### General

- Math S4 SB Core File Uploaded 28/01/22, 10:10
- Mathematics S4 TG Core File Uploaded 28/01/22, 10:25
- Associate Nursing Mathematics SB File Uploaded 9/03/22, 14:36
- Associate Nursing Mathematics S4 TG File Uploaded 9/03/22, 14:38

### General

### UNIT 6 : Quadratic equations and inequalities

**Key unit competence**Model and solve algebraically or graphically daily life problems using quadratic equations or inequalities.

**Learning objectives****6.1 Introduction**In Senior 3, we learnt about quadratic equations and ways to solve them.

**Activity 6.1**Carry out research to obtain the definition of quadratic equation. Discuss your findings with the rest of the class.

The term

**quadratic**comes from the word quad meaning square, because the variable gets squared (like x2). It is also called an “equation of degree 2” because of the “2” on the x.The standard form of a quadratic equation looks like this: ax

^{2}+ bx + c = 0where a, b and c are known values and a cannot be 0.

“

**x**” is the variable or the unknown.Here are some more examples of quadratic equations:

**2x**In this one, a = 2, b = 5 and c = 3^{2}+ 5x + 3 = 0**x**For this, a = 1, b = –3 and c = 0, so 1 is not shown.^{2}− 3x = 0**5x − 3 = 0**This one is**not**a quadratic equation. It is missing a value in x^{2}i.e**a = 0**, which means it cannot be quadratic.**6.2 Equations in one unknown**A quadratic equation in the unknown x is an equation of the form ax

^{2}+ bx + c = 0, where a, b and c are given real numbers, with a ≠ 0. This may be solved by**completing the square**or by using the formula• If b

^{2}– 4ac > 0, there are two distinct real roots• If b

^{2}– 4ac = 0, there is a single real root (which may be convenient to treat as two equal or coincident roots)• If b

^{2}– 4ac < 0, the equation has no real roots.We know that the quadratic equation is of the form:

**Sum and product of roots****Activity 6.2**In pairs, form the quadratic equations that have 7 and –3 as roots.

**Solving quadratic equations by factorizing****6.3 Inequalities in one unknown**The product ab of two factors is positive if and only if

(i) a > 0 and b > 0 or

(ii) a < 0 and b < 0.

**Sign diagrams**Although this method is sound it is not of much practical use in more complicated problems. A better method which is useful in more complicated problems is the following which uses the ‘’sign diagram’’ of the product (x – 1)(x + 2).

(x – 1) (x + 2) > 0

The critical values are x = 1 and x = –2. (i.e., the values of x at which the factor is zero.)

The sign diagram of (x – 1) (x + 2) is thus:

**Inequalities depending on the quotient of two linear factors****Solving general inequalities**The techniques illustrated in the previous pages can be used to solve complicated inequalities. There are also other techniques which may be used in special cases.

**6.4 Parametric equations**In case certain coefficients of equations contain one or several letter variables, the equation is called

**parametric**and the letters are called**real****parameters**. In this case, we solve and discuss the equation (for parameters only).**Parametric equations in one unknown**If at least one of the coefficients a, b and c depend on the real parameter

**which**is not determined, the root of the parametric quadratic equation depends on the values attributed to that parameter**6.5 Simultaneous equations in two unknowns**To solve simultaneous equations involving a quadratic equation we use substitution of one equation into the other.

**6.6 Applications of quadratic equations and inequalities****Activity 6.3**In groups of five, research on the importance and necessity of quadratic equations and inequalities.

Quadratic equations lend themselves to modelling situations that happen in real life. These include:

• projectile motions

• the rise and fall of profits from selling goods

• the decrease and increase in the amount of time it takes to run a kilometre based on your age, and so on.

The wonderful part of having something that can be modelled by a quadratic is that you can easily solve the equation when set equal to zero and predict. If you throw a ball (or shoot an arrow, fire a missile or throw a stone) it will go up into the air, slowing down as it goes, then come down again. A quadratic equation can tell you where it will be at any given time.

**Supplementary, interactive questions served by Siyavula Education.**Note: Questions will open in a new window or tab.

**Introduction****Supplementary, interactive questions served by Siyavula Education.**Note: Questions will open in a new window or tab.

**Equations in one unknown**- Solving from standard form
- Standard form for quadratic equations
- Quadratic equations: -x^2 + bx + c = 0
- Quadratic equations: ax^2 + abx + ac = 0
- Solving quadratic equations
- Quadratic equations: (x + a)(x + b) + cx = 0
- Completing the square
- Quadratic equations: finding the values of a, b and c
- Solving quadratic equations
- The quadratic formula: solving quadratic equations
- The quadratic formula: managing equations first
- Equations with squared binomials
- The quadratic formula: equations with fractions

**Supplementary, interactive questions served by Siyavula Education.**Note: Questions will open in a new window or tab.

**Inequalities in one unknown****Supplementary, interactive questions served by Siyavula Education.**Note: Questions will open in a new window or tab.

**Parametric equations****Supplementary, interactive questions served by Siyavula Education.**Note: Questions will open in a new window or tab.

**Simultaneous equations in two unknowns**- Substitution with quadratic equations
- Simultaneous equations
- Simultaneous equations
- Simultaneous equations
- Simultaneous equations: special outcomes
- Simultaneous equations
- Solving simultaneous equations
- Simultaneous equations: solving by substitution
- Simultaneous equations with xy terms
- Solving simultaneous equations

**Supplementary, interactive questions served by Siyavula Education.**Note: Questions will open in a new window or tab.

**Applications of quadratic equations and inequalities**