points of discontinuity in the
interval [a,b].

Infinite limits of integration

T

Evaluate the integrals:

) ndx )
1. lim 2. lim

J-f4 xdx
n—>+0 J0 x2 +4 ’ n——wdn /1+3x2

Let f(x) be a continuous function on the interval [a,+00[.

Then, we define the improper integral as J:rwf(x)dx = nllrgoj: f(x)dx

considering the case when f(x) is a continuous function on the interval

]—oo,b] ; then, we define the improper integral
b Y
as [ f(x)dx=Tim [ f(x)dx.
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If these limits exist and are finite, then we say that the improper integrals
are convergent; otherwise the integrals are divergent.

Let f(x) be a continuous function for all real numbers. By Chasles

theorem, we can write f: f(x)dx = J.;f(x)dx+LM f(x)dx.

If for real number ¢, both of the integrals in the right hand side are

+o0
convergent, then we say that the integral j_ S (x)dx is also convergent;
otherwise it is divergent.

Theorem 4.2. Comparison theorems

Let f(x) and g(x) be continuous on the interval [a,+oo[
. Suppose that 0<g(x)< f(x) for all X in the interval [a,+oo[,

e If _Ew S (x)dx is convergent, then, I+wg(x)dx is also convergent.
o |If _rw g(x)dx is divergent, then, roo f(x)dx is also divergent.

e |If L+00|f(x)|dx is convergent, then, J‘:C f(x)dx is also convergent.

+o0
In this case, we say that the integralj f(x)dx is absolutely
convergent. ¢

Example 4.68

Evaluate rw 2dx
0 x“+16

v d . d.
I - 1mJ.0 x2f16

0 xz +16 _n—>+oo

. 1 x|" 1. n 1 .. n
= lim | —arctan— | =— lim | arctan——arctanQ |=— lim arctan—
n—>+w0 0 4 n—+eo 4 4 n—+eo 4

: V4
Hence, the integral converges to e

Example 4.69

dx

2
X e

+00
Determine whether the integral .[1 — converges or diverges.
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1
— forall values x>1

Note that —— < —
x‘e x
+o0 dx
Since the improper integral _[ 2 is convergent as
o X n dx
J — = lim | —
I x n—>+oJl ¥

177 n
= lim [ +x%dx=lim|>—| = lim {—l} = lim {—l+1}:1
n—>+oo J1 n—>+o| —] 1 n—>+o0 X |, n—>+o0 n

+00 dx

then, the given integral L is also convergent by comparison

theorems. x’e’

Application activity 4.21

Determine whether each of the following improper integral converges
or diverges.

o dx © 5 -1 dx
1. 2. d 3.
.[—w1+x2 '[Oe o - X2+1
o dx
‘L (x—l)3 > 3 > J.* 1
2x 1) x +

Discontinuous integrand

Determine the points of discontinuity of the following functions in the
given interval [ .

X

1. f(x):;» 1=[0,4]

2
2. f(¥)= g 1=[710.0]
3. f(x)=3l’:;l, 1=B,3}
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Let f(x) be a function which is continuous on the interval[a,b[ and
discontinuous at x=5b. Then we define the improper integral as

! fde=tim|’ fxydx.

a t

Similarly, if the function f(x) is continuous on the interval ]a,b] and
discontinuous at X =a, then we can write

[ f(yax = lim [" @

If these limits exist and are finite, then we say that the integrals are
convergent; otherwise the integrals are divergent.

Let f(x) be a continuous function for all real numbers x in the interval
]a,b[, except for some point ¢ € (a,b), then,

[ rde=[" fedc+ [ fx)d= tim [/ f () +lim [ Fx

We say that the integral jb f(x)dx is convergent if both of the

integrals in the right hand side are also convergent. Otherwise the
improper integral is divergent.

Example 4.70

2
Evaluate ﬁ

3
2 x

Since there is a discontinuity at x =0, we must consider two improper
integrals;

+
3 3 3
SXTSX X
t 2
>dx .. rdx . oc2dx | x7? X7
—3:11m —+1lim — =lim| —| +lim| —
2y >0 9-2 x t=0J1 x =0 -2 =0 =2
2 t
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Now considering the term

. 17 1. [17 1. (1 1
lim|-——~| =-=lm|— | =—=lim| 5——|=©
t—0 2x 5 20| x 5 2 =0\ ¢ 4

Since it is divergent, the initial integral also diverges.

Application activity 4.22
4
1. Determine whether the integral I converges or diverges.
0 (x=2)
2. Evaluate and comment on your answer in each case.
2
1 =3 2 dx
1-x) *dx —
a) | (1-x) o) [,
4 dx 1 dx
c) j d) |+
| % 2 4
(x-2) x?

4.5. Applications

4.5.1. Calculation of area of a plane surface

W

Consider the function f(x) =X,

1. Sketch the curve of f(x) onthe xy— plane.

2. Shade the region enclosed by the curve of the given function and
the x—axis for 0<x < 4.

3. Using the formula for finding the area of plane figures, find the
area of the region you shaded in 2).

4. Find the definite integral of the given function for g« x < 4.

5. Comment on your results in 3) and 4).

The definite integral of a function f(x) which lies above the x -axis denotes
the area under the curve of f(x) as shown in figure 4.3.
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Area

b

Figure 4.3. Area enclosed by a curve of a function and x-axis

Given function f(x) which lies above the x-axis, the area enclosed by the
curve of f(x) and the x-axis in interval [a,b] is given by

A=I:f(x)dx

The area between two curves

Figure 4.4. Area between two curves

The area between two functions f(x) and g(x) where f(x)<g(x) in
[a,b] is given by

[Te)-r@kir = g@dx~[ f(x)dx
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as illustrated in figure 4.4.

Example 4.71

Find the area enclosed by x—axis and the first bisector.

x—axis is represented by the function g(x)=0 and the first bisector is
represented by f(x) =X.

The area is given by

3 2 PP 2
A:I(O—x)dx:{x—} :3——9:2sq.units.
0 2], 2 2 2

Alternative method

From the figure, the shaded area is a triangle with base 3 units and height
3 units. So, the area is

A= %basex height = %sq.units.

Example 4.72

Find the area of a sinusoid in [O,27r].
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The sketch of the two curves is as shown below:

y

For 4,, we have two functions g(x) =sinx and f(x)=0.

Then, 4, =I(sinx—0)dx =Isinxdx
0 0

=[-cosx] =-cosz+cosO =2sq. units
For 4,, we have g(x)=0 and f(x)=sinx.
Then, 4, =jj”(0—sinx)dx
= Jj”—sin xdx =[cos x]i” =08 27T — oS 77 = 2 5q.units

The total area is 4sq. units .
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Example 4.73

Find the area enclosed by the curves y = x’ and y=x’

The sketch of the two curves is as shown below:

y

~

We now need to know the intersection points of the two curves.

To do this, we solve for x> =x" or x*=x* =0
=x=0 or x=1

The area is given by
1
! XXt 111
A=| (¥ -x")dx=| =—-"—| ==——=— 5q. units

3 4 12
0 Notice

If u and v are continuous functions and if u(y)Zv(y) for all y on [c,d]
, then the area of the region bound on the left and right by the curves

x=u(y), x:v(y),above and below by the lines y=d, y=c is

A=T[V(y)—u(y)]dy
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Example 4.74

Find the area of the region enclosed by the curves x =3’ —-12and x=y.

—

N e ©

n

f

[ I
N A A

Lo
S © @

I
—

For the intersections of the curves
Yy -12=x=y =)' -y-12=0

< (y-4)(y+3)=0so0 y=4 or y=-3.

Observe that y* —=12<y for =3< y<4.Thus, the area is

4

4 2 3
XY
4= [ (5|
(8—ﬁ+48j (9+9 36) 104+45 =ﬁsqumts
3 2 3 2 6

We would have to split the region into two parts because the equation of
the lower boundary changes at x =-3.Then,

A=_:l|§2[\/12+x—(—\/12+xﬂdx+i(x/12+x ~x)dx

However, if we integrate with respect to y, no splitting is necessary.
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Application activity 4.23

1.

Calculate the area enclosed by the curve and the straight line in
each of the following:

a) y=(2x-1)(2x+1) and x— axis
b) y=x(x—1)(x-2) and x—axis
c) y=x"-3x—4 and y=x+1

d) V' =x —lx
) Y » Y ’

e) y' =4x,y=2x-4
Find the area enclosed between the curve y = 24°x* —x*,a >0,
and the line joining its local maxima.
Find the area enclosed between the curves
y=—x+6x>+2x-3 and y :(x—3)2
Find the area bound by the curve y:%, the lines y=-27x and

1 X

=—=x.
Y=

Determine the total area enclosed between the curves y =sinx
and y=cosx from x=0 to x=21.

Sketch the region enclosed by the curves and find its area.
a) x=y'—4y,x=0,y=0,y=4
b) y*=—x,y=x-6,y=-1,y=4

4.5.2. Calculation of volume of a solid of revolution

¥

1.

Consider the line y =2 for0 < x <3.

a) Plot the line and shade the region enclosed by the curve y =2
for() < x <3 and x —axis.

b) If the line y =2 is rotated about the x —axis we obtain a solid
of revolution.
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Shade the region for which the area in (a) is rotated 360° (one
revolution) about the x-axis.

c) Identify the type (nature) of solid of revolution obtained in (b)
and hence determine its volume.

d) Let the area shown in (a) be divided into a number of strips
parallel to y-axis and length y.

When the area is rotated 360° about the x-axis, each strip
produces a solid of revolution approximating to a circular disc
of radius y and thickness dx.

Since the volume of each disc is given by

V(circular cross — sectional area) (thickness) = (72' ¥ )(5;,
then the total volume, V, between x =0 and x = 3is given by:

x=3 3
Volume, V' = lim Zﬂyzé‘x = Iﬁy2 dx
x=0 0

ox—0

Using the above formula, determine the total volume of the
solid of revolution formed when the line y = 2 is rotated 360°
about the x-axis between the limits x =0 to x = 3.

e) Compare the results obtained in (c) and (d).

2. Repeatstepsa)tod)in 1)when y=2x forQ0<x<5.

From activity 4.24, by considering function f(x) , the volume of the solid
of revolution bound by the curve of the function f(x) about the x —axis

calculated from x=a to x=b,is givenby V' = ﬂjbfz (x)dx.
This method is called disc method.

Consider a region of f(x) between x=56 and x=b revolving around
x—axis as illustrated in figure 4.5. The volume of the solid of revolution

is obtained by considering the area A(x) of the disc of radius y = f(x)
such that

A(x)=7ry* and

szﬁyzdx::b[ﬂfz (x)dx:ﬂifz (x)dx.
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/(%)

L 2]

P

Figure 4.5. Volume of revolution

When using this method, it is necessary to integrate along the axis of
revolution.

If the region is rotated about a horizontal line, integrate with respect to x,
and if the region is revolved about a vertical line, integrate with respect to

y.

Example 4.75

Use integration to find the volume of the solid generated when the line
y=x for 0<x <3 is rotated through one revolution (360°) about the
X—axis .

w
.

L &4
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3 3
3 3
V= ﬂj ydx= 7Z'J. x* dx= ﬂ{x—j| = 7r3—: 97 cubicunits
0 0 3], 3
Note that the above figure shows a cone with radius 3 and height 3. Thus,

we could find the volume of the cone formed using the formula %rzh .

So, V = %x 3?x3 =97 cubic units (as before).

Example 4.76

Use integration to find the volume of the solid generated when the line
y=3 for 0<x<6 isrevolved around the x—axis

V= ﬂI: y dx= ﬂjo6(3)2 dx= ﬂ[9x]§ = 7(54) = 547 cubicunits.

Note that the above figure is a cylinder with radius 3 and height 6. Then,
we could find the volume of the cylinder using the formula 7?4 .

So, V =7 x3*x6 =54rx cubic units.

Example 4.77

Use integration to find the volume of the solid generated when a half circle
with centre (0,0) and radius 4 is revolved around the x-axis .
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Recall that the circle with centre (0,0) and radius 4 is given by x* +y* =16.
Using the equation, we can write y =#+/16—x’

We need to use the positive part; ¥y =v16—x> as shown in the following
figure.

From the above figure, we will integrate from —4 to 4

V= 7Z'J':y2 dx = ﬂji(\/16—x2 )2 dx

37 ~ B
=7 16x—x_ :7[(64_ﬁ+64_ﬁj:”(192 64+192 64}
3 -4 3 3 3

256 o
= Tﬂ' cubic units.
Note that the above figure is a sphere with radius 4. Then, we may find

the volume of the sphere formed using the formula imﬁ .

So, V =§E(4)3 :%ﬂ' cubic units -

Example 4.78

Use integration to find the volume of the solid generated when the line
y=x for 1£x<4 isrevolved around the x—axis .
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Let us consider the figure below;

y

(64 1]
=T ———
3 3

=21z cubic units

N

Example 4.79

Find the volume of the solid revolution formed when the area closed by

the curve y=x" for 0<x <5 is revolved about the x-axis.

Consider the figure below;

Volume is

BN 4 \ox

V= 7Z'J.j fdx
= ()
= 7rJ.05 x*dx
H
=l —
5 0

= 7(625-0)

=625 cubic units

RRNRNRNRNA b
LD Rh Qo DN AR A DND R

Vol
uipyuiy vl

i
b

.
PUEBRIETSoa il

|
b

|
o
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Example 4.80

Suppose one arch of y=sinx is rotated about the x-axis. What is the
volume of the solid revolution formed?

Consider the figure below;

_ 7Z'J-0” sin® xdx = ﬂjoﬂ%(l —c0s 2x )dx [sin2 X = %(1 —cos 2x)}

T ¢n [ 1. .1 =« 1 1
=—| (I-cos2x)dx =—|x——sin2x| ==|7——sin27—-0+—sin0
2J0( M 2[ 2 } 2[” T j

0

2
- £[7[] =2 cubic units
2 2

0 Notice

Since f(x) is continuous and strictly increasing over the interval [a,b],
then the inverse function x = f~' (y) is strictly increasing over the interval

[f(a),f(b)]. Hence, the volume generated by rotating the region R
about the y —axis is

/e,
V= ﬂjf(a) x“dy

Volume for two defining functions (Washer method)

The innerradius of the solid formed is the distance from the axis of revolution
to the edge of the region closest to the axis of revolution, and the outer
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radius of the solid formed is the distance from the axis of revolution to the
edge of the region farthest from the axis of revolution.

If the region bound by outer radius Y, = g(x) (on top) and inner radius

¥, = f(x) and the lines x=a, x=5p is revolved about x—axis, the the
volume of the solid of revolution is given by:

V= ;zj ( g [f(x)]z)dx
This method is called washer method.

Example 4.81

Find the volume of the solid of revolution generated by revolving the
region enclosed by » =fx and y=x? about the x-axis.

First, sketch the two functions

Points of intersection are (0,0) and (1,1), then we take the integral between
0 and1. The function y = Jx is above the function y=x.

PR 1
:7{———} =7 l_l_o.,.o :3—7T cubic units
2 5 0 2 5 10
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Example 4.82

Find the volume of the solid of revolution generated when the region
enclosed by y = \/;, y=2 and x=0 isrevolved about the y—axis .

Here,yzx/;:Mc:y2

The volume is
2

V= ﬁjoz (y2 )Zdy = 7Z'J‘02 yidy= 7{%5} = 32% cubic units

0

Application activity 4.24

1. Find the volume of the solid formed when the region enclosed by the
given curves is revolved about the x —axis ;

a) y=x2,x=0,x=2,y=0
b) y=1+x3,x=1,x=2,y=0
c) y:9—x2,y:0

2. Find the volume of the solid formed when the region enclosed by the
given curves and the lines is revolved about the y —axis ;

a) y=x3,x=0,y=1

by x=41+y,x=0,y=3

V4 RY/4
c) x=cscy, y=—,y=—,x=0

B 4 4
0 Notice

We can find the volume using an alternative method called “The shell
method”.

When using this method, it is necessary to integrate perpendicular to
the axis of revolution (unlike the disc or washer method). If the region
is revolved about a horizontal line, integrate with respect to y, and if the
region is revolved about a vertical line, integrate with respect to x.

As always, the radius is the distance to the axis or revolution. For every
radius R, it is necessary to find the corresponding height of the shell H .

The values of R and H need to be expressed in terms of the variable of
integration.
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"—“—\lh\ y= flx)

I R=x—A

|

| Hl H=g(x)— f(x)
|

|

T |

ax b \yzg{x)

Figure. 4.6. Region revolved Figure. 4.7. Region revolved

about a vertical about a horizontal line
line

Basing on figure 4.6 and flgure 4.7, the volume will equal ¥ = 27Z'IRde
if integrating by X and V = Zﬁ_[Rde

if integrating by V.

Example 4.83

Determine the volume of the solid obtained by rotating the region

bounded by y=2+x—1 and y =x-1 aboutthe line x=6.

Here, a graph of the bound region and solid are:

Iy X
6'x o 4 5 6 7 8 9 101112

The figure formed is a typical cylinder. Again, the sketch on the leftis here
to provide some context for the sketch on the right.
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The cross sectional area of the solid is

A(x) =2r (mdius)(height)

27 (6-x)(2Mx—T-x+1)

=27z(12\/x—1—6x+6—2x x—1+x2—x)

:27z(x2 —Tx+6+12x—1 —2xx/x—1)

Now, the first cylinder will cut into the solid atx=1 and the final cylinder will
cut into the solid at x=5; so they are our limits.

The volume of the solid formed is given by:

4 =27zj(x2 —7x+12\/ﬁ—2x\/ﬁ)dx
1

5

x 7 34 304 5
=27z(?—5x2+6x+8(x—1)2—g(x—l)Z—g(x—l)Zj

1

136
= 27[(—) = &cubic units
15 15

Example 4.84

Determine the volume of the solid obtained by rotating the region
bounded by x=(y—2)2 and y=x abouttheline y=-1.

We should first get the points of intersection.
(y—2)2 =y<:>y2—4y+4:y

oy —dy+d=y

&y =5y+4=0

< (y-4)(y-1)=0
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So, the two curves will intersectat y=1and y=4.

Thus, the sketches of the bound region and the solid are:

&

'

The cross sectional area for this cylinder is
A(y) =27 (radius)(width) = 27r(y+1)[y—(y—2)2}
= 272(—y3 +4y° +y—4)

The first cylinder will cut into the solid at y =1 and the final cylinder will
cutinat y=4.

The volume of the solid formed is given by:

4

4 4 2
V=2r[(-y +4y" + y—4)dy =27r(—y7+%y3 +y7—4yj
1

1

637 . .
= ——cubicunits

Example 4.85

Use the shell method to find the volume of the solid generated when the
region bound by the lines y =0,x =1 and y = xis revolved about the;

a) x—axis b)line y=-1 c)line y=3

In this example, the axis of revolution in each case is a horizontal line, and
therefore it will be necessary to integrate by y.
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y=x

The radius is the distance between the axis of revolution and the current
value of y: R=y—0=y.The height of the shell is the horizontal distance
between the line y=Xx andtheline x=1ie H=1-y.

Therefore, the volume of the solid formed is

d . 2 37
VZQEIRde=2ﬁjy(l—y)dy=2ﬂ|:);2—J;j| :%:%

b)

The radius is again the distance between the axis of revolution y =—1 and
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the current value of y i.e. R= y—(—l) =y+1.
The height of the shell will be H =1-y, exactly as in a).
Hence, the volume is

3

V= 27zj(y+1)(1—y)dy = 2nj(1—y2)dy =27 y_J; =

c)

W Vo=

x|

; : : ; : :
-2 -1 0 1 2 3 4

Here, R =3 —y while the height again remains the same. H =1-y

Therefore, the volume of the solid formed is

1
! ! B v | 8x
V=27ZJ.0(3—y)(1—y)dy—27rJ.0(3—4y+y2)dy—27{3y—2y2 +?} -

0

Application activity 4.25

1. Use the shell method to find the volume of the solid generated when
the region bound by the lines x =0,x=1 and y =Xx is revolved
about the;

a) linex=1 b) y—axis
c) linex=4
2. Use cylindrical shells to find the volume of solid generated when the

region enclosed between y = \/;, x—axis , and the line x =4, is
revolved about the x — axis.
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The region bound by the curve y=\/;, .the lines x=1,x=4 and
the X —axis is revolved about y —axis to generate a solid. Find the
volume of the solid by the shell method.

Use cylindrical shells to find the volume of the solid generated when

the region Rin the first quadrantenclosed between y = x and y = x°
is revolved about the y —axis.

4.5.3. Calculation of the arc length of a curved line

¥

Consider a curve given by the function y = f(x) = (x—1)5

3

| oy
B N B Y/ /5% W
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Figure 4.6. Arc length of a curved line

In the triangle shown (shaded region),

1.
2.

By Pythagorean Theorem, find Al.

As the step size is made smaller and smaller, Ax — dx, Ay —> dy
and Al > dl .

From the result obtained in 1), write expression equivalent to d/

3
using f'(x) where f(x) =(x—1)5.
Take definite integral on both sides of the relation obtained in 2), for
2<x<5,tofind .

From activity 4.25, we get the arch length of the curve of the function
f(x),from X=a to x=>b by the formula
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l:i 1+[f'(x)}2dx

Example 4.86

I.

Find the length of a line whose slope is -2 given that line extends from
x=1to x=35.

We need the equation of the line in orderto find f'(x) butforthe purpose
of this example, we are given that the slope is -2 and we know that the
slope is given by the derivative of the function, then f'(x) =-2

Hence,
L= [ 1+(f @) dv = [ 1(2) de= [ Vode=5[
=\5[x] =v5(5-1)=45 units of length
Example 4.87

|7

Find the length of the circle of radius R and centre (0,0) .

The circle of radius R and centre (0,0) has equation:
X+ =R <y =R —x"=>y=+JR* —-x°
X

J":iﬂz(y') R

L=["Jl+(y)dr But a=-R and b=R

R x?
= L= 2IR(1+WJdX

We multiply the above result by 2 because we have two parts; one above
x—axis and another below x —axis .

R IR —x*+x* R R? R R
ot R o o
L 2I_R RE_ 2 dx ZI_R R: 2 dx J.—R [p? i

:2IR R—dx L =2R arcsini '
RIR* + 17 VR + X7 R,

- ZRJ._RR
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. R . —R . )
=2R| arcsin — —arcsin— | = 2R (arcsm 1 —arcsin— 1)
R R

=2R (%— (—%)j =2Rm =27xR units of length

o Notice

Foracurve expressedintheform x = g(y) where g'iscontinuouson [c, d

, the arc length from y=c¢ to y=d isgivenby [ = I 1,1-|-|:g :I dy
Example 4.88

3
Find the arc length of the curve y — x2 from (1,1) to (2,2\/5)

3 2 2 1

B 2
y=x?=x=y’ Hence, g(y)=y" and g'(y)ZEy ’
The arc length is;

2 2
_ NE/ 2 ‘% 22 [9y3 +4
L—J.l 1+{§y }dy :J-l 3 dy
9y?
2 2 NG 2
:r 2,/1+iy3dy :I“ 11\[9y3+4dy
1 9 1 1
3y?
1 c2v2 —1 2
=§1 Y 3\9y* +4dy

2

1
Lett=9y’+4=>dt=6y dy=>dy=

dt

(o)}
= I

f y=1,¢=12 and if y=2+2,1=22

12 L~ dt 2 RRES

= — 3 = —_— = —_— 2

) \56 ;18 13\[ , = 18] 3
’ 3
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;2
:Lx%{ﬁ} —L{(zz)i_(m)i}: 22@_13\/5 units of length
13

18" 3 27 27

Application activity 4.26

1.

3

Find the arc length of the curve y =3x% —1 from x=0 to x=1.
2

Find the arc length of the curve y = x3 from x=1to x=8.

Determine the arc length of the curve y = ln(secx) from x=0 to
x=—.

4
2 g
Find the arc length of the curve x =§(y—1)2 for1<y<4.

i

Notice

Further applications in physics

1.

Work done

Work is defined as the amount of energy required to perform a physical
task. When force is constant, work can simply be calculated using the
equation W = F -d where Wis work, F'is a constant force, and d is the
distance through which the force acts. The units of work are commonly
Newton —metres (Nm), Joules(J ), Foot — pound ( ft —Ib). Frequently,
the force is not constant and will change over time. In order to obtain
the amount of work done with a variable force, the following integral

b
equation must be used W =I f(x) dx

where Wis work, f(x) is force as a function of distance, and x is
distance.

Remark

In physics, the kinetic energy of an object is the energy which it possesses
due to its motion. It is defined as the work needed to accelerate a body of
a given mass from rest to its stated velocity.

Having gained this energy during its acceleration, the body maintains this
kinetic energy unless its speed changes. The same amount of work is done
by the body in decelerating from its current speed to a state of rest.
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Example 4.89

A spring has a natural length of 1meter. A force of 25 N stretches the string

by 1 of a metre. Determine how much work is

done by stretching the spring
a) 2meters beyond its natural length

b) from alength of 1.5meters to 2.5meters

We first determine the string constant, k . Because the force is 25 N when

1

X = Zm =0.25m , we can use Hooke's law to determine k.
f(x)=hx
25N = k(lm] = k= IOOE

4 m

And f(x) =100x

Hence,

2
a) W= IZIOOxdxz mx2
0 7 .

=50(4-0)
=200Nm or 200J

b) Here, we need to pay attention to boundaries. If the spring is not
stretched, no matter what its length is, the lower boundary must be
zero. If the string is stretched to a certain length, then we need to
subtract the natural length from that value to obtain the lower limit of
integration. So, here

13 100 ,7°
W:jojlooxdx:{sz} =50((1.5)"~(0.5)'|=100Mm or 100

0.5
Example 4.90

A force of 40 N is required to hold a spring that has been stretched from
10 cmto 15 cm.

How much work is done in stretching the spring from 15 cm to 18 cm?
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According to Hooke's law, the force required to hold the spring stretched

x metres beyond its natural length is f(x)ka. When the spring is
stretched from 10cm to 15¢m , the amount by which it has been stretched

is 5¢m = 0.05m . This means that f(0.05) =40,

so, 0.05k =40, k= 40 =800
0.05

Thus, f(x) =800x and the work done in stretching the spring from

15¢m to 18cm is

oos 2 0.08 i i
w=[" 800xdx={8007} = 400[ (0.08)" ~(0.05)" [=1.56./

0.05

2. Motion problems

Recall that for some displacement function s(t),

d|s(t
the velocity is given by v(t) = w and

t
[5(0]_d[()]
dt* d

So, given a velocity function, we can determine the displacement
function by the integration S(t) = jv(t)dt.

Using the displacement function, we can determine the
displacement in a time interval a <t <b.

Thus, S = Ibv(t)dt

the acceleration is a(t) =

Also, given an acceleration function, we can determine

the velocity function by the integration v(t) = a(t)dt.
Using the velocity function, we can determine the velocity in a time

interval a<t<b; V =Iba(t)dt

Example 4.91

The velocity of a body ¢ seconds after a certain instant is given by
v(t) = (21‘2 +5) ms~" . How far does ittravel in the first 4 seconds of motion?
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S:I:(zzz +5)dt:{2?t3+5t}4 —[@%(4)]—0 :g m

0

Thus, the distance travelled is @ m

3
Example 4.92

An object starts from rest and has an acceleration of a(t) =t>. What s its;

a) velocity after 3 seconds?

b) position after 3 seconds?

We will take the initial position of our object to be the origin of our
coordinate system. Thus, S(O) =0.Since the object started at rest, we have
V(O) =0.This data will be useful in the determination of the constants in
the integrations.

a) v(t)=[a(t)dt=[¢ dt :%ﬁ +c
v(o):é(of +c=0=c=0
Then, v(t) =%t3

After 3 seconds, we have

v(3) = %(3)3 =9 units of velocity.

_ A Y
b) s(t)—jv(t)dt—jgt dvt=—t"+c

5(0)=-2(0)' +c=0=c=0

12

_ 1

Then, s(t)—lzt
After 3 seconds, we have

1 27

s(3) :5(3)4 = units of length.
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1. Differentials
The exact change Ay in Y is given by Ay = f(x+Ax)—f(x).
But if the change Ax is small, then we can get a good approximation to

A
Ay by using the fact that Ey is approximately the derivative Z—y.Thus,
x

Ay dy
A :—sz—Ax: ! A.x
Y Ax dx / (x)

If we denote the change of x by dx instead of Ax,

then the change Ay in ¥ is approximated by the differential dy , that s,
Ay~dy=f"(x)dx

Whenever one makes an approximation, it is wise to try and estimate how

big the error might be.

Ax
Relative change in x is —
X

Percentage change in x is 100><£
X
2. Indefinite integrals

Integration can be defined as the inverse process of differentiation.
if y=f(x) then

d d
d—izf'(x)@fd—zdxzf(x)+c

Or equivalently
dy
—dx=y+c

jdx 4

This is called indefinite integration and c is the constant of integration.
3. Basicintegration formula

Exponential functions

n+l

a) Ix”dx: il +c,n#+-1 b) _[e"dxzex+c
n+l1

c) Iaxdxz a +c
Ina
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Rational functions

1 dx 1 X
I—dx=ln|x|+c b) j — =—arctan—+c¢
X a +x° a a
dx 1 X
c) —I =—arccot—+c
a+x* a a

o [t Lyl
) xX*—a®> 2a |x+a

o) J~ dx 1 a+x

5 2:—ln +c
a —x 2a |la—x

Irrational functions

X
J. = arcsm +c
V a - x

X
—_[— =arccos—+c
2 a

dx x+x*+a’
I =In +c
\/x2+a2 a
dx x+xt—a’
I =In +c
N a
dx

1 X
e) I—:—arcsec—+c
x —a a a

1 x
j =—arccsc—+c
xWxl-a® @ @

Trigonometric functions

a) Isinxdx:—cosx+c b)jcosxdx:sinx+c
c) Iseczxdxztanx+c d)jcsczxdx:—cotx+c
Itanxdx=—1n|c0sx|+c f) Jcotxdx=ln|sinx|+c

secxdx:1n|secx+tanx|+c

cscxdx:—ln|cscx+cotx|+c

Isecxtanxdxz secx+c
Icscxcotxdxz —CcSCx+c
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4. Non basic integration

I. Integration by substitution

In evaluating If(x)dx when f(x) is not a basic function:

.ff() e <>orf() £(x)

g(x)
h(g ) you let u = g( )

Il. Integration by parts

or

To integrate a product of functions, try the formula for integration by parts

Iud—dx uv—I dx or judv:uv—jvdu

dx
An effective strategy is to choose for 2¥. the most

dx
complicated factor that can readily be integrated. Then we differentiate
. du
the other part, u, to find —.
dx

The following table can be used:

u V'
Logarithmic function Polynomial function
Polynomial function Exponential function
Polynomial function Trigonometric function
Exponential function Trigonometric function
Trigonometric function Exponential function
Inverse trigonometric function Polynomial function

Applying the method of integration by parts, the power of integrand is
reduced and the process is continued till we get a power whose integral is
known or which can be easily integrated. This process is called Reduction
formula.

lll. Integration by partial fractions
Remember that:

A rational function is a function of the form

f(x) gEx; where P( ) and Q(x) are polynomials.
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A proper rational function is a rational function in which the degree of
P(x) is strictly less than the degree of Q(x)

The problem of integrating rational functions is really the problem of
integrating proper rational functions since improper rational functions

(i.e. those in which the degree of P(x) is greater than or equal to the

degree of Q(x)) and can always be rewritten as the sum of a polynomial
and a proper rational function.

The integrals of proper rational functions are found by partial fraction
expansion of the integrand into simple fractions.

There are 4 types of simple fractions:

a) Fractions of the type

The integrals of such fractions are easily found:

I 4 dx=A1n|x—a|+c
x—a

b) Fractions of the type —————, where 7 is a natural
xX—a
number greater than 1.

The integrals of such fractions are easily found:

A A

— dv=A|(x—a) "dx= x—a) " +c
[ Al de= o)
c) Fractions of the type 2Ax—+B , where p* —4¢4 <0
X +px+q

The integrals of such fractions are found by completing the square in the
denominator and subsequent substitution which leads to rational integrals

of the formj du Orjuzcl:bl - OrJ. du

u’ +k* kK’ +u2'
d) Fractions of the type Ax+B —,
(x2 +px+q)

where p* —4g <0 and 7 is a natural number greater than 1.

Integration of this type of fraction will not be considered in this course.

295




Expansion of proper rational functions in partial fractions is achieved by
first factoring the denominator and then writing the type of partial fraction
(with unknown coefficients in the numerator) that corresponds to each term
in the denominator:

(i) if the denominator contains (x—a), then the partial fraction

expansion will contain
xX—a
(i) if the denominator contains (x—a)n , then the partial fraction
expansion will contain

A B C Z
n+ n_1+ n_2=...+ .
(x—a)" (x-a) (x—a) (x—a)
(iii)  if the denominator contains (x2 +px+q) where p2 —44q <0, then
Ax+ B

the partial fraction expansion will contain - .
X +px+q

The unknown coefficients (A, B, etc.) are then found by one of the
two ways:

by inserting concrete values of the variable or by using the method
of undetermined coefficients.

5. Integration of irrational functions

dx

'[\/ax2 +bx+c

The integrals of such fractions are found by completing the square in the
denominator and subsequent substitution which lead to irrational integrals
of the form

J Integrals of the form

J- du or _[ du or I du
px+q e

Nax’ +bx+c¢

The numerator is written as the sum of two parts. One part is the
derivative of radicand and the other part is a constant only, i.e.

J Integrals of the form I

d
J_ G dx-k‘[dx(axz+bx+c)
- ™M

Jax* +bx+c Jax* +bx+c

dx+k2J.

dx
Nax* +bx+c
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X gx+r
Nax® +bx+c

The numerator is written as the sum of three parts. One part is the

same as radicand, the second part is derivative of radicand and the
last part is a constant only, i.e.

o Integrals of the form dx

ax bx c

2
J-px +qgx+r ax

Nax® +bx+c

4 (ax +bx+
NS ¥ ilhdii

dx
—_— dx+k,| —
Nax? +bx+c ’ \/ax2+bx+c 3J.\/ax2+b)c+c

6. Integration of trigonometric functions

* Integrals of the form J' dx
asinx+bcosx+c

: x
You can use t-formulae by letting ¢ = tan—.

J Integrals of the form I 2 or I G

a+bcos’ x a+bsin® x
Here also you can use t-formulae.

In integrating the trigonometric functions containing product or

power, transforming product or power into sum (or difference)
leads to basic integration.

7. Definite integration

Remember that integrals containing an arbitrary constant c in their
results are called indefinite integrals since their precise value
cannot be determined without further information

a) Definite integrals are those in which limits are applied.

b
If an expression is written as I:F(X):Ia ,'b"is called the upper limit
and ‘a’ the lower limit.

The operation of applying the limits is defined as:

[F(0)],=F(5)-F(a)
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For example, the increase in the value of the integral f(x) asx
increases from 1 to 3 is written

as j.f(x)dx.

The definite integral from x = a to x = b is defined as the area
under the curve between

b
those two values. This is written as Jf(x)dx
a

b) The mean value of a function y = f(x) over the range ]a,b[ is the
value the functions would have if it were constant over the range but

with the same area under the graph. 'I;he mean value of y = f(x)
over the range |a,b[ is f(x) Z%If(x)dx.
—a

c) The root mean square value (R.M.S. value) is the square root of the
mean value of the square of y. The rm.s. value fromx =atox =b is
given by;

RM.S.=

8. Improper integral
b
The definite integral J. f(x)dx is called an

improper integral if one of two situations occurs:

o The limit a or b (or both bounds) are infinites.
. The function f(x) has one or more points of discontinuity in the
interval [a,b].

Let f(x) be a continuous function on the interval [a,+oo[ or
Fat]
+00 . n
We define the improper integral as I f(x)dx = llmI f(x)dx
a n—+ood a

b b
Or j—oo S (x)dx = nlirgojn S (x)dx respectively.

If these limits exist and are finite, then, we say that the improper integrals
are convergent otherwise the integrals are divergent.

Let f(x) be a continuous function for all real numbers. By Chasles
theorem
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[T reax=[" feodc+ j:“’ £ (x)dx

If for real number, (, both integrals on the right
side are convergent, then we say that the integral

r:f(x)dx is also convergent; otherwise it is divergent.
9. Applications
Integration has many applications, some of which are listed below:
a) The area between two functions f(x) and g(x) where
f(x)<g(x) in [a,b] is given by
[[e@) - rkix = g@dv~[ f(x)dx

b) Volume

The volume of a solid of revolution can be found using one of the
following methods:

the disc, washer method and the shell method.

In any of the methods, when finding volume, it is necessary to integrate
along the axis of revolution; if the region is revolved about a horizontal
line, integrate with respect to x, and if the region is revolved about a
vertical line, integrate with respect to y.

(i) Disc method

The volume of the solid of revolution bound by the curve f(x) about
b
the x —axis calculated from x=a to x =5, is given by 7Z'J.y2dx.

Volume of the solid generated by revolution of the area bound by the
curve yzf(x) about the

b
Yy —axis is given by ﬁszdy.

If the axis of revolution is the line parallel to x—axis (say y=k), the
volume will be

71'_1.7.();—/%)2 dx .
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(ii) Washer method
If the region bound by outer radius y,, = g(x) (on top) and inner
radius ¥, = f(x) and the lines x=a,

x=b isrevolved about x—axis, then the volume of revolution is given

by: V=7 ([g)] [ £ (] )
(iii) Shell method

The volume of the solid generated by revolving the region between
the curve x—axis,y = f(x) >0,L<a<x<b,abouta vertical line
x=1Ls

b(shell \( shell
V=2r dx
* \ radius )\ height

HINT for shell method:

Regardness of the position of the axis of revolution (horizontal
or vertical), the steps for implementing the shell method are the
following:

»  Draw the region and sketch a line segment across it, parallel to
the axis of revolution. Label the segment’s height or length (shell

height) and distance from the axis of revolution (shell radius).
»  Find the limits of integration for the thickness variable.
shell \( shell
»  Integrate the product 27 _ _ with respect
radius )\ height

to the thickness variable(xor y) to find the volume.

»  Length of arc of the curve ¥y = f(x) between the points whose

b dy 2
=| 1+ = | d
absissas are a and bis * .! (dxj 3

»  The work done by a variable force F(x) in the direction of motion
b

along the x—axis over the interval [a,b] is szF(x)dx.

10. Hook’s law says that the force required to hold a stretched or
compressed spring x units beyond its equilibrium position pulls
back with a force F(x)=kx where k is constant called spring
constant(or force constant).
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End of unit assessment

1.

Find indefinite integrals for question a-l.
3

2) Ixz _;x+2()dx b) J-3x3+lxlf3+x+3dx
2
I éleﬁiiffﬂx | (x2+12)x(x—1) &
2 2

e) | (x2+2);++24;(x+1) ® 1 5 j);)(til)z d
9) [xcosxdx h) [ Sxetdx
) [xInxdx ) [ sin3xdx
k) [e* cos brdx ) [e™ sinbxdx
2. Evaluate;

c)

a) I(2x2—x3)dx b) j(%—%}dx
L\x

1
-1

10 d 2 d
;[ijZ ! J; -

sin xdx f) I In xdx

M\N'—;-&‘&a

17 17 .
Given that a, = — I xcosnxdx and b, =— I xsinnx dx
7 V4

—r -7

where n is a positive integer. Show by using integration by parts that

2
a,=0and b, =——cosnr .
n

Determine the area enclosed between the curves y=x2+1 and

y=T7T-x.

Evaluate by integration the area bound by the three straight lines
y=4-x,y=3x and 3y =x.
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6. Find the area of the region bound by the curves y* =2x+1 and
x—y-1=0.

7. Determine the volume of the solid generated when the region bound
by the lines y=3x,y=2,y=4 and x=0 is revolved about the
Y —axis .

8. Determine the volume of the solid generated when the region bound
by the curve y2 =4x and line ¥ =X is revolved about the x — axis .

9. Find the volume of the solid generated when the region bound by the
curve y* =4x and the line ¥ =X is revolved about the line x=-1.

10. Find the volume of the solid generated when the region bound by the
curves y = x—x2 and the line ¥y =0 is revolved about the:

a) thex—axis b) they—axis
c) line x=2 d) line x=-2
e) line y=-1 ) line y=2.

11. Find the volume of the solid generated when the region in the first

quadrant bound by the curve y* —x+1=0 and the lines x=2 , y=0is
revolved about

a) thex—axis b) they-axis

12. In reaction between ethylene bromide and potassium iodide in 999,
methanol, C, H,Br, +3KI — C,H, +2KBr + KI, itis found that the
amount of iodine 1,,xmol dm™ is related to the time, ¢ minutes, after

the reaction began by: k¢ :j de

 (a—e)(a—3¢)

where k = 0.3dm> mol™' min™" is the reaction rate constant and a is
the initial concentration of the chemicals.

a) Evaluate the integral to form t as a function of x.
b) By rearranging the formula in a) write x in terms of t.

c) Find the value of x when t becomes very large.

13. The number of atoms, N, remaining in a mass of material during
, . . o -2

radioactive decay after time t seconds is given by: N =N e ™, where

N, and A are constants. Determine the mean number of atoms in the

1

mass of material for the time period =0 and s = —.

A
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14. The average value of a complex voltage wave form is given by:

V. =lj(lOsina)t+3sin3a)t+2sin5a)t)dt.
7[0

Evaluate V,, correctto 2 decimal places.
15. Find the work required to compress a spring from its equilibrium
length of 0.3m to 0.2m if the force constantis k=234N/m

16. A spring exerts a force of a ton when stretched b5m
beyond its natural length. How much work is required to stretch the
spring 6m beyond its natural length?

17. A spring has a natural length of 1m . A force of 24 N holds the spring
stretched to a total length of 1.8m .

a) Find the force constant.

b) How much work will it take to stretch the spring to 2m beyond its
natural length?

c) How farwilla 45N force stretch the spring?

18. A swimming pool is built in the shape of rectangular parallelepiped
10m deep, 15m wide, and 20m long.

a) Ifthe poolisfilled Tm below the top, how much work will be required
to pump all the water into a drain at the top edge of the pool?

b) If a one horsepower motor can do 550m of work per second, what
size motor is required to empty the pool in one hour?
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“ Differential Equations

Introductory activity

A quantity y = y(¢) is said to have an exponential growth model if it
increases at a rate that is proportional to the amount of the quantity
present, and itis said to have an exponential decay model if it decreases
at a rate that is proportional to the amount of the quantity present.

Thus, for an exponential growth model, the quantity y=y(t) satisfies
an equation of the form @ _ k.y(t) (kis a non-negative constant called

annual growth rate). Given that d—);:k.y(t) can be written as Q:k.dt,
solve this equation and apply the answer ¥ = »(?) obtained Y

in the following problem:

The size of the resident Rwandan population in 2018 is estimated to
12,089,721 with a growth rate of about 2.37% comparatively to year
2017 (www.statistics.gov.rw/publication/demographic-dividend).

Assuming an exponential growth model and constant growth rate,

1. Estimate the national population at the beginning of the year
2020 and 2030

2. Does this population continue to increasing or to decrease?

3. What are pieces of advice would you provide to policy makers?

A differential equation is an equation that involves a function and its
derivatives. We can also say, a differential equation makes a statement
connecting the value of a quantity to the rate at which that quantity is
changing. Differential equations can describe exponential growth and
decay, the population growth of species or the change in investment
return over time.
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Objectives

By the end of this unit, | will be able to:

e  Extend the concepts of differentiation and integration to ordinary
differential equations.

e  State the order and the degree of an ordinary differential equation.

®  Express the auxiliary quadratic equation of a homogeneous linear
differential equation of second order with constant coefficients.

e  Predict the form of the particular solution of an ordinary linear
differential equation of second order.

5.1. Definition and classification

In each of the following cases, form another equation by eliminating
arbitrary constants. Also, write down the order of the highest derivative
that is obtained in the equation.

1. y=Ax+ A’ 2. y=Acosx+Bsinx
3. Y =Ax"+Bx+C

o : : : .. dy d’y dr .
An equation involving a differential coefficient i.e. & ay e.t.c.is

called a differential equation. dx’ dx®’ dt

Order of the highest derivative of function that appears in a differential
equation is said to be the order of differential equation.

First order differential equation; contains only first derivatives apart
from dependent variable.

Second order differential equation; contains second derivatives (and
with maybe first derivatives).

Degree of a differential equation refers to the highest power of the
highest derivative which occurs in the differential equation.

Differential equations are classified according to the highest derivative
which occurs in them.
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Consider the following equations:

2 2
L[ —e'+1 2. Ld—?+Rﬂ+i:Esina)t
dx dt dt C

N | W

2 3 2 2 2
3. d {+sinx(d—yj +8y=tanx 4. d’y =1+ &
dx dx dx2 dx

Equation 1) above is a first order differential equation (the highest
derivative appearing is the first derivative) and degree 2 (the power of the
highest derivative is 2).

Equation 2) is a second order differential equation (the highest derivative
appearingisthe second derivative) and degree 1 (the power of the highest
derivative is 1).

Equation 3) is a second order differential equation (the highest derivative
appearingisthe second derivative) and degree 1 (the power of the highest
derivative is 1).

Equation 4) is a second order differential equation (the highest derivative
appearingisthe second derivative) and degree 2 (the power of the highest
derivative is 2).

By a solution of differential equation, we mean a continuous function
y(t) or y(x) that satisfies the differential equation.

The solution to a given differential equation is obtained by integration.

Given a function with arbitrary constants, you form differential equation by
eliminating its arbitrary constants using differentiation process.

A differential equation in which there is only one independent variable,
so that all the derivatives occurring in it are ordinary derivatives is said
to be an ordinary differential equation. The general ordinary differential
equation of the

2 n
n™ orderis F(x,y,ﬂ,dy ....... ,dszo,or

7}’ =3y’ Sin(t +y) is a differential equation of order one.
t
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2

d’y

+ y =cos 2t is a differential equation of order two.
dr’

d’ _ d’y . . : :
—)3/ — e +x+ 22 is a differential equation of order three.
X X

Example 5.4

x
L

Given the equation y = Ax”. Find the differential equation and hence
state its order.

y= A = A= %
Now, ﬂ:2Ax
dx
d 2
Since A= lz = a’_y =Y asthe required differential equation,
X X x

the equation is a first order differential equation.

Application activity 5.1

solution;
a) y2:4a(x+a) b) Ax2+By2=1
c) y:ae3x+bex d) y:e"(Acosx+Bsinx)

e) y=acos(x+3)

2. State the order and degree of the following differential equations:

a) dzy—3x—co —2sinx b) dy 4 3x = 2si
a2 Y i X=C0Sy—2s8inx
2
c) (yn)3+(yv)5_2y:x4 d) yil-;}_kcos_x:o
X

1.  Obtain the differential equation for which the given function is a
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2
&) LY _9y-0 AP
dx dx dx®
3 4
dzy dy 2 dzy dy 4
——4—=—43y=3x+2 h) x| — | +y| = | +y" =
9 dx* dx+ y=oxx ) [dx2 J dx Y

5.2. First order differential equations

5.2.1. Differential equations with separable variables
Express each of the following equations in the form f(y)dy = g(x) dx
and integrate both sides.

1 Ay _x _
dx y dx

A general differential equation of the 15t order can be written in the form;
dy
F(xy,d) OOF —f(xy)

2 - g (x)h(y)
The simplest is that in which the variables are separable: dx

To solve the differential equation, we write it in the separated form;

dy : . dy
—:g(x)dx and integrate both sides | ——=| g(x)dx
J ) Jg(x)

h(y)
E

2
Solve ﬂ: x +1
dx 4

2

d_y_x +1
dx 4

< 4dy = (x2 +l)dx
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I4dy =J.(x2 +1)dx

x X ox .
=4y :?+2x+c:>y:E+5+c; general solution

Example 5.6
dy

Solve the differential equation, == =
dx x-6

:>ln|y|:ln|x—6|+c
:>1n|y|=ln|x—6|+lnk, Ink=c
:>1n|y|:ln|k(x—6)|

=>y= k(x—6), k is a constant; general solution.

Application activity 5.2

Solve the following differential equations:

. Y_y ) W _x
dx 2x dx y’
dy 2 dy 2
=1y 4. (x+1)—==x(»"+1)
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5.2.2. Simple homogeneous equations

1. Given the relation f(x,y)=x"+xy, replace x with tx and ¥ with

1y and re-write the given relation in the form ¢" f(x, y) . Deduce the
value of n.

2. Consider the differential equation % = f(x,y)- By letting 2 :ll
X X

write equivalent relation to the given equation in function of x and
7%

1
3. Suppose that f(l‘x,ly) = f(x,y), by letting  =— and using
X
relation obtained in 2), write a new relation such that the variables

x and z are separated.

A function f(x,y) is called homogeneous of degree n if

f(tx,ty)=t"f(x,y) for all suitably restricted x,y and t.

This means that if x and y are replaced with #x and #y, # factors out of the
resulting function.

Example 5.7

Show that 4/x* + »* is homogeneous of degree 1.
=P )
='Jx? +y* ; where n=1 as required

Example 5.8

. X
Show that sin— is homogeneous of degree 0.
y
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. X 00X o . X
sin—=sin¢xt — =sint —=t sin—
ty y y y

Since ¢’ then the degree is 0.
Notice

The differential equation; M(x,y)dx+N(x,y)dy =0 is said to be
homogeneous if M and N are homogeneous functions of the same degree.

This equation can then be written in the form d_y =f(x,y)
dx

where f(x,y) :M is clearly homogeneous of degree 0.

N(x, )
We solve this equation by letting z o Which reduces the equation to
variable separable. X

Example 5.9

Solve (x+y)dx—(x—y)dy =0

We write the equation in the form Z—y = f(x,»)
x

dy _x+y

dx x-—y

Since, this equation is homogeneous of degree 0, we know that it can be

expressed as a function of z = Z, this comes by dividing the

X
d 1+2
numerator and the denominator by x; av_ X
dx Y
X
But y=2zx = d—y:z—i—x%
dx dx

Separating the variables gives:

_ | d
! Zdz=ﬁ:>( - jdz:—xj D 2 &

1+ 22 x 1+2° 1+27° X 14z
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. . 1 2
On integration, we get al‘CtanZ—Eln(1+Z ) =lnx+c

2
X X

2
Replacing z with Y we obtain arctanl—lln(1+y—J =lnx+c
R

or arctan = In X’ +y? +c asthe general solution.
X

Example 5.10

Xy

2

X -y

X
We have f(x,))=— Y 2

Solve: y'=

Ixty tzxy 0o Xy xy
tx’ = = = t = = x’
S(x,ty) Px 12y tz(xz_yz) =y - ? f(x,p)

Then, f(x,y) is a homogeneous function of degree 0.

To solve, let Zzzjyzzx

X

2
d dz dz Xzx dz Xz
dy_ e ex o odz

dx dx dx x> —(zx)’ dx x*(1-72°)

dz z dz z dz z
> Zt+tXxX—= 2:>Z+X——

dc 1-z dx 1-z dx 1-z

:>xdz+(z—ijdx=0 jxdz+(%

1-z

xdz z dx dz_ dx _

dZ———O I :c

d. d. 1
:j;f—j;dz— %IC é—g—ln|z|—ln|x| =



But z = Z; then,

X
_ 12_1nl—1n|x|=c = —lnl‘—ln|x|:c
2
) " x

X
= - 2—1n|y|+ln|x|—1n|x|:c

x2
— 2—1n|y|=lnk [where ¢ = Ink]

2 2

S =lnk+Iny :>—2x2 =Inky = —x*=2y"Inky
y

7=

o x> ==2y*Inky, k= constant as the general solution.

Application activity 5.3

Solve the following differential equations.

2
1) Q:x—i-xy 2) 2xyd—y=)/2—)c2
dx  xy+y’ dx
3) xyd—y:2y2+4x2 4) d_y:y——x-l-Z
dx dc y—x+1

5.2.3. Linear equations

Lo,

Consider the equation d_y+py =q (1) where p and ¢
dx

are functions in x or constants. Suppose that the general solution of this
equation has the form y =uv where u and v are functions in x.

1. Differentiate y.
2. Substitute the expression obtained in 1) and value of y into equation

(1).
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3. Inrelation obtained in 2) by factoring out u and letting ﬂ.ppv =0
, solve for v. Give the value of v by dx

taking the constant of integration to be 1.
4. Substitute this value of v, obtained in 3) into equation obtained in 2)

(knowing that §+pv =) and hence solve for u.
x

The most important type of differential equation is linear equation in
which the derivative of highest order is a linear function of the lower order
derivatives.

d
Thus, the general first order linear equation is d—y+py =¢q where p and
X

q are functionsin x or constants.
From activity 5.4, the general solution to the differential equation

dy

—+ py =q where p and ¢ are functions in x or

dx

. pdx
constants, is Yy =uv where u =J‘qeI dx and v=e

2
Solve: y'———y=(x+1)’
x+1

Let the solution be y=uy

—J. pdx

dy udv N vdu
dx dx dx
Now, the given differential equations becomes;

udv+vdu_ 2 = (x+1)
dx dx x+1

dv 2 vdu

U—————uy+——= (x+1)’
dx x+1 dx

| Vo2V LAy
dx x+1 dx
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Taking ﬂ—ﬂ:O dv_ 2v and ﬂz%

dx x+1 dx x+1 v x+1

= Iny|=2In|x+1| = In|v|=In(x+1)> = v=(x+1)’

d
Now, u(ﬂ— 2v +ﬂ:(x+l)3 becomes (x+1)2—u:(x+1)3
dx x+1 d dx
as ﬂ—izo 3ﬂ=x+1 =du=(x+1)dx = u :I(x+1)dx
dx x+1 dx
(x+1)? x’
= +coru="—+x+c
2
Then,
+1 N
= (x+1)? {(xz) } :—(“21) Fe(x+1y
Application activity 5.4
Solve:
1. Q+X:1,x>0 2. Q+xy x
dx x dx
dy 2 d
3. (x+1)——y=e"(x+1 4. & =i
( )dx y (x+1) dx+2ytanx sin x
5.2.4. Particular solution
: . ) ) . dy
Consider the differential equation o =x+4
X

1. Find the general solution of this equation.

2. Findthevalue ofthe constantof integration if y=¢4 when x = 2 . Write
down the new solution by replacing the constant of integration
with its value.

We have already mentioned that the solution to a given differential

equation is obtained by integration. If the solution contains one or more
constant(s) of integration, then it is called a general (primitive) solution.
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When more information is provided, the value of the constant can be
determined and hence a particular solution can be written. Differential
equations with more information are reffered to as initial value problem.
In fact, in application, particular solutions are much more useful than
general solutions.

2
Solve: y'———y=(x+1)’ Vlo=3
x+1

We have seen that, in Example 5.11, the general solution for the equation
(x+1)4

is y= +c(x+1)2

Now, y|,_,=3 means that ¥y =3 for x=0

Then,

(0+1)4 2 1 o, 1.5
3=—c(0+1) :>3:§+c = C—3—5_E
Then, the particular solution for the given equation is

3 (x+1)4 5

5 +E(x+1)2

0 Notice

There exists one and only one solution of the initial value problem
%: (x)y, y(xo) =), within a given interval.
X

Application activity 5.5

Find the solution satisfying the given conditions:

dy : T
1. Z4+2ytanx =sinx, — (=0
dx 4 y(3j
dy 1+y°
2. Y _ y(0)=1
dx 1+x° (0)
dy

3. xy:(l—xz)a, y(O):l
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5.3. Second order differential equations

Give two examples of second order differential equations with;

1. degree greater than 1

2. degree 1

The general second order linear differential equation is of the form
2

E i p(x) L (x)y=r(x)

Or more simply, y"+p(x)y'+q(x)y=r(x) (1)

where p(x), q(x) and r(x) are functions of x alone (or perhaps
constants).

If r(X) is identically zero, the differential equation reduces to the
homogeneous equation;

y"+p(x)y+q(x)y=0

If r(x) is not identically zero, then the differential equation is said to be
non-homogeneous.

If a second order differential equation cannot be written in the form (1), it
is said to be non-linear.

For second order homogeneous linear equation y"+py'+qyr=0, a

general solution will be of the form y =¢,y, +¢, ¥, ; a linear combination

of two solutions involving two arbitrary constant ¢, and ¢,. In this

solution, ¥, and ), are called a basis of y"+ py'+qy =0, where

and y, are linearly independent.
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An initial-value problem non-homogeneous consists of
y"+ py'+ gy =0 and two initial conditions y(xo) =k, and y'(x,) =k,
, prescribing values k, and k; of the solution and its derivatives at the

same given X.

5.3.1. Homogeneous linear equations with constant
coefficients

te:

1. Find the solution of the equation y'+ky =0, k is a constant

2. Substitute the solution obtained in 1) into the equation
y"+ py'+qy=0 and give the condition so that the solution
obtained in 1) is a solution of y"+ py'+¢gy =0. What can you say
about the solution of y"+ py'+qy=07?

Lety"+ py'+qy =0 (1) be a homogeneous linear equation of second
order (right hand side is equal to zero) where p and g are constants.

From Activity 5.7, the solution of the equation y'+ky =0 is a solution of
"+ py'+qy =0 if the equation of the form m” + pm+¢q =0 called the

characteristic auxiliary equation is satisfied. The two roots m, and m,
of this equation, i.e. the values of m are given by the quadratic formula

—pEP -4
5 .
Depending on the sign of the discriminant, A = p* —4q, we obtain:

m,m, =

Case 1: Two real roots if p> —4¢>0.
Case 2: A real double roots if p2 —4g=0.

Case 3: Complex conjugate roots if p° —4¢<0.

Case 1: Characteristic equation has two distinct real roots

It is clear that the roots m, and m, are distinct real numbers if and only if
A>0.In this case, we get the two solutions ¢"" and €"*".
mx

. . e
Since the ratio
e

— o™=™)¥ is not constant, these solutions

myx
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myx

are linearly independent and y =c,e™ +c,e™" is the general solution of

(1) (¢, and ¢, are arbitrary constants).

X

In this solution, y, =ce™ and y,=c,e™ are called basis of
d’y dy

ey, +qy=0.
I pd qy

Solve: y"+y'-2y=0

The characteristic equation is m”> +m—2=0

A=1+8=9>0
n’l1 :%:—2, m2:_1+3:1

—2x

Then the general solution is ¥ =c,e” +c,e

Application activity 5.6

Solve the differential equations;

2
1. %—8%+15y20 2. y"+y-2y=0
X X
d’y dy d’y dy
+—-30y=0 4. Y1102 421y =0
dx*  dx 7 dx’ dx Y

Case 2: Characteristic equation has a real double root

L0

Consider the differential equation:

d’y . dy
—+2—+y=0
dx? dx v

1. Determine one of its solutions.
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2
2. Let y,=xy, where y, is a solution of d—f+2£+y=0.

dx dx

a) Substitute y by y, =xy, in the given differential equation; what
can you conclude?
b) Verifyif y, islinearly independent and deduce the general solution
d’ d
J; +2—y+y =0.
dx dx

of

Hint:

General solution is a combination of two linearly independent solutions.

In characteristic equation m* + pm+q =0, we know thatthe roots m, and
m, are equal real numbers if and only if A=0.

Here, we obtain only one solution y, =e™ . However, from activity 5.8,
the second linearly independent solution is y, =xe™ and the general
solution of equation y"+ py'+qy =0

. _ mx mx __ mx
is y=ce™ +cxe™ =(c +c,x)e™

Example 5.14

Solve: y"-4y'+4y =0

Characteristic equation is m* —4m+4 =0

A=16-16=0
4
m=—=72
2
The general solution is y = ¢,e™* +c,xe™
Application activity 5.7
Solve:
2
1. 2 d_y+9y:o 2. y"+6y+9y=0
dx* dx
2 2
d J;+8d—y+16y:0 i ;V_l@+iy:o
dx dx dx~ 3dx 36
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Case 3: Characteristic equation has complex roots

. . . _d’y dy
Given the differential equation

-4—+25y=0,
I’ dx ‘

1. a) Write down the basis solution.

b) Write its general solution.

2. Use Euler's formula to write the solution in two parts; one in function
of cosine only and another in function of sine only.

3. Since the obtained solution is not real valued function, find the
two real valued functions that are solutions of the given differential
equation (real basis).

4. Hence, give the general solution of the differential equation

y'+py'+qy=0.

When the characteristic equation has complex roots, the bases are
_ (a+iﬂ)x (a—iﬁ)x .o .

v, =e and y,=e giving a general solution

y= Cle(aﬂ',b’)x +cze(a—iﬁ)x =™ (Cleiﬂx +Cze—iﬂx)

The imaginary i is not always welcome here, so we use Euler’s formula to
put the solution into real form i.e.

¢ = cos fx+isin Bx and e 7" = cos Bx —isin fx
Hence, y =€ [ (¢, +c,)cos Bx+(c, —ic,)sin Bx ]

From activity 5.9, the basis of real solution can be written as
yy=e”cosffx and y,=e“ sinfBx and hence general solution is
y=e”(Acos fx+ Bsin fix)

Find the general solution of y"+2y'+5y=0.

Characteristic equation is m* +2m+5=0
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A=4-20=—16<0JA =4i

24 _2+4i

m, = =-1-2i,m, = =-1+2i

a=-1,b=2

The general solutionis y=e ™" (c] cos2x+c¢, sin Zx),

Example 5.16

Solve the initial value problem
y'+2y+2y=0
y(0)=2
y'(0)=-3

Characteristic equation is m”> +2m+2=0
A=4-8=-4<0JA=2i

: —2+2i
~1-i,m, = =

—2-2i
ml = 2 =

a=-1,b=1

—1+i

The general solutionis y =€ (Cl cos x +c¢, sin x) ,
Also,

y'=—e"(¢ cosx+c,sinx)+e ™ (—¢ sinx+c, cosx)
y(0)=2<2=¢"(¢,cos0+c,sin0)

=2=¢

»'(0)=-3< -3=—¢"(c,cos0+c,sin0)+e" (—c,sin0+c, cos0)

=-3=—¢ +c,

=c,=-3+¢=-3+2=-1
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The particular solutionis y=e ™ (2 COS X —sin x) .

Application activity 5.8

Solve the following differential equations.
1. y"+4y+13y=0
2. y"+4y+5y=0

2
TV 2% 9,0
dx’ dx

4. y"+4y'+13y=0, y(0)= Oandy(fj 1

5. 2y"+y'-10y=0, y(0)=0and y(1)=1

\®)

5.3.2. Non-homogeneous linear equations with constant
coefficients

&

State the type of the following differential equations and solve if possible.

2
1. Q—L:ex(x+l) 2. d—f—4d—y:5y
dx x+1 dx dx
d’y ,dy
— -5 X
dx? dx =

The general solution of the second order non-homogeneous linear
equation y"+ py'+qy =r(x) can be expressed in the form y=y+y’
where ¥y is any specific function that satisfies the non-homogeneous
equation, and y =c¢,y,+c¢,y, is a general solution of the corresponding
homogeneous equation "+ py'+qy =0.

The term y=¢,y, +¢,y, is called the complementary solution (or the
homogeneous solution) of the non-homogeneous equation.

The term ¥’ is called the particular solution (or the non-homogeneous
solution) of the same equation and its form depends on the type of r(x).
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The right hand side is a product of the form r(x) = Pe®*

Consider the equation y"-2y'+y=¢e".
1. Find the general solution, say y,of y"-2y'+y=0.

2. Express the right hand side of the given equation in the form
r(x) = Pe™ . Suppose that the given equation has particular

solution ¥" = x*Q(x)e**
where;

a is the coefficient of x in €”* in the right hand side of the given
equation, k is the number of roots of the characteristic equation
obtained in 1) equals to @, and Q(x) is the polynomial with the
same degree as the degree of the polynomial found in right hand side
of the given equation.

Write down 3" .

3. Substitute the value of y* in the given equation to find the new

*
expression for ) .

If the right hand side of the equation y"+ py'+qy =r(x) is r(x)=Pe™
where P is a polynomial, we take the particular solution to be

y =x'Q (x)e™, 0, = ax" +ax"" +a,x" +....+a,

Here, k - is the number of roots of the associated homogeneous equation
equalsto o .
n - degree of O(x), the same as degree of P(x) on the right hand side.
a - coefficient of x in €** in the right hand side.
Three cases arise

e If o isnota root of characteristic equation £ =0.

e |f o isasimple root of characteristic equation k=1.

e If a isadouble root of characteristic equation k=2.
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Note that the simple root or double root in the last 2 cases must be real
numbers.

Example 5.17

Find the general solution of y"+y=e¢".

Characteristic equation:

m’+0m+1=0
A=0-4=-4

0-2i . 0+2i .
m, = =—i, m, = =1
2 2
¥ =¢,cosx+c,sinx, which is the general solution of the homogeneous
equation.

a =1 is not a solution of the characteristic equation, so k=0,
Taking y" = 4e* and Q(x)=4 as P(x)=1.

y "= Ae"

Substituting the expression into the given equation gives

= 24e =e* . Thus < 24=1

1

Or A=l =y ==e
2 2

The general solution of the given equation is

— _ 1
Yy=y+y = y=c,cosx+c, smx+(5exj.

Example 5.18

Find the general solution of y"=7y'+6y = (x—2)e"

Characteristic equation: m> —7m+6 =0

A=49-24=25
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mlzﬂzl, m2=$=6

2

We see that @ =1 which is one of the roots of characteristic equation, so
k=1

Then y" = x(Ax+ B)e",
O(x)=Ax+B as P(x)=x-2

But y=ce" +c,e™
y =x(Ax+B)e" = (Ax2 +Bx)ex
y' = (2Ax+B)ex +(Ax2 +Bx)ex
" =24e" +(2Ax+B)e" +(2Ax+B)e" +(Ax2 +Bx)ex
Substituting these expressions into the given equation gives;
24e" +(2Ax+B)ex +(2Ax+B)ex +(Ax2 +Bx)ex
—7(2Ax+B)ex —7(2Ax2 +Bx)ex +6(Ax2 +Bx)ex = (x—2)ex
= 2A4+2Ax+B+2Ax+ B+ Ax* + Bx—14 Ax

~7B—TA4x* =7Bx+6A4x" +6Bx =x—-2
= x*(04)+x(-104+0B)+24—-5B =x-2
= —104x+2A4A-5B=x-2

-104=1
2A-5B=-2

s 9
100 25
* X 9 X 6x X 9 X
=x| —+—|e" =ce tce +x| —+—|e
4 x( 10+25je and y=ae Ta ( 10 25)
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Application activity 5.9
Solve the following differential equations.
1. y"+6y+9y=>5¢" 2. y"-3y'+2y=¢"
2

3. y"+3y+2y=3e" 4, 4 _ ﬂ+2y:e3x

7 ; dx’  dx

Y Y 3x
-6—+9y=e
dx’ dx 4

The right hand side is of the form y(x) = Pe* cos fx + Qe* sin Bx

Consider the equation y"+4y =cos2x
1. Find the general solution, say 3, of y"+4y=0.

2. Write the right hand side of the given equation in the form

Pe™ cos ffx+ Qe sin fx where P and Q are polynomials.
Suppose that the given equation has particular solution

y =x (ue””C cos fx +ve™ sin [)’x)
where;
a) r=0if a+if isnotaroot of characteristic equation,
b) r=1if a+if isaroot of characteristic equation,

¢) wuand v are polynomials in x of degree equal to the highest
degree of P and Q.

Write down y~
3. Substitute the value of y* into the given equation to find the new

. *
expression for y .

If the right hand side of the equation "+ py'+qy =r(x)is

r(x) = Pe”* cos fx + Qe“ sin fx where P and O are polynomials, two
cases arise:

e If a+if isnotarootof characteristic equation, the particular solution
is

y" =Ue™ cos Bx +Ve™ sin fx
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e If a+if isarootof characteristic equation, the particular solution
becomes

y = x[Ue‘” cos fx+Ve™ sin ,Bx}

In all cases, Uand Vare polynomial of degree which is equal to the highest
degree of Pand Q.

Example 5.19

Find the general solution of y"+2y'+5y=2cosx.

Characteristic equation: m”* +2m+5
A=4-20=-16

m = —2—4i 12 m, = —2+4i
2

=—1+2i

y =¢ (¢ cos2x+c, sin2x)
Here, @ =0, =1 because the right hand side can be written as 2¢" cos x

We see that ¢ +iff =0+1i is not a solution of characteristic equation, then,

y" = Acos Bx+ Bsin Bx

= Acosx+ Bsinx
* .

y” =—Asinx+ Bcosx
*// .

y" =—Acosx—Bsinx

= —Acosx—Bsinx+2(—Asinx+ Bcosx)+5(Acosx+ Bsinx)=2cosx
= —-Acosx—Bsinx—2—Asinx+2Bcosx+5A4Acosx+5Bsinx=2cosx
:>cosx(—A+2B+5A)+sinx(—B—2A+SB):2cosx

—-A+2B+54=2
—-B-2A4+5B=0

328



= =
—2A+4B=0 —2A+4B=0
5B=1

{4A+2B:2 {2A+B =1

2
B:l,and A=—
5 5

¥y =Zcosx+—sinx
5 5

. 2 I .
Thus; y=e™(c, cos2x+c, sin 2x)+§cosx+§s1nx

Alternative method: Variation of parameters

We know that the general solution of the characteristic equation
associated to the equation "+ py'+qy =r(x) is found to be

Y= c1y1(x)+czy2(x) .

From y =c¢y, (x)+c*2y2 (x) , we can get particular solution y” as follows:

e We determine W(yl,yz) known as Wronskian of two functions ¥,
and y, defined by

W(yl,yz): yl, y% #0,since ), and », are linearly
Yo W
independent.
* Wedetermine y, = —»,r(x) ,and v, = »r(x)
W(,»,) Wy,»)

where r(x) is the right hand side of the given equation.

Then the particular solution y* is given by y* =v,(X)y,(x) +v,(x)y,(x)-
Therefore, the general solutionis y =5+ y°

=y =¢)(%) + 6,3, (%) 11 (X) y, (X) + v, (), (%)

Example 5.20

Find the general solution of y"-2y'-3y =™
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Characteristic equation:
m’ —5m+6=0
A=4+12=16

m, —__1, —ﬁ:

m, = 3
2
2
. . . . . .= - 3
The complementary solution forthis differential equationis ¥ =c,e” +c,e
So, we have

—X

_ ! 3
ylzex:yzzeg)x:y'l:_e and y, =3¢,

The Wronskian of these two functions is

e—x eSx
W(yl,yz)z , =3e e +e e = 4e™
e 3e”
Now; v =I—e3x e dxz—lj‘e“dx:—LeSx
! 4> 4 12
e ¢ ., 1 .
Also; v, :Ie s dx:ZIe a’x:—ze
Particular solution is,
y*:V1y1+V2y2 — _Le3x e—x+ _le—x e3x :_leZX
12 4 3

Thus the general solution is

2x
_ -x 3x e
y= cle + cze -

Find the general solution of ' =5y + 6y =¢"sinx.

Characteristic equation:

m*—5m+6=0 A=25-24=1
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mlzﬂzlmz:%:S

— _ 2x 3x
The complementary solution for this differential equationis ¥ =€ +¢¢€

So, we have
y=€", y,=e" =y =2 and ¥, =3¢,
The Wronskian of these two functions is

er e3x

2 3 2 3 5
5o 33x:3exex—26"ex=ex
e e

W(y,»,)=

5, €' sinx
Sx

Now, v, = I—e
e

dx = —I e " sin xdx
Integrating by parts, gives

1 .. 1, (. 1
vV, =—e€ SInx+—e CcosSx=e¢e SIN X+—COS X
) 2 2

e’ sinx x
Also, v, :Ieszdx:je ** sin xdx
e
Integrating by parts, gives
ox 2 . I _ _ 2.
v, =Ie 2 s1nxdx=—ge 2 sinx——e *cosx=e " —sinx—cosx

Particular solution becomes,

Y =vntn,
X

. 1 S 2. 1 e .
=e'| sinx+—cosx |+e'| ——sinx——_cosx | =—(3cosx+sinx)
2 5 5 10

Thus the general solution is

X

e :
y=ce” +c,e’ +—(3cosx +sinx)
10

Find a general solution to the following differential equation

d’y .dy e’
——2—+y=
dx’ dx 4 x> +1
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We first need the complementary solution for this differential equation.

Characteristic equation:
m2—2m+1=0<::>(m—1)2 =0, then m=1.

The complementary solution forthis differential equationis ¥ =¢e” +¢,xe’
So, we have

y =, y,=xe* and y, =¢",y, =" +xe*

Thus,

X

e xe -

)— i i =e"(e"+xe")—e"(xe"):e",
e e +xe

¥ _ X
1% =I—xe mdx— J.x2+1

dx = —%ln(x2 +1);

e’ dx

S ey oy e

=tan' x

. 1 .
The particular solution is y* = —Eex ln(x2 +1)+xex tan”' x

The general solution is,

1 -
y=ce +c,xe’ —Eex ln(x2 +1)+xex tan~' x

Find the general solution of y"+y=¢"

Characteristic equation: m”> +1=0=m =+i
Y =c¢,cosx+c,sinx
Let y*=v,cosx+V,sinx,

. . /
Y, =cosx, y, =sinx, r(x)=e'=y' =—sinx, ¥, =cosx
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CosX sinx ) .
W) =| . =cos’ x+sin’ x =1
—sinx cosx

X

: e .
v, = j—smxe"dx:——(smx—cosx)
2

X

e :
v, = jcos xe*dx =—(cos x +sin x)
2

X X
*

y = —e—(sinx—cosx)cosx+e—(cosx+sinx)sinx :le
2 2 2

X

. 1
Thus; y=c¢,cosx+c, s1nx+5ex

Application activity 5.10

Find the general solution of:

1. y"-2y+y=xsinx 2. y"-2y'+y=xe sinx
3. y"-y=xsin3x+cosx 4. y"+y=cscx

5. y"+y=tanx

5.4. Applications
There are a number of well-known applications of first order equations
which provide classic prototypes for mathematical modeling. These mainly

rely on the interpretation of Q as
a rate of change of a function y with respect to time .

In everyday life, there are many examples of situations that involve rates
of change. These include; speed of moving particles, growth and decay
of populations and materials, heat flow, fluid flow, and so on. In each case,
we can construct models of varying degrees of sophistication to describe
given situations.
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5.4.1. Newton’s law of cooling

=

Using the library or internet if available, show how differential equations
are used in Newton's law of cooling and hence solve the following
problem:

Suppose that you are in hurry to go out but you want to drink a cup of
hot coffee before you go. The initial temperature of the coffee is 90°C
and you can start to drink the coffee when its temperature is 45°C . The
temperature of the room (ambient air) is 20°C.

Formulate a model and find out how long you will have to wait.

What assumptions and simplifications have you made?

Newton's law of cooling states that the rate at which an object cools is
proportional to the difference between the temperature at the surface of
the body, and the ambient air temperature.

Thus, if T°C is the surface temperature at time ¢ and 7°C is the ambient

temperature, then, we can write; ﬂ: _,1(]“_]"0)
dt
where A4 > 0 issomeexperimentallydetermined constantof proportionality,

and T} is the initial temperature of the body of interest.

Example 5.24

Solve the following equation

ar _
dt

where A >0 to give the temperature at t >0.

A(T-T,)

Integrating both sides yields
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In(T-T,)=—At+c

=>In(T-T,)=lne* +c

(T—Q] T-T
:>11’1 =C & a:eC

A —
e t elt

:>T_Ta:ke*’ where e =k e R <:>T=Ta+ke’l’

5.4.2. Electrical Circuits

Using the library or internet if available, show how differential equation

are used in electric circuit and hence solve the following problem:

The current i in an electric circuit having a resistance R and inductance L in
series with a constant voltage source E is given by the differential equation

£-1(2)-n.
dt

a) Solve the equation and find i in terms of time ¢ given that when
t=0,i=0.

L
b) Find the value of i that correspondsto = 3E and

show that it is about 95%, of the steady state value | — E .

R

c) Determine approximately the percentage of the steady state
current that will be flowing in the circuit 2 times constants after

the switch is closed (i.e., when ¢t =2—)

In the R—L series circuit shown in figure 5.1, the supply p.d., E, is given by
E=V,+V,

di
V,=iR and V, = L—
R L dt
di .
Hence, E=iR+LZ from which E—Lﬁ:iR
dt dt
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Figure 5.1. R-L series circuit

Rt

The corresponding solution is i:% 1—e L | which

represents the law of growth of current in an inductive circuit as shown in
figure 5.2

SRRAAERAL 1
¥
E E E mambm e - ﬁ_,:'.:EEEE'" -
A EtE i
e R
B i l = — 1—6 L
e R
153
i
e
0 Time ¢

Figure 5.2. Law of growth of current

The growth of the current in the RL circuit, is the current’s steady-state
L .

value. The number ¢ = 2 is the time constant of

the circuit. The current gets to within 5% of its steady-state value in 3
times constant.

The p.d., 7, between the plates of a capacitor C charged by a steady
voltage E through a resistor R is given by the equation
dv
CR—+V=FE.
dt
a) Solve the equation forV giventhatat t=0, V' =0.
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b) Calculate ¥, correct to 3 significant figures, when
E=25V,C=20x10°F, R=200x10°Q and t=3.s.

CRd—V+V:E
dt

RY gy WV Y,
dt E-V CR E-V CR

Integrating yields;

;>—ln(E—V)=Ct—R+k

But 1n%:k,when £=0,7 =0

1

E t E-V L
In = = =e
E-V CR E

t t
E-V=Fe R=V=E—-FEe R

t _L
V=FE—FEe CR or V:E(l—e CRJ

Application activity 5.11

1. The population of a colony of rabbits in a park increases at a rate
proportional to the population. Initially, there were ten rabbits in the
park. When the population is 100 rabbits, the colony is increasing at
a rate of seven rabbits per month. Form a differential equation for
the population increase and solve it.

2. The currentin an electric circuit is given by the equation

Ri+ Lﬂ = (), where R and L are constants.
dt R
Show thatj = Je L giventhati=1 whent=0.
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The body of a murder victim was discovered in the early hours of
the morning at 2:00 a.m. The police surgeon arrived at 2:30 a.m.
and immediately took the temperature of the body, which was

34.8°C. One hour later the temperature of the body was 34.1°C.

Surrounding temperature was constant at 32.2°C. If the normal
body temperature is 37°C,

a) Formulate a differential equation model for the temperature of the
body as a function of time.

b) Solve the differential equation.
c) Use your solution in b) to estimate the time of death.

Charge, Q (coulombs) at time, ¢ (seconds) is given by
Rd_Q+2

dt
capacitance in farads and R the resistance in ohms.

the differential equation; =0, where C is the

a) Solve the equation for Q given that O = QO whent =().

b) A circuit possesses a resistance of 250x10°Q and a capacitance
of 8.5x107°F, and after (.32 seconds the charge falls to 8.0C.
Determine the initial charge and the charge after 1 second, in each
case correctto 3 significant figures.

A differential equation relating the difference in tension T, pulley

contact angle 6 and coefficient of friction p is d_T = uT-

do
When =0, T =150 N, and £ =0.30 as slipping starts.

Determine the tension at the point of slipping when 0 =2 radians.
Also, determine the value of § when T is 300 N.
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1. Definition and classification

An equation involving one or more differential coefficient(s) i.e.
dy d’ d’y dr
d’ d dr

a differential equation.

etc. is called

Order of the highest derivative of function y that appears in a differential
equation is said to be the order of differential equation.

The general ordinary differential equation of the n"order s

2 n
F[ @y

dx"
F(x,y,y',y', ....... ,V )=0

J =0, for derivatives

2. First order differential equations

The general differential equation of the 1 order is F(x,y,fl—yJ:O or
X

d
;_fﬁy)

The simplest is that in which the variables are separable: % — g(x)h(y).
x

A homogeneous equation of degree 0 can be expressed as a function of

z==
X

The general solution to the equation %+py =q
X

where p and x are functions in x or constants, is yy = YV where
dx
—J.qeI dx and v=e 2k
3. Second order differential equations

The general second order linear differential equation is of the form

Let y"+ py'+qy =0 be a homogeneous linear equation of second order
(right hand side is equal to zero) where P and ¢ are constants.
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The equation m* + pm+¢q =0 is called the characteristic auxiliary
equation
e |f characteristic equation has two distinct real roots, then,
y=ce" +c,e"™" isthe general solution of y"+ py'+qy=0 .
e |f characteristic equation has a real double root then,
y=ce" +cxe™ isthe general solution of 3"+ py'+ gy =0 .

e If characteristic equation has complex roots then,
y=¢e"(c,cosbx+c,sinbx) isthe general solution of

y'+py'+qy=0 .
Let 2"+ py e qy :}"(x (1) be a non-homogeneous linear equation of

second order (right hand side is different from zero) where p and ¢ are
real numbers.

If the right hand side of the equation y"+ py'+gqy =r(x) is r(x)= Pe™
where p is a polynomial, we take the particular solution to be

=x'0,(x)e™, 0, =apx" +ax"" +a,x" " +.....-

Here: k - is the number of roots of the associated homogeneous equation
equalsto ¢ .

n - degree of Q(x) the same as degree of P(x) in right hand side.

X

«a - coefficient of X in ¢** in the right hand side

e |f & isnota root of characteristic equation k=0

e If & isasimple root of characteristic equation k = 1.
e If & is adouble root of characteristic equation f = 2.

Note that the simple root or double root in the last 2 cases must be real
numbers.

If the right hand side of the equation y"+py'+qy=r(x)is

r(x) = Pe” cos fx+Qe” sin fx where P and Q are polynomials, two
cases arise:

e If @+if isnota root of characteristic equation, the particular
solution is " = Ue™ cos Bx + Ve sin fx
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e If a+if isaroot of characteristic equation, the particular solution
becomesy = x[Ue‘” cos fx+ Ve sin ,Bx}

In all cases, U and ¥ are polynomial of degree which is equal to the
highest degree of P and Q.

Alternative method: Variation of parameters

Assume that the general solution of the characteristic equation
associated with the equation y"+ py'+qy =r(x) isfound to be

Yy =y (x)+¢,p,(x)
To get particular solution:

From y =¢, (x)+czy2 (x) , we determine W (y,,y,) known as
Wronskian of two linearly independent functions y, and ), defined by

»n oy
W(yuy,)=. "|#0
o
_ r\Xx
Find out v1=I—y2r(x) and’, = _ARX) ()

W()’la)’2) I 2 W(ynyo‘

where r(x) is the right hand side of the given equation.

Here, W(yl,yz) must be different from zero as y, and y, are linearly
independent.

Hence, the particular solution is y* =v,(x)y,(x) +v,(x)y,(x)

The general solutionis y=y+ "
4. Applications

There are a number of well-known applications of first order equations
which provide classic prototypes for mathematical modeling. These

dy

mainly rely on the interpretation of —— as a rate of change of a function ¥

dt

with respect to time ¢ In everyday life, there are many examples of the
importance of rates of change - speed of moving particles, growth and
decay of populations and materials, heat flow, fluid flow, and so on. In
each case we can construct models of varying degrees of sophistication to
describe given situations.
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End of unit assessment

1. Solve the following differential equations.
a) y'=x,y(0)=1
by xp'=x>+1, y(1)=0,y(2)=1
c) y"=cosx, y(0)=0, y(7)=1

dy'=e-y o  (:-)y=m-y
f) (x-1)y'=3x"-y g) xp'-2y=x'e"

2. Solve the following equations.

a) %=e2x‘3y b) %z ylnx

c) 4xy%=y2—1 d) x%:3x+2y

e) 2w%=y2—x2 f) %:%

9) %+3y:e2x(1—x2) h) %+2xy=xm

3. Find the particular solutions of the following initial value problems.
a) 2y(1—x)+x(1+y)z—y:0, given x=1 when y=1
X

dy
—x=x—=,y(1)=2
b) »y—x xdx,y()

c) x2—3y2+2xyﬂ,y =3
dx x=1

d) d—y—y=e",y =0 y=e(x-1)

dx =
dy

e) —=ytanx+lyl =2 y=tanx+2secx
dx =

f) d—y+y=(x2+l),y(0)=0 y=x'+l-€*

dx
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4. Solve the following differential equations.

d’y dy d’y  dy
' dx o de
d’y  dy d?
0“4 4dy=0 d) dxf+4y=o
d’y
e) -9y =0
dx’ 7
5.  Obtain the general solution of the following in homogeneous
equations.
2
a) d{+5d—y+4y=3—zx
dx dx
2
b) Z]);+4y:xe2x
X
2
c) d—f+2ﬂ+2y=200s3x
dx dx
d’y

d) 32 +4y=e"cosx

d’ .
e) y f+4y:ex+sm2x
X
2
f) ‘232’_4%+3y=2xe3x+e3xcos2x
X X

6. For each of the following equations, determine the particular
solutions for initial value problem.

a) 2y +y —10y=0, y(O)zO,y'(O)zl

b) y"+4y'+13y=0, y(0)=0,y'£%j=1

7.  Workout the solution for each of the following second order
equations, with the specified conditions.

a) y'2y+y=x+2, y(0)=0, y'(0)=0

1
by y'+dy=x+1,y(0)=0, y(%};

) y"+y=sin2x, y(0)=0, y'(0)=0
d) y"-4y'+3y=3x, y(0)=0, y'(0)=0
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d’y . dy

e) . d—+10y:ez’“+20;WhenX=0aJ’:0
X X
and Q:—l
dx 3
d’y dy 21
f) 2—=-———6y==6e" cosx; wh =0, y=——
) 7 dr y =06e x; when x y 29
andd—y=—6§
dx 29

9) y"-2y'+2y=3e"cos2x, y(0)=2, y'(0)=3

8. Asaradioactive substance decaysitlosesits mass ata rate proportional
to its mass at the present time. Write down a differential equation to
model this statement.

9. An individual in a population of 1,500 people working in a company
becomes infected with a virus. It is assumed that the rate at which the
virus spreads throughout the company is proportional to the number
of people infected, P, and to the number of people not infected. Form
a differential equation to model the number of people infected as a
function of time.

10. Therate of growth of sunflower after germinationisinitially proportional
to its height. The growth rate is 2.5 m per day when its height is 10
m. In modeling the growth, it is assumed that the initial height is
2 cm. Formulate a problem consisting of the differential equation and
initial condition to find the height of the sunflower at any time.

11. The charge q(t) in an RC circuit satisfies the linear differential
tion ¢ ——q =—E(t)
equation ¢ ch R
a) Solve for the charge in the case that q(O) =q,, constant. Evaluate
the constant of integration by using the condition q(O) =q,.
b) Determine lim q(l‘) and show that this limit is

X—>+0

independent of g _

c) Determine at what time q(t) is within 1% of its steady-state value
(the limiting value requested in b)).
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12. The rate at which a body cools is proportional to the difference
between the temperature of the body and that of surrounding air. If

a body in airat 25°C will cool from 100°C to 75°C in one minute,
find its temperature at the end of a further two minutes.

13. Water at temperature 100°C cools in 10 minutes to 88°C in a

room of temperature 25°C . Find the temperature of water after
20 minutes.
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Intersection and Sum of
Subspaces

Introductory activity

The mathematical concepts of vector spaces are formed according to
the following natural rules:

a) Each vector can be magnified or shrank by a factor by simply changing
the size but not the direction.

b) Vectors can be added. Two forces, for example, applied at the same
time and at the same spot will have the same effect of a certain single
force.

c) Two identical vectors added together would be a vector in the same
direction, but twice the size.

Refer to what you studied in previous levels and give 2 examples in a),
b)and in c).

Likewise, different vector spaces can be added to make a new vector
space. For example, from H = {(a —2b,3a+b,2a +b) ra,be R} and
K= {(35,5,21?)117 € R} , you can find the sum and intersection of H and

K. In this unit, we shall see such kind of operations.

Objectives

By the end of this unit, a student will be able to:

e Define the intersection and the sum of subspaces of a vector
space.

e State the dimension formula.

e List the conditions for a vector space to be qualified as direct
sum of its subspaces.




6.1. Definition

A vector space (also called a linear space) is a collection of objects called
vectors, which may be added together and multiplied by numbers.

) Activity 6.1

Consider V= {(Zx, 0,5x),x € R}
1. What would be the value of x so that (0,0,0) eV 2

2. Letu=(2a,0,5a), v=(2b,0,5b) eV, a,beR . Show that for any
real number a, B, au+ pveVl.

3. From 1) and 2) indicate whether ¥V is a sub-vector space.

Asubset IV of R" is called a sub-vector space, or just a subspace of
R" if it has the following properties:

e The null vector belongsto V.

e T isclosed under vector addition, i.e if ;,; eV then ﬁ+\7 eV .

eV isclosed under scalar multiplication, i.e if ¢ R, uel,

auevl .

Generally,

If (R,F,+) is a subspace of (R,E,+) , then
° FcFE

° 6€F

° ﬁ,;eF,a,ﬂeR; a;+ﬂ;eF
0 Notice
Let ¥ be a vector space. Then,

* Visasubspace of V

e Also, {O} is a subspace of ¥

V and {0} are called the trivial (or improper) subspaces of V.
Other subspaces are called proper subspaces.
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Example 6.1

Consider A:{(—3x,0,4x),xe]R}, show that (R,A,+) is a sub-vector
space of R’.

e AeR’
e I|fwetake x=0, we see that (0,0,0) e A
e Consider k= (—3k, 0, 4k), t= (—3t, 0, 4t) €ed, a,pelR
= ak+ pt = a(-3k,0,4k)+ B (-31,0,4¢)
— (3ak,0,4ak)+(-3pt,0,43)
— (-3ak =3t,0,4ak +4p3)
=(-3(ak+pr),0,4(ak+pt))=(-3,0,4y)  for y=ak+pt

Then ak+ St € A; therefore, 4 is a subspace of R*.

Example 6.2

Consider the subset U = {(xl,yl) Xy = 0} .Is Ua subspace of R*?

We can check thatfor x, =0 and y, =0; we have 0eU .

However, notice that (1,0) eU and (0,1) eU .Yet

(1,0)+(0,1) = (1,1) ¢ U . Therefore, Uis not a subspace of R?.

Application activity 6.1

1. Is a) S:{x}:xzo,yZO} a subspace of R*? Why?
y

a
b) Is S=4|b |:a,beR} asubspace of R’? Why?
0
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2. Which of the following are subspaces of R’ ? For each which is not
subspace, explain why. Otherwise, write down two distinct non-zero

vectors v, v, , of the subspace or show that the subspace is just the
zero vector.

a) {(x,y,z)eR3 :z:O}
b) {(x,y,z)eR3:x—2y+3z=O}
c) {(x,y,z)eR3:x—2y+3z+4=O}

3. From 1) and 2) indicate whether v is a sub vector space.

6.2. Intersection and sum of two vector spaces
6.2.1. Intersection of subspaces

Activity 6.2

Let H:{(x,y,z):2x—y+3z:0} and

K= {(x,y,z) X+ y+z= 0} be the subspaces of R*.

The intersection H MK is found by solving the system
2x-y+3z=0

{x+y +z=0

Solve this system and hence deduce H N K .

Verify whether H MK is a subspace of R”.

From activity 6.2, let U and W be subspaces of a vector space V. The
intersection of U and W, written U "W , consists of all vectors u where
uelU anduel.

Theorem 6.1
Any intersection of subspaces of a vector space Vis a subspace of V.

Example 6.3

Describe the intersection H NK if [ = {(a+b,3a—b,2a+b) ‘a,be ]R}
and K = {(3c,c,2c) ‘ce R} )
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The intersection consists of vectors that can be written in the form

(a+b,3a—b,2a+b) and in the form (30,0,20) for some a,b,ceR.
Thus, they are obtained by solving the following system:

a+b=3c a+b-3c=0 a+b—3(3a—b):0
3a-b=c =1{3a-b-c=0 =>yc=3a-b
2a+b=2c  |2a+b-2¢=0 |2a+b-2(3a-b)=0

By solving this system, we obtain {(0, 0,0)}. Hence HNK = {(0, 0,0)}

Example 6.4

Consider F = {(x,O,z),x,z € ]R} and G = {(x,y,O),x,y € ]R}. Find
FnG

We need to solve Then

h

e system FAG={(x,0,0),xeR}
X=X
0=y :{x(l,0,0),xeR}
z=0

which is generated by (1’0’0)

Application activity 6.2

1. Let V be the vector space of 2 by 2 matrices over R . Let U consists
of those matrices in ¥ whose second row is zero, and let W consist of
those matrices in ¥whose second column is zero. Find the intersection

UnWw.

2. Let H= {functionfonR:f(2) =O} and
K ={functionfon]R:f(l)=O}. Find HNK

3. Take Uto be the X —axis and Vto be the y —axis, both subspaces
of R?. Find their intersection.

4. LetU, = {(x,y,()):x,ye ]R} and U, = {(O,y,y):y ER}. Find their

intersection.
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5. LetU, :{(x,y,z):x+y—z=O,2x—3y+z:0}

and U, = {(x,y,z) 255 Ve =5 — Dl 2 — 0} be subspaces of
R® . Find their intersection.

Dimension of intersection of subspaces

Activity 6.3

Let U:{(x,y,O):x,yeR} and W:{(x,y,z):x,y,zeR} be
subspaces of R’.

Find the  a)intersection U "W .

b) Find the basis of U "W and hence
deduce the dimension of U NW .

Hint:

Recall from Senior Five that, a set S of linearly independent vectors which
is a spanning set of vector space Vis called a basis and number of vectors
in S'is the dimension of the vector space V.

We recall from Senior Five, that

A finite set S of vectors in a vector space Vis called a basis for ¥ provided
that:

e Thevectorsin Sare linearly independent.

* The vectorin Sspan V(or Vis a generating set of V).

The unique number of vectors in each basis for Vis called the dimension
of Vand is denoted by dim(V).

Example 6.5

let U = {(x,y,O) X,y € R} and V = {(O,x,y) X,y € R} be subspaces of
R*. Find the dimension of their intersection.

First we need the intersection:
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= SRS
Il
= wr O

Be careful!

At this point for this problem, extra care is needed for correct deductions
to be made.

Here, first entry is fixed to zero, second entry cannot be fixed to zero even
it y=x.

The reason is that we can write V= {(0, x,y) X,V E R} as
V= {(O,a,b) ca,be R} and the system becomes

x=0
y=a
0=>H

So, only first and third entries are fixed to zero.
Then, U NV ={(0,7,0): ye R}

But, (O,y,0)=y(0,1,0). So, the basis is {(0,1,0)} and hence
dim(UﬁV)=1.

Example 6.6

Let H={(a+b,3a—b,2a+b):a,beR} and
K={(x,y,z):x+y—z=0,x—2y+3z:0} be subspaces of R’.

Find the dimension of their intersection.

First, we need the intersection:

The intersection consists of the vectors of the form (a +b,3a—b,2a +b)
satisfying the system

x+y—-z=0
x—2y+3z=0
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Substituting the form (a +b,3a—-b,2a +b) into the system gives
a+b+3a—b-2b-b=0 {2a—b=0 {a=0
or =
a+b—6a+2b+6a+3b=0 (a+6b=0 [b=0
Then, (HNK)=0 and dim(H NK)=0

Example 6.7

Let U={(a,b,c):a—2b+c=0} and V={(a,b,c):a+b—c=0} be
subspaces of R*. Find the dimension of their intersection.

First, we need the intersection by solving the system

{a—2b+c=0 {a—2b+c:0

a+b—c=0 a+b—c=0
2a-b=0=>b=2a
a-2b+c=0=a-4a+c=0=>c=3a
Then, UmV:{(a,Za,3a):aeR}

But, (a,2a,3a):a(l,2,3). So, the basis is {(1,2,3)} and hence
dim(U nV)=1

Application activity 6.3

1. Let Uand W be the following subspaces of R*:
U={(a,b,c,d):b+c+d=0}, W={(a,b,c,d):a+b=0,c=2d}

i:ind the dimension of U NW .

2. LetU= {(a,O,c) a,c e R} and W= {(O,b,c):b,c € R} be
subspaces of R’. Find the dim(UﬁW).

3. Let H={(a+b,3a—b,b):a,beR} and
K= {(a +2b,3a +b,—b) ca,be R} be subspaces of R’. Find the

dimension of their intersection.
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6.2.2. Sum of subspaces

Activity 6.4

Let U = {(a,O,c) ‘a,c e R} and W = {(O,b,b) be R} be subspaces
of R*. Find the sum U +W . Verify whether U + W is a subspace
of R.
Let U and W be subspaces of a vector space V' .The sum of U and W

, written U +W , consists of all sums x+y where xeU and yeW or
U+W={x+y:erandyeW}.

Theorem 6.2

e Thesum U+ W of the subspaces Uand V' is also a subspace of V.

e W and W, are subspaces of V', then W, + W, is the smallest
subspace that contains both W, and W, .

Example 6.8

Let U:{(a+b,3a—b,2a+b):a,beR} and V:{(3a,a,2a):aeR} be

subspaces of R*. Find their sum.

Since there isa in U and in V, we take another unknown ¢. The sum is
U+V:{(a+b,3a—b,2a+b)+(3c,c,2c):a,b,ce]R}
:{(a+b+3c,3a—b+c,2a+b+20):a,b,ceR}

Example 6.9

Let U={(a,b,c):a—2b+c=0,a=3c} and
V={(a,b,c):a+b—c=0,a=b} be subspaces of R’.

Find their sum.

First, we solve simultaneously two equations for each subspace:
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For U={(a,b,c):a—2b+c=0,a=3c}
a—2b+c=0
a=3c
=3¢-2b+c=0=>-2b=—4c=>b=2c
Then, we can write U = {(30, 20,0):0 € R}
ForV={(a,b,c):a+b—c=0,a=b}
a+b—c=0
a=b
=b+b-c=0
=2b=c
Then, we can write V = {(b,b,Zb):b € R}

Now, the sum is
U+V ={(3c,2c,c)+(b,b,2b):b,c ER}

={(3¢c+b,2c+b,c+2b):b,c eR|

Application activity 6.4

1. Suppose that U and W are subspaces of a vector space V, and that
{ui} generates U and {wj} generates W. Show that {ui,wj}, e,
{ul.} U{Wj}, generates U+T.

2. Llet V be the vector space of 2 by 2 matrices over R.
Let U consists of those matrices in ¥ whose second row is zero, and let
W consist of those matrices in ¥ whose second column is zero. Find

thesum U +W.

3. LetU, ={(x,y,z):x+y—z=O,2x—3y+z=0} and
U, :{(x,y,z):x+y—z=0,x—2y+32=0} be subspaces of R*.

Find their sum.
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Dimension of sum of subspaces

Activity 6.5
Let U = {(a,0,0) ‘ae ]R} and W = {(O,b,O):b € R} be subspaces of

1. Findthesum U +W .

2. Find the basis of U+ W and hence deduce the dimension of
Uu+w.

Hint:

Recall (from Senior Five) that, a set S of linearly independent vectors
which is a spanning set of vector space Vis called a basis and the number
of vectors in S is the dimension of the vector space V.

We recall from Senior Five, that;

A finite set S of vectors in a vector space V'is called a basis for V provided
that:

e The vectorsin S are linearly independent.

e The vectorin Sspan V(or Sis a generating set of V).

The unique number of vectors in each basis for Vis called the dimension
of Vand is denoted by dim(V).

Example 6.10

Let U:{(a,2a—b,3a—b):a,beR} and V:{(a,3a,2a):ae]R} be
subspaces of R*. Find their sum and dimension of U +V .

Since there isa in U and in ¥, we take another unknown c. The sum is
U+V:{(a,Za—b,3a—b)+(c,3c,2c):a,b,cER}

={(a+c,2a—b+3c,3a—b+20):a,b,c € R}

Now,
(a +c,2a—b+3c,3a—b +2c) = (a,2a,3a)+(0, —b,—b)+(c, 3c,2c)
= a(1,2,3)+b(0,—1,—1)+ c(1,3,2)
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We need to check if (1,2,3),(0,-1,—1) and (1,3,2) are linearly
independent.

We solve

a(1,2,3)+,6’(0,—1,—1)+ 7/(1, 3,2) = (0, 0,0)
a+y=0
20— F+3y=0
3a-p+2y=0

The only solution is S(0,0,0)}. So, vectors (1,2,3),(0,—1,—1) and (1,3,2)
are linearly independent.

Then, the basis for U+V is S={(1,2,3),(0,—1,—1),(1,3,2)} and hence
dim(U +V)=3.

Example 6.11

‘v’(a,b) eR?, we have (a,b) = a(1,0)+b(0,1)_ Thus, {(1,0),(0,1)} is the
basis of R* and dim(R2) =2.

Example 6.12

V(a,b,c)eR’, we have
(a,b,c) =(a,0,0)+(0,b,0)+(0,0,c)=a(l,0,0)+b(0,1,0)+c(0,0,1)

Thus, {(1,0,0),(0,1,0),(0,0,1)} is the basis of R’ and dim(R3)=3.

Application activity 6.5

2a 0
1. Consider two subspaces H = 3 :aeR} and
a

K = {[Z Z;J ‘be R}. Find the dimension of H + K .
3

2. Letf={(a,b,c):a—2b+c=0,a=3c and
V :{(a,b,c):a+b—c =0,a =c} be subspaces of R3. Find the
dimension of their sum.

3. LetU, ={(x,y,z):x+y—z=O,2x—3y+z:0} and

U, ={(x,y,z):x+y—z =0,x-2y+3z =0} be subspaces of R*.
Find the dimension of their sum.
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Grassmann’s formula of dimensions

Activity 6.6

Let F ={(x,0,z):x,zeR} and G={(0,y,z):y,zeR}.
1. Find a) dim(F) and dim(G)

b) dim(F)+dim(G)

c) FNG and dim(FNG)

d) dim(F)+dim(G)-dim(F NG)
e) F+G and dim(F+G)

2. Compare your results from d) and e).

From activity 6.6,

If (]R,F,+) and (R,G,+) are two sub-vector spaces of (R,E,+),
we have, dim(F +G)=dim(F)+dim(G)-dim(F NG). This formula is
called Grassmann’s formula of dimensions.

Example 6.13

Consider F={(x,0,z),x,zeR} and G:{(x,y,O),x,ye]R}.Verify

Grassmann’s formula.

e ForF
(x,0,2) = (x,0,0)+(0,0, )
= x(1,0,0)+2(0,0,1)

}:dim(F):2

e ForG
(x, y,O) = (x, 0,0) + (O, y,O)

= x(1,0,0)+y(0,1,0)} = dim(G)=2

F+G={(2x,y,z),x,y,zeR}
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2x,y,2z) =(2x,0,0)+(0, y,0)+(0,0,
(2.2.:2)=(22:0.0)+(0.5.0)+(0.0.2) = dim(F+G)=3
=x(2,0,0)+(0,1,0)+2(0,0,1)

. FnG={(x0,0),xeR}

(+.0,0) :=(:((1):(()),)0)} = dim(FNG)=1

Then,
dim(F + G) =3

= dim(F)+dim(G)—-dim(F NG)
o Notice

=2+2-1=3 hence verified.
If dim(FﬁG) =0, then dim(F+ G) = dim(F)+dim(G). In this case,
F and G are said to be complementary and the sum F' + (G is said to be a

direct sum; and it is denoted by F'® (. Otherwise, F and G are said to be
supplementary.

Theorem 6.3

e The vector space V isthe direct sum of its subspaces W, and W,

(e, V=W, ®@W,)ifand only if V=W, +W, and Wlﬁsz{O}.

e Let W, and W, be two subspaces of a vector space V' over F, and
then V=W OW, &> VxeV, A x eW,3 x, eW,
such that x = x, +x,.

As, if we suppose x=x, +x, =y, +y, . x,, €W, x,,y, €eW,, then,
Xi=n=Y,—X,and x,—y, EW, Y, =X, €W,

Therefore, x, =y, =y, —x, e W, NW, = {0}

SX5 =V X% =Y,

Example 6.14

Let W,, W,, and W, denote the x-axis, the y-axis, and the z—axis

respectively. Show that R? is uniquely represented as a direct sum of W,
, W, and W,.
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R’ =W, @W, ®W,, W,nW,={0},i+ .
V(a,b,c)eR’, (a,b,¢)=(a,0,0)+(0,b,0)+(0,0,c)
where (a,0,0)er, (O,b,O)eWz, (O,O,c)eW3

Therefore, R’ is uniquely represented as a direct sum of W,
W,,and W,.

Example 6.15

Let U ={(a,b,0):a,b € R} be the xy— plane and let
w =£I£0, O,C) ‘ce R} be the z—axis . Show that R? is a direct sum of U

Any vector (a,b,c) € R’ can be written as the sum of a vector in Uand a
vector in ¥in one and only one way: (a,b,c) = (a,b,0)+(0, O,C) )

Accordingly, R? is a direct sum of U and W, thatis, R =U ®W .

Application activity 6.6

1. Given JV and W the sub-vector spaces of R*
such that ¥ ={(a,b,c,d):b—2c—d =0} and
,iya b,c, d ca=d,b= 20} Find the dimension of V', W and
Vn Deduce dlm V+W)

2. Let W, and W, denote the xy and the R’ planes, respectively. Can
R’ be uniquely represented as a direct sum of W, and W, ? Show
your working steps.

3. If W, and W, are the set of all even functions and the set of all odd
functions respectlvely Is F = W, +W, a direct sum? Show your
working steps.

4. Let F= {(x,y,O) X,y € R} and G = {(O,w,z) W,z € R} Is the
sum of Fand G a direct sum? Show your working steps.
5. Assumethat U and W are distinct subspaces (U # W) of a four-

dimensional vector space J and dim(U) = dim(W) =3 Prove that
dim(UnW)=2.
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1. Definition
If (R,F,+) is a subspace of (R,E,+) , then
° FcFE
° 66 F
o ;,;GF,a,,Be]R; aﬁ+ﬁ\7eF
2. Intersection and sum of two vector spaces
Let U and W be subspaces of a vector space V. The intersection of
U and W, written U "W , consists of all vectors u where 4y e U and
uew.
Any intersection of subspaces of a vector space V is a subspace of V.

If F and G are two subspaces of E, then, the sum of Fand G is also a
subspace of E. Itis denoted as F'+ G = {x+y,x elF,ye G}

Grassmann'’s formula of dimensions.

If (R,F,+) and (R,G,—i—) are two sub-vector spaces of

(R,E,+), we have, dim(F +G)=dim(F)+dim(G)-dim(F NG).
Remark

If dim(FﬁG) =0, then, dim(F+ G) = dim(F)+dim(G). In this case,
F and G are said to be complementary and the sum F + (G is said to be a
direct sum; and itis denoted by F® (.

Otherwise, F and G are said to be supplementary.
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End of unit assessment

1. In Exercise a-d, which one is a subspace of R’?
a) Theplane x=y
b) The line (l+l‘,2t,3t)
c) Thelocus x*+y* +2> =0
d) Thelocus x> +y° =2z =0
2. Find the dimension of subspaces E and F if
E={(x,y):x+y=0}
F={(x,y,z):2x—y+z=0}
3. For W={(a,,a,,ay,a,,a;)e R’ :a,+a,+a5=0,a, = a,}, find
dim(W').

4. Suppose U and W are distinct 4-dimensional subspaces of a
vector space V' of dimension 6. Find the possible dimensions of

UnW.

5. Let Uand W be the subspaces of R* generated by
{(1,1,0,-1),(1,2,3,0),(2,3,3,-1)} and

{(1,2,2,-2),(2,3,2,-3),(1,3,4,-3)} respectively. Find
a) dim(U + W) b) dim(U N W)

6. Show that the set of all square matrices can be decomposed into
the direct sum of the set of the symmetric matrices and that of the
skew-symmetric ones.

7. Let F={(x,0,0):xeR} and G={(0,7,0):xeR}.Is W =F +G

a direct sum? Show your working steps.
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Transformation of
Matrices

Introductory activity

3 4
Given a matrix 4 :[ ] and a point P with coordinates (x,y) of the
Cartesian plane. -1 2

a) Find the coordinate of the point P' which are (x',y") such that

M

b) If f is a transformation by which P’ is the image of P, find the image of the
point O(0,0) and A (1,2). Present each point and its image in the same
Cartesian plan.

c) Is the point and its image the same?

d) Does the matrix have an effect on the position of an object or the object
remains in its position? Explain your answer.

Matrices are used in Cryptogram where a message is written according to
a secret code. This code uses matrices to encode and decode messages
for example when sending money in the telephone.

Objectives

By the end of this unit, | will be able to:

e Define the kernel, the image, the nullity and the rank of a linear
transformation.

e  State the dimension formula for linear transformations.

e Carry out the elementary row operations on matrices.

e Define and find eigenvalues and eigenvectors of a square matrix.
e Discuss the diagonalisation of square matrices.

Matrices and their inverse are used by programmers for coding or
encrypting a message. Matrices are applied in the study of electrical
circuits, quantum mechanics and optics. A message is made as a sequence
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of numbers in a binary format for communication and it follows code
theory for solving.

7.1. Kernel and range of a transformation

Cénéider the following relation:

f:R* >R’

f(xy)=(3x+y+2,3x—y+1)

Find all vectors (x,y) such that f(x,y) = (0,0).

e The kernel of a linear mapping f: E — F denoted Ker(f)
is a subset of E whose image by f is O-vector of F .i.e,

Ker(f)z{veE:f(v):O}.
e  The nullity of fdenoted n(f) is the dimension of Ker(f).
e, n(f) = dimKer(f) .

e Theimage or range of a linear mapping f: E — F isthe
set of points in F' to which pointsin E are mapped on. i.e,

Im(f)={ueF:f(v)=u},ueE and Im( /) isa

vector subspace of F.

e The rank of fdenoted mnk(f) or r(f) is the dimension of image
of f.

0 Notice

Alinear transformation f is called singular if there exists a non-zero vector
whose image is zero vector. Thus, it is non-singular if the only zero vector
has zero vector as

i.e, rank( f)=dim(Im 1) .

image, or equivalently, if its kernel consists only of the zero vector:

Ker(f)z{O}.
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Theorems

A linear transformation f : E — F is one-to-one (1-1) if and only
if Ker(f)=10}.
A linear transformation f : E — F is onto if the range is equal to

F.
Consider the linear transformation f: E — F, the following is
true: dim[Ker(f)] + dim[mnge(f):l = dim(E) .
Consider the linear transformation f:E —> F, If
dim(E) = dim(F) , then,
a) f isone-to-one.
b) f isonto.

In this case, f :E = F is called an isomorphism. And we say that E
and F' are isomorphic, and we write E= F'.

Example 7.1

Let f be the linear transformation from R* to R’ defined by f(;): Av

I 3

with 4= 2 6

3 9
Find a basis for Ker(f).

Determine if f is one to one.
Find a basis for the range of f .

Determine if f is onto.

1 3 a+3b
Let?z:(;’j,then Av=l2 6 (an 2a+6b
3 9 3a+9b

a+3b

0
a) Tofind the kernel of ', we set | 2a+6b |=| 0 |, then
0

3a+9b
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a+3b=0
2a+6b=0={a+3b=0=a=-3b or b:—%
3a+9h=0

-3b
,belR
Thekernel offisthesetofallvectorsoftheform \ b

To find the basis: (_ij = b(_fj ,then the basis is

=

Therefore, the basis for Ker(f) is {(—3, l)} .

b) f isnotone to one since the Ker(f) =0

c) Range of f hasthe form

a+3b
2a+6b |, a,beR
3a+9b
To find basis

a+3b a 3b 1 3
2a+6b |=|2a |+|6b|=a|2|+b| 6
3a+9b 3a 9b 3 9

The basis for the range would be {(1,2,3),(3, 6,9)} but we
see thatthe vector (3, 6,9) is a multiple of the vector (1, 2,3)
. This means that the two vectors are linearly dependent.
Then, the vector (3,6,9) must be removed. Hence, the

basis is {(1,2,3)}.

d) Since the dimension of the range of 4 is 1 and the dimension of
R’ is 3, f is not onto.

Example 7.2

Consider the linear mapping

R >R’

t(x,y,z)=(x+2y—z,y+z,x+y—2z)
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Find:
a) Ker(t) b) Range of t and rank(t)

a) Ker(t):
x+2y—-z=0 (1)
We have < y+z=0 (2)
x+y—-2z=0 (3)

From (2), y=—-z (4)

(4) in (l) and (3) gives {x—2z—z=0 or x=3z.
x—z-2z=0

Then, the vector (x,y,z) becomes (32,—2,2)

Hence, kernel of ¢is Ker(t) = {(32,—2,2), ze IR} )

Basis and dimension:

(32, —Z,Z) = 2(3,—1,1)

The basis is {(3,—1,1)} and n(l‘)zl
b) Range oft
The range of tis {(x+2y—z,y+z,x+y—2z),x,y,zE]R}
Basis and dimension:
xX+2y—-z x 2y -z 1 2 -1
yv+z |=|0|+|y |+ z |=x|0|+y|]l |+z| 1
x+y-2z X y -2z 1 1 -2
Next, we check if the vector, {(1,0,1),(2,1,1),(—1,1, —2)} are linearly

independent. It can be seen that (2,1,1) = 3(1,0,1)+(—1,1, —2),
means that the three

vectors are linearly dependent. Then, we remove the second vector,
(2,1,1), and the basis of image of ¢ is {(1,0,1),(—1,1,—2)} :
Hence, rank(t) =2.
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Application activity 7.7

1.

Let F':V — U be the projection mapping into the x—y plane:
F(x,y,z) = (x, y,O]. Find:

a) ImF b) KerF
2. LetT:R?> — R’be the linear mapping defined by
'(x,y,z) = gx+2y—z,y+z,x+y—2z. Find a basis and the
dimension of the:
a) ImageUof T b) Kernel Wof T
3. LetF:R* — R3be the linear mapping defined by
'(x,y,s,t)=(x—y+s+t,x+2s—t,x+y+3s—31.
Find a basis and the dimension of the:
a) Image Uof F b) Kernel Wof F
7.2. Elementary row/column operations

1 0 2
Consider matrix A={—-1 1 1
3 2 1

Perform the following operations on matrix 4:

1.

2.
3.
4

New row 2 —row 2 +row 1
New row 3 —>row3—-3rowl, use matrix obtained in 1).
New column 2 <> column 3, use matrix obtained in 2).

New column 3 — column 3—%column 2, use matrix obtained in
3).

Elementary matrix operations are of three kinds:

Interchanging two lines.
Multiplying each element in a line by a non-zero number.

Multiplying a line by a non-zero number and adding the result to
another line.




Note that here the term line is used to mean either a row or a column of
the matrix.

When these operations are performed on rows, they are called elementary
row operations; and when they are performed on columns, they are
called elementary column operations.

Notation

In many references, you will encounter a compact notation to describe
elementary operations. That notation is shown below:

Operation description Notation

Row operations

1. Interchange row iand j - Lo
2.Multiply row i by s # 0 —  newr, > s,
3. Add s times row i torow j —>  newr, >r;+sr,

Column operations

1. Interchange column i and j - o

2.Multiply column i by s #0 —  newc, = S,

3. Add s times column i tocolumn j — new ¢, >c¢; +s¢

Example 7.3

1 2 3 -4
A=|2 3 1 2
5 0 =2 7

e The operation r, <> r, performedto 4 gives

1 2 3 -4
B= -2 7
2 3 1 2

e The operation ¢; = —2c¢, performedto B gives

1 2 -6 -4
cC=|5 0 4 7
2 3 2 2
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e The operation 1, = r, +4r, performed to C gives

1 2 -6 -4
D=9 8§ 20 -9
2 3 2 2
Then, matrix D is obtained from matrix 4 by a sequence of elementary
operations.
Definitions

e Two matrices are said to be row equivalent (or column equivalent)
if one can be changed to the other by a sequence of elementary row
(or column) operations.

The concept of equivalence should not be confused with that
of similarity, which is only defined for square matrices, and it is
much more restrictive (similar matrices are certainly equivalent, but
equivalent square matrices need not be similar).

Two matrices A and B are said to be similar if B=P AP for some
invertible matrix P. If A and B are similar, we write 4~ B. Similar
matrices represent the same linear transformation under two different
bases.

Example 7.4

4 -2 3 2
Show that the matrices 4 = and B = are
2 1 1 2

1 -1
similar given invertible matrix P:[1 0 ]

4 -2 3 =2
A= and B=1 5 are similar because for

2 1
1 -1

P= we have
1 O

e L i e

3
Since B=P"' AP:[1 5 ] ,then 4 and B are similar.
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Application activity 7.8

1 2 -3 0
1. Considermatrix A=|2 4 -2 2/|.
36 4 3

Perform the following operations on matrix 4 :
a) 1, >-2n+r b) 1n—>-3n+r

c) r,—>=5r, +4r,

2 32 4 6
2. Consider matrix A={0 0 3 2 5.
0O 00 0 2

Perform the following operations on matrix A4 :

a) v, >4, +3r, b)h >nr+h c)r, > —=5r, +2r,

7.3. Diagonalisation of matrices

7.3.1. Eigenvalues and eigenvectors

| 4 2
Consider matrix 4= (3 j

-1

1. Find the determinant, det(A—Z,]) where [ is identity matrix of
order2 and A eR.

2. Equate the determinant obtained in 1) to zero. Hence, find the
value(s) of A by solving equation formed.

3. Using the value(s) of A obtained in 2), find the vector(s)

&:(ulj if (A= Al)u=0.

u,
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Definitions:

Definition 1: Given any vector space, E and any linearmap f:E—>E
,ascalar L €K iscalled an eigenvalue, or proper value,
or characteristic value of [ if there is some non-zero

vector u € E such that f(z;) =Au.
Equivalently, 4 is an eigenvalue of f if Ker(f —AI) is non-trivial.
i.e, Ker(f—l[) # 0; where I is identity matrix.

Definition 2: A vector u € E is called an eigenvector, or proper vector,
or characteristic vector of f if thereis some A€ K such

that f(ljt)zﬂ,& and u#0.

The scalar A is then an eigenvalue, and we say that u is an
eigenvector associated with 1 €K .

Definition 3: Given any eigenvalue A€K, the non-trivial subspace

Ker(f—ﬂ,l) consists of all the eigenvectors associated
with A1 together with the zero vector; this subspace
is denoted by E, (f) or even E,, and is called the
eigenspace associated with 1, or proper subspace
associated with /.

Note that distinct eigenvectors may correspond to the same
eigenvalue, but distinct eigenvalues correspond to disjoint set of
eigenvectors.

Definition 4: The eigenvalues of f aretheroots(in K) of the polynomial
equation: det( f—A/)=0.

This polynomial is a polynomial associated with f and is called
characteristic polynomial.

For any square matrix A, the polynomial det(A—/"tI) is its characteristic
polynomial.

The homogeneous system (f—j,[)& —(0 gives the eigenvector "
associated with eigenvalue 4.

For any square matrix A, the solution of homogeneous system
(A—/U)u =0, for the value of 1, is an eigenvector associated with A .
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Note that to have an eigenvector, it must be a non-trivial solution of the
system.

Example 7.5

0 1
Find eigenvalues and eigenvectors if 4= [1 OJ

Eigenvalues:

det(A—A1)=0
ol 40
-4 1

=0=>A°-1=0=>A=10r A=-1

1 -2
The eigenvalues are -1 and 1.

Eigenvectors

For A=-1,

[
)0

{ul+u2 =0

= u, =—u, or u =-u,
u +u, =0

[t doesn’t matter the substitution we will make ( i.e, we can take
Uy, =—Uu, or u, =-u,).

Taking u, =—u, , eigenvectors associated with 4 =—1 have the form

1 - 1
u, (_J, u, € R,. We can take u=[_J.

For A =1,
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34 34
L

Each vector of the form v, [ j,vl € R, is an eigenvector associated

- (1
with 4 =1. We can take v=[J.

Example 7.6

: : : : : -1
Find the eigenvalues and associated eigenvectors for matrix B =
as matrix over R.. 1

We have

detK? _11]—;{(1) m:o & (2-2)=0

=>A=2

Hence, only 2 is an eigenvalue.

Now,

3 -1 1 0)|fy
-2 =0
I 1 0 1)|\u,
I =1)\(u 0 u —u,=0
= = =>u—-u,=0=>u =u,
I —1)\u, 0 u —u,=0

Each vector of the form u, [J,ul e R, is an eigenvector

- 1
associated with 4 =2 . We can take u = (J
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Example 7.7

Find the eigenvalues and associated eigenvectors for the following
matrix over R ;

2 )

We have

1 -1 10 )
det .y =0 & A2 +1=0
2 -1) “lo 1

Since 4> +1=0 hasno solutionin R, C has no eigenvalue as matrix over
R.

0 Notice

e  The characteristic polynomial det(A—lI) is sometimes written as

det(Al—A4).

e Eigenvalue relationships:

If A,.....,4, are the eigenvalues of matrix A, then l‘r(A) = lei
and det(4)=1I14 ( > =summation, [] = product ). :

Example 7.8

3 -1
From Example 7.6, B :[1 . j

tr(B)=3+1=4 and |B|=3x1-1x(-1)=4.

But we have seen that the eigenvalue is 2 which is a double root of the
characteristic polynomial, then 4, =4, =2.

Thus, tr(B)=2+2=4 and det(B)=2x2=4.

Some important properties of Eigenvalues

*  Anysquare matrix 4 and its transpose A’ have the same eigenvalues.
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. . a, a, 0 0
e Fortriangular matrix A = :

a anz se a

nl

eigenvalues are the elements of diagonal entries q,,,a,,,...a,,, as
det(A—A1)=(ay, ~2)(ay — 2)...(a, ~ 2).

e If =0 is one of Eigenvalues of matrix A, thus A is singular i.e. 4~
does not exist.

Cayley-Hamilton states that “"Every square matrix satisfies its own
characteristic equation”.

That is to say, if |A—/H| =" +all"_l +a, A"+ ta, s
characteristic polynomial of matrix 4= 4, , then, matrix equation
X" +al)(”_1 +a, X" +-+a,l=0 issatisfiedby X =4 i.e.
A"+a A +a, A"+ +a,l=0.

Example 7.9

1 2 2
Determine the characteristic equation of the matrix 4=|1 1 1 |and
verify that it is satisfied by 4 and hence 1 3 -1

obtain A7,

Characteristic equation is |A—ﬂl| =0

1-4 2 -2
= 1-4 1 (=0
1 3 -1-A

o (1-2)[(1-2)(-1-2)-3]-2(-1-2-1)-2(3-1+ 1) =0
e (1-2)(A*=1-3)+2(2+2)-2(2+1)=0
o (1-2)(A+2)(A-2)+2(A+2)-2(2+4)=0
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e (A+2)[(1-2)(A-2)+2-2]=0
& (1-2)(A+2)(A-2)=0
& (1-2)(4*-4)=0

SA -1 -44+4=0
Thus, Characteristic equationis 1° -~ 12> —41+4=0.
By Cayley-Hamilton theorem, 4’ — 4> —4A4+41=0.
Let us verify whether 4> — 4* —4A4+41=0.
1 2 =2)1 2 =2 1 -2 2
A2=111111=36—2
I 3 —-1)i1 3 — 3 2 2
1 -2 231 2
A=[3 6 2|1 1 [ 2
3 2 2 )01 3 7 14 -6
1 6 1 =2 2) (12 =2} (100
A-A-44+41=|7 6 2 |-|3 6 -2|-4|1 1 |+4/0 1 0
7 14 -6 3 2 2 1 3 -1 0 0 1
1-1-4+4 6+2-8 —-6-2+8 0 0 O
=| 7-3-4 6-6—-4+4 2+2-4 |=|0 0 O
7-3-4 14-2-12 -6-2+4+4 0 0 O

Thus, it is verified that the characteristic equation is satisfied by 4.

Inverse of matrix A

From A’ —A> —4A+41 =0, multiplying on both sides by 47" yields
A*—A-41+44" =0 or 44" =-A>+ A+41

1 2 2 1 2 2 1 00
<44"'=—|3 6 2|+[1 1 1 [+4/0 1 0

3 2 2 1 3 -1 0 0 1
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-1+1+4 2+2+0 -2-2+40

S447" = -3+1+40 —6+1+4 24140
3+1 -24+3+0 -2-1+4
4 4 4
:Ail:l -2 -1 3
4
-2 1 1

Application activity 7.9

1.

Determine eigenvalues and eigenvectors for each of the
following matrices:

(5 6) o a [t o (5 -
A A=l ) PIPEl, V= 5

For each matrix, find all eigenvalues and a basis for each eigen
space.

3 1 1 1 2 2 1 1T 0
a)A=|2 4 2| b)B=[{1 2 1| ¢C={0 1 0
I 1 3 -1 1 4 0 0 1

Prove that a matrix 4 and its transpose A4’ have the same
eigenvalues.

a, 0 - 0

. . ay ay 0 0
Show that for triangular matrix A=| . . o

a anz “oe a

nl nn

the eigenvalues are the elements of diagonal entries
a,,,ay,...4,, -

n

Use Cayley-Hamilton theorem to find the inverse of matrix

1 -2 2
A=|1 2 3|
0 -1 2

1 4 5 4 3 2
If 4= _ ,then express A —4A4" =74 +114° - A-101

in terms of 4.
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7.3.2. Diagonalisation

-4 -6
Consider matrix 4 =
3 5

1. Find the eigenvalues and their associated eigenvectors (they must
be linearly independent).

2.  Form matrix P whose columns are elements of eigenvectors
obtained in 1).

3.  Find the inverse of matrix P obtained in 2).

4.  Find matrix D by relation D= P~ AP . What can you say about
matrix D?

Diagonalising a square matrix 4 is to find a diagonal matrix D such that
for an invertible matrix P:

A=PDP"' or D=P'4P
When this happens, we say that A is diagonalisable.

Every symmetric matrix can be diagonalised, however, not every matrix
can be diagonalised.

To diagonalise matrix 4, we perform the following steps:

1. Find the eigenvalues.
If there is a non-real eigenvalue, the matrix cannot be diagonalised.

If all eigenvalues are real, find their associated eigenvectors (they must
be linearly independent).

4. If the number of eigenvectors is not equal to the order of matrix 4,
then this matrix cannot be diagonalised.

5. If the number of eigenvectors is equal to the order of matrix 4, form
matrix P whose columns are elements of eigenvectors.

6. Findthe inverse of P.
7. Find D, diagonal matrix of 4 by relation D= P 'AP.
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Theorem

A nxn matrix is diagonalisable if and only if it has n linearly
independent eigenvectors.

Example 7.10

Diagonalise the matrix

0 1 1
A=|1 0 1
1 1T 0

Eigenvalues and eigenvectors:

-2 1 1

=—1 (doubleroot
1 -4 1]|=0=(1+2)(2-2)=0 :{j ) ( )
11 -2 2
For A=-1
11 1w 0 u, +u, +u, =0
1 1 1lfju,|=0 u, +u, +u, =0=>u +u, +u, =0
11 1\ 0 u, +u, +u, =0

Since we have used an eigenvalue which is a double root, we would get
two eigenvectors and they must be linearly independent.

As u, +u, +u, =0 isa plane, itis possible to find two linearly independent
vectors on this plane.

Thus, we can take;
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-2 1 1\(w 0) (2w, +w,+w, =0

I =2 1 (|w|=|0]<w-2w,+w,=0 = =w, =w,
11 =2)(w 0) |w+w,—2w,=0
1
Thus, w=|1
! -1 (1 1
Now, the eigenvectorsare | 1 |,| 0 |and |1 |and are linearly

independent. The number o?eigenvlectors ii equal to the order of the
given matrix.

-1 1 1
P= 0 1
I 1

After calculation,

-1 0 0 -1\ (1 1
D=0 =1 0] inthebasis 1 [,]01,]1
0O 0 2 0 1 1

Example 7.11

Diagonalise the matrix
5 3

A=
3 -1

Eigenvalues and eigenvectors

(3K

‘ 3 -l= /1‘ 3u, —3u, =0
=(4-2)" =0 3u, —3u, =0
=>A4=4=2 =>u =u,
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1
Eigenvectors associated with A4, =4, =2 have the form ul(lj.

As we have two equal eigenvalues, we would have two independent
eigenvectors. But we see that it is not possible because all eigenvectors

are spanned by [n

Therefore, the given matrix cannot be diagonalised.

Remarks

e Toform matrix P, we start with the eigenvector of our choice.
Then, it doesn’t matter the vector we start with.

* Note that in the diagonal matrix of A, the diagonal entries are
just the eigenvalues corresponding to the eigenvectors.

Application activity 7.10

1. Diagonalise each of the following matrices:

P R - \ RO
A A=y ) PPEl, 3 9% 4

11 -8 4
d) D= > 6 E 8 1 2
I
4 -2 -4
3 -1 1
2. Considermatrix A=|7 -5 1
6 -6 2

a) Find all eigenvalues of 4.

b) Find a maximum set § of linearly independent eigenvectors of

A.

c) Is A diagonalisable? If yes, find matrix P such that D =P ' AP is
diagonal.
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7.4. Applications
7.4.1. Echelon Matrix

2

Use elementary row operations to transform this matrix such that:

8 3
Consider the following matrix 4 = [1 j

1.  The first non-zero element in each row is 1 and is in a column to the
right of the other in the previous row.

2. Rows with all zero elements, if any, are below rows having a non-zero
element.

3. The first non-zero element in each row is the only non-zero entry in
its column.

A matrix is in row echelon form (ref) when it satisfies the following
conditions:

e The first non-zero element in each row, called the leading entry, is 1.

e FEach leading entry is in a column to the right of the leading entry in
the previous row.

Rows with all zero elements, if any, are below rows having a non-zero
element.

A matrix is in reduced row echelon form (rref) when it satisfies the
following conditions:

e  The matrix is in row echelon form (i.e., it satisfies the three conditions
listed above).

e The leading entry in each row is the only non-zero entry in its column.

A matrix in echelon form is called an echelon matrix. Matrices 4 and B
below are some examples of echelon matrices.

1 2 3 3 4 12 0 0 0

00 0 1 3 0 0 0 I O
A= , B=

O 0 0 0 1 0 0 0 0 1

0O 0 0 0 0 0O 0 0 0 o
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Matrix A4 isin row echelon form, and matrix B is in reduced row echelon

form.

How to transform a matrix into its Echelon Forms

Any matrix can be transformed into its echelon forms, using a series of
elementary row operations. Here is how.

a) Pivotthe matrix

|dentify the pivot; the first non-zero entry in the first column of the
matrix.

If the pivot identified is not in the first row and first column,
interchange rows by moving the pivot row to the first row.

Multiply each element in the pivot row by the inverse of the pivot,
so the pivot equals 1.

Add or subtract multiples of the pivot row to each of the lower
rows, so every element in the pivot column of the lower rows
equals 0.

b) To getthe matrix in row echelon form,

Repeat the procedures above, ignoring previous pivot rows.

Continue until there are no more pivots to be processed.

c) To get the matrix in reduced row echelon form, process non-zero
entries above each pivot.

Identify the last row having a pivot equal to 1, and let this be the
pivot row.

Add multiples of the pivot row to each of the upper rows, until
every element above the pivot equals 0.

Moving up the matrix, repeat this process for each row.

The matrix in reduced row echelon form obtained from matrix A is called
its row canonical form.

Example 7.12

Transform the following matrix in its echelon form

A=

NN = O
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1 0 -3
n—>n-2rn F=0 1 2
0 0 O

Matrix D is the row echelon form of matrix 4.

Matrix F' is the reduced row echelon form of matrix 4. F is the row

canonical form of 4.

Application activity 7.11

Transform the following matrices in their echelon form and row reduced

form:
0o 2 8 =7 1 -2 3 9

1. 2 -2 4 0 2. |-1 3 0 -4
e ) 2 =5 5 17
2 2 4 2
2 1 10 7 32 4T
4 -1 14 6 2 = 2
3 -1 2 4 1 PR

5. |2 1 3 -1 2 6. [CO,SQ Smej
L 2 3 o 3 —sinf cos
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7.4.2. Matrix inverse

I 1 1
Consider matrix A=[0 1 2 | written in the form
1 2 4
1 0 0
M =(A|I) thatis M = [0 1 0}
1 2 410 0 1

1. Perform elementary row operations on matrix 4 such that the matrix
A in M becomes a unit matrix.

2. Multiply the new matrix 4 obtained in 1) by matrix 4 and give your
observation.

The elementary operations can be used to find the inverse of matrix 4. The
method used here is called the Gaussian elimination method.

Steps to follow

For a square matrix 4 of order n, to compute the inverse of 4, denoted as

-1
A~ , we follow the steps below:

1. Construct a matrix of type M = (A | [) ,that is to say, 4 is in the left half
of M and the identity matrix 7 is on the right.

2. Using the Gaussian elimination method, transform the left half, 4, to
an identity matrix and the matrix that results in the right side will be
the inverse of matrix 4.

Example 7.13

Using elementary row operations on the matrix 4, determine its matrix
inverse where

1

1 0
A=|1 0 1
010
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Place the identity matrix of order 3 to the right of matrix 4.

1 1.0 |1 0O
M={1 0 1|0 1 0
01 010 01

Perform elementary row operations on matrix 4 so that the matrix 4 in M
becomes a unit matrix.

1 1. 0|1 00
new r, >r — n 0 -1 1|-1 10
0O 1 0|0 01
I 1. 01 00
new r, > n+ 1, 0 -1 1|-1 10
0O 0 1 |-1 11
I 1. 01 0 O
new n —=>n-—rn 0O -1 0|0 0 -1
0O 0 1 |-11 1
I 0 0|1 0 -1
new n —>n+rn 0O -1 0|0 0 -1
0O 0 1 |-11 1
1 001 0 -1
new r, = (1) ', 01 0|0 0 1
0 0 1 |-11 1
0 -1
Therefore, the inverse matrixis 4=/ 0 0 1
-1 1 1
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Application activity 7.12
Use Gaussian elimination method to find the inverse of the following
matrices:
I ) I 3 1
1. (1 1 1 2. (-1 2 0
0 0 1 2 11 3
1 2 1 2 1
3. |2 4 4. |2 1 8
35 1 -2 -7

7.4.3. Rank of matrix

4 -6 0
-6 0 1
Consider matrix 4 =
9 -1
0 1 4

1. Transform matrix 4 in its row echelon form using elementary
row operations.

2. How many non-zero rows are there in the matrix obtained in 1)?

The rank of matrix is the number of linearly independent rows or columns.
Using this definition, the Gaussian elimination method is used to find the
rank.

To compute the rank of a matrix, remember two key points:

a) The rank does not change under elementary row operations.
b) The rank of a row-echelon matrix is easy to acquire.

Recall that we can convert a given matrix into row echelon form using
elementary row operations.

Aline can be discarded if:
e All the coefficients are zeros.

e There are two equal lines.
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e Alineis proportional to another.

e Alineis alinear combination of others.

Example 7.14

Find the rank of the matrix

1 2 -1 3 =2
21 0 1 1
2 4 -2 6 -4
0 0 0 0 O
5 4 -1 5 0
n= 27

r, is zero

=240

The remaining two rows are linearly independent and are non-zero.
Then, r(A) = 2.

In general, eliminate the maximum possible number of lines, and the
rank is the number of non-zero rows.

Example 7.15

Find the rank of the matrix
1 -4 2 -1

3 -12 6 -3
A=

2 -1 0 1

0 1 3 -1

Transform matrix A to echelon matrix:
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1 -4 2 -1
0 0 0 0
new r, = 1, — 35 > Z1 0 1
0 1 3 -1
1 -4 2 -1
0 0
new r; = r;— 21 0 7 -4
o 1 3 -
1 4 2 -1
00 0 0
new 73 > 73— 71, 0 0 -25 10
0 1 3 -1
1 -4 2 -1
0 1 3 -l
Hh 0 0 -25 10
0 0 0 0

We see that there are 3 non-zero rows.

Then, V(A) =3,

Example 7.16

Calculate the rank of the following matrix:

2 -1 0 7
1 0 1 3
3 2 7 7

Transform the matrix to echelon matrix:

0 -1

1 0
new r, >r— 2r,

3 2




new n (—)I’z

0

1 0 1 3
new r, >rn— 371,

0 2 4 -2

0 -1 -2 1

1 0 1 3
new r, >n+ 25

0 0

1

0

0

)
—_
o = W O

0 0

Then, r(A) =2 since there are two non-zero rows.

Application activity 7.13
Use elementary row operations to find the rank of the following matrices:
0 16 8 4 301 2
: 2 4 8 16 5 6 1 0 0
16 8 4 2 12 1 2 4
4 8 16 2 9 0 1 2
1 0 21 1 21 -1
3. 0 2 4 2 4. 19 5 2 2
0 2 21 7 1 0 4

7.4.4. Solving system of linear equations

.

Consider the following system of linear equations
X+y+z=6

2x+y-z=1

3x+2y+z=10
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X 6
1. Determine the matrix 4 such that 4| y |=| 1
z 10

2. Make 4 in 1), the larger matrix 3x4 (called augmented matrix)
where the fourth column is formed by the independent terms of
the given system.

3. Transform the matrix obtained in 2) to its row echelon form.

4. Use the result obtained in 3) to find the value of x,y and z.

Consider the following system
a, X, +a,x, +..+a, x, =c

a, X, +a,x, +..+a, x, =c¢,

(1)

a, x +a ,x,+..+a, x =c,
Where Xx,,Xx,,...,x, are unknowns;

a; and ¢, are real constants.

The Gauss elimination method is used to transform a system of equations
into an equivalent system, that is, in row echelon form.

For easy calculation, transform the system into a matrix and place the
coefficients of the variables and the independent terms into the matrix as
follows:

a, 4, a,, ¢
a a a . C
21 22 2 2
(4:C)= , "o
aml amZ amn Cm
where;
C
a, 4, a, -¢ 1
a, dy a,, ¢, d C= =
A= . ] an =,
. C
aml am2 amn 'cm n
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The matrix (A4:C) is called augmented matrix.

Remarks

o |f rank(A) * rank(A : C), the system is said to be inconsistent and
there is no solution.

o |If rank(A) = rank(A : C) =r,the system is said to be consistent and
there is solution.

» If ¥ =n, as there are n unknowns, then the system has a unique
solution.

» If » <n, the system has infinite solutions. (It is undetermined
system).

Example 7.17

Solve the following system

X+y+z=-3

3x+y—-2z=-2
2x+4y+T7z=T7

1 1 I :-3
The augmented matrix is | 3 I -2 :-2

2 4 7 7

Performing the row reductions, we have;

1 1 1 :-3 1 1 1 :-3
r, —>r, =35

0 -2 -5: 7| no>n+n 0 -2 -5:7
B =20

0 2 5:13 0 O 0 :20
We see that

rank(A) =2, rank(A : C) =3= rank(A) # rank(A : C)

Then, the system is inconsistent. Therefore, there is no solution. (This is
because for the third row, we have 0z =20 which is not possible).
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Example 7.18

Solve the following system

x+y+z=4
2x+y—z=1
x—y+22:2
1 24
-1 :1
2 :2
I 1 :4 1 1 1 :4
Ty =1 — 2r1
{ -1 -3 :=-7| n—>n-2rn 0 -1 -3 :-7
B2hKh
-2 1 :=2 0 O 7:12

We see that rank(A) = rank(A : C) =3, then, the system has solution.

The reduced system is

xX+y+z=4
—y-3z=-""T=4y=
Tz=12

313 12
Therefore, S =13 =,—,—
77 7

Notice

It is also possible to transform the system in the form where the elements
above and below the leading diagonal of matrix A become zeros. The
system is now reduced to the simplest system.

Example 7.19

Solve the following system
2x+y+z=10
3x+2y+3z=18
x+4y+9z=16
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3 3 I 1 :10
2 1 1 1(8) r2—>r2—Erl . 1 3 -
1 4 9 :16 > h . 2
3 37 /N
0 Z H: 11
2 2
3 1 1 :10 2 0 -2 :4
1 3 1 3
n—=n—="15 |0 5 3 3 n—n—2r |0 5 5:3
0 0 -2:-10 0 0 -2 :-10
: 2 0 0 :14 i
W —h | —9
3 0 = 0:—
A Ry 2 2
4 1o 0o -2 :-10

Now, the reduced system is

2x=14

1 9

—y=—— =>x=7,y=-9z=5
2y 2 Y
—2z=-10

Then,

5= {(79.5))

Application activity 7.14
Use Gaussian elimination method to solve the following systems:
[2y+z=-8 [x—-2y—6z=12
1. {x-2y-3z=0 2. 12x+4y+12z=—17
|—x+y+2z=3 |x—4y—-12z=22
[(x+2y+3z=9
jx+2y+32=9
3. 42x-2z=-2 :
l3x+2y+z=7
|13x+2y+z=7
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7.4.5. Power of matrix

Let 4 be a diagonalisable matrix.

From equality 4 = PDP™',where Disadiagonal matrix, P, an invertible
matrix, compute

1. 4 2. 4° 3. 4° 4. 4
Deduce the general rule for computing 4"

Hint: 4> = A4=PDP'PDP™" and 4" =4""'4

From Activity 7.9, one can deduce the following:

a) The power of matrix 4 is given by A" =PD"P~" for an invertible
matrix P whose columns are elements of eigenvectors of matrix 4.

Where,
A 0 0
D= o A 0
0 0 - A

A, are eigenvalues.
b) The inverse of matrix 4 is given by 4™ = PD™'P™".
In fact, since 4- A =1, we have
A4-(PD"'P")=(PDP")-(PD"'P"')= PDP"'PD"'P" = PDID™'P"'
=PDD'P'=PIP"' =PP "' =]
Therefore, A = PD'P".

Example 7.20

-4 -6
Let A4 =( 3 s j Find the non-singular matrix P and the

diagonal matrix D such that D =P AP and hence find 4”; n is any
positive integer.
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We need to find the eigenvalues and eigenvectors of A first. The

characteristic equation of 4 is

3 5-4

- (=1 -~ (=2
ForA=2,u= forA=-1,v=
1 |
-1 -2 2 0
Let P= then, D=
1 1 0 -1

To find 4",

2" 0
D" =

0 (=)

det(A—M):‘_ =(2+1)(2-2)=0 = A=—1 or 2

Now,

np-1 _ -1 qn -1 _ 4n __ _1 _2 2” O _1 _2 B
PD"P~ =PP A"PP =4" =
I 1)o (_1)” 1 1

_[2n+2_(_1)n+1] _|:2n+1+2'(_1)n+1i|

2" +(-1)" 2 g (-1)"

Application activity 7.15

For each of the following matrices, find a non-singular matrix P and a
diagonal matrix D such that 4=PDP~" and hence evaluate the given

power.
1. A:(4 _12],143 2 4= SJ,AS
12 11 —4 7
. 2 0 3
3. A:(O _J,A” 4. 4=[0 3 0] A4
0 0 3
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Kernel and range

Thekernel ofalinearmapping f:E — F denoted Ker(f) isasubset
of E whoseimage f is0O-vectorof F .i.e, Ker(f):{veE:f(v)=O}

A linear transformation f is called singular if there exists a non-zero
vector whose image is zero vector. Thus, it is non-singular if the only
zero vector has zero vector as image, or equivalently, if its kernel

consists only of the zero vector: Ker(f) = {O} .

A linear transformation f:E—F is one to one if and only if
Ker(f)z{O} :

The nullity of /" denoted n(f) is the dimension of Ker(f). i.e,
n(f)=dimKer(f) .

The image or range of a linear mapping f:E—F is the
set of points in F to which points in E are mapped on. i.e,

Imf:{ueF:f(v)zu}, veE .
A linear transformation f:E — F isonto if the range is equal to F .

The rank of /' denoted rank(f) or r(f) is the dimension of image
of

i.e, rank(f) = dim(Imf) .
Elementary row/column operations

When these operations are performed on rows, they are called
elementary row operations; and when they are performed on
columns, they are called elementary column operations.

Operation description Notation

Row operations

1. Interchange row i and j —> v, <> T
2.Multiply row iby s =0 — v, —> sr;
3. Add s times row i torow j — r; —> 1, + 7

Column operations

1. Interchange column i and j - ¢ <> ¢
2.Multiply column i by s =0 — c, —> S¢;
3. Add s times column i tocolumn ; — e = c ¢




Two matrices are said to be row equivalent (or column equivalent) if
one can be changed to the other by a sequence of elementary row (or
column) operations.

Two matrices 4 and B are said to be similarif B=P ' AP for
some invertible matrix P.

3. Diagonalisation of matrices

a) Eigenvalues and eigenvectors

The eigenvalues of f are the roots (in K) of the polynomial:

det(f—ﬂ]) . This polynomial is a polynomial associated with f
and is called characteristic polynomial. For any square matrix A4

, the polynomial det(4—AI) is its characteristic polynomial. The

homogeneous system (f—ll)u:O gives the eigenvector U
associated with eigenvalue ﬂ,

Cayley-Hamilton states that "Every square matrix satisfies its own
characteristic equation”.

a) Diagonalisation

To diagonalise matrix 4, we perform the following steps:
(i) Find the eigenvalues.
(i)  Ifthereisanon-real eigenvalue, the matrix cannot be diagonalised.

(iii)  If all eigenvalues are real, find their associated eigenvectors (they
must be linearly independent).

(iv)  If the number of eigenvectors is not equal to the order of matrix 4,
then this matrix cannot be diagonalised.

(v)  If the number of eigenvectors is equal to the order of matrix 4,
form matrix P whose columns are elements of eigenvectors.

(vi)  Find the inverse of P.

(viiy Find D, diagonal matrix of 4 by relation D =P 'AP .
4. Applications
a) Echelon matrix

A matrix is in row echelon form (ref) when it satisfies the following

conditions:
(i) The first non-zero element in each row, called the leading entry,
is 1.

(i)  Each leading entry is in a column to the right of the leading entry
in the previous row.

(i)  Rows with all zero elements, if any, are below rows having a non-
zero element.
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A matrix is in reduced row echelon form (rref) when it satisfies the
following conditions:

(iv) The matrix is in row echelon form (i.e., it satisfies the three
conditions listed above).

(v}  The leading entry in each row is the only non-zero entry in its
column.

b) Matrix inverse

A'is a square matrix of order n.To calculate the inverse of 4,
denoted as 4", follow these steps:

(i) Construct a matrix of type M = (A | [) , that is to say, 4 isin the
left half of M and the identity matrix 7 is on the right.

(i)  Using the Gaussian elimination method, transform the left half,
A, to the identity matrix, located to the right, and the matrix that
results in the right side will be the inverse of matrix 4.

c) Rank of matrix

The rank of matrix is the number of linearly independent rows or

columns. Using this definition, the Gaussian elimination method is
used to find the rank.

A line can be discarded if:

» All the coefficients are zeros.

» There are two equal lines.

» A line is proportional to another.

» A line is a linear combination of others.

In general, eliminate the maximum possible number of lines, and the
rank is the number of non-zero rows.

d) Solving system of linear equations
Consider the following system
a,x, +a,x, +..+a,x, =¢

Ay X, +AyX, +...+ 4, X, =C,

a,x+a, ,x,+.+a, x =c,
The Gauss elimination method is to transform a system of equations
into an equivalent system that is in triangular form.

To facilitate the calculation, transform the system into a matrix and

place the coefficients of the variables and the independent terms into
the matrix as follows:
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ay ap a, -6
(A:C)— ay 4y a?" G,
a, a, a., :c,
Where;
The matrix (A : C) is called augmented matrix.
Remarks

o |f rank(A) = rank(A : C) , the system is said to be inconsistent
and there is no solution.

o |f rank(A):rank(A:C)zr , the system is said to be

consistent and there is solution.

» If r=n, as there are n unknowns, then the system has a
unique solution.

» If <n ,the system has infinite solutions. (It is undetermined
system).

e) Power of matrix

The power of matrix 4 is given by 4" =PD"P™" for an invertible
matrix P whose columns are elements of eigenvectors of matrix 4.

Where,

A0 - 0
D 0 A" -« 0
0 0 - A

A, are eigenvalues
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End of unit assessment

1. In question a-g, find the characteristic polynomial:

(7 -3 o pof? 3
2 455 A VA
1 6 -2
c=[? 7 d D={-3 2 0
9“7l 3 boPE
0 3 —4
12 3
e) E=|3 0 4
6 4 5

2. Let 4 3 4
. t =
© 2 —6

a) Find all eigenvalues and corresponding eigenvectors.

b) Find matrices P and D such that P is non-singular and
D=P'AP is diagonal.

2 2
3. Let B=
1 3

a) Find all eigenvalues and corresponding eigenvectors.

b) Find matrices P and D such that P is non-singular and
D=P'AP is diagonal.

c) Find A4° and f(A),where f(l)=l‘4—3t3—612+7t+3

d) Find areal cube root of B, thatis, a matrix B such that B> = 4
and B has real eigenvalues.

4 1 -1
4. Considermatrix A={2 5 =2
1 1 2

a) Find all eigenvalues of 4.
b) Find a maximum set S of linearly independent eigenvectors of 4.

c) Find diagonal matrix for A.
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5. Given linear transformation 7:R’ —R’ defined by
T(x,y,z) =(2x+y—2z,2x+3y—4z,x+y—z) . Find all
eigenvalues of matrix representative of 4 relative to the canonical
basis and diagonalise it.
6. Show thata matrix 4 and its transpose A’ have the same characteristic
polynomial.
7. In question a-d, find the row echelon form of each matrix.

1 1

11 1
1 2 1
qft b) B=|2 2 2
D A=01 2 3 ) 5=
1 0 1
01 2 1
1 21 2 1
c=l2 1 21 2| & p=[l %
o C= ) P=l, 3 4
01010

8. In question a-d, compute the rank of each matrix.

1 2 0 5 1 2 1

a) A=|2 3 1 4| b) B=|-1 3 4
-1 -1 -1 1 2 -1 -3
1 21 1 3

o C=l0 31 d D=l 2 -1
2 1 4 -1 -3

9. In question a-b, use Gaussian elimination method to solve the
following systems

3x-2y+z=-6 3x-2y+z=4
a) {4x-3y+3z=7 b) {x+3y-z=-3
2x+y—-z=-9 4x-10y+4z=10
10. Using Cayley-Hamilton theorem, find the inverse of the following
matrices:
-3 5 1 2 20
a) A=| 2 10 1 b) B=|1 3 4
1 8 1 3 4
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11. Find the characteristic equation of the matrix 4 =

— O N
—
N O =

Verify Cayley-Hamilton theorem and hence evaluate the matrix

expression —5 47 +7A% —34° + A* —54°> +84%> -2 4.

404



Introductory activity

The curves that can be obtained by intersecting a double cone with a plane
are called conics or conic sections, the most important of which are circles,
ellipse, parabolas and hyperbolas.

Now, lets consider this situation. Suppose you are a gardener, and you
have just planted a lot of flowers that you want to water. The flower bed is
450 cm wide and 450 cm long. You are using a circular sprinkler system,
and the water reaches 180 cm out from the centre. The sprinkler is located,
from the bottom left corner of the bed, 210 cm up, and 180 cm over. If the
flower bed was a graph with the bottom left corner being the origin, what
would the equation of the circle be?

Today, properties of conic sections are used in the constructions of
telescopes, radar antennas, and navigational systems, and in determination
of satellite orbits.

Consider the parabolic antenna below

L Q Q Q

___________________________________________________ R S
S
N —LF

Figure 1.1. Parabolic antenna Figure 1.2. Reflection of all waves to one
point

A parabolic antenna is an antenna that uses a parabolic reflector, a curved
surface with the cross-sectional shape of a parabola, to direct the radio
waves. Figure 8.1 represents parabolic antenna and figure 8.2 shows how
parabolic antenna helps to reflect all waves to one point called focal point
F.The most common form is shaped like a dish. Its main advantage is that
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it has high directivity. But, how can we find the equation of this dish? You
can also think about motion of planets. What can you say about motion
of planets around the sun? How can you find the equation of their orbits

around the sun?

Objectives

By the end of this unit, a student will be able to:
e Define geometrically a conic as the intersection of a plane and
a cone and classify conics from the position of the intersecting
plane.

e  Express, in Cartesian form, the standard equation of a parabola, an
ellipse and a hyperbola.

e Convert Cartesian coordinates into polar coordinates and vice
versa.

e  Find the polar equation of a conic, a straight line and a circle.
e Use translation or rotation to reduce a general equation of a conic.

8.1. Generalities on conoc sections

Figure 1.3. Double cone

Taking different planes, slice through the double cone and hence draw the
shape that is obtained when the plane:

Is parallel to a generator but not along the generator.
Cuts the cone obliquely.
Is parallel to the axis but not along the axis.

S @9 e =

Is parallel to the base but does not pass through the vertex.
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Conic is the name given to the shapes that we obtain by taking different
plane slices through a double cone. The sections of a right circular cone
by different planes give curves of different shapes.

From activity 8.1, when different plane slices through a double cone we

obtain:

a) A parabola: This is the section formed
when the plane is parallel to a generator \
but not along the generator. See figure 8.4. \

Figure 1.4. Parabola

b) An ellipse: Thisis the section formed when
the plane cuts the cone obliquely; that is,
cuts the axis at an angle. See figure 8.5.

e

~)

Figure 1.5. Ellipse
c) A hyperbola: This is the section formed
when the plane is parallel to the axis but

|
I
not along the axis. Note that the hyperbola \ ;
has two branches. See figure 8.6. )

N
11
|

|

Figure 1.6. Hyperbola
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d) A circle: This is a section formed when a
plane is parallel to the base but does not
pass through the vertex. The circle can be - -
regarded as a special case of an ellipse.
See figure 8.7.

Figure 1.7. A circle
Definition
A conic section is the set of all points which move in a plane such that its

distance from a fixed point and a fixed straight line not containing the
fixed point are in a constant ratio.

We use the term degenerate conic sections to describe the single point,
single straight line and the term non-degenerate conic sections to
describe parabola, ellipse or hyperbola.

The three non-degenerate conics (the parabola, ellipse and hyperbola)
can be defined as the set of points P in the plane that satisfy the following
condition:

The distance from a fixed point F (called the focus of the conic) to point
variable P isaconstant multiple of distance from a fixed straight line (called
its directrix) to point P . This constant multiple is called its eccentricity, €.

/ i
Conic section
| ] P/
r Focal axis x
Vertex \ Focus (F) 0
Directrix
—
)

Figure 1.8. Conic section

From figure 8.8, we have LP_F = eLPM where Mis afootof perpendicularity
of line joining P to directrix, point P lying on conic and F the focal point.
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A focal axis is a line passing through the focus and perpendicular to the
directrix.

A vertex is a point where the conic intersects its axis.

A parabola has one focus and one directrix while ellipse and hyperbola
have two foci and two directrices.

Notice
The different conics arise according to the value of eccentricity e.
A non-degenerate conic is:
e Anellipseif 0<e<l e Aparabolaif e=1
e Ahyperbolaif e>1

When e =0, the ellipse is actually a circle whose focus is the centre of the
circle and the directrix is at infinity.

Any conic section is represented by the second degree equation

Ax® +2Bxy+Cy* +2Dx+2Ey+F =0
where A,B,C,D,E and F arerealnumbersand 4,B, C are notall nulls.

Application activity 8.1

Taking different planes, slice through a double cone and explain how to
obtain:

1. Asingle point 2. Asingle line 3. Pair of lines

8.2. Parabola

8.2.1. Definition and equation

"

1. What is the equation of the locus of all points equidistant from the

two points (5,3) and (2,1)? Does the equation obtained represent
a straight line or a curve?

2. Findthe equation of the curve that is the locus of all points equidistant
from the line x =—3 and the point(3,0).

3. In each case 1) and 2), plot the curve or straight line.

A parabola is the set of points P(x,y) in the plane equidistant from
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a fixed point F, called focus and a fixed line d, called the directrix i.e.
PF =1-PD, where D is a point of directrix d.

Simply, the parabola is the set C = {P(x,y) . PF :ﬁ} :

We obtain the equation of a parabola in standard form if we choose:

a) Thefocus F onthe x—axis to have coordinate (a,O).
b) The directrix d to be the line with equation x =—a.
c) The x—axis is called the axis of the parabola (axis of symmetry).
d) The origin is the vertex of the parabola.
e) Parabola has no centre.
¥y /
X+a d
@ @uussssssssshssssssnnnnnnnnns ': (x y)
| Dy
I ;
= (x—0)2+y2
a / a ] *
0 {vertex :Focus
£
£
a
D
™\
™~

Figure 1.9. Characteristics of parabola
From figure 8.9, the distance from point (x,y) to the focus (a,O) is
,/(x—a)2 +y°.

The distance from point (x,y) to the line (directrix) x=—a is x+a.

2
Since these two distances are equal, we have \/(x—a) +y' =x+a.

Squaring both sides and expanding, we get
x*=2ax+a’+y =x>+2ax+a’.
Combining like terms yields

y* =4dax
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Thus, the standard equation of a parabola, whose focus at point (a,O)
and directrix with equation x =—a, is given by

e |If the parabola has vertex at (h,k), then the equation is

(y—k)2 :4a(x—h)..

e  Parametric equations of parabola are

_ 2
X=aC here ¢ is a parameter.
y=2at

* The equation of a parabola, whose focus is at point (O,a) and
directrix has the equation y =—a, is given by x* =4ay.

e Recall that the distance from point (m,n) onto the line
am+bn—c

ax+by =c is given by

Definitions

—a 0 /lF

Figure 1.10.  Focal chord and latus rectum of a parabola

The distance from a point on a parabola to its focus is called the focal
distance of the point. In figure 8.10, FP is the focal distance.
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A chord of the parabola which passes through its focus is called the
focal chord. In figure 8.10, PQ is the focal chord.

The chord through the focus and perpendicular to the axis of the
parabola is called the latus rectum of the parabola. In figure 8.10,
LFL' isthe latus rectum.

Example 8.1

For each of the parabolas, find the focus and the equation of the directrix:

a) y2=8x b) x2:—6y

a) The given parabolais y* =8x which is of the form y* = 4ax .
— da=8 a=2.
Coordinates of the foci, F(a,O) = (2,0)
Directrixis x=—a i.e. x=-2 or x+2=0

b) The given parabolais x* =6y which is of the form x* = 4ay .
= 4a =-6; a:—i,

Coordinates of the foci F(O,a) = (0’_%]

Directrixis y =—a i.e. y=%or 2y-3=0.

Example 8.2

Find the foci, vertices, directrices and axis of the following parabolas:

a) y=-4x"+3x b) X’ +2y-3x+5=0

In each case, sketch the parabola.

a) The given parabolais y=—4x* +3x = 4x" —3x=—y
3 1

2
S X ——x=——
4 4”7
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Completing squares gives

Shifting the origin to the point (%,%) , yields

X? :—lY with X=x—§, Y=y—i.
4 8 16

The parabola of the form X* =4aY has focus at point (O,a) and
directrix with equation Y =a .

Hence, 44 = _l: a :_L.

16

With respect to new coordinate system

1
Focus F(O,—%),Vertex V(0,0), Directrix is Y=E
and Axisis X =0.

With respect to original coordinate system

31
Focus F O+§,_L+i or F(_’_)
8 16 16 8 2

Vertex V O+§,O+i ory 39
8 16 ’

816
Directrix is —L+2 or y:é
4 16 16 8

Axisis x=0+— or x=—.
8 8
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Sketch

/ y=—4x"+3

b) The given parabolais x*+2y—-3x+5=0

&X' -3x=-2y-5

Adding % for completing square gives

3Y 9 3Y 11
x—2| =2y—5+2 | x| =—2yp——
( 2] YTy ( 2] Y

4
ot
2 4 8
3 11

Shifting the origin to the point (_,_
2

j,we get

3 11
X? =-2Y with X:x—? Y=y+§.

The parabola X ==2Y is of the form X* =4aY .
1

Thus, 4a=—2:>a=—5.
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With respect to new coordinate system

Focus F(O,—%) Vertex 1(0,0)

1
Directrix is ) :E Axisis x=0.

With respect to original coordinate system

Focus F(O+§,—l—11) or F(i,_l_Sj

27 2 8 27 8
311
Vertex V O+§,O+—E or V(—,——j
2 8 278
Sirectriy 1 11 7
Irectrix Is =——— 0Or = ——
YT TR TR

Axis is )c:0+i or xzé.
2 2

Sketch

/ N\ £ +2y-3x+5

Il
=]

[ \

Find the equation of the parabola whose focus is (5,3) and the directrix
isthe line 3x—4y+1=0.
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Let P(x,y) be any point on the parabola. The focus is F(5,3)

Distance from point P(x,y) to the directrix 3x—-4y+1=0 s

3x—4y+1 3x—-4y+1

J9+16 V25
Distance from P(x,y) to F(5,3) is \/()6—5)2 +(y—3)2

Now, \/(36—5)2 +(y—3)2 =M

V25
:>(\/(x—5)2 +(y—3)2 )2 :(%)2

. (3x-4y+1)
- 25
= 25(x" —10x+25)+25(y” =6y +9) =9x” +16y” — 24xy+ 6x -8y +1

:>(x—5)2+(y—3)

=16x> +9y” +24xy —256x—142y +849 =0
Thus, the required equation is 16x” +9y” +24xy —256x —142y +849 =0

Application activity 8.2

1. Find the focus and directrix of the parabola with equation y2 =—8x

2. For each of the following equations, sketch the parabola. Clearly
show the focus, vertex and directrix.

2

a) y° =6x by x°=-9y
c) (y—3)2=6(x—2) d) x2—4x+2y=1

3. For each of the parabolas, find the focus, equation of the directrix,

length of latus rectum, equation of latus rectum and ends of latus
rectum:

a) y>=25x b)x* =8y Qx> =-5y

4. Determine the equation of a parabola with vertex (1,2) and focus

(4,2).
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5.  Find an equation of the parabola having its:

a) Focus (0, —2), directrix y =2.

b) Focus at (—3, 0) and the directrix x +5 =0.

c) Focus (—1:—2) and the directrixx —2y+3 =0.
6. Forthe parabola 4()/—1)2 = —7(X—3) , find the:

a) Latus rectum.

b) Coordinates of the focus and the vertex.

7. Determine the point on the parabola y2 =9x at which the ordinate
is three times the abscissa.

8.2.2. Tangent line and normal line

Activity 8.3

1. Using the technique for the differentiation of implicit functions,
derive the formula for tangent line on parabola y* = 4ax ata

point (xo,yo).
2. Deduce the equation of normal line on the parabola at the point

(x,»).

3. Draw the tangent line of »* =2x to (0,0).
Hint:

T=y-y, :m(x—xo), with mzﬂ

dx

X=X,

From activity 8.3, the tangent line at a point (xo,yo), on parabola
y* =4ax ,is given by

TEy0y=2a(x+xo)
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o Notice

Condition for tangency

The condition for tangency states that the line y = mx + ctouches the

parabola y* = 4ax if c = L

In fact, let y = mx + ¢ be tﬁé line tangent to the parabola y2 = 4qax, then
y=mx+c

{yz =4ax

= (mx+c)2 =4ax

= m’x” +2mex +c¢* = 4dax

= m’x’ +2mex+c* —4ax=0

= m’x’ +(2mc—4a)x+c2 =0

The line will touch the parabola if it intersects at one point only. This will
happen only when the roots are real and coincident or the discriminant of
the above equation is zero.

m’x’ +(2mc—4a))c+c2 =0

A= (2mc—4a)2 —4m’c* =0

dm’c® —16mca+16a’ —4m’c’> =0
= —16mca+16a =0

= 16a* =16mca

a
=>Cc=—
m

. . a
In this case, the tangent lineis y =mx+—.

m
Example 8.4

Find the tangent line to the parabola y* =8x at point A(Z, —4).

The tangent line at point (xo,yo), on parabola y* =4ax , is given by

T=y,y=2a(x+x,)
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But, a=2

The tangent line is TE—4y:4(x+2)
=>T=-4y=4x+8

>T=y=-x-2

Alternative method

The tangent line at point (xo,yo) isT=y-y,= m(x—xo) where m is
the gradient.

Differentiating the given equation, to obtain slope of the tangent;

dy 4
i( 2:8x)<::>2yﬂz8 or X2,
dx dx dx y
= Slope, m=2  =_1
dxy:_4

Hence, T5y+4:—(X—2)<:>y=—x+2—4 >T=y=-x-2

Application activity 8.3

1. Determine the gradient of the curve 3xy+y°>=-2 at the point
(1,-2).

2. Find the coordinates of the focus and the vertex, the equation
of the axis, directrix and the tangent at vertex for the parabola
X' +4x+4y+16=0

3. Find equation of tangents drawn from (—2,3) to the curve y* =8x.

4. Find equation of the normal to the parabola y2 =4ax at the point

(at2,2at). If this normal passes through the point (6a,0), find the
possible values of ¢.
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8.3. Ellipse

8.3.1. Definition and equation

Activity 8.4

1. Whatis the equation of the curve that is the locus of all points in which
the ratio of its distance from the point (3,0) to its distance from the

line xz? is equal to =.

2. Sketch the curvein 1.

We define an ellipse with eccentricity e(where 0 <e<1) to be the set of
points P in the plane whose distances from a fixed point F is e times their
distances from a fixed line d.

Let us consider figure 8.11:

b P

Pxy) M

Figure 1.11. Ellipse

We can obtain equation of an ellipse, in standard form if we choose

1. The focus F to lie onthe x—axis and have coordinates (ae,O).

2. The directrix d to be the line with equation x = 4

e
From activity 8.4 and figure 8.11, we get the equation of ellipse in standard
2 2
form, that is x_2+y_2 =1
a b

Since the equation of ellipse in standard form is symmetric about both
the x—axis and y—axis, then, there is a second focus F'(—ae,O) and a
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) . a
second directrix d'=sx=——.
e

2 2
a —b
2
a

Considering figure 8.12, we identify the elements of an ellipse.

The distance between two foci is 2ae with e =

L

....................

Major nx:is

Figure 1.12. Characteristics of ellipse

Ellipse is also defined as the locus of points P such that the sum of the
distances from P to two fixed points is constant.

Thus, let F; and F, be the two points (called foci, the plural of focus), then
the defining relation for the ellipse is PF| + PF, =2a.

Therefore, Ellipse C is the set C:{P(x,y):PE+P172:2a,aeR}.

The line through the foci is called the focal axis of the ellipse; the point on
the focal axis halfway between the foci is called the centre of the ellipse;
the points where the ellipse crosses the focal axis are called the vertices.

The line segment joining the two vertices is called the major axis, and the
line segment through the centre and perpendicular to the major axis, with
both end-points on the ellipse, is called the minor axis.

If the ellipse has centre at (/,k) which is not the origin, then the
2 2
(x=h)  (y=F)

equation is + =1.
a’ b’

For an ellipse centre of origin h=k=0.

Parametric equations of ellipse whose centre (h,k) are

where tis a parameter and f € [—7r,7z].

x=h+acost
y=k+bsint
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Length of latus rectum of ellipse

2 2

Let us consider ellipse 2+ —1 where a>b>0
a b

" ? L

4
=4

Figure 1.13. Latus rectum of ellipse
Let LSL' be the latus rectum through S'in figure 8.13.
Let SL=1;thus L(ae,l).

2 2
Since the point (ae,l) lies on the ellipse —2+b—2=1,
a

Therefore,
2
(ae) 12 aZeZ 12 12
a2 +b—2=1<:> > b_2:1 <:>e2+b—2=1
12 12 b2
o —==1-¢ ©—F=—Fas [bz :az(l—ezﬂ
4 2
=5 :b—2 1=
a a
. 2b*
Hence, the length of latus rectum is 2/ = —.
a

2 2
Ends of latus rectum through § are (ae,b—J and (ae,—b—)
a a
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_ae’ —_—
a

2 2
Also, the ends of latus rectum through S"' are (—ae,b—J and ( b J
) a

Equations of latus rectum through S and S' are x=ae and x=—ae
respectively.

Notice

If the denominator of y* is greater than the denominator of x*, the

major axis is vertical and the minor axis is horizontal. Always, we will take
2 2

b < a . Here, the equation is written as x_2 +y_2 =1. In this case, foci are

F'(O, iae), b

. . e .
directrices are d'= y =t— and vertices are (0,%a).
y
a

Example 8.5

Find the equation for the ellipse whose one focus is (2,1) and its
corresponding directrix is the line 2x—y+3=0 and the eccentricity is

2
2
Let P(x,y) represent any point on this ellipse and e be the eccentricity

distance from point P to focus

~ distance from point P to directrix

\/— x=2) +(y-1) \/_ 2 2 \/—
22:J( 2x)_yiy3 ) :72:\/(x—2) H(—1) x—Y

Jatl
:[ﬁf_ J5\(x=2) +(y-1y

2 2x—y+3

2x—y+3

2

2 5| (x=2) +(y-1)'|

4 (2x—y+3)2

=2(2x-y+3) =20[ (x-2) +(y-1)’|

Expanding and simplifying we get
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6x> +4xy+9y> —=52x—14y+41=0

Example 8.6

Find the centre, the length of axes and eccentricity of the ellipse
2x* +3y* —4x-12y+13=0.

By completing squares we have
2x* +3y° —4x—-12y+13=0
= 2(x" - 2x)+3()* —4y)+13=0

X =2x)+3(y* —4y)+13=0

U

=2
=2 (x-1) 1] +3] (y-2) -4]+13=0
(

2(x=1)"=2+3(y-2) -12+13=0 =2(x-1) +3(y-2) =1

x=1) (y=2)
( 1) L2

1
2 3

U

azzl:a:—andbzzl:b:
2 3

l\.)slu»—

23

Major axis is 2a = \/5, minor axis is 2b = T

Also, we know that b = g (l—ez) where e is the eccentricity

J3

(1 e ):>e —l—g:>e :l:>e_—
3 3 3

11
3 2
Example 8.7

Find the length of the axes, eccentricity, coordinates of foci, equation of
directrices and latus rectum for each of the following ellipses:
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a) 242X b) 9x>+5) =45
25 16
2 2

a) Forellipse x—+y_:1, a’*=25b>=16 and a>b.
25 16

Therefore,

Length of the axes are 2a =10 and 2b=8.

/a —b2 /25 16 /
Eccentricity e =

Coordinates of foci are (ae 0) and ( ae, 0

But ae:5[§j=3.
5

Hence, coordinates of foci are (3,0) and (-3,0).

. . . a a
Equation of directrices are x=— and x=——

e e
5
Hence, equation of directrices are X =% — 3 orx= i?.
2b° 16 32 5
Latus rectum: /| =——=2x—=—
a 5 5 L

b) Ellipse 9x* +5y” =45 can be rewritten as ?+%=1

a2 :5’b2 :9 and a<b
Major axisis 2b =6

Minor axis is 2a = 2\/—

- 9-5 f
Eccentricity e =
9 9

3
Coordinates of foci are (O,be) and —be)

But be=3(gj=2.
3
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Hence, coordinates of foci are (0,2) and (O,—Z).

b
Equation of directricesare y=— and y=——.
e e
. L 3 9
Thus, equation of directrices are y = i? or y= iE.
2 3
Latus rectum is 2L:2><§:E

Application activity 8.4

1. Find the foci of the ellipse 2x*+)* =4 .
2. Find the equation of the ellipse passing through (1,4) and (=6,-1).

3. Find an equation for the ellipse with foci (0,%2) and major axis with
end-points (0,%4) .

4. For each of the following equations, sketch the ellipse. Label the foci,
the ends of the major and minor axes.

2 2
a) T+2 o1 b)  3(x+2) +4(y+1) =12
16 9
c) 4x*+3»*+8x-10y+13=0

5. By completing squares, show that the curve

16x* +9y> —64x—54y+1=0 isan ellipse and hence deduce the
foci.

6. Find the eccentricity of the ellipses whose:

a) Latusrectum=%majoraxis :

b) Distance between directrices = 3distance between foci.

c)  Latusrectum =semi —minoraxis .

7. Find the focal distance of the point P(5,4\/§) on the ellipse
16x* +25y* =1600 .
x2 2
8. The ellipse 2 12 _1 hasthesame eccentricity as
169 2

2 2
. Xy
the ellipse ?+

==

1 . Find the ratio of a to b.
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8.3.2. Tangent line and normal line

W

1. Using the derivative of implicit functions, derive the equation of

2 2
tangent line to the ellipse x—2+y—2:1 at point (XO,J/O).
. a b
Hint:
2y
— 2.2, 2.2 272
?+b—2—l<:>bx +a’y =a’b

2

2. Draw the tangent line to the curve x’ +% =1 at (0,3).

2 2
- . . . xX°y
From activity 8.5, the tangent line at point (xo,yo), on ellipse —+=—==1
XX | Yoy _ a
—2+—2 =1.
a
Recall that, if m is the gradient of tangent line T, the gradient of the normal

,isgivenby: T =

line N at the same point is 1 :

m
o Notice

Condition of tangency

The condition of tangency states that the line y = mx + ctouches the
2

ellipse —+=—=11if c=b"+a’m’ .

3 3
X

In fact, let Y = MX + C be the line tangent to the ellipse —2+;;—2 =1, then
a

y=mx+c
2

2
X
x2 (mx+c)2
f— —2'|'—2 = a2b2
a b
=b’x*+a’ (mzx2 + 2mcx+cz) =a’b*

IS

= b xr+a’m*xr +2d*mex + a*? —a*tht =0
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= (b2 +a’m® )x2 +2a’mex+a*c* —a*th* =0

The line will touch the ellipse if it intersects at one point only. This will
happen only when the roots are real and coincident or the discriminant of
the above equation is zero.

(b2 +a’m’ ) x*+2a’mex+a’c® —a’h* =0

A= (2c12mc)2 — 4([72 +a'm’ )(a202 - azbz) =0
da*m’c® —4b*a’c® +4a’b* —4a*m’c’ +4a*m’b* =0
= —4b*a’*c* +4a’b* +4a'm’b* =0
= 4b°a’ (—02 Thjpr a2m2) =0
=-c*+b*+a’m’ =0
=c’=b"+a’m’

da*m’c® —4b*a’c® +4a’b* —4a‘m’c* +4a'm’b> =0
= —4b’a’c* +4a’b* +4a*m’b* =0

= 4b*a’ (—02 i 4 azmz) =0

= - +b’+a’'m’ =0

=c’ =b>+a’m’

Thus c¢=2vVb* +a’m’

In this case, the tangent line is y =mx++b* +a’m’
2 2

Example 8.8
Y

. . . . X
Determine the equation of tangent and normal line to ellipse —+=—=1

at point (g 2)
P 55




2 2
The point (g %) lieson 2+ 2 =1 since

36 144
25 25 36 144 9+16

4 9 100 225 25 25

Equation of tangent line:

Since T=y—y =m(x—x here m =—
. y=y,=m(x—x,) w il

differentiating the equation of the ellipse with respectto x gives

d
4 9 dx 2 97 dx dx 4y
6
At point E’E ,m:_@:_gxi:_gxﬁz_g
575 A 4 127 4 12 38
5

Equation of tangent line is
T= y—E:—g x—E <40y -96=-45 x—é

5 8 5 5
< 40y-96=-45x+54 < 45x+40y =150 ©9x+8y-30=0
Therefore, T=9x+8y-30=0.

Alternative method

yy 6 2
Since T = Yot +=2= =1, x =— and =— then
a b’ 5 Yo
6, 12,
r=35 45" O 2 L3 A dsea0p=150
4 9 20 45 10 15

< 9x+8y-30=0

Hence, T=9x+8y—-30=0.
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Normal line equation:

N=y-y, =—%(x—x0) where m=%

X=X,

2 2

the slope of normal line to the XY qat point E,E is —Lzﬁ.
4 9 5°5 9 9
8

= The equation of normal lineis N = y—% =§(x—gj

6
= 45y—108:40(x—gj & 45y-108=40x—-48

& —40x+45y-60=0 < 8x—9y+12=0

Therefore, the equation of this normal lineis N =8x-9y+12=0

Application activity 8.5

2 2

1. Find the gradients of the tangents drawn to the ellipse %+% — 7

at the point where x =2,

2. Determine the equation of the tangent drawn to the ellipse

x=3cosf,y=2sinf ata point where 6’=%.

3. Find the value(s) of k such that the line x+2y =k is tangent to

the ellipse x* +4y” =8. For each value of k, determine the point of
contact.

4. Find equations for the tangents to the ellipse (x—2)2 +(y —1)2 =5
at the points where the ellipse cuts the coordinates axes.

5. Find the range of values of m so that the line y = mXx and the conic
X’ +)°—6x—8y+24=0
a) Intersect at two points.
b) Touch attwo points.

c) Do nottouch each other.
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8.4. Hyperbola

8.4.1. Definition and equation

) Activity 8.6

If the foci of a conic are F| (C,O) and F, (—C,O) wherec =+/a® +b*,
derive the equation of locus for which the difference of the distances
from any point P(x,y) on conic to these two fociis 2a.

Indicate the nature of this curve by use of a sketch if necessary.

From activity 8.6, the locus of points P such that the difference

of the distances from P to two fixed points (foci) is a constant i.e.
2 2

C= iP(x,y) :PF, — PF, =2a,a e ]R} and has equation x_2 — y—2=1 and
is called a hyperbola. a b

Let us consider figure 8.14 and define elements of hyperbola:

Directrix & = Directrix

T I T M T e
Focus / Trahsverse axis |z . : \

%
.Conjugate axis
.p.

Figure 1.14.  Characteristics of hyperbola

The line through the foci is called the focal axis of the hyperbola; the
point on the focal axis halfway between the foci is called the centre; the
points where the hyperbola crosses the focal axis are called the vertices.

The line segment joining the two vertices is called the transverse axis.

This hyperbola has two asymptotes y =2x and ¥y = —Zx
a
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If the hyperbola has centre at (h,k), then the equation is

(x=h) (v=k) _
a’ b

Parametric equations of hyperbola are

X =asect . T T 37w
where tis a parameterand t € |[-—,—| U

1

y=btant 2°2 272

Since the equation of a hyperbola in standard form is symmetric about

x—axis and y—axis , there is a second focus F'(—ae,O) and a second

) . e
directrix d'=x=——.

a

The line segment joining the points (ia,O) , has length which is equal
to 2a and is called a transverse axis and the segment joining (0,%b),
which is equal to 2b and is called a conjugate axis.

The distance between two foci is 2ae.

Notice

Unlike in ellipse, the orientation of hyperbola is not determined by

examining the relative sizes of g* and b,
but rather by noting where the minus sign occurs in the equation. If the

2 2
. . . X
minus sign precedes the »” term i.e. —Z—Jb}—z =1,
a
the foci lie on the x —axis and if the minus sign precedes the x” term, i.e
2 2
y_z_x_z =1, the foci lie on the y —axis , that
a b o
is, the foci are F'(O,iae), directrices are d'=y =x— and vertices are
(0, ia) ) a

¥ 4 ;
The hyperbola = ——=1 has two asymptotes, ¥ = Zx and y = _Zx .
a

Particular case

When the eccentricity of hyperbola takes the value V2, we getthe case of
perpendicular hyperbola or rectangular hyperbola.
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The curve of a rectangular hyperbola is shown below;

Ay

\

~F

In this case, the equation is xy = ¢’ and the parametric equations are
x=ct
¢ Wwhere t is a parameter different from zero.
y==
t
In this case, the equation is Xy =¢* and the parametric equations are

x=ct
¢ where [ is a parameter different from zero.

i

The asymptotes of this hyperbola are y =%x.

Example 8.9

Find, in standard form, the equation of a hyperbola whose eccentricity is
V2 and the distance between foci is 16 units.

 Solution
o=

Since we know that the distance between the two foci is 2ae,
then 2ae=16.

Now, av2 =8 = a=4/2 = a* =32

Also, b* =a’ (€’ =1) or b* =32(2-1)=32

2 2

The equation is r Y

32 32
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Example 8.10

Find the equation of hyperbola whose one directrix is 2x+y—1=0 and
corresponding focus is (1,2) and eccentricity J3.

Let P(x,y) represent any point on this hyperbola.

distance from point P to focus

distance from point P todirectrix

Ao \/x 1 y 2) ﬁ:\/(x—l)2+(y—2)2x J5

2x+y 1 2x+y-1
Va+1
2 2 2
1 2 Si{x=1) +(y-2
(] <[ Bl I (Gl
2x+y 1 (2x+y—1)
=3(2x-y+3) =5| (x=1) +(y-2)|
Expanding and simplifying we get
7x* +12xy—2y° = 2x+14y-22=0
Example 8.11
4x* -9y* =36

Find the eccentricity and coordinates of foci for hyperbola

2 2

4x* -9y =36 =2 L |
9 4
a*=9=a=3
b*=4=b=2
13 Vi3

b =a* (e -1)=4=9(e* 1) 362:1%:? se=2

434




J13

Thus, the eccentricity is ——

Coordinates of foci; (iae,O) = (i\/E,O)

Application activity 8.6

1.

For each of the following equations, sketch the hyperbola, state
the coordinates of vertices and foci, and find equations for the
asymptotes.

5 ) _o)? _4Y?

a) y__x_zl b) (x ) _(y ) -1

4 9 9 4
2 2
0 (y+3) _(x+2) _q
36 4

Find the foci, the vertices, and asymptotes of the hyperbola
y _x
16 9

For the following hyperbolas, find the lengths of transverse and
conjugate axes, eccentricity, coordinates of foci and vertices.

a) 16x*-9)*-144=0 b) 2x’-3)"=6

c) y -16x" =16
Find the equation of the hyperbola with vertices (O,iS) and
asymptotes y = igx.

By completing squares, show that the curve
x*—y*—4x+8y-21=0 isa hyperbola and hence determine the
coordinates of foci, vertices and asymptote equations.

Find the equation of hyperbola whose;
5
a) eccentricity is —, one of the foci is at (2,0)
and the corresponding directrix is 4x—-3y =1 .

b) focusis (—3,3), the corresponding directrix is the line 5x+6 =0

and eccentricity is —.

Find the equation of hyperbola whose distance between two foci is

10 and eccentricity is —.
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8.4.2. Tangent line and normal line

,f""_*“‘m

,f "%t%.

11\ )

\‘*h._—_—-_q;#;y
Derive the general equation of tangent line to the hyperbola

2 2

X°y .
— ——=1 atpoint (x,,y,)-
a2 b2 ( )

From activity 8.7,

2 2
The tangent line at point (xo,yo) on hyperbola x_2_y_2 =1 is given by
a
_XE_YoY _y
a b

Remember that if m is the gradient of tangent line T, the gradient of the

: T |
normal line N at the same pointis ——.

m
o Notice

Condition of tangency

The condition of tangency states thatthe line y = mx + ¢ touchesthe ellipse

2 2
x—z—y—zzlif cc=a’m’-b .
a- b
In fact, let y =mx+c be the line tangent to the ellipse
2 2
Xy
———=1,then
a b
y=mx+c
2 2
X
Lo
a b
2
X mx+c
= —2—% =a’b* = b*x* —ad° (mzx2 -I—2mcx+cz) =a’b?
a

2.2 222 2 2 2 21.2
=>bx"—amx -2amex—ac —ab =0

= (b2 —a’m? )x2 —2a’mex—a*c* —a*h* =0
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The line will touch the hyperbola if it intersects at one point only. This will
happen only when the roots are real and coincident or the discriminant of
the above equation is zero.

(b2 - azmz)x2 —2a’mex—a*c? —a*h* =0
2

A= (2a2mc) — 4(1)2 — azmz)(—azc2 — azbz) =0
da'*m’c? + 4b*a*c’ + 4a*b* —da*m*ct —4a*m’bh* =0
= 4b*a’c* +4a’b* —da*m’b’ =0
= 4b*a’ (02 +b* —a2m2)=02> c+b*—a*tm* =0
=l =-b*+a’m’ = =a'm’ - b’

Thus, c=*Ja’m’ —b*

In this case, the tangent lineis y= mx+t~a*m* -b* .

Example 8.13

Determine the value of @’ such that the line 5x—4y—16=0 is a tangent
to the hyperbola 9x* —a’y* =9a°.
2 2

Rewriting the equation 9x* —a’y*> =9a” as x_z_y_ =1

9

5

and the equation 5x—4y—-16=0 as -4y =—-5x+16or y:Zx_4

5
But the tangency condition is ¢* = a’m® —b*> with ¢ =—4, m =Z, b*=9
2
—16=a’[2] 9@t 2 =252 =220 g6
4 16 25

Thus, a* =16

Example 8.14

Find the equations of normal lines to the hyperbola 3x* —4y* =12 which
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are parallel to the line —x+y =0,
x2 2
Rewriting the equation 3x*> —4)” =12 as T_y?:1

and the equation —x+y=0as y=x.

Since the normal is parallel to the line y =X, then the tangent is
perpendicular to the line y = x = tangent has equation of

the form y =—x+c¢ and normal line has the form y=x+k.

Since the tangency condition is ¢* = a*m* —b* with

c=0,m=1,a>=4,b"=3
then,
? =4x1-3=c =4I
Then, the tangent linesare y =—x+1 and y=—-x+1
We use these two lines to find the points of tangency:
For the line y=—x+1:
{3)62—4)/2 =12
y=—x+1
=32 —4(-x+1) =122 32 —4(x" —2x+1) =12
=3x" —4x" +8x-4-12=0=—x" +8x-16=0
=>x -8x+16=0=>x=4
y=—x+1=-3
Thus, point of contact between the tangent and the hyperbola is (4,-3).
Forthe normal line y=x+k < -3=4+k = k=-7
The normal lineis y=x-7
Again, for the line y =—x—1:
3x* -4y’ =12
{yz—x—l
=327 —4(-x-1) =122 32" - 4(x" +2x+1)=12
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=37 —4x -8x-4-12=0=—x"-8x-16=0

=x +8x+16=0=>x=—4

y=—-x-1=3

Forthe normal line y=x+k<3=-4+k=>k=7

The normal lineis y=x+7

Example 8.15

Find the coordinates of the point at which the normal line to the curve

xy =8 at the point (4,2) cuts the tangent to the curve 16x* — 3 = 64 at

1
int|2—,6|.
poin )

dy

1
Normal line N=y—-y, = ——(x—xo) where m =—
m dx

X=X,

Differentiating xy =8 on both sides with respectto x yields

dx dx X
2 1
At the point (4,2) , the gradient of the tangent is 7 = 1Ty
Therefore, the gradient of the normal at point (4,2) is _i =2.

m

Hence, equation of normal is NEy—2:2(x—4) or y=2x-6.
Differentiating 16x> — 3 =64 on both sides with respectto x yields

dy o dv_16x

2x-2y—
ya’x dx y

1
At point (25,6) , the gradient of the tangent is

16( .1 20
6( 2) 3

Therefore, the equation of tangent lineis T'=y—6= ?(x_zéj
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& 3y—18=20x-50 < 20x-3y-32=0

To get intersection point, we solve the simultaneous equations
y=2x—6
20x-3y-32=0

which gives x=1 and y =-4.

Thus the required normal and tangent intersect at the point (1’ _4)'

Application activity 8.7

1. Evaluate d_y at @ :% radians for the hyperbola
whose pa?;xmetric equations are x =3secd,y =6tanf.

2. Determine the equation of the tangent drawn to the rectangular
5
hyperbola x =5¢,y =7 att=2.
3. Find the equation of the tangent to the curve 9x? —y=9 at the

5
oint | ——,4 |.
" ( 3 )

4. Alinetangentto the hyperbola 4x*> — y* = 36 intersects the y —axis

at the point (0,4). Find the point(s) of contact between the tangent
and the hyperbola.

8.5. Polar coordinates
8.6.1. Definition

Activity 7.1

-'_-. the modulus of each of the following complex numbers:
a) z=3+4i b) z=1-i
2. Consider the complex number z =141 Find the value of @ such

1 X 1
that cos =— and sinl =— for -7 <0<rx

N5 7

To form a polar coordinate system in the plane, we fix a point 0 called the
pole (or origin) and construct from 0 an initial ray called the polar axis.

Then each point P in the plane can be assigned polar coordinates (F,Q)
as follows:
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7 is the directed distance from 0 to P.

0 is the directed angle, counterclockwise from polar axis to the segment

OP.

P(r,@)

pd

-

pe
v
o

Pole Polar axis

Figure 1.15.  Polar coordinates

In polar coordinate system, the coordinates (V,H), (r,@+2k7z), kel
and (—r,l9+(2k+1)7r) represent the same point. Moreover, the pole is
represented by (0,6’) where @ is any angle.

Coordinate conversion

To establish the relationship between polar and rectangular coordinates,
let the polar axis coincide with the positive x —axis and the pole coincide
with the origin.

ALy
N (x,»)
J
e
//
r// g
//
v
o X
0 rcos@ X

Figure 1.16. Converting from polar coordinates to Cartesian coordinates and vice
versa
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The polar coordinates (r,ﬁ) of a point are related to the rectangular
coordinates (x,y) as follows:

{x=rcos@,yzrsin@ana’r=«/x2 +y?

o Notice

To convert rectangular coordinates (a,b) to polar coordinates is
the same as finding the modulus and argument of complex number
z=a+bi.

Example 8.16

37
Giventhe polarcoordinates (2,—) .Find their corresponding rectangular
coordinates. 4

. RY/4
In this case, we have; r=2, 8 =—

:>x:rcosﬁz200s37ﬂ:— 2 and y:rsinﬁzzsin%:\/z

Then the corresponding rectangular coordinates are (—\/5,\/5)

Example 8.17

3 1
Find the polar coordinates of the point (7,—5}

3 1 2 2 1
=—, y=——and r=4/x"+y" =, /—+—=1
e Ty e 4 4
Thus,
cosé?:—:>(9:i£

6
_r
sinf=—-=g={ ©°
5_7r
6




N 4
The common angle is — =

7
Therefore, the polar coordinates are (L—E]

Example 8.18

Express:

a) x*+xy=3 inpolarform.

b) 7r=3-sin@ in cartesian form.

a) X +xy=3

Substituting x =rcos@ and y =rsiné gives

2 cos® @ +r? cos@sin@ =3 = r’cosf(cosd+sinf)=3
b) r=3-sinéf

In order to be able to use #* = x> +y* and y=rsin@, we first multiply
the polar equation by 7:

¥’ =3r—rsiné
x4y =3yx*+y -y

2
= (x2 +y° +y) = 9(x2 +y2) which is the required cartesian form.

Example 8.19

lllustrate graphically the curve given by polar equation r =2+ 2sin¢.

We first construct a table of values using the special angles and their

. . . v . .
multiples. 7 is maximum and equal to 4 for t =—. r is minimum and

3z
equal to zero when ¢ ==—.

2
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T T T 27 RY/4 Sz
t 0 — — — — _— = -\
6 4 3 2 4 6
r 2 3 34 3.7 4 3.7 3.4 3 2
T 57 A RY/4 Y4 T 117z
t — — — — — | — 2
6 4 3 2 3 4 6
4 1 0.6 0.3 0 0.3 0.6 1 2

We now plot the points in the table, then join them with a smooth curve.
The points and the graph of the given polar equation are shown below.

el

R B

w

]

Example 8.20

Graph the polar equation given by r =4cos2¢.

Just like in the previous example 8.18, we first construct a table of values

using the special angles and their multiples. 7 is maximum and equal to
dfort=0and t=r.

r is minimum and equal to —4 for t=" and t:%r.

T T V4 7| 2n 37w | Sx

t o = = = = = =] = =
6 4 3 2 3 4 6

r 4 2 0 -2 -4 -2 0 2 4

b Iz| b=y Ax) 3z Sz I Uz 2z

6 4 3 2 3 4 6
r 2 0 -2 -4 -2 0 2 4
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We now first plot the points in the table then join them with a smooth
curve.

-~
N

<
_~

Application activity 8.8

1. Which of the following polar coordinates describe the same point?

2 (3,0) ) (=3,0) . (22{]

r V4
d) (2’Tj e) (-3,7) f) (l;j
g) (-3,27) h) (—2,—%]

2. Plot the following points (given in polar coordinates).

a) (2,0) b) (-2,0)

Q) (z,ﬁj d) (—2,1j
2 2

3. Find the Cartesian coordinates of each of the points in question 1).
Express in Cartesian coordinates of the following polar equations.

a) rcos@+rsinfd=1 b) rcosfd=3

) ot T
4 cos@—3sind

e) r=9 f)  25r% cos’ @+16rsin® § = 400

g) r=23sind h) 7> =6rcosé—2rsinf—6

i) rsin’@=3cosé
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8.6.2. Polar equation of a conic

Activity 2.2

1. Express the equation of the parabola y* =1+2x in polar
equation.

2. a)Expressthe polar equation r = L in
Cartesian equation. 2+cosd
b) What are the characteristics of the equation
found? Hence, identify the nature of its curve.

Another alternative way to define a conic is using polar coordinates. In
polar equation of a conic, the pole is the focus of the conic.

In this case, we use the following relations:

x=rcosh, y=rsind, r=x*+y’, tanf@=2, x=0

X
A conic curve with eccentricity e, focus at the origin, whose directrix
. e
X =—p has equation r = P where (r,H) are
1+ecos@

polar coordinates of any point P lying on the conicand x=p >0 isthe
vertical directrix.

Itis an ellipse if e<1, a parabolaif e=1 and a hyperbolaif e>1.

Example 8.21

Find the polar equation of an ellipse whose centre is at (3,0),

horizontal major axis with 10units and vertical minor axis with 8units .

2 2
In the equation (x—zh) +(y;2k) =1, h=3,k=0
a

2a=10=a=5and 2b=8=b=4
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Then,

2 2
(x;?’) N (y;;’) _q

Expanding, we get 16x” +25)% —96x = 256

& 16x° +25y% =96x +256

Creating the perfect square on the right side
& 16x% +9x% +25y° =9x% +96x +256

& 16x7 +9x% +25y° =9x° +2(48x)+256

& 255> +25y° = (3x+16)° =25(x*+ ) =(3x+16)’
But x> +y> =7r°, x=rcosf

Then,

25(x* +y*) = (3x+16)" = 257> =(3rcos 0 +16)’

=25/ =[(3rcos0+16) = 5r=3rcos0+16

16
=5r-3rcosfd=16 = r(5—3cosl9) =16 =>r=—-—1—
5-3cosf
Application activity 8.9
1. Find the polar equation of the conic section:
a) ¥y =1-2x b) x*-3y°-8y=4
2. Determine the cartesian equation of each of the following polar
equations:
2
a) r= # b) r= -
2—cos@ 1+siné

3. Show that the equations x =7 cos, y =rsin@ transform to the

polar equation y =——— and
1+ecos®

Cartesian equation (l—ez)x2 +y° +2kex—k*>=0.
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8.6.3. Polar equation of a straight line

Activity 7.1

Consider a straight line with equation 3x -2y +6=0.

. : . 1 L
From polar coordinates, derive the expression for — which is the polar
equation of the line. r

From activity 8.10,considering the straight line ax+by+c =0, the

polar equation of the straight line is l = Acos@+Bsinf, A,BeR and
A and B are not all zero. r

Example 8.22

Find the polar equation of the line passing through point (L%j and (2,7[)

From; l:Acos(9+Bsin0
r

For point 1,£ ;l:Acos£+Bsin£:>B:l
2) 1 2 2

For point (2,7); %zAcosn‘+Bsinﬂ:>A=—%

Then, the polar equation is

1 1 )
—=——cos@+sinf
-

Application activity 8.10

Determine the polar equation of each of the following lines:

1. x+\/§y:4 2. x-y=2
3. y:g(x—l) 4. x—2y:\/§
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8.6.4. Polar equation of a circle

Activity 2.2
Consider the following figure:
P(r,0 /

......... - Clp,a)

f
\ /
L S

SN
i o-p \‘ 4/

0 Polar axis

Figure 1.17. Circle in polar coordiantes
Hint:

Consider the following triangle

A

a

The cosine law states that
a’ =b*+c¢* —2bccos A
b* =a*+c* —2accosB

¢ =a® +b* —2abcosC

. . . . D)
Using cosine law, derive the expression for r

From activity 8.11, the polar equation of a circle with centre (p,a) and
radius R is

r*=R’—p>+2rpcos(0—a)
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Example 8.23

Find the polar equation of the circle with centre (3,—%) and radius 2.

In the equation > = R* — p° +2rpcos(t9—a) ,

T
R=2 p=3, a=——
p 6

The equation is

7’ :4—9+6rcos(0+%)

=5’ =—5+6rcos(9+%j

Application activity 8.11

Determine the polar equation of the circle:
1. Whose radius 3 and centre (3,0).

2.  Whose radius 2 and centre (2,1)

3. Whose radius l and centre (—l,oj.
2 2

4. Whose radius 1 and centre (_1,1)
2

8.6. Applications

ivity 2.3
Is the Earth a perfect sphere? Justify your answer by giving facts.

Eccentricities of orbits of the planets

The orbits of planets are ellipses with the sun at one focus. For most
planets, these ellipses have very small eccentricity, so they are nearly
circular. However, Mercury and Pluto, the innermost and outermost known
planets respectively, have visibly elliptical orbits.
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Planets Eccentricity
Mercury 0.206
Venus 0.007
Earth 0.017
Mars 0.093
Jupiter 0.048
Saturn 0.056
Uranus 0.046
Neptune 0.010
Pluto 0.248

The following examples illustrate many of the practical applications of
conics.

Example 8.24

An arch is in the form of a parabola with its axis vertical. The arch is 10m
high and 5m wide at the base. How wide is it 2m from the vertex of the
parabola?

It is given that arch is in the parabolic form with its vertical axis.

(2.5,10)

e
<] o
——

2 .SCm\1 /2.50m .
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Let the vertex of the parabola be at the origin and the axis be y —axis ;

Thus, the equation of the parabola is of the form x* = 4ay .

Since (2.5,10) lies on the parabola, then (2.5)2 = 4a(10) = 6.25=40a
625 5

S>dq=—=—
4000 32

Therefore, the equation of parabolic arch is x* = 4x%y or x* :éy.

5 J5

When y =2, x2:§x2:Z:>x:7.

The width of the arch at height of 2m from the vertex is
5
2x§m:x/§m-

Example 8.25

An arch is in the form of a semi-ellipse. It is 8m wide and 2m high at the
centre. Find the height of the arch at a point 1.5 m from one end.

Let the x —axis lie along the base of arch, with the origin at the middle of

the base.
x2 2

Let the equation of the ellipse be —2+Z—2 =1.
a

(0.2)
//"” \\“P\(Z.S,h)
yd ™
2.5m
C x
4 3 -2 1 0 4m 4

&m
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Let the vertex of the parabola be at the origin and the axis be y—axis;
that is, equation of the parabola is of the form x* =4aqy .

Since 2a=8=a=4.

(0) , (2)

The point (0,2) lies on the ellipse, then —2+b—2 =1or
a
%lebz =4,
(25)° ()
The point (2.5,h) also lies on our ellipse, = '—2+_2:1
a b
2
@4-}1_:1, with sa=4and b> =4
16 4
2
:>h_:1_@:£ — :£x4:2,4375
4 16 1600 1600

= h=+/2.4375=1.56

Hence, the height of the arch at a point 1.5 m from one end is 1.56m .

Application activity 8.12

1. The cross-section of a reflector of a torch is modelled by the part of

y=6-0.24x" which lies above the x-axis, where x and y are both
measured in CM. Draw this curve and find the;

a) depth of the reflector,

b) diameter of the mouth of the reflector.

2. A penny-farthing bicycle on display in a museum is supported by a
stand at points 4 and C.
A4 and C lie on the front wheel.

Y A
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With coordinate axes as shown and lunit =5cm |
the equation of rear wheel (the small wheel) is

x>+ =6y =0 and the equation of the front wheel is
X2 +y°—28x—-20y+196=0 .

a) i) Find the distance between the centres of the two wheels.

i) Hence calculate the clearance, i.e. the smallest gap between the
front and rear wheels. Give your answer to the nearest millimeter.

b) i) B(7,3) is half-way between 4 and C where Pis the centre of
the front wheel. Find the gradient of PB.

i) Hence, find equation of AC and the coordinates of 4 and C.

3. Abakery firm makes gingerbread men each 14 ¢m high with circular
heads and bodies.

VA

0 X

The equation of body is : +y2 —10x—12y+45 =and the line of
centres is parallel to the y -axis. Find the equation of head.

4. Anarcisinthe form of a parabola with its axis vertical. The arcis 10 m
high and 5 m wide at the base. How wide is it 2 m from the vertex of
the parabola?

5. Satellites can be put into elliptical orbits if they need only sometimes
to be in high- or low-earth orbit, thus avoiding the need for
propulsion and navigation in low-earth orbit and the expense of
launching into high-earth orbit.

Suppose a satellite is in an elliptical orbit, withh = 4416 and with
the centre of the Earth being at one of the foci of the ellipse.

Assuming the Earth has a radius of about 3960 miles, find the lowest and
highest altitudes of the satellite above the Earth.
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6. The design layout of a ‘ T

cooling tower is shown in
: 796m|
figure below. The tower NI
stands 179.6 metres tall. | B6Om
The diameter of the top is ===
72 metres. At their closest, Il
the sides of the towerare 60 1728™ i
metres apart. ||
!

|
Find the equation of the hyperbola that models the sides of the
cooling tower. Assume that the centre of the hyperbola indicated
by the intersection of dashed perpendicular lines in the above
figure is the origin of the coordinate plane. Round off final values
to four decimal places.

7. A whispering room is one with an elliptically-arched ceiling.
If someone stands at one focus of the ellipse and whispers
something to his friend, the dispersed sound waves are reflected
by the ceiling and concentrated at the other focus, allowing people
across the room to clearly hear what the person said. Suppose
such gallery has a ceiling reaching twenty feet above the five-foot-
high vertical walls at its tallest point (so the cross-section is half
an ellipse topping two vertical lines at either end), and suppose
the foci of the ellipse are thirty feet apart. What is the equation
for the elliptical ceiling and the height of the ceiling above each
whispering point?

1. Generalities on conic sections
Parabolas, circles, ellipses and hyperbolas are called conics because
they are curves in which planes intersect right circular cones.

2. Parabola

A parabola is the set of all points in plane that are equidistant from
a fixed line (called directrix) and a fixed point (called focus) not on
the line.
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Important result relating to different parabolas

Equation y* = 4dax x’ =4ay
Focus (a,0) (0,a)
Directrix X=-a y=-a
Principal axis(the line through

the focus perpendicular to the y=0 x=0
directrix)

Vertex (point where the parabola (0 0) (0 0)

crosses its principal axis)
Length of latus rectum (length
of chord through a focus and

perpendicular to the principal 4a 4a

axis)

Equation of latus rectum X=a y=a
Ends of latus rectum (a,%2a) (i2a,a)

Replacing x with x — & has the effect of shifting the graph of an equation
by |h| units to the right if h is positive, to the left if h is negative.

Similarly, replacing y with y — k has the effect of shifting the graph by |k|
units up if k is positive and down if k is negative.

Equation (y—k)2:4p(x—h) (x—h)2=4p(y—k)
Focus (h+ pak) (h’ker)

Directrix x=h-p y=k-p

Principal axis(the line

through the focus . _
perpendicular to the y=k x=h

directrix)

Vertex (point where the

parabola crosses its (h,k) (h,k)

principal axis)
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Parametric equations of parabola are

x=at’

where f is a parameter.
y=2at

The tangent line at point Xo> Vo ,on parabola y* =4ax , is given by

T =y,y=2a(x+x,)

3. Ellipse

Ellipse is a set of all points in the plane, the sum of whose
distances from two fixed points (called foci) is a given positive
constant.

Important facts to different ellipses

Equation of Standard | x* y? x )

o ?+b_2:1’a>b>0 ?+b_2:1’0<a<b

Coordinates of centre (0 0) (0 0)

Coordinates of

vertices (a,O) and (—a,()) (O’b) and (0,-b)

Length of major axis 2 b

Equatlon of major y=0 =0

axis

Length of minor axis 2b 2u

Equation of minor _ _

axis x=0 y=0

Eccentricity (ratio of

semi-focal separation | , ) _Na’-b ) ) N -d

and the semi-major |7 =¢ (1-¢)=e= P @ =b(1-¢')=e= b

axis)

Coordinates of foci (ae,0) and (-ae,0) (0,be) and (0,—be)
<:>(i az—bz,O) @(O,i\/bz—az)
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Equation of a b
d?rectrices x=x— y=+=

e e
Length of latus 2h? 24a°
rectum p b
Equations of x =*tae y =ztbe
latus rectum

Parametric equations of ellipse with centre (h,k) are

where ? is a parameter and fe(-7,7]

x=h+acost
y=k+bsint

2 2

The tangent line at point (x,,,) , on ellipse x—2+Z—2 =1,is given by
a

el ybﬂ—zy -1
a
4. Hyperbola

Hyperbola is a set of all points in the plane, the difference of whose
distances from two fixed points (foci) is a given positive constant

Important facts to different hyperbolas

Equation of Standard 2 2 2 2
form x—z—y—2=1 x_z_y_zz_l
a b a b
Coordinates of centre (0,0) (0,0)
Coordinates of vertices (a,()) and (—a,O) (O,b) and (0,_[7)
Length of transverse axis | 24 2b
Equation of transverse y=0 x=0
axis
Equation of conjugate axis| x = y=0
Coordinates of foci (ae,()) and (—ae,O) (O,be) and (O,—be)
< (i a’ +b2,0) =3 (O,i\/az +b2)
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Equation of directrices a b
x=x— y= +—
e e
Length of latus rectum h? 242
a b
Equations of latus rectum x = tae y =+be
Eccentricity b? = q? (l—ez) a’ = b? (1_82)

Parametric equations of hyperbola are

X =asect .
where [ is a parameter and
y=btant

T 7 3|

te |-=,= U=,

} 2 2[ }2 20

x2 y2
The tangent line at point (xo,yo), on hyperbola ——=—
by a b

=1,is given

_ XX Ny
5. Polar coordinates

To form a polar coordinate system in the plane, we fix a point O called
the pole (or origin) and construct from 0 an initial ray called the polar
axis. Then each point P in the plane can be assigned polar coordinates

(r,@) as follows:

+ risthe directed distance from 0 to P.

. 0O is the directed angle, counterclockwise from polar axis to the
segment OP .

In polar coordinate system, the coordinates (r,@),(r,t9+2k7r), kel
and (—7’,9+(2k+l)71') represent the same point.

Coordinate conversion

The polar coordinates (r,H) of a point are related to the rectangular
coordinates (x,y) as follows:
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x=rcosf, y=rsing, rP=x*+y’, tanf=2, x#0
X

Polar equation of a conic

A conic curve with eccentricity €, focus at the origin, whose directrix
ep

l+ecosd

where (r,@) are polar coordinates of any point P lying on the conic.

X =—p has equation 7=

Itis an ellipse if e<1, a parabolaif e=1, a hyperbolaif e>1.
6. Applications
Eccentricities of orbits of the planets

The orbits of planets are ellipses with the sun at one focus. For most
planets, these ellipses have very small eccentricity, so they are nearly
circular. However, the Mercury and Pluto, the innermost and outermost
known planets respectively, have visibly elliptical orbits.

End of unit assessment

1. Describe the conic having the given equations. Give its foci and
principal axes and, if it is a hyperbola, its asymptotes:

a) x°=-8y b) ¥’ +2y*=2  ¢) x=-3y
d) yz—x2:8 e) x+y2:2y+3 ‘f) 8x2—2y2:16

2. For each of the following, find all intersections of the given curves,
and make a sketch of the curves that show the points of intersection:

a) x’—4y*=36andx-2y-20=0
b) y*-8x’=5and y—2x’ =0

c) 3x*=7y*=5and9y* -2x* =1
d)y ¥’ —y>=land y*+x’ =17
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Find equation of ellipse traced by a point that moves so that the
difference between its distances to (4,1) and (4,5) is12.

Find the equation of the hyperbola traced by a point that moves
so that the sum of its distances to the points (0,0) and (1,1) is 1.

Let 4x° —4xy+y° +6x+1=0 be equation of a conic. Determine
the values of & for which the line y =kx;

a) intersects the given conics once,

b) cuts the given conics in two points,

c) does notintersect the given conics.

What points in the xy plane satisfy the equations and inequalities
in the following curves? In each case, illustrate graphically.

a) (x2 — 5 —1)(x2 +y° —25)(x2 +4y° —4):0

b) (x+y)(x2+y2—1):0
Xy x_Z_y_2<1
c) ?‘Fgﬁl d) 9 16

e) (9x*+4y’—36)(4x* +9y° ~16)<0

f) (9x® +4y° -36)(4x> +9)* ~16)>0

For each of the following equations, it is given how many units up
or down and to the right or left each conic is to be shifted.

Find an equation for the new conic, and indicate the new
vertex, focus and directrix for parabola; the new foci, vertices,
centre and asymptotes if any.

a) y2 =4x,left 2,down 3
b) x* =8y, right 1, down 7

2 2

c) x—+y—:1,|eft2,down1
6 9
2 2
Xy .

d —+Z—=1,right2,up3
375 g P
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2 2
g X
5

4
f) yz—x2 =1, left 1, down1.

8. Findrectangular coordinates of the points whose polar coordinates

=1, right 2, up2

are given:
2 9
ﬁ 7,— 2
2 (s2)  w(iZ)  a(s)
d) (5,0) e) (7,17% f (0,7)

9. The following are rectangular coordinates.
a) (-5,0) b) (2¥3,-2) o) (0.-2)
d) (~8,-8) o) (-3,3V3) f) (L1)

Express the points in polar coordinates, with
(i) r>0and 0<0<2rx
(i) r<0and 0<O0<2rx

10. In each of the following, transform the given polar equation to
rectangular coordinates and identify the curve represented.

. 1
a) r=5 b) rsind =4 c)r=
1-cosd

d) r—# ) ¥ = 2

1-2sing *© 3sinf—4cosd
f) r:# g) r+4cosf=0

2—cosd

11. A planet travels about its sun in an ellipse whose semi-major axis

length .

a) Show that r=a(1—e) when the planet is closest to the sun

(perihelion)and r = a(l +e) when the planet is farthest from the
sun (aphelion).

b) Use the data in the table below to find how close each planet in
our solar system comes to the sun and how far away each planet
gets from the sun.
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Planets Semi-major axis (astronomical |Eccentricity
units)
Mercury 0.3871 0.2056
Venus 0.7233 0.0068
Earth 1.000 0.0167
Mars 1.524 0.0934
Jupiter 5.203 0.0484
Saturn 9.539 0.0543
Uranus 19.18 0.0460
Neptune 0.0082 0.0082

c) Use the data from the table above to find polar equations for
the orbits of the planets

12. A man running a race-course discovers that the sum of the
distances from the two flag posts from him is always 10m and the
distance between the flag post is 8m. Find the equation of the
path traced by the man.

13. The towers of a bridge, hung in the form of a parabola, have their
tops 30 m above the roadway and 200 m apart. If the cable is 5m
above the roadway at the centre of the bridge, find the length of
the vertical supporting cable 30m from the centre.

14. Given two points A and B where AB=6. Find in its simplest
form the equation of the locus of point which moves such that

PA+PB=8 .

15. Ellis built a window frame shaped like the top half of an ellipse.
The window is 40 inches tall at its highest point and 160 inches
wide at the bottom. What is the height of the window 20 inches
from the centre of the base?

16. Aforest ranger at an outpost in the Sam Houston National Forest
and another ranger atthe primary station both heard an explosion.
The outpost and the primary station are 6 km apart. If one ranger
heard the explosion 6 s before the other, write an equation that
describes all the possible locations of the explosion. Locate the
two ranger stations on the X -axis with the midpoint between the
stations at the origin. The transverse axis is horizontal. (Hint: The
speed of sound is about 0.35 kilometre per second).
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“ Random Variables

Introductory activity

A bag contains 6 blue pens and 4 red pens. Three pens are drawn and
not replaced. If x stands for the number of blue pens and y the number
of red pens drawn

Complete the following table to illustrate different situations you can
have.

Total number =3
3

P
<

@
w

N | —

3

Can you determine exact number of blue pens to be selected at any
time if you do not know the number of red pens selected?

Does this number remain the same? Explain you answer.

Objectives

By the end of this unit, a student will be able to:

e Define a random variable
e |dentify whether a given random variable is discrete or continuous.
e Define the parameters of a discrete random variable.

e Learnin which situation the Binomial distribution applies and state
its parameters, ...
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9.1. Discrete and finite random variables
9.1.1. Probability density function

Activity 2.4

Suppose a box contains 6 balls of which 4 are red and 2 are black.
Three balls are withdrawn one after the other. Let x represent the
number of red balls drawn. Construct a table to represent this
probability distribution if each ball is replaced before another is
withdrawn. What can you say about the value x takes on the sum of
obtained probabilities?

Suppose that the outcome set S of an experiment is divided into n
mutually exclusive and exhaustive events E, E,, E;,.... E, .

A variable X which can assume numerical values each of which can
correspond to one and only one of the events is called a random variable
because outcomes depend on chance..

A random variable X is said to be a discrete random variable, if it takes
only finite values between its limits; for example, the number of students
appearing in a festival consisting of 400 students is a discrete random
variable which can assume values other than 0, 1, 2, ...,400.

Discrete random variables are usually (but not necessarily) countable.
Their values can be finite or countably infinite.

Random variables are usually denoted by upper case letters. The possible
values a random variable assumes are denoted by the corresponding

lower case letters and thus we write X =x.

Before talking about probability density function, let us remember some
key words of probability theory.

The sample space corresponds to the set of all possible outcomes of the
experiment. Elements of a sample space are called outcomes.

An event is a subset of a sample space.

Distribution function for a random variable X is a real function M whose
domainis Q).

The random variables are described by their probabilities. i.e

P(szl)zpl, P(szz)zpz, ey P(szn)zpn.
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The distribution of probabilities P(X =x,)= p, is called the probability
distribution and satisfy

o M(w)zoforallweQ
« D M(w)=1

Then, for any subset E of Q, the probability of E is the number

p(E)=2 M(w)=p(X=x).

weE
Then X is called a discrete random variable if Zpl. =1.
i=1
The probability density function (p.d.f), f(x) ,is a function that allocates
probabilities to all distinct values that X can take on.

) Notice

If the initial probability is known, you can find successive
probabilities using the following recurrence relation

P(X=x+1)=(n_xj(£]P(X=x)

x+1)\ ¢q

In fact, P(X = x) ="C p'q"™ (1)
and

P(X — x+1) _n x+1px+lqn—x—l (2)
Dividing (2) by (1) yields

P =x+1)_*Cup™q™

:n_x.£
P(sz) "C.p'q" x+1 ¢
Thus,

P(X:x+1):(n_xj(£JP(X:x)

x+1 )\ ¢q

Example 9.1

A game involves throwing a six sided die. Find;

a) The outcome of Xis even

b) P(X<1) o) P(1<X<2) d)P(2<X<3)
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e) P(1<X<6) f) P(X <6)

g) p(E) where £ =X isan even.

In this case, the possible outcomes are 1,2,3,4,5,6.

P (any number to appear) %

Let X be the random variable “the number that appears”

1

Thus, we can write; P(X:x,-) :%, x=12,..6

a) Thesample spaceis Q= {1,2,3,4,5,6}
b) P(X<1):0 impossible event

c) P(1<X32):P(X:2):%

d) P(2<X<3)=P(X=2)+P(X=3)

11 1
=4 —=—
6 6 3
e) P(ISX<6)=P(X=1)+P(X=2)+P(X=3)+P(X =4)+P(X=5)
JLrr 1.
6 6 6 6 6 6

g) LeteventE be “the result of the roll is an even number”

Thus, E = {2,4,6} ,and then

P(E)=M(2)+M(4)+M(6)=
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Example 9.2

A bag contains 6 blue balls and 4 red balls. Three balls are drawn and
not replaced. Determine the probability distribution for the number of red
balls drawn.

6 blue balls
4 red balls

Let B: blue ball, R: red ball

} =10 balls

If X'is the random variable “the number of red ball drawn” we have;
P(X =0)=P(no red ball)= P(BBB)

6 5 4_2 1

1098 12 6
P(X =1)=P(1 red ball and 2 blueballs)

= P(RBB)+ P(BRB)+ P(BBR)

4,635,645, 6541
1098109810982
P(X =2)=P(2 red balls and 1 blueball)
= P(RRB)+ P(RBR)+ P(BRR)
_43.6, 463,643 3
10 9 8 10 9 8 10 9 8 10
P(X =3)=P(noblueball)= P(RRR)
432 1
710798 30
Thus, we have;
b 0 1 2 3
P(x=x) 1L | 1 3 1
6 2 10 30
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Application activity 9.13

1. Adiscrete variable X has probability distribution defined by
1
P(X =x) =g(x—1),for x=2,3,4.Show
that X is arandom variable.

2. Adiscrete random variable has the following probability

distribution:
X 1 2 3 4
P(Xx=x) 1 | 3 2
5 10 5
Find; a) the value of p.
b) P(X2>2).

3. The probability distribution of a discrete random variable 7" is

2 t
given by P(T = t) = a(gj Jfort=1,2,3,.... Find the value of a.

Cumulative distribution of discrete random variable

Activity 2.5

Recall, in statistics, that Cumulative frequency can be defined as the
sum of all previous frequencies up to the current point. Use this fact
to complete the table below, for the number of heads obtained when
an unbiased coin with sides labeled head (H) and tail (T) is tossed

four times.
Heads 0 1 2 3 4
. 1 4 6 4 1
Probability — — — — —
16 16 16 16 16
Cumulative
Probability

To find a cumulative probability, we add the probabilities for all values
qualifying as “less than or equal” to the specified value.

The cumulative distribution function of a random variable X isthe
function F(x) = P(X < x) )
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Example 9.3

Suppose that the range of a discrete random variable is {0,1,2,3, 4}

and its probability density function is f(x) =X Whatis its cumulative
distribution function? 10

For

x<1,F(x)=f(0)=0

1<x<2, F(x)zf(o)+f(1)=o+L

10
1 2 3
2<x<3, F(x):f(0)+f(1)+f(2)=0+E+EZE
1 2 3 6
3<x<4, F(x):f(0)+f(1)+f(2)+f(3):0+E+E+E=E
1 2 3 4 10
s25 F(0)= £O) ()4 12+ F(3)+ F@)=0s e 23 410,
Then,
X 0 1 2 4
F(x) 0 L 3 L]
10 10 10

Thus, we can write the cumulative distribution function as;
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I, 4<x




Example 9.4

A discrete random variable X has the cumulative distribution

X 0 1 2 4 5
1 3 5 8

F(x) L 3 > Ll |
10 10 10 10

Determine the probability distribution of X.

The cumulative distribution only changes value at 0,1,2,4,5. So the range
of X is {0,1,2,4,5} .

F(Q)zi so f(0)=i

10 10
3 3 1 2
F)=7(0)+ /()= f()=15-70=15
5 512 2
F(z):f(0)+f(1)+f(2)zﬁso f(2)—10 10 10 10
F(4)=1(0)+ 1)+ 1)+ (4) =1
8 1 2 2 3
S 0)=1716710 1010
F(5)=f(0)+ F(1)+ £ (2)+ £ (4)+£(5) =10
o 1 2 2 3 2
/)11 10 10 10 10
Then, we write
X 0 1 2 5
2 2 3
T T
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Exercise 9.14

1. | toss a coin twice. Let X be the number of observed heads. Find the
cumulative distribution function of X.

2. We roll both dice at the same time and add the two numbers that are
shown on the upward faces. Let X be the discrete random variable
associated to this sum. Find its cumulative distribution.

3. The discrete random variable X has cumulative density function
X
F(x) =—forx=1,2,3,4,5. Find the
prosbability distribution of X.

9.1.2. Expected value, variance and standard deviation

Activity 7.6
Complete the following table for a discrete random variable X .
X P(X=x) xP(X=x) x’P(X=x)
1 0.2
2 0.5
3 0.3
Sum

The expected value of random variable X', which is the mean of the
probability distribution of X is denoted and defined by

7 =E(X):Zn:xiP(X:xi)

i=1

Also, the expectation of any function g(X) of the random variable X is

u=E(s(x))=2e(x)P(x =)

The variance of random variable X is denoted and defined by

o’ =Var(X)=lZ:1:[xi—E(X)JZP(X=xi)?
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which can be simplified to

o® =Var(X)=E(X*)-[E(X)T]

Since the term Zn:xl.zP(X =Xx,) is also written as E(Xz),

i=1
the standard deviation of random variable X , denoted by SD(X), is the
square root of the variance. That is

o=8D(X)=Var(X).

The following probability distribution has a random variable X .

X 0 1 2 3 4 5
P(X = x) 0.05 | 0.10 |{0.20 | 0.40 | 0.15 | 0.10

Find the;
a) expected value,
b) variance,

c) standard deviation.

a) E(X):ixiP(szi)

i=1
=0x0.05+1x0.10+2%x0.20+3%x0.40+4x%x0.15+5%x0.10
=2.80

b) var(X)= Lz:‘fo(X = x, )}—[E(X)]z

=0°x0.05+1°x0.10+2°x0.20+3* x0.40+ 4° x0.15+5 ><O.10—(2.80)2
=9.40-7.84=1.56

) SD(X)=,fvar(X)=+1.56=1.2490
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Properties for mean and variance

Va,beR

1. E(a)=a 2. E(aX)=aE(X)

3. E(aX+b)=aE(X)+b 4. E(X+Y)=E(X)+E(Y)
5. E(aX’+b)#akE(X*)+b 6. var(a)=0

7. var(aX)=a’ var(X) 8. var(aX +b)=a’ var(X)

Application activity 3.15

1. Find the mean of each of the following discrete probability

distribution:

a)
X 0 1 2 3
P(X =x) 01 02| 04| 03

b)
X 1 2 3
P(X =x) 01| 04| 05

c)
X -1 0 1 2
P(X =x) 02| 03] 04| 01

d)
X 4 6 8 10
P(X=x) | 0002|0040 | 0299 | 0.659

2. Therandom variable X has the following probability distribution:

X 2 4 6
P(X =x) a | 2¢*-a a’+a-1
Find the:

a) Value of a b) E(X)

c) Var(X) d) SD(X)
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3. Calculate the expected value, variance, and standard deviation of
the probability distribution for the possible outcomes that can be
obtained by throwing a die.

9.1.3. Binomial distribution (Law of Bernoulli)
Definition

Activity 2.7

Suppose that we need to determine the probability of getting
4 heads in 10 coin tosses. In this case, n=10 is the number
of independent trials. If getting a head is a “success (S)” then
getting a tail is a “fail (F)" Therefore, the number of successes
is ¥=4 and the number of fails is n—r=10-4=6 in 10 trials.
Here, if the first 4 tosses are heads, the last 6 are tails. That is

SSSSFFFFFF .

1. If pisthe probability of success and ¢ is the probability of failure,
what is the probability of the sequence SSSSFFFFFF in terms
of p and ¢?

2. From result in 1), deduce the probability of a specific sequence
of outcomes where there are r successes and n—r failures.

3. Recall that each way of getting heads is equally likely (for
example the sequence SSSSFFFFFF is just as likely as the
sequence SFSFFSFFSF ). From result in 1), how many different
combinations produce 4 heads?

Considering that: The total number of ways of selecting 4
distinct combinations of 10 objects, irrespective of order, is

100
41(10-4)

4. From result in 3), deduce different combinations that produce r
heads in n trials.

Let X be the random variable “the number of successes in the n trials”.
Let p and g be the probabilities of success and failure in any one trial.

From activity 9.4, in the n independent trials, the probability that there will
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be r successes and n - r failures is given by

P(er)z "CPq"",r=0,12,...,n.

The probability distribution of the random variable X is therefore given by

X 0

1

2

W

..n

P(X)

nCOPan

nCIPan—l

nC2P2qn—2

nCrPrqn—r

nCnanO

The probability distribution is called the binomial distribution because
forr=0,1,2,...... 1, p(x) are the probabilities of the successive terms of

n

the binomial expansion of (q +p)

Binomial distribution was discovered by James-Bernoulli in 1700 and is
denoted

b(r : n,p) ="CPq"",r=0,12,....,n
The constant n, p, g are called parameters of the binomial distribution.

Note that p+¢g =1

o Notice

For N set of n trials, the successes O, 1, 2, .....r, .....,, n are given by
N(p+q)", which is called binomial distribution.

Example 9.6

During war, a ship out of nine was sunk on an average in making a voyage.

What was the probability that exactly 3 out of a convoy of é ships would
arrive safely ?

Let P be the probability of a ship arriving safely i.e.,

1 8 1
=]l-—=—,theng=—, withn=6,N=1
P 9 9 1 9

6
(8 1
The binomial distribution is N(p+q) =(§+§j

The probability that exactly 3 ships arrive safely is
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9) 9 o 9

Example 9.7

The probability that a person belongs to a certain club A is 0.6. Find the
probability that in a randomly selected sample of 8 people there are:

a) Exactly 3 people who belong to club A.
b) More than 5 people who belong to club A.

In this case, success is belonging to club A and failure: not belonging to
club A.

= p=06,¢g=1-0.6=04,with n=8 N =1

So, the binomial distribution is N(p + q)n = (0.6,0.4)8

Thus,
a) P(X=3)="Cpq
8! 3 5
=0.124

b) P(X>5)=P(X=6)+P(X=7)+P(X=38)
='Cop’a” +°Cop'q + ' Cp'q”
=5C,(0.6)" (0.4)" +°C, (0.6) (0.4) +*C,(0.6)" (0.4)’
=0.316

Example 9.8

The probability thata pen drawn at random from a box of pens, is defective,
is 0.1.

If a sample of 6 pens is taken, find the probability that it will contain:
a) No defective pen.

b) 5 or 6 defective pens.
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c) Lessthan 3 defective pens.

Success: defective pen

Failure: no defective pen

=p=0.1,¢=1-0.1=09 with n=6

a) P(Xx=0)="°C,(0.1)(0.9)" =0.531

b) P(X>4)=P(X=5)+P(X=6)
=°C,(0.1)° (0.9)' + °C,(0.1)° (0.9)"
=0.000055

) P(X<3)=P(X=2)+P(X=1)+P(X=0)
=°C,(0.1)°(0.9)" + °C,(0.1)' (0.9)" + °C, (0.1)’ (0.9)°
=0.98

Example 9.9

The following data shows the number of seeds germinating out of 10 on
damp filter for 80 sets of seeds. Fit a binomial distribution to this data.

2 0 1 2 3] 4 56 7 8 9/ 10
f 6 20| 28 12, &8 6| O O] O] O O

Let us first find mean x = fo
2
x 0 1 2] 3 4 10 Total
/ 6 20 28 12| 8 6 0 0 0 80
x-f | 0 20 56 363230 0 0 0 O 0 174
— 174 87
X=—=—
80 40
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The mean of a binomial distribution = np

Given thatn =10, N =80 and ;:%
87 87
Therefore, np=— = p=——=0.2175
erefore, np 20 p 200

Then, g =1-p=0.7825

Hence, the binomial distribution to be fitted to the data is

N(p+q) =80(0.2175+0.7825)"

Thus, the expected frequencies are

X

0 1 2 3/ 4 506 7 8 9 10

6.9 19.1 240|178 86, 290701 0 0 O

Application activity 9.16

Find the probability of getting 4 heads in 6 tosses of fair coin.

If on an average one ship in every ten is wrecked during a war, find
the probability that out of 5 ships expected to arrive, at least 4 will
arrive safely.

The averall percentage of failures in a certain examination is 20. If six
candidates appear in the examination, what is the probability that at
least five will pass the examination?

Ten percent of screws produced in a certain factory turn out to be
defective. Find the probability that in a sample of 10 screws chosen at
random, exactly two will be defective.

The probability that a man aged 60 will live to be 70 is 0.65. What is
the probability that out of 10 men, now 60, at least 7 will live to be 70?

If 10% of bolts produced by a machine are defective. Determine the
probability that out of 10 bolts chosen at random;

a) 1
b) none
c) utmost 2 bolts will be defective.
A die is thrown 8 times. Determine the probability that a 3 will be

shown

a) exactly 2 times,
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b) atleast seven times,
c) atleastonce.

8. Anunderground mine has 5 pumps installed for pumping out storm
water. If the probability of any one of the pumps failing during the
stormis L. What s the probability that;

a) at |east82 pumps will be working,

b) all the pumps will be working during a particular storm?

Expected value, variance and standard deviation of a binomial
distribution

Activity 2.8

An experiment, or trial, whose outcome can be classified as either a
success or failure is performed; x =1 when the outcome is the success
or x =0 when the outcome is a failure. For any Bernoulli trial, probability
of success (1)is p and probability of fail (0)is 1= p=¢.

1.  Use the expected formula, E(X) = le.P(X = x,.),

to find the mean of any Bernoszllli trial. And hence E(X) for
n trials.

2. Recall that, the variance for a random variable is

Var(X) E(Xz) E(X)]2 Use this relation and resultin 1)
to find Var( ) [E ):Iz for n trials. Remember that

E( )—;fo X=x)

From activity 9.5,

The expected value (or mean) of a binomial distribution of a discrete
random variable X is denoted and defined by

u=E(X)=np.
where n is the number of trials and P is the probability of success.

The variance of a binomial distribution of a discrete random variable Xis
denoted and defined by
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o’ =Var(X)=npg =np(1-p)

where 7 is the number of trials, p is the probability of success and ¢q is
the probability of failure.

The standard deviation of a binomial distribution of a discrete random
variable X is denoted and defined by o = \/Var(X) = \/npq )

Example 9.10

A die is tossed thrice. If getting an even number is considered as success,
what is the variance of the binomial distribution?

Let p be the probability of getting an even number,

i —é—l th —l—l—l n=3
ie. p g~ 5 then q 7=
The variance of binomial distribution =npg = 3x%x% =%

Example 9.11

The mean and variance of a binomial distribution are 4 and 3 respectively.

Find the probability of getting exactly six successes in this distribution.

The mean of binomial distribution =np =4 (1)
And the variance of binomial distribution =npg =3 (2)

Using (1) and (2), we have

npq:3:>4-q=3:>q=%
3 1
—l—g=1-2=—

and P q 4 2

From (1), np=4:>nxi=4:>n=l6
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1 6 3 10
The probability of 6 successes; 16C6 (—) (—j

4) 4
Example 9.12

In 256 sets of 12 tosses of a coin, how many cases one can expect 8 heads
and 4 tails.

Let p be the probability of head and q be the probability of tail, thus

8008 x 3"
= T

1 1
P 2 1 2

The binomial distribution is

1 1 12
N(p+q) =256(§+5j

The probability of 8 heads and 4 tails in 12 trials is
oo (Y (1Y 495
Gl=||=| =——
2)\2 4096
256 x

The expected number of such cases in 256 sets

Example 9.13

Arandom sample is taken on 800 families with 4 children each, how many
families would be expected to have;

495

=30.9=31(

(i) 2 boys and 2 girls (i) at least one boy
(iii) no girl (iv) at most two girls?

Assuming equal probabilities for boys and girls.

Since, the probabilities for boys and girls are equal, let p be the probability
of having a boy and q be the probability of having a girl.

1
Here, p=q=5, n=4,N=3800
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; 11y
The binomial distribution is N(p+q) :800(5,5j .

(i) The expected number of families having 2 boys and 2 girls is

2 2
800°C, (lj (lj 8006 _ 3

2)\2 16

ii) The expected number of families having at least one boy is

OB OIERBIORIE)
_800x(4+6+4+1)
16

(iii) The expected number of families having no girl is

4
800°C, (lj _300_s,
2) 16

(iv) The expected number of families having utmost two girls is

goo[ af3) 6 (3)(3) 3] GU
_ 800x(1+4+6)
16

=550

Application activity 9.17

1. Bring out the fallacy in the statement:
“The mean of a binomial distribution is 3 and variance is 4”.

2. A die is tossed 180 times. Find the mean and the standard
deviation of the random variable representing the total number of
sixes obtained.

3. Acardisselected from an ordinary deck of 52 cards then replaced
before a second card is selected. This procedure is carried out 10
times. If X represents the number of spades selected, find,;

a) E(X) b) Var(X)

483




4. If in a binomial experiment of n trials, the probability of succes is

p and the mean and variance are 3 and 2 respectively, find the
probability that there is:

a) Exactly 1 success.
b) Atleast 1 success.

5. Anirregular six-faced die is thrown and the expectation thatin 100
throws, it will give five even numbers is twice the expectation that it
will give four even numbers. How many times in 10,000 sets of 10
throws would you expect it to give no even number?

6. In a precision bombing attack, there is a 50% chance that anyone
bomb will strike the target. Two direct hits are required to destroy
the target completely. How many bombs must be dropped to give
a 99% chance or better of completely destroying the target?

7. Assuming that half the population are consumers of rice so that
the chance of an individual being a

consumer is — and assuming that 100 investigators,
2
each take ten individuals to see whether they are consumers or not,
how many investigators do you expect to report that three people or
less are consumers ?

9.1.4. Uncountable infinite discrete case: Poisson
distribution
Definition

Activity 2.9

Consider the Maclaurin’s expansion of €’. That s,
, 0 0 0 @& 0"
e/ =—+—+—+

or 11 2t 3! n!

In a probability situation, the sums of the probabilities for all the
possible outcomes must sumto 1, then, we can say that, any algebraic
sum whose value is 1 can in theory be interpreted as a probability
distribution.
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1. Divide both sides of relation (1) by e’ to get 1 on the left hand side.

2. Suppose that @ in relation obtained in 1) is the rate of occurrence
of a random event per some unit or module of observation say; an
hour of time, or a yard of length, or whatever. Substitute 4 (rate) for
the previous @ to obtain new relation.

3. Suppose that we want to know, given a particular average rate
of occurrence (A), how many times x events will most likely be
observed in a set of n time or space units. Use the general term
of the series obtained in 2) and put n=Xx to get the probability

P(X=x).

Poisson distribution was discovered by a French mathematician Simeon
Denis Poisson in 1837. Poisson distribution is also a discrete probability
distribution of a discrete random variable, which has no upper bound.

The Poisson distribution is a discrete distribution often used as a model
for the number of events (such as the number of customers in waiting
lines, number of defects in a given surface area, airplane arrivals, or the
number of accidents at an intersection) in a specific time period.

Poisson distribution is a limiting form of the binomial distribution

(p+q)n under the following conditions:
a) n— o, ie.,the number of trials is indefinitely large.

b) p—0, ie., the constant probability of success for each trial is
indefinitely small.

c) np is afinite quantity, say 4.

Thus, p :%, q :1—%, where A is a positive real number.

The major difference between Poisson and Binomial distributions is that
the Poisson distribution does not have a fixed number of trials but itinstead
uses a fixed number of time or space in which the number of success is
recorded.

Typical events which could have a Poisson distribution are:
a) Number of customers arriving at a supermarket checkout per minute.
b) Number of suicides or deaths caused by heart attack in 1 minute.

c) Number of accidents that take place on a busy road in time t.
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d) Number of printing mistakes at each unit of the book.
e) Number of cars passing a certain street in time t.

f)  Number of a — particles emmited per second by radioactive
sources.

g) Number of faulty blades in a packet of 1000.
h) Number of persons born blind per year in a certain village.

i)  Number of telephone calls received at a particular switch board in a
minute.

i) Number of times a teacher is late for class in a given week.

From activity 9.6, the probability density function of Poisson distribution is
defined by

Where A isaparameterwhichindicatesthe average number (the expected
value) of events in the given time interval and e~ 2.718...

For a Poisson distribution, we write X ~ PO(/I)

o Notice

e |If the initial probability is known, you can find successive
probabilities using the following recurrence relation;

P(X =x+1)=—=P(xX =x).

x+1 g5
Indeed, P(X:x)z ¢ ' (1) and
1 e—ﬂl(x+ﬁ' 2
P(X = =
(X =x1) (x+1)! (2)

Dividing (2) by (1), we get
e—ﬂﬂxﬂ
P(X=x+1) (x+1)! "2 x!

P(X=x) e’2* (xtl)te’r

x!
B e A A x! 2
(x+1)x!e_i/1x x4+l
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Thus,
P(X =x+1)=—2 P(x =x)
x+1

e  For a Poisson distribution of a discrete random variable X , the

mean MU (or expected value) and the variance o? are the same
and equalto A .Thus, U= o’=1.

Example 9.14

On average on Friday, a waitress gets no tip from 5 customers. Find the
probability that she will get no tip from 7 customers this Friday.

The waitress averages 5 customers that leave no tip on Friday: = 1 =5.

But x=7

-5 7
¢ X3 _0.104

=P(X=7)=

Example 9.15

I\]

A small life insurance company has determined that on the average, it
receives 6 death claims per day. Find the probability that the company
receives at least seven death claims on a randomly selected day.

Since A =6, and we need P(X27)
P(X>7)=1-P(X <6)

P(XS6):P(X:0)+P(X:1)+P(X:2)+P(X:3)+P(X:4)+P(X:5)+P(X:6)
ex6" etx6' efx6 ex6 etx6' e'x6 e’x6°
= + + + + + +
0! I! 2! 3! 4! 5! 0!
=0.6265
P(X > 7) =1-0.6265=0.3735
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Example 9.16

The number of traffic accidents that occur on a particular stretch of road
during a month follows a Poisson distribution with a mean of 9.4. Find the
probability that less than two accidents will occur on this stretch of road
during a randomly selected month.

Here 1 =9.4, we need P(X< 2)
P(X< 2):P(X:0)+P(X=1)
e x(9.4) e?*x(9.4)

= + m =0.00085

=

Example 9.17

If the variance of the Poisson distribution is 2, find the probabilities for x
=1, 2, 3, 4 from the recurrence relation of the Poisson distribution. Also,
obtain P(x = 4).

We know that for Poisson’s distribution, mean and variance are both
equal i.e., mean = variance = 2.

Recurrence relation for Poisson distribution

A 2
P(x+1) —EP(X) = P(x+1) —mP(x)
The Poisson’s distribution is
e—lﬂx

x!

= P(X=x)=

From recurrence relation for Poisson distribution,

it x=0,P(1) =—= P(0) = 2x0.1353 = 0.2706
0+1
2

it x=1,P(2)=——P(1)=0.2706

X ’ ( ) 1+1 ()



fx=2,P(3) = P(2)= 2222700 _ 1504
2+1

i x=3,P(4)=—=P(3) = -x0.1804 = 0.0902
311 2

Now, P(x>4)=P(4)+P(5)+P(6)+...
=1-[ P(0)+P(1)+P(2)+P(3)]
=1-[0.1353 + 0.2706 + 0.2706 + 0.1804]
=1-0.8569 = 0.1431,

Application activity 9.18

1. Criticise the following statement:
“The mean of a Poisson distribution is 7, while the standard
deviation is 6”".

2.  The number of road construction projects that take place at any one
time in a certain city follows a Poisson distribution with a mean of 7.
Find the probability that more than four road construction projects
are currently taking place in the city.

3. The number of traffic accidents that occur on a particular stretch of
road during a month follows a Poisson distribution with a mean of 7.

Find the probability of observing exactly three accidents on
this stretch of road in the next month.

4. Suppose the number of babies born during an 8-hour shift at a
hospital’s maternity wing follows a Poisson distribution with a mean
of 6 an hour, find the probability that five babies are born during a
particular 1-hour period in this maternity wing.

5. The university policy department must write, on average, five tickets
per day to keep department revenues at budgeted levels. Suppose
the number of tickets written per day follows a Poisson distribution
with a mean of 8.8 tickets per day. Find the probability that less than six
tickets are written on a randomly selected day from this distribution.

6. The number of goals scored at State College hockey games follows
a Poisson distribution with a mean of 3 goals per game. Find the
probability that each of four randomly selected State College hockey
games resulted in six goals being scored.
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7. Red blood cell deficiency may be determined by examining a
specimen of the blood under a microscope. Suppose a certain small
fixed volume contains on the average 20 red cells for normal persons.
Using Poisson distribution, obtain the probability that a specimen
from a normal person will contain less than 15 red cells.

8. A skilled typist, on routine work, kept a record of mistakes made
per day during 300 working days

Number of cells per
square (x)

l(\l;r;berofsquares 103! 143 98| 42 8 4 2

0 1 2 3] 4] 5 6

Fit a Poisson distribution to the above data and hence
calculate the expected (theoretical) frequencies.

9.2. Continuous random variables
9.2.1. Probability density function

Activity 9.10

2
Given the function f(x):{k(x"'l) -1<x<0

k 0<x<l

1. Find the value of the constant k if the area under the curve of f(x)
is 1.

The Area under a curve is determined by integration.

2. Sketch the graph of f(x)

A random variable X is said to be continuous if its possible values are all
real values in some interval. A continuous random variable is theoretical
representation of continuous variable such as weight, temperature, time,
distance, mass and height.

To describe the probability of a continuous random variable, we use a
probability density function (p.d.f.) f(x) > 0.
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Afunction defined on an interval [a,b] is a probability density function for
a continuous random variable X distributed on [a,b] if, whenever x, and
x, satisfy a <x, <x, <b,we have

p(x SXsz)sz(x)dx.

If X is a continuous random variable, then the probability that
the values of X will fall between the values a and b is given

by the area of the region lying below the graph of f(x) and

b
above the x —axis between a and b and this area is If(x)dx.

a
b

We have p(aﬁxﬁb):jf(x)dx and f(x)20 fora<x<b.

5
-
Y 2

Figure 9.1. Area enclosed by the curve of function f(x) and x-axis
Properties of pdf, f (x)
a) f(x) >0 forall x

b) [ f(x)dx=1

all x

How to obtain probabilities

The probability that a random variable attains values between x; and
x, given by P(x1 <x< xz) is obtained from the area under the curve
between x, and x,.

Therefore, P(x, <x<x,)= J.f(x)dx.
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Example 9.18

A continuous random variable x has a p.d.f
kx,0<x<4

0, otherwise

S (%)=

where kis a constant.

a) Findthe value of the constant k& .
b) Sketch the graph y = f(x)
c) Find P(1<x<2.5).

o [ r(x)=1

; ; ; ; ; ;
| . . | . |
| . . | . |
| . . | . |
Lo P [T I R T CREEEEE R —
| . . V=_x .
i | | ": 8 =
R
' ' ' ' IR e
| H H Al o e
L e
. : T A S
e ey
' ' e
: ; e e e
-1
: h 0 ! i i !
| . . | . |
| . . | . |
| . . | . |
| . . | . |
| . . | . |
Lo P 3 I R F R [—
| . . | . |
| . . | . |




1 LT 1 2 21
=|— =—[(2.5)-1|==
[mxl 16[( ) ]64
Example 9.19

A continuous random variable x has a p.d.f f(x) where

kx, 0<x<2,
f(x)=1k(4-x), 2<x<4,
0, else where;

where kis a constant.

a) Find the value of the constant k.

b) Sketch y=f(x)

c) Find P(% <x< 2.5)

2 4
a) [ Thedx+ [ k(4-x)dx=1

o |’ |
=>|—| +|4kx——| =1
2 0 2 2

:>2k+16k—8k—8k+2k=1:>4k=1:>k=%

lx, 0<x<?2

kx, 0<x<?2 4
f()={k(4-2), 25x54 = f(x)=11(4-%), 25x<4
0, else where 0 else where

b) Sketch of f(x)

f(x)z%x, 0<x<2,
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| —

H:)C:(),y:(),ifxzz,y:

(=54

5 0 > >
c) P(%stzssz(%stzj+P(23x<25)
2 1] 251
= O'Szxabc+_|.2 —(4—x)dx
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Application activity 9.19

1. Let X be arandom variable with a p.d.f given by
ex?, |x[<1,
OB

0, otherwise;

where ¢ is a constant.

a) Findthe constant ¢
1

2. Triangle ABC isrightangledat B and AC =10cm .If BC=Xcm
and X is arandom variable uniformly distributed between 6.cm
and 8cm, find the probability that the length of AB exceeds
7.5cm .

3. Acontinuous random variable X distributed has p.d.f of the form

k, 0<x<2,
f(x)= k(2x—3), 2<x<3,
0, otherwise;

where c is a constant.
Determine;

a) the value of constant k.

b) (i) P(x<1) iy P(x=1)
iiiy P(x>2.5)iv) P[(0<x<2)/x>1]

P(4NB)

P(B)

Hint: P(A/B)z
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Cumulative distribution of continuous random variable

Activity 2.11

Consider a continuous random variable X with probability density

lx, 1<x<3
4

function: f(x) =

0, otherwise
Let F L f dx be the cumulative distribution function.
1. Find F(x) or x<1
2. Find F(x) for 1<x<3
3. Find F(x) for x>3
4

Combine results from 1) to 3) and write down the function
F(x) .

Hint: Recall that F(x) accumulates all of the probability less than or
equal to x.

You might recall that the cumulative distribution function is defined for

discrete random variables. Again, F(x) accumulates all of the probability
less than or equal to x. The cumulative distribution function for continuous
random variables is just a straight forward extension of that of the discrete
case. All we need to do is replace the summation with an integral.

The cumulative distribution function of a continuous random variable
X isdefined as F(x I f(t) dt for x € |00, 400 .
Properties

© F(x)=0 for x —>-w

© F(x)=1for x—+o

Example 9.20

A continuous random variable X has the following probability density

3x*,0<x<1
function: f(x)z{ rousy

0,elsewhere
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What is the cumulative distribution function F(x) ?

For x<0, f(x)=0 and F(x):O:>F(O)=O
F(x) =I:3t2 dt
=[],
3

=x, O<x<l

For x>1, f(x)=0 and F(x)=F(1)+I1xf(t)dt=1+0=1
Then,

0, x<0,
F(x)=4x", 0<x<1,
I, x2>1.

Example 9.21

A continuous random variable X has the following probability density
3

x—,0<x<2
4 .

function: f(x) =

0,otherwise

What is the cumulative distribution function F(x) ?

For x <0, f(x)=0 and F(x):0:>F(0)=O.

F(x)= J:%dt

T
2l

4

=x—, O<x<2
16

For x22, f(x)=0 and F(x)=F(1)+[ f(t)dt=1+0=1,
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Application activity 9.20

1. Suppose that the probability density function of a continuous
random variable X is defined as

f( ) x+1, -1<x<0
X)=
I-x, 0<x<l1
Find the cumulative density function.

2. Given the probability density function of a continuous random
variable X defined as

0, otherwise
Find the cumulative density function.

3. A probability density function of a continuous random variable Xis

defined by

X 0<x<2
3

—2x
f(x):<T+2, 2<x<3

0, otherwise

Find the cumulative density function.
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9.2.2. Expected value, variance and standard deviation

Activity 9.12

A continuous random variable X takes values between 0 and 1 and
has a probability density function f(x) = 6x(1—x). Find:

1. Azjole(x)dx 2.B=I;x2f(x)dx 3.B-4°

If X is acontinuous random variable with probability density function
f(X) on interval [a,b],then,

the mean u (or expected value E( X)) of X is denoted and defined by

,u=E(X)=j.xf(x)dx.

a

Also, expectation of function g(X) is
b
E(e(x))= [ 2 ()£ (X)dx
The variance Var(x) or ¢ is denoted and defined by

o =Var(X)=E(X*)-[E(x)] .

And the standard deviation is
o=S8D =4/Var(X) )
o Notice

' b
In yu= E(X) = J.xf(x)dx, [a,b] is the interval where f(x)
is defined. ¢

Generally, u= E(X) = I xf(x)dx and

o’ =Var(X) =+£x2f(x)dx—[E(x)]2.
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Properties of E(.X) and Var(X)

Va,beR
1. E(a)=a 2. E(aX)=aE(X)
3. E(aX+b)=aE(X)+b 4. E(X+Y)=E(X)+E(Y)
5. E(aX’+b)#akE(X*)+b 6. var(a)=0

7. var(aX)=a’ var(X) 8. var(aX+b)=a’ var(X)

Example 9.22

If X isa continuous random variable with probability density function

2
31,0Sx£4
64

J(x)=

0, elsewhere

Find the expected value E(X)

E(X):Ijxf(x)dx

4 (3x7 43x° 3¢ 3(4)*
E(X)ij — ldx =g = — —-0=3
0 64 0 64 256 |, 256

Example 9.23

The continuous random variable has a probability density function

f(x):{%(x+3),0£x£4

0, otherwise
a) Find E(X)
b) Verify that E(2X +5)=2E(X)+5
¢) Find E(X?)
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d) Find E(X*+2X +3)

_34
15
b) E(2X+5)= _[04(2x+5)%(x+3)dx = j:zio(zx2 +11x+15)dx

3 2 4
= i 2i+11x +15x
200 3 2 .

1 [2(4)3 O] +15(4)—o]

“20| 3 2
_143
15
On the other hand,

2E(X)+5= 2(%) +5  from result in a)

143
15

Thus, E(2X+5) = 2E(X)+5 = % hence verified
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4
L e SN
20\ 3

»
5
d) E(X2+2X+3):E(X2)+2E(X)+3 from properties

_32 + 2% +3 from results in a)and c)

209
15

Example 9.24

The continuous random variable has a probability density function

x
—,0<x<4
f)=18"""F
0, elsewhere
Find:
a) E(X) b) E(XZ) c) Var(X)
d) SD(X) e) var(3X +2)
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<) Var(X):E(XZ)—[E(X)]Z:8_(§)2:§
d) SD(X):,/Var(X):\/§:¥

e) var(3X+2)=3’ Var(X)=9x§=8

Example 9.25

Find the mean # and the standard deviation o of a random variable X
distributed uniformly on the interval [a,b] . Find P(/,l—O' <x< ,u+6).

The probability density on the interval is f(x) =
mean is given by b-a

on [a,b], so the

ox 1 xzb b*—a* b+a
u=E(X) Ib—a gy (b—ajZa 2(b-a) 2

a

7 ~£(0C)[E()]

b
b—-a® b*+ba+d?

tox 1 x
But E(Xz):'[b—adx:b—a?

Hence the variance is

3(b—a) 3

a

3 4

o> _b+ba+d’ _(bﬂle b’ +ba+a’> b’ +2ba+a’
3 2

4b> +4ba+4a> —3b’ —6ba-3a’ b —2ba+a’ (b—a)

12 12 12
o b-a
Therefore, standard deviation is o =
243
Finally,
pt+o dx 1 HtO
P —O-SXS +0)= = X
(4 u+o) y-_[ob—a (b—aj -
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:bL(ﬂm_(ym))

20 b-a 1
= = =—=~0.577

b—a (b—a)\/g 3

Application activity 9.21

1.

Acontinuous random variable X has a probability density function

k
—,0<x<1,
defined by f(x)= 1+x’ g

where kis a cdfstantelsewhere.
Find the; a) value of k.
b) mean and variance.

Let X be arandom variable with a p.d.f given by
cx?, x| <1
/(%)=

0, otherwise
where ¢ is a constant.
Find; a) the constant ¢
b) E(X) and var(X)

The outputs of 9 machines in a factory are independent variables
each with p.d.f given by

ax, 0<x<10
f(x) = a(20—x), 10<x<20
0, elsewhere
Find;
a) thevalue of a
b) the expected value and variance of outputs of each machine.

Hence or otherwise, the expected value and variance of the
total outputs from all machines.
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1. Discrete and finite random variables
a) Probability density function

A random variable X is said to be a discrete random variable, if it
takes only finite values

between its limits; for example, the number of student appearing
in a festival consisting of 400 students is a discrete random
variable which can assume values other than O, 1, 2, ...,400.

The probability density function (p.d.f), F(x) is a function that
allocates probabilities

to all distinct values that X can take on.

If the initial probability is known, you can find successive
probabilities using the following recurrence relation

P(X =x+1)=(n_x)(£jP(X=x) .

x+1 )\ ¢q

To find a cumulative probability, we add the probabilities for
all values qualifying as “less than or equal” to the specified value.
Then, the cumulative distribution function of a random variable X is

the function F(x) =P(X£x).

2. Expectation, variance and standard deviation

The expected value of random variable X, which is the mean of
the probability distribution of X, is denoted and defined by

+00

u=E(X)= Ixf(x)dx
Also, the expectation of any function g(X) of the random
variable X'is

E(2(x)= [ () (1)

The variance of random variable X'is denoted and defined by

n

o’ =Var(X)=)[x, ~u] P(X=x)
i=1
This can be simplified to

o’ :Var(X)=E(X2)—,u2
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The standard deviation of random variable X, denoted by SD(X) . is the
square root of the variance. That is,

0'=SD(X):,/Var(X)

Properties for mean and variance

Va,beR
a) E(a)=a b) E(aX)=aE(X)
c) E(aX+b)=aE(X)+b d) E(X+Y)=E(X)+E(Y)
e) E(aX’+b)zaE(X*)+b f) var(a)=0
g) var(aX)=a’var(X) h) var(aX +b)=a’ var(X)

3. Binomial distribution (Law of Bernoulli)

For binomial probability distribution, we are interested in the
probabilities of obtaining r successes in n trials, in other words r
successes and n-r failures in n attempts.

Binomial distribution is denoted
b(r : n,p) ="CPq" ", r=012,...,n

The constant n, p, q are called parameters of the binomial
distribution.

The following are assumptions made:
» There is a fixed number (n) of trials.
»  The probability of success is the same for each trial.
»  Each trial is independent of all other trials.
Note that p+¢g =1
For N set of n trials, the successes 0, 1, 2, .....r, ....., n are given by
N(p+q)n , which is called binomial distribution.
The expected value (or mean) of a binomial distribution of a discrete

random variable X is denoted and defined by #= E(X)=np
where 7 is the number of trials and P is the probability of success.

The variance of a binomial distribution of a discrete random variable
X is denoted and defined by o’ =Var(X)=npq .
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where 7 isthe number of trials, P isthe probability of success and ¢
is the probability of failure.

The standard deviation of a binomial distribution of a discrete random
variable X is denoted and defined by o = 1/Var(X) =./npq .

Uncountable infinite discrete case: Poisson distribution

The Poisson distribution is a discrete distribution often used as a
model for the number of events (such as the number of customers
in waiting lines, number of defects in a given surface area, airplane
arrivals, or the number of accidents at an intersection) in a specific
time period.

Poisson distribution is a limiting form of the binomial distribution

(p+q)n under the following conditions:
(i) n— o, i.e., the number of trials is indefinitely large.

(ii) p— 0, i.e., the constant probability of success for each
trial is indefinitely small.

(i)  mp is a finite quantity, say A.

Typical events which could have a Poisson distribution are:

(i) Number of customers arriving at a supermarket checkout
per minute.

(i)  Number of suicides or deaths by heart attack in 1 minute.

(i)  Number of accidents that take place on a busy road in
time t.

(iv)  Number of printing mistakes at each unit of the book.
(v) Number of cars passing a certain street in time .

(vi)  Number of & — particles emitted per second by a
radioactive source.

(vii)  Number of faulty blades in a packet of 1000.
(viii) Number of persons born blind per year in a certain village.

(ix)  Number of telephone calls received at a particular switch
board in a minute.

(x)  Number of times a teacher is late for class in a given week.
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The probability density function of Poisson distribution is defined by

-A9x
P(x=x)=2% 1=012,.
x!

where A isa parameter which indicates the average number (the expected
value) of events in the given time interval. We write X ~ Po(ﬂ).

»  If the initial probability is known, you can find successive
probabilities using the following recurrence relation;

P(X:x+1)=%P(X=x)
X

»  For a Poisson distribution of a discrete random variable X , the mean
U (or expected value) and the variance ¢ are the same and equal
tod.Thus, u=oc"=1.

5. Continuous random variables
a) Probability density function

A function defined on an interval [a,b] is a probability density function
for a continuous random variable X distributed on [a,b] if, whenever X,

and x, satisfy a<x, <x, <b, we have p(xl SXsz): J‘f(X)dx

Properties of p.d.f /(x)
(i) f(x) >0 forall x
(ii) _[ f(x)dle
all x

The cumulative distribution function of a continuous random
variable X is defined as: F(x) = I;f(t) dt
where

. F(x)=0forx—)—oo

. F(x)zlforx—)+oo
b) Expected value, variance and standard deviation

The mean u (or expected value E(X) ) of X is denoted and
defined by

u:E(X)szf(x)dx

—00
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Also, expectation of function & of X'is

—+c0

E(2(x))= | 2(x) /()

—00

The variance Var(x) or 6 is denoted and defined by
o* =Var(X)=E(X*)-[E(x)]
The standard deviation is

o=8D=Var(X)

Properties of £(X) and Var(X)

Va,beR
1. E(a)=a 2. E(aX)=aE(X)
3. E(aX+b)=aE(X)+b 4. E(X+Y)=E(X)+E(Y)
5. E(aX’+b)=aE(X’)+b 6. var(a)=0
7. var(aX)=d’var(X) 8 var(aX+b)=a’var(X)
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End of unit assessment

1. A problem of statistics is given to three students A, B and C whose

chances of solving it are l,é and 1

4
respectively. What is the probability that the problem will be
solved?

2. A company owns 400 laptops. Each laptop has an 8% probability of
not working. Suppose you randomly selected 20 laptops for your sales
people. What is the likelihood that:

a) 5 will be broken? b) They will all work?
c) They will all be broken?

3. A study indicates that 4% of American teenagers have
tattoos. If a random sample of 30 teenagers was made,
what is the likelihood that exactly 3 will have a tattoo?

4.  AnXYZcell phoneis made from 55 components. Each component has
a 0.002 probability of being defective. What is the probability that an
XYZ cell phone will not work perfectly?

5. The ABC Company manufactures toy robots. About 1 toy robot per
100 does not work. Suppose you purchase 35 ABC toy robots, what is
the probability that exactly 4 do not work?

6. A thin but biased coin has a probability of 0.55 of landing with the
head up and 0.45 of landing with the tail up. The coin is tossed three
times. (Determine all numerical answers to the following questions to
6 decimal places).

a) Whatisthe sample space of possible outcomes of the three tosses?
b) What is the probability of each of these possible outcomes?

c) Find the probability function for the number X of the times heads
come up during the 3 tosses.

d) What is the probability that the number of heads is at least one?
e) What is the expected outcomes of X?

7. Assuming half the population of a town consumes chocolates and
that 100 investigators each take 10 individuals to see whether they
are consumers, how many investigators would you expect to report
that three people or less were consumers?

8. The mean and variance of binomial distribution are 4 and —
respectively. Find P(X >1). 3

510




9. The incidence of occupational disease in an industry is such that the
workers have a 25% chance of suffering from it. What is the probability
that out of six workers 4 or more will contact the disease?

10. A box contains ‘a’ red and ‘b’ black balls, 'n’ balls are drawn. Find the
expected number of red balls drawn.

11. The probability of a student arriving at the school late on any given

day is L
10
a) What is the probability of his/her being punctual for a whole week
(i.e. 5 days).

b) Calculate the mean and variance of the number of days he/she will
be late in school term consisting 14 weeks.

12. Assuming that, on average, one telephone number out of 15 calling
between 2 p.m.and 3 p.m. on week day is busy. What is the probability
that if 6 randomly selected telephone numbers are called:

a) Not more than three will be busy?
b) At leastthree of them will be busy ?

13. A candidate is selected for interview for three posts. For the first post,
there are three candidates, for the second there are four, and for the
third one are two. What is the chance of getting at least one post?

14. A cross word puzzle is published in the times magazine each day of
the week, except Sunday. A man is able to complete on average 8 out
of 10 of the cross puzzles.

a) Find the expected value and the standard deviation of the number
of completed cross words in a given week.

b) Find the probability that he will complete at least 5 in a given week.

15. The number of accidents in a year involving taxi drivers in a city follows
distribution with mean equal to 3. Out of 1000 taxi drivers sampled
(selected), find approximately the number of drivers with:

a) No accidentin year.
b) More than 3 accidents in a year.
16. In a Poisson distribution P(X) for x=0 is 0.1.Find the mean.

17. Six coins are tossed 6400 times. Using the Poisson distribution, what is
the approximate probability of getting six heads x times?
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18. Suppose that a book of 600 pages contains 40 printing mistakes.
Assume that these errors are randomly distributed throughout
the book and X, the number of errors per page follows a Poisson
distribution. What is the probability that 10 pages selected at random
will be free of errors?

19. If | receive 4 e-mails per day via my home computer, what is the
probability that on a given day, | receive:

a) Exactly two e-mails,
b) No e-mail,
c) Atleastthree e-mails.
20. Telephone calls arriving at the school office follow a poisson

distribution with an average rate of 0.6 per minute. Determine the
probability that:

a) The office receives at least 2 calls in a given minute.
b) The office receives 7 calls in a space of 10 minutes.
c) The office receives only 3 calls in a given 5 minutes.
d) No callarrived while the secretary was out of the office for 6 minutes.

21. Fita Poisson’'s distribution to the following data and calculate expected
frequencies:

Deaths 0 1 2 3 4
Frequencies 122 160 15 2 1

22. An insurance company found that only 0.01% of the population
is involved in a certain type of accident each year. If its 1000 policy
holders were randomly selected from the population, what is the
probability that not more than two of its clients are involved in such an

accident next year? {6-0.1 = 0.9048} :

23. A manufacturer of coffer pins knows that 5 per cent of his product
is defective. If he sells coffer pins in boxes of 100 and guarantees
that not more than 4 pins will be defective, what is the approximate
probability that a box will fail to meet the guaranteed quality?

(e =0.0067).

24. Fita Poisson distribution to the following data which gives the number
of yeast cells per square for 400 squares

Mistakes per day 0 1 2 3
Number of days 143 90 42 12

Itis given that e =0.2674

~
al
o~

O
w
—
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25. A probability distribution function is given by

X 0<x<3
6

f(x)=<%(4—x), 0<x<3
0, elsewhere

Calculate:
a) The probability that x lies in the interval (1,2) .
b) The probability that x > 2.
26. The probability density function of a continuous random variable X is

f( ) ksinx, 0<x<ur,
X)=
0, elsewhere.
Find;
V4
a) The value of k& b) P(x>§J

where k is a constant.

27. The time taken to perform a particular task, # hours, has the p.d.f given
by

10C?, 0<1t<0.6
f(x)= 9C(1—t), 0.6<t<1
0, elsewhere

where ¢ is a constant.

Determine the probability that the time required will be:
a) More than 48 minutes.
b) Between 24 and 48 minutes.

28. A continuous random variable X has probability density function

kx(—x), 0<x<2,
f(x)z k(4—x),2$x£4,
0, otherwise.

where kis a constant.

Determine the:

513




a) Value of k b) Mean c) P(1<x<3)

29. The continuous random variable X has probability density function

k, 0<x<2,
f(x)= k(3—x), 2<x<3,
0, elsewhere.

where k is a constant.
a) Determine the:
(i) Value of k
(i)  Mean
(iii) Standard deviation (O') of X
b) if E(x)=u,findthe p(x<u-o)
30. For each of the following functions, find the:

a) Value of k for which f is a probability density on the given
interval.

b) Mean u,variance o’ and standard deviation & of the probability
density function f, and P(,U —OSxsSpu+t O')
M f(x)=k on [0,3]
(ii) f(x) =kx*> on [0,1]
(iii) f(x) :k(x—xz) on [0,1]
31. Petrol is delivered to a garage every Monday morning. At this garage,

the weekly demand of petrol in thousands of units is continuous
random variable X distributed with a p.d.f of the form

ax® (b—x),OS x<1
f(x) - {O, otherwise

a) Given that the mean weekly demand is 600 units, determine the
value of a and b.

b) If the storage tanks at this garage are filled to their capacity of 200
units every Monday morning, what is the probability thatin any given
week, the garage will be unable to meet the demand of petrol?
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Summative Evaluations

The following evaluations cover contents of Senior Four, Senior Five and
Senior Six.

For each evaluation there are two sections: A and B
e SECTION A: Attempt ALL questions (55 marks)
e SECTION B: Attempt any THREE questions (45 marks)

Evaluation 1

SECTION A: Attempt all questions (55 marks)

x=2
1. Solve: (éj =43 (3 marks)

2. For which values of m does the following
quadratic equation; x> +3x+m =0 admita

double root? Find that root. (4 marks)
3. Find the value of k if the angle between
u=(k,3) and v= (4,0) is 45”. (2 marks)
4. Solve: 2cos’x—cosx—1=0 (4 marks)
. 1=
5. Evaluate: lim 'cosx (2 marks)
=0 sinx
6. Consider a sequence {u,} where u,,, =3(u, +2)
and u, =0. List the first five terms of this
sequence. Is the sequence arithmetic,
geometric or neither? (4 marks)
7. Let f(x) =\/x2 +24x* -1 —\/x2 —2Jx* -1
a) Find domain of definition of f(x) (3marks)

b) Simplify f(x) on its domain of definition

515




10.

11.

12.

13.

14.

15.
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(Hint: Start by calculating f7(x)) (4 marks)

A biased coin is such that head is three times
as likely to appear as tail.

Find P(T) and P(H). (4 marks)

Find equations of the tangent and normal lines to the curve of the
function y = f(x)=x"-2x*+4 at point (2,4). (3 marks)

a) Give the equation of sphere with centre ( 6,5,—2)
and radius \/% (2 marks)

b) Find the radius and the centre of the

sphere whose equation is x* +y” +2z° +4x -8y +6z+7=0
(3 marks)

c) Find the intersection of the given sphere in
b) and the line passing through the points

A(1,1,-1) and B(2,-3,4). (3 marks)

Sugar dissolves in water at a rate proportional to the amount still
undissolved. If there were 50 kg of sugar present initially, and at the
end of 5 hours only 20 kg of sugar is left, how much longer will it take
until

90% of the sugar is dissolved? (4 marks)
Prove that: sin ycos(x—y)+cos ysin(x—y)=sinx

(2 marks)
Evaluate the following limit:

o {J1+x) -1

lim~Y————~ (3 marks)
x—0 X
Find the value of x if the mean of
56,37,54,52,x and 48 is 50. (2 marks)
Calculate the area enclosed by the curves
y? =2px and x> =2py (4 marks)



SECTION B: Attempt any three questions (45marks)

16. Given the statistical distribution

X; 7 8 9 11 15

Vi 33 25 17 9 6

a) Calculate the linear correlation
coefficient. (6 marks)

b) Determine the equation of the regression
line of ¥ on x. (4 marks)

c) Draw a scatter plot of this set of the
distribution and the regression line. (5 marks)

17. a) Solve in R’ the following system
3x+2y-5z=2
x+ 2y =3 (8 marks)
2x— y+ z=-3
b) Find the area of a parallelogram having adjacent sides
a=6i+3j—-2k and I;=3;—2;'+67c (7 marks)
18. A random variable X has probability density function
—xV:0<x<
F(x)= cx(6 x) ;0<x<6
0, elsewhere

a) Find the value of ¢ (4 marks)

b) Calculate the;

(i) mean (5 marks)
(i) variance (4 marks)
(iii) standard deviation (2 marks)

19. Given that [, =

o

Ll
2

e"sinxdx and J zje‘”" cosxdx, neN
0

O 0 | N
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20.

a) Applying successive integration by parts on integrals I,
and J,, establish two relations between 7 and J,.(9
marks)

b) Hence, deduce the value of 7, and J,. (6 marks)

Solve the differential equation y"—y'-2y =6x
given that y(0)=y'(0)=1 (15 marks)

Evaluation 2
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SECTION A: Attempt all questions (55 marks)

e +y2 _ ﬂ
Solve the following simultaneous equations: 3 (2 marks)
Xy = 5

Inx
. . e e
Assume that x is a positive real number, calculate: ln( j: ln(—]
e

(2 marks) ’ X
V4
Solve the following equation in R: arctan x + arctan~/3 = 2(3 marks)

ln(l +x2
Calculate the derivative of the function: f(x) =———(4 marks)
e

. -1

Evaluate the following limit: llm&
x—l %_

Solve in the set of complex numbers, the equation iz—2=4i—z and

put the answer in algebraic

form. (4 marks)

(4 marks)

sin x + sin 2x
Prove that =tanx (4 marks)

1+ cosx+cos2x

Evaluate the following limit:

. 14+4243+...+n
lim

X n’ (4 marks)




9. Find the equation of the tangent to the curve y =In(4x—11) at the
point where x =3. (5 marks)

10. The function fis defined as follows: £:7R 5 IR:x — f(x)= m(x_ﬂj.
1

Find the domain of definition of f . (5 marks)

2
11. Given the function F(x) =%+x—xlnx,

calculate its derivative F'(x) (5marks)

12. Solve in R:
a) eel=e (2 marks)
b) e ?+e 7 =6e" (2 marks)

X

13. Determine the inverse f~' of the function f(x)=

X

e_x (3 marks)
e

14. Express Yy in terms of x given that:
5log, y—3log,(x+4)=2log, y+3log, x (3 marks)

15. A point P is 90 m away from a vertical flag pole
which is 11 m high. What is the angle of elevation
to the top of the flag pole from P? (3 marks)

SECTION B: Attempt any three questions (45 marks)

16. Solve the equation in the complex number set and the system in R*.

a) z —(8i-1)z*-8i=0 (11 marks)
1+1log,(—x+2y) =log,(2x—3y)
b) goeey _ 81 (4 marks)
3—x—7y
2
17. Given the function f of real variable x defined by: f(x)= xz _i
x —

a) Determine the domain of definition

of f(x). (2 marks)

b) Calculate the limits at the boundaries
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of the domain. (3 marks)
c) State any asymptotes. (2 marks)
d) Make the variation table. (3 marks)

e) Find the x-intercepts and y-intercepts
for the graph of f. (2 marks)

f)  Sketch the graph of fin a Cartesian
plane. (3 marks)

18. a) From a group of 4 men and 5 women, how many committees of
size 3 are possible.

(i)  With no restrictions? (3 marks)
(i)  With 1 man and 2 women? (3 marks)

(i) With 2 men and 1 woman if a at least
a man must be in the committee? (3 marks)

b) If 3 books are picked at random from a shelf containing
5 novels, 3 books of poems, and a dictionary. What is the
probability that:

(i) The dictionary is picked? (3 marks)

(i) 2 novels and 1 book of poems are
selected? (3 marks)

19. a) The numerical function f of real variable x is defined
2
as follows: f(x)= X Axv2 By writing
x+1

C
x+1
where a, b and c are real numbers, determine
the values of a, b and c; and hence deduce

f(x)=ax+b+

_[f(x) dx . (8 marks)
b) Solve the differential equation
wa_y
x dx X’ (7 marks)

20. A school office receives 5 calls on average between 09:00 hrs and
10:00 hrs on each weekday. Find the probability that the office:
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a) Receives 6 calls between 09:00 hrs
and 10:00 hrs on this Wednesday. (5 marks)

b) Will receive exactly 3 calls
between 09:15 hrs and 09:30 hrs. (5 marks)

c)  Will receive 3 calls between
09:15 hrs and 09:30 hrs on exactly
2 days during a given week. (5 marks)

Evaluation 3

SECTION A: Attempt all questions (55 marks)

1. Solve the following inequality: 3—5x—x>>0 (3 marks)
2. Find the equation of the circle passing through

points (0,1),(4,3) and (1,-1) (3 marks)
3. Determine the value(s) of k for which the equation

% =k has repeated roots. (4 marks)

4. Solve the following system by Gaussian elimination method

x+y—z=-1
3x-2y+z=0
2x+3y—-3z=-3 (4 marks)
o AXR 2
5. Evaluate the following limit: lim 3 (3 marks)
X—>—00 X —
6. An arithmetic series has U, =72—6n ,
If the sum of the first n terms of the series
is 378; find n. (4 marks)

7. Find the centre and radius of the sphere
with equation: (x—1)(x—=2)+(y+3)(y—4)+(z+1)(z—1)=0(3 marks)

8. Using a diagrams show the validity or fallacy of the following
arguments:

a) All human being are mortal.

b) Peter the cat is mortal.
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c) Therefore, Peter the cat is a human being. (4 marks)

9. Find the derivative of function f defined by f(x)=sin’ xtanx .(4
marks)

10. a) Find the equation of the line joining

A(3,4,1) and B(5,1,6). (2 marks)

b) Find the co-ordinates of the point where
that line cuts the plane z=0. (2 marks)

11. Determine the Maclaurin series of the function
f(x)=cos3x. (3 marks)
2
12. Express in partial fractions (2.5 marks)
x> +4x? +3x
2
and hence J‘3x——21dx (2.5 marks)
X +4x"+3x

2-2i
13. Express the complex number z = L in both algebraic and polar

forms. ti (3 marks)
Inl6 Inl6
43 dx
14. Given that 1= I ex dx and J = J —,
, € +4 o € +4
calculate the values of I+J and 1-3J. (5 marks)

15. Let U and W be the following subspaces of R*:
U={(a.b,c.d):b+c+d =0}, W ={(a,b,c,d):a+b=0,c=2d}. Find
the
dimension of UNW . (3 marks)

SECTION B: Attempt any three questions (45 marks)

16. Suppose you have Frwl00,000 to invest for one year at a nominal
annual rate of interest of 8%, how much would your investment be
worth after one year if interest is compounded:

a) Annually (3 marks)
b) Quarterly (3 marks)
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c) Monthly (3 marks)
d) Weekly (3 marks)
e) Daily? (3 marks)

17. The following table gives a number of advertisement
(x,) and the volume of sales in hundreds of dollars (y,)
of a certain sports company.

X, 1 2 3 4 5 6

Vi 41 50 54 54 57 63

a) Find the standard deviation for x,
and ;. (4 marks)

b) Calculate the correlation coefficient r. (3 marks)

c) Find the equation of regression line
for y with respect to x. (4 marks)

d) For 7 numbers of advertisements,
estimate the volume of sales. (2 marks)

18. The vertices of the triangle are 4(1,2,3), B(-2,1,-4) and C(3,4,-2).
a) Find the perimeter of the triangle ABC. (4 marks)

b) Determine the coordinates of centre of

gravity of the triangle ABC. (3 marks)
c) Find the angles of the triangle ABC. (6 marks)
d) Find the area of the triangle ABC. (2 marks)

19. Given the function f of real variable x defined by

1
= 1——
f(x) x+|x|+ -

a) What is the domain of definition
of f(x)? (1 mark)

b) Write f(x) without the symbol of
absolute value. (2 marks)

c) Calculate the limit on boundaries of
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domain of definition and deduce
equation of asymptotes. (3 marks)

d) Compute the first derivative and
indicate the interval of increasing or

decreasing. (2 marks)
e) Construct the table of variation. (2 marks)
f)  Establish the direction of concavity. (2 marks)
g) Plot the curve in Cartesian plane. (3 marks)

20. a) Find the equation of parabola whose focus
is at (—1,—2) and directrix x—2y+3=0. (4 marks)

b) Find the equation of the set of the all points

2
whose distances from (0,4) are 3 of their distances from
the line y=9. (5 marks)

c) Inthe hyperbola x> —4y> =4  find the axes , the
coordinates of the foci, the eccentricity and the latus
rectum. (6 marks)

Evaluation 4

SECTION A: Attempt all questions (55 marks)

20
1. Find the term independent of X in the expansion of ()H.lj (3

marks) X
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10.

11.

12.

The cubic polynomial 6x’ +7x* +ax+b has a
remainder of 72 when divided by (x-2) and is
exactly divisible by (x+1). Find the values of a
and b. (3 marks)

Solve the equation: sinx+ Jeosx=1 (3 marks)

I1-x 2 8
Given the matrix 4=| 2 2-x -10
8 -10 5-x
find the possible values of x such that matrix 4

is singular (has no inverse) if 9 is one of those
values. (3 marks)

1

Solve the following system

{log(x+y):1

log, x+2log, y=4 (3 marks)

If @ and B are the roots of the equation x*—x-3=0, without
solving the equation, find the value

of a’ + . (3 marks)

Find the centre, foci, and eccentricity for the ellipse:
X’ +4y° —4x+8y+4=0 (4 marks)

Write the equation of the tangent and the
normal to the curve of 3x* —xy—2)* +12=0 at

the point (2,3). (4 marks)
Find the value of the constant &

f J'I;dx :l 5 k

[ °(2x+k)2 3 (5 marks)

Solve in set of complex numbers the
equation: z8 =1 (5 marks)

The sum of the first six terms of an arithmetic progression is 72 and
the second term is seven

times the fifth term. Find the first term and

the common difference. (5 marks)

Evaluate lim (tanx)™" (4 marks)

x>
2
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13. Given that ¥ =6.2, o, =3.03315, y =2.04, o, = 0.461519 and
1, =0.957241, find the regression line
of ¥ on x where; X, 0,, ¥, 0, and 7, stand for the mean of x, the
standard deviation of x, the mean
of ¥, the standard deviation of y and the
correlation coefficient respectively. (5 marks)

14. From a pack of 52 cards, two cards are drawn
together at random. What is the probability of
both cards being kings? (2 marks)

15. Find the cosine of the angle and the angle
itself (in radians and degrees) between
vectors (2, 5) and (-1, 3). (3 marks)

SECTION B: Attempt any three questions (45 marks)

16. On the same graph, sketch the curves of functions
y=x>—5x+4 and y=-2x"+5x+1.
Hence, find the area of the region enclosed
between the two curves. (15 marks)

17. a) The events 4,8 and C in the same sample space
are such that 4 and C are mutually exclusive
events while 4 and B are independent events.
Given that:
_2 _1 _4 and P(BUC)=22.
P(4) 3 P(C) S,P(AUB) : and P( ) Y
() Find P(4UC), P(B) and P(ANB) (6 marks)

(i) Are B and C independent events?
Justify your answer. (2 marks)

b) A hospital diagnoses that a patient has contracted a virus
X, but it is known that one could have been from one of
the three trains of the virus X,, X, or X, . For the patient
having virus X, the probability of it being X, X, or X, is
1 3 1
—, — or p—
2°'8 8
respectively and the corresponding probabilities

13
of recovery is 33 and 1. Find the probability
8
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that if the selected patient recovers, he had
virus X, . (7 marks)

18. a) Given the points 4(2,-3,-1),B(3,—4,2) and
C(4) _53 2), flnd
()  ABxAC (3 marks)
(i) The area of the triangle 4BC. (2 marks)

b) The points 4 and B have coordinates
(2,1,1) and (0,5,3) respectively.

(i) Find the equation of the line 4B in
terms of parameter. (3 marks)

(i) If C is the point with coordinates (5,-4,2),
find the coordinates of point D on 4B such that CD
is perpendicular to
AB . (5 marks)

(iii) Find the equation of the plane 7 containing the line
AB and parallel to CD. (2 marks)

19. Given the complex number U = cis =2

1 1 2
a) Prove that —(U+—j = COS—”. (3 marks)
2 U 5
b) Calculate U’. (3 marks)
c) Deducethat U'+U’+U*+U+1=0. (3 marks)

1
d) By taking x= U+E , write the real part of the
expression in c) in terms of x. (3 marks)

e) Solve, in set of real numbers, the
expression obtained in d) and deduce

2
the exact value of cos?ﬂ. (3 marks)
20. a) In how many ways can 5 men, 4 women and
3 children be arranged in a row so that all men,

women and the children each sit together?
(3 marks)
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b) Solve the following system
{xcy = ny+1

(6)-s(c.) o
c) Prove that
"C, +2("7C,,)+"7C, L ="C, (6 marks)
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